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We consider a Fredholm integral equation of the second kind in L 1 ([a, b], C), with a weakly singular kernel. Sufficient conditions are given for the existence and uniqueness of the solution. We adapt the product integration method proposed in C 0 ([a, b], C) to apply it in L 1 ([a, b], C), and discretize the equation. To improve the accuracy of the approximate solution, we use different iterative refinement schemes which we compare one to each other. Numerical evidence is given with an application in Astrophysics.

Introduction

We consider a Banach space X. Let T be the integral operator defined by [START_REF] Ahues | An L 1 ([a, b], C) refined projection approximate solution of the radiation transfer equation in stellar atmospheres[END_REF] ∀x ∈ X, ∀s ∈ [a, b], T x(s) := b a L(s, t)H(s, t)x(t)dt, where (s, t) → H(s, t) is not smooth. For z in the resolvent set of T , re(T ), and y in X we consider the Fredholm integral problem of the second kind [START_REF] Ahues | Iterative refinement schemes for an ill-conditioned transfer equation in astrophisics[END_REF] Find ϕ ∈ X s.t. (T -zI)ϕ = y, where I denotes the identity operator on X.

To approximate the solution of this equation, we define a finite rank approximation T n of T , so that the approximate equation (T n -zI)ϕ n = y or (T n -zI)ϕ n = y n , where y n is an approximation of y, be uniquely solvable and the sequence of approximate solutions ϕ n converges to the exact solution ϕ when n tends to +∞.

Among them, different classes of methods rely on a sequence of projections π n converging pointwise to the identity operator I. For example the Galerkin operator is defined by T n = π n T π n , the projection operator by T n = π n T , the Sloan operator by T n = T π n and the Kulkarni operator by T n = T π n + π n T -π n T π n (see [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF], [START_REF] Kulkarni | A Superconvergence result for solutions of compact operator equations[END_REF]). These approximations of T are all ν-convergent to T (see [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF]). This property ensures existence and uniqueness of ϕ n , and convergence to ϕ.

In the case of the space X := C 0 ([a, b], C) methods based upon numerical quadrature have been proposed, such as Nyström, truncated Nyström and subtraction of the singularity approximations (see [START_REF] Anselone | Singularity substraction in the numerical solution of integral equations[END_REF]).

In C 0 ([a, b], C), we also encounter the so-called product integration method (see [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF]). In this space, the assumptions are as follows: If h n := b -a n , then t n,i = a + ih n , for i = 0, 1, . . . , n.

For x ∈ C 0 ([a, b], C) and s ∈ [a, b], the linear interpolation scheme is given by t → [L(s, t)x(t)] n := 1 h n [(t n,i -t)L(s, t n,i-1 )x(t n,i-1 ) + (t -t n,i-1 )L(s, t n,i )x(t n,i )] ,

for i = 1, . . . , n, and t ∈ [t n,i-1 , t n,i ].

T n is defined by replacing L(s, t)x(t) with [L(s, t)x(t)] n in [START_REF] Ahues | An L 1 ([a, b], C) refined projection approximate solution of the radiation transfer equation in stellar atmospheres[END_REF].

In this method T n is a bounded finite rank linear operator defined in C 0 ([a, b], C) and hence it is compact. Under hypotheses (H1) and (H2), for z ∈ re(T ) and for n large enough, T n -zI is invertible and its inverse is uniformly bounded, (see [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF]).

In this paper we extend the product integration method to the space X := L 1 ([a, b], C). It will appear that the properties of the method in

C 0 ([a, b], C) are preserved in L 1 ([a, b], C).
In Section 2, we present our method and we prove the existence and uniqueness of the approximate solution and its convergence to the exact solution.

Section 3 is devoted to the numerical implementation of our algorithm. The choice of the integer n is limited by the capacity of the computer. The linear system to be solved is of the order of n. So, it is interesting to improve the accuracy of the approximate solution by applying some iterative refinement schemes.

Section 4 is devoted to these schemes.

In Section 5, we test our approximation with an academic example.

In Section 6, we apply our method to a problem belonging to Astrophysics. Our method is compared with the projection method proposed by Titaud in [START_REF] Ahues | An L 1 ([a, b], C) refined projection approximate solution of the radiation transfer equation in stellar atmospheres[END_REF] and [START_REF] Titaud | Analyse et Résolution Numérique de L'Equation de Transfert[END_REF].

