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Notes on a PDE System
for Biological Network Formation

Jan Haskovec1 Peter Markowich2 Benôıt Perthame3 Matthias Schlottbom4

Abstract. We present new analytical and numerical results for the elliptic-parabolic system of partial
differential equations proposed by Hu and Cai [8, 10], which models the formation of biological transport
networks. The model describes the pressure field using a Darcy’s type equation and the dynamics of the
conductance network under pressure force effects. Randomness in the material structure is represented by
a linear diffusion term and conductance relaxation by an algebraic decay term. The analytical part extends
the results of [7] regarding the existence of weak and mild solutions to the whole range of meaningful
relaxation exponents. Moreover, we prove finite time extinction or break-down of solutions in the spatially
one-dimensional setting for certain ranges of the relaxation exponent. We also construct stationary
solutions for the case of vanishing diffusion and critical value of the relaxation exponent, using a variational
formulation and a penalty method.

The analytical part is complemented by extensive numerical examples. We propose a discretization
based on mixed finite elements and study the qualitative properties of network structures for various
parameters values. Furthermore, we indicate numerically that some analytical results proved for the
spatially one-dimensional setting are likely to be valid also in several space dimensions.
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1 Introduction

In [7] we presented a mathematical analysis of the PDE system modeling formation of biological trans-
portation networks

−∇ · [(rI +m⊗m)∇p] = S, (1.1)

∂m

∂t
−D2∆m− c2(m · ∇p)∇p+ α|m|2(γ−1)m = 0, (1.2)

for the scalar pressure p = p(t, x) ∈ R of the fluid transported within the network and vector-valued
conductance m = m(t, x) ∈ Rd with d ≤ 3 the space dimension. The parameters are D ≥ 0 (diffusivity),
c > 0 (activation parameter), α > 0 and γ ∈ R; in particular, we restricted ourselves to γ ≥ 1 in [7].
The scalar function r = r(x) ≥ r0 > 0 describes the isotropic background permeability of the medium.
The source term S = S(x) is assumed to be independent of time and γ ∈ R is a parameter crucial for
the type of networks formed [10]. In particular, experimental studies of scaling relations of conductances
(diameters) of parent and daughter edges in realistic network modeling examples suggest that γ = 1/2
can be used to model blood vessel systems in the human body and γ = 1 is adapted to leaf venation [8, 9].
For the details on the modeling which leads to (1.1), (1.2) we refer to [1].

The system was originally derived in [8, 10] as the formal gradient flow of the continuous version of an
energy functional describing formation of biological transportation networks on discrete graphs. We pose
(1.1), (1.2) on a bounded domain Ω ⊂ Rd with smooth boundary ∂Ω, subject to homogeneous Dirichlet
boundary conditions on ∂Ω for m and p:

m(t, x) = 0, p(t, x) = 0 for x ∈ ∂Ω, t ≥ 0, (1.3)

and subject to the initial condition for m:

m(t = 0, x) = m0(x) for x ∈ Ω. (1.4)

The main mathematical interest of the PDE system for network formation stems from the highly
unusual nonlocal coupling of the elliptic equation (1.1) for the pressure p to the reaction-diffusion equation
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(1.2) for the conductance vector m via the pumping term +c2(∇p⊗∇p)m and the latter term’s potential
equilibriation with the decay term −|m|2(γ−1)m. A major observation concerning system (1.1)–(1.2)
is that it represents the formal L2(Ω)-gradient flow associated with the highly non-convex energy-type
functional

E(m) :=
1

2

∫
Ω

(
D2|∇m|2 +

α

γ
|m|2γ + c2|m · ∇p[m]|2 + c2r(x)|∇p[m]|2

)
dx, (1.5)

where p = p[m] ∈ H1
0 (Ω) is the unique solution of the Poisson equation (1.1) with given m, subject to the

homogeneous Dirichlet boundary condition on ∂Ω. We have:

Lemma 1 (Lemma 1 in [7]). Let E(m0) < ∞. Then the energy E(m(t)) is nonincreasing along smooth
solutions of (1.1)–(1.2) and satisfies

d

dt
E(m(t)) = −

∫
Ω

(
∂m

∂t
(t, x)

)2

dx.