2 Main result: The product integration method in

L 1 ([a, b], C)
We use the following notations: • The modulus of continuity of a continuous function on [a, b] is defined as

• The norm in L 1 ([a, b], C) is denoted
(5) w(x, h) := sup u,v∈[a,b],|u-v|≤|h| |x(u) -x(v)|.
• The modulus of continuity of a continuous function on

[a, b] × [a, b] is defined as (6) w 2 (f, h) := sup u,v∈[a,b] 2 , u-v ≤|h| |f (u) -f (v)|. If x ∈ L 1 ([a, b], C) then (7) lim h-→0 w 1 (x, h) = 0. If x ∈ C 0 ([a, b], C) then (8) lim h-→0 w(x, h) = 0. If f ∈ C 0 ([a, b] 2 , C) then (9) lim h-→0 w 2 (f, h) = 0.
The aim of this section is to define the approximate operator T n . The approximate solution of (2) will be, if it exists and is unique, the solution ϕ n of ( 10)

(T n -zI)ϕ n = y.
T n is constructed so that ϕ n -→ ϕ. It is well known that a collectively compact convergence of T n towards T guarantees the convergence of ϕ n towards ϕ.

Let us recall the collectively compact convergence :

Definition 1 T n and T are bounded linear operators from X into X.

The pointwise convergence, denoted by

T n p -→ T , means that ∀x ∈ X, T n x -T x → 0.
The collectively compact convergence is denoted by

T n cc -→ T : If T is compact T n p -→ T,
and for some positive integer n 0 , the set

W := ∪ n≥n 0 {T n x : x ∈ X, x ≤ 1} is relatively compact in X.
We begin by proving that T is a compact bounded linear operator from L 1 ([a, b], C) into itself. Then we propose an approximate operator T n which is a collectively compact convergent to T . Endly, we give an error estimation for the approximate solution in terms of the kernel, the norm of the exact solution, its oscillation in L 1 ([a, b], C) and the mesh size.

The proof of the compactness in L 1 ([a, b], C) relies on the Kolmogorov-Riesz-Fréchet theorem which is recalled here below.

As usual, if A is a set of functions, we define

A| Ω := {f | Ω : f ∈ A},
where f | Ω is the restriction of f to the subdomain Ω.

Theorem 1 (Kolmogorov-Riesz-Fréchet Theorem) Let F be a bounded set in

L p (R q , C), 1 ≤ p < ∞. If (11) lim h →0 τ h f -f p = 0 uniformly in f ∈ F, where 
τ h f := f (. + h),
then the closure of F| Ω is compact in L p (Ω, C) for any measurable set Ω ⊂ R q with finite measure.

Proof : See [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]. As one finds a lot of different versions of this theorem in the litterature, we propose a proof of it in the Appendix in the case q = 1, p = 1 and Ω = [a, b].

Now, the assumptions are as follows:

(P1) L ∈ C 0 ([a, b] × [a, b], C). Let c L := sup (s,t)∈[a,b] 2 |L(s, t)|.
(P2) H verifies: 

(P2.
Proof : For h > 0, 0 ≤ b b-h |H(s, t)|ds ≤ b b-h | H(s + h, t) -H(s, t)|ds ≤ b a | H(s + h, t) - H(s, t)|ds ≤ w H (h).

Proof :

For all x ∈ L 1 ([a, b], C),

T x 1 = b a | b a L(s, t)H(s, t)x(t)dt|ds ≤ b a b a |L(s, t)||H(s, t)||x(t)|dtds ≤ c L b a |x(t)| b a |H(s, t)|dsdt ≤ c L c H x 1 , so T is defined from L 1 ([a, b], C) into itself.
The proof of the compactness of T relies on the Kolmogorov-Riesz-Fréchet theorem where p = 1, q = 1 and Ω = [a, b].

We introduce the operator T given by

T x(s) := T x(s) for s ∈ [a, b], 0 for s / ∈ [a, b].
Let A and S be the following subsets of L 1 (R, C) and L 1 ([a, b], C) respectively:

A := { T x : x ∈ L 1 ([a, b], C), x 1 ≤ 1}, S := {T x : x ∈ L 1 ([a, b], C), x 1 ≤ 1}. A is a bounded subset of L 1 (R, C). Indeed T x 1 = T x 1 ≤ c L c H x 1 ≤ c L c H . Let us prove that lim h→0 τ h f -f 1 = 0 uniformly in f ∈ A.
For h > 0,

τ h T x -T x 1 = b a | T x(s + h) -T x(s)|ds = b-h a |T x(s + h) -T x(s)|ds + b b-h |T x(s)|ds. Hence b b-h |T x(s)|ds = b b-h | b a L(s, t)H(s, t)x(t)dt|ds ≤ c L x 1 (H, h) ≤ c L (H, h), and b-h a |T x(s + h) -T x(s)|ds = b-h a | b a L(s + h, t)H(s + h, t) -L(s, t)H(s, t) x(t)dt|ds ≤ b-h a | b a |L(s + h, t)||(H(s + h, t) -H(s, t)||x(t)|dtds + b-h a | b a |H(s, t)||L(s + h, t) -L(s, t)||x(t)|dtds ≤ c L x 1 w H (h) + c H x 1 w 2 (L, h) ≤ c L w H (h) + c H w 2 (L, h). So (14) τ h T x -T x 1 ≤ x 1 (c L w H (h) + c H w 2 (L, h) + c L (H, h)) .
For h < 0, we have similar bounds.

Then

τ h f -f 1 → 0 as h → 0 uniformly in f ∈ A. From the Kolmogorov-Riesz-Fréchet theorem S = A| [a,b] is relatively com- pact so T is compact.
Let us define the approximate operator T n . Let ∆ n be the partition defined by (3). For x ∈ L 1 ([a, b], C), we define the operator

t → Q n (x, s, t) := 1 h n (t n,i -t)L(s, t n,i-1 )+(t-t n,i-1 )L(s, t n,i ) 1 h n t n,i t n,i-1
x(u)du

for i = 1, . . . , n, and t ∈ [t n,i-1 , t n,i ].
The approximate operator T n is given by:

(15) ∀x ∈ L 1 ([a, b], C), ∀s ∈ [a, b], T n x(s) := b a Q n (x, s, t)H(s, t)dt,
which can be rewritten as

(16) T n x(s) = n i=1 c n,i w n,i (s),
where, for i = 1, . . . , n,

c n,i := 1 h n t n,i t n,i-1
x(u)du, and

w n,i (s) := t n,i t n,i-1 Q n (1, s, t)H(s, t)dt.
To prove that T n cc -→ T , the following lemmas are needed.

Lemma 2 For i = 1, . . . , n, b a |w n,i (s)|ds ≤ h n c L c H . (17) For h ∈ R + , b b-h |w n,i (s)|ds ≤ h n c L (H, h), (18) (19) b-h a w n,i (s + h) -w n,i (s) ds ≤ h n c H w 2 (L, h) + h n c L w H (h). Proof : For t ∈ [t n,i-1 , t n,i ], Q n (1, s, t) = 1 h n (t n,i -t)L(s, t n,i-1 ) + (t -t n,i-1 )L(s, t n,i ) |Q n (1, s, t)| ≤ c L h n |t n,i -t| + |t -t n,i-1 | = c L . Hence, by Fubini's theorem b a |w n,i (s)|ds ≤ c L b a t n,i t n,i-1 |H(s, t)|dtds, ≤ c L h n c H , and b b-h |w n,i (s)|ds ≤ c L b b-h t n,i t n,i-1 |H(s, t)|dtds, ≤ c L h n (H, h). Also b-h a w n,i (s + h) -w n,i (s) ds ≤ b-h a t n,i t n,i-1 Q n (1, s + h, t)H(s + h, t) -Q n (1, s, t)H(s, t)dt d ≤ b-h a t n,i t n,i-1 (Q n (1, s + h, t) -Q n (1, s, t))H(s + h, t) dtds + b-h a t n,i t n,i-1 Q n (1, s, t)(H(s + h, t) -H(s, t)) dtds ≤ h n w 2 (L, h) sup t∈[a,b] b a H(s, t) ds +c L h n sup t∈[a,b] b-h a ( H(s + h, t) -H(s, t) ds ≤ h n c H w 2 (L, h) + h n c L w H (h).
This ends the proof.

Lemma 3 For x ∈ L 1 ([a, b], C), (20) 
n i=1 t n,i t n,i-1 |x(u) -c n,i |du ≤ 2w 1 (x, h n ),
where

w 1 (x, h n ) is defined by (4). For t ∈ [a, b], (21) 
Q n (1, s, t) -L(s, t) ≤ w 2 (L, h n ).
Proof :

For i = 1, . . . , n, t n,i t n,i-1 |x(u) -c n,i |du ≤ 1 h n t n,i t n,i-1 t n,i t n,i-1 |x(u) -x(v)|dvdu = 2 h n t n,i t n,i-1 t n,i v |x(u) -x(v)|dudv = 2 h n t n,i t n,i-1 t n,i -v 0 |x(τ + v) -x(v)|dτ dv ≤ 2 h n t n,i t n,i-1 hn 0 |x(τ + v) -x(v)|dτ dv ≤ 2 h n hn 0 t n,i t n,i-1 |x(τ + v) -x(v)|dvdτ.
Hence

n i=1 t n,i t n,i-1 |x(u) -c n,i |du ≤ 2 h n hn 0 b a |x(τ + v) -x(v)|dvdτ ≤ 2 sup τ ∈[0,hn] t n,i t n,i-1 |x(τ + v) -x(v)|dv = 2w 1 (x, h n ).
For i = 1, . . . , n, and t ∈ [t n,i-1 , t n,i ],

Q n (1, s, t) -L(s, t) ≤ 1 h n (t n,i -t)( L(s, t n,i-1 ) -L(s, t) ) + (t -t n,i-1 )( L(s, t n,i ) -L(s, t)) (22) ≤ sup s∈[a,b] w(L(s, .), h n ) 1 h n (t n,i -t) + (t -t n,i-1 ) (23) ≤ w 2 (L, h n ), (24) 
and the proof is complete.