As usual, along weak solutions, we obtain a weaker form of energy dissipation, see formula (2.4) below.
In [7] we provided the following analytical results for (1.1)–(1.4) in the case γ ≥ 1:

• Existence of global weak solutions in the energy space

• Existence and uniqueness of local in time mild solutions (global in 1d)

• Existence of nontrivial (i.e., m 6≡ 0) stationary states and analysis of their stability (nonlinear in
1d, linearized in multiple dimensions)

• The limit D → 0 in the 1d setting

The purpose of this paper is to extend the analysis of the network formation system by providing
several new results, in particular:

• Existence of global weak solutions in the energy space for 1/2 ≤ γ < 1 and of local in time mild
solutions for 1/2 < γ < 1 (Section 2).

• Analysis of the system in the 1d setting: finite time breakdown of solutions for γ < 1/2, infinite
time extinction for 1/2 ≤ γ ≤ 1 with small sources, nonlinear stability analysis for γ ≥ 1/2 and
D = 0 (Section 3).

• Construction of stationary solutions in the case γ = 1 and D = 0 (Section 4).

The analytical part is complemented by extensive numerical examples in Section 5. We propose a dis-
cretization based on mixed finite elements and study the qualitative properties of network structures for
various parameters values. Furthermore, we indicate numerically that some analytical results proved for
the spatially one-dimensional setting are likely to be valid also in several space dimensions.
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1.1 Scaling analysis

We introduce the rescaled variables

xs :=
x

x
, ts :=

t

t
, ms :=

m

m
, ps :=

p

p
, Ss :=

S

S

and choose

x := diam(Ω), m := sup
x∈Ω
|m0(x)|, t :=

1

αm2(γ−1)
, S := sup

x∈Ω
|S(x)|, p :=

x2S

m2

which leads to Ss = O(1), ms(t = 0) = O(1) and the following rescaled version of (1.1)–(1.2),

−∇xs · [(rsI +m⊗m)∇xsps] = Ss,

∂ms

∂t
−D2

s∆xsms − c2
s(ms · ∇xsps)∇ps + |ms|2(γ−1)ms = 0,

with

rs =
r

m2 , D2
s =

pm2

x2s
, c2

s =
c2p2

αx2m2(γ−1)
.

Dropping the index s in the scaled variables, we obtain the system

−∇ · [(rI +m⊗m)∇p] = S, (1.6)

∂m

∂t
−D2∆m− c2(m · ∇p)∇p+ |m|2(γ−1)m = 0, (1.7)

that we will study in this paper. Moreover, for simplicity, we set r(x) ≡ 1 in the analytical part (Sections
2–4).

Convention. In the following, generic, not necessarily equal, constants will be denoted by C. Moreover,
we will make specific use of the Poincaré constant CΩ, i.e.,

‖u‖L2(Ω) ≤ CΩ ‖∇u‖L2(Ω) for all u ∈ H1
0 (Ω).

2 Existence of global weak solutions for 1/2 ≤ γ < 1

In [7], Section 2, we provided the proof of existence of global weak solutions for γ ≥ 1 based on the Leray-
Schauder fixed point theorem for a regularized version of (1.6)–(1.7) that preserves the energy dissipation
structure, and consequent limit passage to remove the regularization. We now extend the proof to the
case 1/2 ≤ γ < 1. However, the case γ = 1/2 requires special care since the algebraic term in (1.7)
formally becomes m/|m| and an interpretation has to be given for m = 0. In particular, (1.7) has to be
substituted by the differential inclusion

∂tm−D2∆m− c2(m · ∇p[m])∇p[m] ∈ −∂R(m), (2.1)

where ∂R is the subdifferential of R(m) :=
∫

Ω |m|dx, in particular,

∂R(m) = {u ∈ L∞(Ω)d; u(x) = m(x)/|m(x)| if m(x) 6= 0, (2.2)

|u(x)| ≤ 1 if m(x) = 0}. (2.3)
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Theorem 1 (Extension of Theorem 1 of [7]). Let γ ≥ 1/2, S ∈ L2(Ω) and m0 ∈ H1
0 (Ω)d∩L2γ(Ω)d. Then

the problem (1.6)–(1.7), (1.3)–(1.4) (with (2.1) instead of (1.7) if γ = 1/2) admits a global weak solution
(m, p[m]) with E(m) ∈ L∞(0,∞) and with

m ∈ L∞(0,∞;H1
0 (Ω)) ∩ L∞(0,∞;L2γ(Ω)), ∂tm ∈ L2((0,∞)× Ω),

∇p ∈ L∞(0,∞;L2(Ω)), m · ∇p ∈ L∞(0,∞;L2(Ω)).