Theorem 3 T n is a compact linear operator from L 1 ([a, b], C) into itself and T n cc -→ T. Proof : Due to (17) in Lemma 2, for x ∈ L 1 ([a, b], C), T n x 1 ≤ c L c H x 1 so T n is a linear bounded operator from L 1 ([a, b], C) into itself. As T n is a linear bounded operator of finite rank, it is compact. Let us prove that T n p -→ T . Lemma 3 implies that T n x -T x 1 = b a n i=1 c n,i t n,i t n,i-1 Q n (1, s, t)H(s, t)dt - b a L(s, t)H(s, t)x(t)dt ds = b a n i=1 t n,i t n,i-1 c n,i Q n (1, s, t) -L(s, t)x(t) H(s, t)dt ds = b a n i=1 t n,i t n,i-1 Q n (1, s, t) -L(s, t) x(t) +Q n (1, s, t) c n,i -x(t) H(s, t)dt ds ≤ b a n i=1 t n,i t n,i-1 Q n (1, s, t) -L(s, t) |x(t)||H(s, t)|dtds + b a n i=1 t n,i t n,i-1 |Q n (1, s, t)||c n,i -x(t)||H(s, t)|dtds ≤ c H x 1 w 2 (L, h n ) + c H c L n i=1 t n,i t n,i-1 |c n,i -x(t)|dt ≤ c H x 1 w 2 (L, h n ) + 2c H c L w 1 (x, h n ).

Hence (25)

T

n x -T x 1 ≤ c H x 1 w 2 (L, h n ) + 2c H c L w 1 (x, h n ).
So we have T n p -→ T . To prove the relatively compactness of S n := {T n x : n ≥ 1, x ∈ L 1 ([a, b], C), x 1 ≤ 1} we follow the same scheme as in the proof of the compactness of T . We define the operator

Tn x(s) := T n x(s) for s ∈ [a, b], 0 for s / ∈ [a, b],
and A n as the following subset of L 1 (R, C)

A n := { Tn x : x ∈ L 1 ([a, b], C), x 1 ≤ 1}.
A n is a bounded subset of L 1 (R, C). Indeed, (26)

Tn x 1 = T n x 1 ≤ c L c H x 1 ≤ c L c H .
Let us prove that lim

h→0 τ h f -f 1 = 0 uniformly in f ∈ A n .
For h > 0,

τ h Tn x -Tn x 1 = b a | Tn x(s + h) -Tn x(s)|ds = b-h a |T n x(s + h) -T n x(s)|ds + b b-h |T n x(s)|ds.
Hence, by (18

) in Lemma 2, b b-h |T n x(s)|ds ≤ n i=1 |c n,i | b b-h |w n,i (s)|ds ≤ 1 h n x 1 h n c L (H, h) ≤ c L (H, h),
and because of (19

) in Lemma 2, b-h a |T n x(s + h) -T n x(s)|ds ≤ b-h a n i=1 c n,i w n,i (s + h) -w n,i (s) ds ≤ n i=1 c n,i (h n c H w 2 (L, h) + h n c L w H (h)). ≤ x 1 (c H w 2 (L, h) + c L w H (h)) ≤ c H w 2 (L, h) + c L w H (h).

Hence (27)

τ h Tn x -Tn x 1 ≤ x 1 (c H w 2 (L, h) + c L w H (h) + c L (H, h)) .
For h < 0, we have similar bounds.

Then

τ h f -f 1 → 0 as h → 0 uniformly in f ∈ A n . From the Kolmogorov-Riesz-Fréchet theorem, A n | [a,b] is relatively compact so T n cc -→ T.
Proposition 1 Let z ∈ re(T ). For n large enough, T n -zI is invertible and it exists a positive number c z > 0 such that

(28) (T n -zI) -1 1 ≤ c z .
Proof : It is a consequence of the collectively compact convergence (see [START_REF] Anselone | Collectively Compact Operator Approximation Theory and Application to Integral Equations[END_REF]).

Theorem 4 For z ∈ re(T ), and under hypotheses (P1) and (P2), for n large enough, the approximate operator equation ( 10) has a unique solution ϕ n satisfying the following error bound:

(29) ϕ -ϕ n 1 ≤ c z c H ( ϕ 1 w 2 (L, h n ) + 2c L w 1 (ϕ, h n )) .
Proof : According to (25) in the proof of Theorem 3,

ϕ -ϕ n ≤ (T n -zI) -1 1 (T -T n )ϕ 1 ≤ c z c H ( ϕ 1 w 2 (L, h n ) + 2c L w 1 (ϕ, h n )) ,
which ends the proof.

Remark

Often in practice, the kernel H is of convolution type. Let us fix a = 0 and b = 1. We suppose that there is a function g such that

H(s, t) = g(|s -t|)
where g is a weakly singular function defined on ]0, 1]. This means that g satisfies the following properties:

(30) lim s→0 + g(s) = +∞ (31) g ∈ C 0 (]0, 1], R) ∩ L 1 ([0, 1], R) (32) 
g ≥ 0 and g is a decreasing function in ]0, 1].