This solution satisfies the energy dissipation inequality, with E given by (1.5),

E(m(t)) +

∫ t

0

∫
Ω

(
∂m

∂t
(s, x)

)2

dx ds ≤ E(m0) for all t ≥ 0. (2.4)

The proof proceeds along the lines of Section 2 of [7], i.e., for γ > 1/2 and ε > 0 we consider the
regularized system

−∇ · [∇p+m(m · ∇p) ∗ ηε] = S, (2.5)

∂m

∂t
−D2∆m− c2[(m · ∇p) ∗ ηε]∇p+ |m|2(γ−1)m = 0, (2.6)

with (ηε)ε>0 the d-dimensional heat kernel ηε(x) = (4πε)−d/2 exp(−|x|2/4ε) and m, p are extended by 0
outside Ω so that the convolution is well defined. For γ = 1/2, equation (2.6) has to be substituted by
the differential inclusion

∂m

∂t
−D2∆m− c2[(m · ∇p) ∗ ηε]∇p ∈ −∂R(m).

Weak solutions of the regularized system are constructed by an application of the Leray-Schauder fixed
point theorem as in Section 2 in [7], the only change that needs to be done is a slight modification of the
proof of Lemma 3 in [7]. In particular, for γ > 1/2 we construct weak solutions of the auxiliary problem

∂m

∂t
−D2∆m− f = −|m|2(γ−1)m, (2.7)

subject to the initial and boundary conditions

m(t = 0) = m0 in Ω, m = 0 on ∂Ω. (2.8)

Again, for γ = 1/2 we have to consider the following differential inclusion instead,

∂m

∂t
−D2∆m− f ∈ −∂R(m). (2.9)

In the subsequent lemma we construct the so-called slow solution of (2.9), which is the unique weak
solution of the PDE

∂m

∂t
−D2∆m− f = −r(m) (2.10)

with

[r(m)](x) =

{
m(x)/|m(x)| when m(x) 6= 0,
0 when m(x) = 0.

(2.11)
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Lemma 2 (Extension of Lemma 3 in [7]). For every D > 0, γ > 1/2, T > 0 and f ∈ L2((0, T ) × Ω)d,
the problem (2.7)–(2.8) with m0 ∈ H1

0 (Ω)d admits a unique weak solution m ∈ L∞(0, T ;H1
0 (Ω))d ∩

L2(0, T ;H2(Ω))d ∩ L∞(0, T ;L2γ(Ω))d with ∂tm ∈ L2((0, T )× Ω)d and the estimates hold

‖m‖L∞(0,T ;H1
0 (Ω)) ≤ C

(
‖f‖L2((0,T )×Ω) +

∥∥m0
∥∥
H1

0 (Ω)

)
, (2.12)

‖∆m‖L2((0,T )×Ω) ≤ C
(
‖f‖L2((0,T )×Ω) +

∥∥m0
∥∥
H1

0 (Ω)

)
. (2.13)

The same statement is true for the problem (2.10)–(2.11), (2.8) in the case γ = 1/2.

Proof. In both cases (i.e. γ ≥ 1/2) we construct the solution of the differential inclusion

∂m

∂t
+ ∂Iγ(m) 3 f (2.14)

with the functional Iγ : L2(Ω)→ [0,+∞] given by

Iγ(m) :=
D2

2

∫
Ω
|∇m|2 dx+

1

2γ

∫
Ω
|m|2γ dx, if m ∈ H1

0 (Ω) ∩ L2γ(Ω),

and Iγ(m) := +∞ otherwise. It can be easily checked that for γ ≥ 1/2 the functional Iγ is proper with
dense domain, strictly convex and lower semicontinuous on H1

0 (Ω). By the Rockafellar theorem [13], the
Fréchet subdifferential ∂Iγ(m) is a maximal monotone operator and the standard theory [2] then provides
the existence of a unique solution m ∈ L2(0, T ;H1

0 (Ω))d∩L2γ((0, T )×Ω)d of (2.14). Clearly, for γ > 1/2,
m is the unique weak solution of (2.7)–(2.8). For γ = 1/2, m is the so-called slow solution, meaning that
the velocity dm

dt is the element of minimal norm in ∂R(m), i.e.,

dm

dt
= −argmin{‖u‖H1

0 (Ω) ;u ∈ ∂R(m)}.