Proposition 2 When the factor H in the kernel of the operator T is of weakly singular convolution type, then H verifies all the conditions imposed by the product integration methods.

Proof :

(H2.1) ∀s ∈ [0, 1], we have 

1 0 ψ(t)dt = τ 0 ψ(t)dt + ξ τ ψ(t)dt + s ξ ψ(t)dt + 1 s ψ(t)dt = τ 0 ψ(t)dt + 2 ξ τ ψ(t)dt + 1 τ ψ(t)dt = τ 0 g(τ -t) -g(s -t)dt + 2 ξ τ g(t -τ ) -g(s -t)dt + 1 s g(t -s) -g(t -τ )dt = G(τ ) -G(s) + G(s -τ ) + 2G( s -τ 2 ) -2G(s -τ ) +2G( s -τ 2 ) + G(1 -s) + G(s -τ ) -G(1 -τ ) = 4 s-τ 2 0 g(σ)dσ - s τ g(σ)dσ - 1-τ 1-s g(σ)dσ ≤ 4 s-τ 2 0 g(σ)dσ, hence, (33) ω H (h) = sup |s-τ |≤h 1 0 |g(|s -t|) -g(|τ -t|)|dt ≤ 4 h 2 0 g(σ)dσ, so lim h-→0 + ω H (h) = 0. (P2.2) Let us prove that, for h > 0, lim h→0 + sup t∈[0,1] 1 0 |g(|s + h -t|) -g(|s -t|)|ds = 0. For t ∈ [0, 1], 1 0 |g(|s + h -t|) -g(|s -t|)|ds = 1 0 |g(|t -h -s|) -g(|t -s|)|ds, ≤ ω H (h), so lim h-→0 + w H (h) = lim h-→0 + 1 0 |g(|s + h -t|) -g(|s -t|)|ds = 0,
which ends the proof.

Iterative refinement

Recall that z = 0 because T is compact and z ∈ re(T ). Consider that the solution of ( 2) is approximated by G n (z)y, where G n (z) is an approximate inverse of T -zI. The accuracy of G n (z)y may be improved using the following iterative refinement schemes:

x (0) n := G n (z)y, x (k+1) n := x (0) + (I -G n (z)(T -zI))x (k) n . (34) 
In [START_REF] Titaud | Analyse et Résolution Numérique de L'Equation de Transfert[END_REF], G n (z) has been one of the following operators : Scheme A (Atkinson):

G n (z) := R n (z) := (T n -zI) -1 , Scheme B (Brakhage): G n (z) := 1 z (R n (z)T -I),
Scheme C (Titaud):

G n (z) := 1 z (T R n (z) -I).
Their convergence properties and error bounds have already been studied in terms of T , T n and R n (z) (see [START_REF] Titaud | Analyse et Résolution Numérique de L'Equation de Transfert[END_REF] pp 40-41). If ϕ is the solution of (2), Scheme A (Atkinson):

x (k) n -ϕ 1 ϕ 1 ≤ R n (z)(T n -T ) k+1 1 ,
Scheme B (Brakhage):

x (k) n -ϕ 1 ϕ 1 ≤ 1 z R n (z)(T n -T )T k+1 1 ,
Scheme C (Titaud):

x (k) n -ϕ 1 ϕ 1 ≤ 1 z T R n (z)(T n -T ) k+1 1 .
Let us state error estimations for these three refinement schemes for the approximate operator T n defined by (15) in this paper.

Theorem 5 For T n defined by (15), the following error bounds are satisfied: Scheme A (Atkinson):

x (2 -1) n -ϕ 1 ϕ 1 ≤ m z E(h n ) , x (2 ) n -ϕ 1 ϕ 1 ≤ 2d z c H c L m z E(h n ) ,
Scheme B (Brakhage):

x (2 -1) n -ϕ 1 ϕ 1 ≤ d z z 2 E(h n ) 2 , x (2 ) n -ϕ 1 ϕ 1 ≤ d z z 2 +1 E(h n ) 2 +1 ,
Scheme C (Titaud):

x (2 -1) n -ϕ 1 ϕ 1 ≤ d z z 2 (2c 2 H c 2 L )E(h n ) 2 -1 , x (2 ) n -ϕ 1 ϕ 1 ≤ d z z 2 +1 (2c 2 H c 2 L )E(h n ) 2 ,
where

(35) E(h n ) := 3c 2 H c L w 2 (L, h n ) + 2c H c 2 L w H (h n ) + 2c H c 2 L (H, h n ), and 
m z := 2d 2 z + 2c H c L d 3 z , (36) d z := max(c z , R(z) ). ( 37 
)
Proof : Using ( 25) ,

(T -T n )T x ≤ c H T x w 2 (L, h n ) + 2c H c L w 1 (T x, h n ) ≤ c H w 2 (L, h n ) T x + 2c H c L w 1 (T x, h n ). As w 1 (T x, h n ) = sup |u|∈[0,hn] τ u T x -T x 1 ,
and due to ( 14),

(T -T n )T x ≤ c H w 2 (L, h n ) T x + 2c H c L x 1 (c L w H (h n ) + c H w 2 (L, h n ) + c L (H, h n )) ≤ x 1 3c 2 H c L w 2 (L, h n ) + 2c H c 2 L w H (h n ) + 2c H c 2 L (H, h n ) ≤ x 1 E(h n ). Using (25), (T -T n )T n x ≤ c H T n x w 2 (L, h n ) + 2c H c L w 1 (T n x, h n ). As T n x 1 ≤ c L c H x 1 , w 1 (T n x, h n ) = sup |u|∈[0,hn] τ u Tn x -Tn x 1 ,
and because of ( 27),

(T -T n )T n x ≤ c 2 H c L w 2 (L, h n ) x 1 + 2c H c L x 1 (c L w H (h n ) + c H w 2 (L, h n ) + c L (H, h n )) ≤ x 1 3c 2 H c L w 2 (L, h n ) + 2c H c 2 L w H (h n ) + 2c H c 2 L (H, h n ) ≤ x 1 E(h n ). • Scheme A As (T n -T )R n (z)T = (T n -T )R n (z)(T -T n )T R ( z) + (T n -T )T R ( z)
, and according to (28),

R n (z)(T n -T ) 2 = R n (z)(T n -T )R n (z)T n + R n (z)(T n -T )R n (z)T = R n (z)(T n -T )T n R n (z) + R n (z)(T n -T )R n (z)T ≤ c 2 z (T n -T )T n + c z (T n -T )R n (z)(T -T n )T R ( z) + (T n -T )T R ( z) .
We have

R n (z)(T n -T ) 2 ≤ d 2 z (T n -T )T n + 2c H c L d 3 z (T -T n )T + d 2 z (T n -T )T ≤ (2d 2 z + 2c H c L d 3 z )E(h n ) ≤ m z E(h n ). Then R n (z)(T n -T ) 2 1 ≤ m z E(h n ) , so x (2 -1) n -ϕ 1 ϕ 1 ≤ m z E(h n ) , and 
x (2 ) n -ϕ 1 ϕ 1 ≤ 2d z c H c L m z E(h n ) . • Scheme B As 1 z R n (z)(T n -T )T 2 1 ≤ d z z 2 E(h n ) 2 , then x (2 -1) n -ϕ 1 ϕ 1 ≤ d z z 2 E(h n ) 2 ,
and

x (2 ) n -ϕ 1 ϕ 1 ≤ d z z 2 +1 E(h n ) 2 +1 . • Scheme C As 1 z T R n (z)(T n -T ) k+1 = 1 z k+1 T R n (z) (T n -T )T R n (z) k (T n -T ), 1 z T R n (z)(T n -T ) k+1 1 ≤ d z z k+1 (2c 2 H c 2 L ) (T n -T )T k 1 ≤ d z z k+1 (2c 2 H c 2 L )E(h n ) k , so x (2 -1) n -ϕ 1 ϕ 1 ≤ d z z 2 (2c 2 H c 2 L )E(h n ) 2 -1 ,
and

x (2 ) n -ϕ 1 ϕ 1 ≤ d z z 2 +1 (2c 2 H c 2 L )E(h n ) 2 .
This concludes the proof.

Remark 1

The upperbound of Scheme B appears to be the optimal one among the three error bounds. It improves slightly upon the one of Scheme C and is twice better than the one of Scheme A.

Numerical Implementations

The approximate equation is

T n ϕ n -zϕ n = y, i.e. ( 38 
) ∀s ∈ [a, b], n i=1 w n,j (s) 1 h n t n,j t n,j-1 ϕ n (u)du -zϕ n (s) = y(s).
By calculating the average over [t n,i-1 , t n,i ], i = 1, . . . , n, of each member of the equation, we obtain a linear system of the form (A -zI)x = d, where

A(i, j) := 1 h n t n,i t n,i-1 w n,j (s)ds, i, j = 1, . . . , n, (39) 
d(i) := 1 h n t n,i t n,i-1 y(s)ds, i = 1, . . . , n, (40) 
x(i) := 1 h n t n,i t n,i-1 ϕ n (s)ds, i = 1, . . . , n. (41) 
After solving the linear system, the approximate solution can be written as

ϕ n (s) = 1 z n i=1
w n,j (s)x(i) -y(s) .

To measure the quality of the approximation we calculate the relative residual

r(ϕ n ) := (T -zI)ϕ n -y 1 y 1 .
In practice the evaluation of T is often not possible, so we replace it with T m where m >> n and we caculate the average over [t m,i-1 , t m,i ], i = 1, . . . , m, of (T -zI)ϕ n -y and of y. We obtain two vectors of size m, and we caculate the vector norm in (C m , • 1 ).

Numerical Illustration

As an academic example we have taken

- 1 0 ln(|s -t|)ϕ(t)dt -ϕ(s) = y(s),
with unique solution ϕ(s) = s 2 . The estimations of the relative residual with m = 100 for the projection method proposed by Titaud in [START_REF] Titaud | Analyse et Résolution Numérique de L'Equation de Transfert[END_REF] and the L 1 ([a, b], C) product integration method are shown in Table 1. We observe that the L 1 ([a, b], C) product integration method is faster than the projection method.

n Projection method Integration product method 10 0.0968 0.0246 20 0.0499 0.0087 50 0.0211 0.0018 Table 1: Relative residuals Figure 1 shows the profile of the matrix A defined by (39). It is a full matrix.

In Figure 2 we chose n = 100, m = 1000 for a relative residual tolerance of 10 -12 . We note that Scheme B is the fastest one to reach the tolerance.

The theoretical Remark 1 of Section 3 is confirmed by this numerical experiment.

An Application in Astrophysics

The radiative transfer problem is a system of differential equations coupled with a Fredholm integral equation of the second kind. It describes the energy conserved by a beam radiation traveling, such that a beam of radiation can lose or gain energy through absorbing, scattering and emitting medium. Let τ * be the optical width of the medium, (see [START_REF] Chevallier | Exact results in modeling planetary atmospheres-I. Gray atmospheres[END_REF]). An example of this equation is

(s) 2 τ * 0 E 1 (|s -t|)ϕ(t)dt -ϕ(s) = y(s),
where E 1 is the first integral exponential function: The relative residual associated to the approximate solution ϕ n obtained by the projection method and the product integration method proposed in this paper are shown in Table 2. We observe that the product integration method converges faster than the projection method. For n ≥ 100, the computation of ϕ n is prohibitively costly so that we will use the refinement schemes introduced in Section 3 to compute the final approximate solution.

∀ν ≥ 1, E ν (s) := 1 
In Figure 4 we chose n = 100, m = 1000 for a relative residual tolerance of 10 -12 . We note that Scheme C is the fastest one to reach the tolerance. This confirms the results obtained in [START_REF] Almeida | A numerical study of iterative refinement schemes for weakly singular integral equations[END_REF].

Remark 2 In this application, Scheme C is apparently faster than Scheme B. This could be explained by the difference between the profiles of the corresponding auxiliary matrices A (see Figure 1 and Figure 3). To simplify the notation, . 1 denotes the norm in L 1 (Ω, C) and also the norm in L 1 (R, C). . ∞ denotes the norm in C 0 (Ω, C) and also the norm in C 0 (R, C). As L 1 (Ω, C) is a complete space, we just need to prove that F| Ω is precompact i.e.: For any ε > 0 there exist functions

f 1 , f 2 , . . . , f N ∈ L 1 (Ω, C) such that F| Ω ⊂ ∪ N i=1 B 1 (f i , ε), where B 1 (f i , ε) denotes the open ball in L 1 (Ω, C) centered in f i and of radius ε.
The proof consists in constructing the functions f i . The main idea of the proof is to apply a convolution regularization process to deal with continuous functions and to be able to apply the Arzela-Ascoli theorem.

Step 1: Regularization process Let us consider the regularizing sequence defined by

ρ n (x) := nρ(nx), where ρ(x) := k exp(- 1 1 -x 2 ) for |x| ≤ 1, 0 otherwise,
and k is a constant such that ρ 1 = 1. For all n ∈ N, ρ n is infinitely differentiable. If * denotes the convolution product, and if f ∈ L 1 (R, C), ρ n * f is a regularization of f in the sense that it is smooth: ρ n * f is infinitely differentiable. We know that ρ n * f ∈ L 1 (R, C) and also ρ n * f -→ f in L 1 (R, C). We prove a stronger result under assumption (11):

(42) Hence for all f ∈ F,

ρ n * f -→ f uniformly in f ∈ F in L 1 (R, C).
ρ n * f -f 1 ≤ sup |y|≤ 1 n τ y f -f 1 .
According to assumption [START_REF] Titaud | Analyse et Résolution Numérique de L'Equation de Transfert[END_REF], for all ε > 0, ∃N 0 ∈ N :

n ≥ N 0 ⇒ ρ n * f -f 1 ≤ ε, for all f ∈ F.
Step 2: Application of Arzela-Ascoli theorem to H n := {ρ n * f : f ∈ F}| Ω

Here n is fixed. Due to the regularization properties, H n is a subset of C 0 (Ω, C). Let us prove that H n is bounded in C 0 (Ω, C) equiped with the infinity norm . ∞ . As F is bounded in L 1 (R, C),

ρ n * f ∞ ≤ ρ n ∞ f 1 ≤ M ρ n ∞ ,
where

M := sup f ∈F f 1 .
Let us prove that H n is equicontinuous. Let 

≤ ∇ρ n ∞ |x 1 -x 2 | f 1 , ≤ M ∇ρ n ∞ |x 1 -x 2 |,
where ∇ρ n is the gradient of ρ n . According to Arzela-Ascoli theorem, H n is relatively compact in C 0 (Ω, C) so it is precompact.

Step 3: Construction of the functions f i As H n is precompact, for ε > 0 there exist functions f i ∈ C 0 (Ω, C), i = 1, . . . , N, such that

H n ⊂ ∪ N i=1 B ∞ (f i , ε)
, where where B ∞ (f i , ε) denotes the ball in C 0 (Ω, C) centered in f i and of radius ε, i.e:

∀ρ n * f ∈ H n , ∃f i ∈ C 0 (Ω, C) : ρ n * f -f i ∞ < ε.
Step

4: Conclusion

Let us show that F| Ω is precompact. Let ε > 0 and f ∈ F| Ω . According to the step 1, ∃N 0 ∈ N :

n ≥ N 0 ⇒ ρ n * f -f 1 ≤ ε, forall f ∈ F.
Let us fix n ≥ N 0 . According to the step 3, there exists i ∈ {1, . . . , N }, such that ρ n * f -f i ∞ < ε.

We have 

f -f i 1 ≤ ρ n * f -f 1 + ρ n * f -f i 1 , (43) 
ρ n * f -f i 1 = b a ρ n * f (x) -f i (x) dx ≤ (b -a) ρ n * f -f i ∞ < (b -a)ε.

(

  H1) L ∈ C 0 ([a, b] × [a, b], C).(H2) H verifies:(H2.1) c H := sup s∈[a,b] b a |H(s, t)|dt is finite, (H2.2) lim h→0 ω H (h) = 0, where ω H (h) := sup |s-τ |≤|h|, s,τ ∈[a,b] b a |H(s, t) -H(τ, t)|dt.Let ∆ n , defined by(3) a =: t n,0 < t n,1 < • • • < t n,n := b,be a uniform grid of [a, b].

by x 1 •

 1 := b a |x(s)|ds. The subordinated operator norm is also denoted by . 1 . The oscillation of a function x in L 1 ([a, b], C), relatively to a parameter h is defined by (4) w 1 (x, h) := sup |u|∈[0,|h|] b a |x(v + u) -x(v)|dv, where x is extended by 0 outside [a, b].

Theorem 2

 2 According to the assumption (P2.2), sup t∈[a,b] b b-h |H(s, t)|ds → 0 as h → 0 + . This ends the proof. Under the assumptions (P1) and (P2), the operator T is linear from L 1 ([a, b], C) into itself and compact in L 1 ([a, b], C).

(H2. 2 )

 2 )dτ < +∞. (P2.1) is also verified because the variables s and t play symmetric roles. Let us prove that, for h > 0-t|) -g(|τ -t|)|dt = 0. Let ψ be the function defined by t → ψ(t) = |g(|s -t|) -g(|τ -t|)|. Suppose that τ < s. It's easy to prove that ψ have an axial symmetry with respect to ξ = s + τ 2 , over the interval [τ, s]. Let G(t) := t 0 g(s)ds.

Then
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 1 Figure 1: Matrix A of the academic illustration

Figure 2 :

 2 Figure 2: Residual convergence with the three refinement schemes of the academic illustration
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  -s/µ µ 2-ν dµ, and the function describes the albedo. In our numerical example (s) = 0.7 exp(-s) and y(s) = -0.3 for s ∈ [0, 50[, 0 for s ∈ [50, 100].

Figure 3 :

 3 Figure 3: Matrix A of the Astrophysics application Figure 3 shows the profile of the matrix A defined by (39). It is a sparse matrix.

Figure 4 :

 4 Figure 4: Residual convergence with the three refinement schemes in the Astrophysics application

≤ 1 n - 1 n 1 n - 1 n 1 n τ y f -f 1 = sup |y|≤ 1 n

 111111 |ρ n * f (x) -f (x)| |f (x -y) -f (x)|ρ n (y)dy, so that for all f ∈ F, R |ρ n * f (x) -f (x)|dx ≤ R |f (x -y) -f (x)|ρ n (y)dxdy = τ y f -f 1 .

x 1 , x 2

 12 ∈ ω |ρ n * f (x 1 ) -ρ n * f (x 2 )| = ρ n (x 1 -y) -ρ(x 2 -y) f (y)dy ≤ |ρ n (x 1 -y) -ρ(x 2 -y)||f (y)|dy

Hence f -f i 1 ≤

 1 (1 + b -a)ε. (44) So F| Ω ⊂ ∪ N i=1 B 1 (f i , (1 + b -a)ε), and F| Ω is relatively compact.

Table 2 :

 2 Relative residuals

	n Projection method Integration product method
	10	0.0267	0.0172
	20	0.0252	0.0145
	50	0.0151	0.0075
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