Therefore, m is a weak solution of (2.10)–(2.11).
To prove the higher regularity estimates (2.12), (2.13), we use (formally, but easily justifiable) ∆m as

a test function, which after integration by parts leads to

1

2

d

dt

∫
Ω
|∇m|2 dx+D2

∫
Ω
|∆m|2 dx−

∫
Ω

(|m|2(γ−1)m) ·∆mdx =

∫
Ω
f ·∆mdx. (2.15)

Then, denoting ϕ(m) := |m|2(γ−1)m, we have

−
∫

Ω
(|m|2(γ−1)m) ·∆m dx = −

∫
Ω
ϕ(m) ·∆m dx =

∫
Ω
∇m ·Dϕ(m)∇m dx (2.16)

with

Dϕ(m) = |m|2(γ−1)

(
2(γ − 1)

m

|m|
⊗ m

|m|
+ I

)
.

Clearly, Dϕ(m) is a nonnegative matrix for γ ≥ 1/2, so that the term (2.16) is nonnegative. The identity
(2.15) together with a standard density argument gives directly the required regularity and the estimates
(2.12), (2.13).

The rest of the proof of existence of solutions of the regularized problem (2.5)–(2.6) is identical to
Section 2 of [7]. For the limit ε→ 0, we only need to provide the following result for the case γ = 1/2.
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Lemma 3. Let mk → m strongly in L1((0, T ) × Ω) as k → ∞, and denote hk := r(mk) with r given by
(2.11). Then there exists h ∈ ∂R(m) such that, for a whileuence,

hk ⇀∗ h weakly* in L∞((0, T )× Ω) as k →∞.

Proof: Because hk = r(mk) is uniformly bounded in L∞((0, T ) × Ω), there exists a subsequence, still
denoted by hk, converging to h ∈ L∞((0, T ) × Ω) weakly*. Due to the strong convergence of mk in L1,
there exists a subsequence converging almost everywhere to m. Consequently, hk converges to m/|m|
almost everywhere on {m 6= 0}. On {m = 0}, we have |h| ≤ 1, so that h ∈ ∂R(m) defined by (2.2).

Note that in the case γ = 1/2, due to Lemma 3, we only obtain weak solutions of the system (1.6),
(2.1). We conjecture that m is in fact a slow solution of (2.1), i.e., that it solves

∂tm−D2∆m− c2(m · ∇p[m])∇p[m] = r(m)

with r(m) given by (2.11).

Remark 1. The proof of local in time existence of mild solutions (Theorem 3 of [7]) carries over to
the case 1/2 < γ < 1 without modifications. However, the proof of uniqueness of mild solutions by a
contraction mapping argument requires γ ≥ 1 and it is not clear how to adapt it for values of γ less than
one.

3 Analysis in the 1d setting

Much more can be proved about the system (1.6)–(1.7) in the spatially one dimensional setting. Then,
and without loss of generality, we can consider it on the interval Ω := (0, 1). The system reads

−∂x
(
∂xp+m2∂xp

)
= S, (3.1)

∂tm−D2∂2
xxm− c2(∂xp)

2m+ |m|2(γ−1)m = 0, (3.2)

Additionally, throughout this section we assume S > 0 a.e. on (0, 1), and for mathematical convenience
we prescribe the mixed boundary conditions for p,

∂xp(0) = 0, p(1) = 0,

and homogeneous Neumann boundary condition for m. Then, integrating (3.1) with respect to x, we
obtain

(1 +m2)∂xp = −
∫ x

0
S(y) dy.

Denoting B(x) :=
∫ x

0 S(y) dy, we have

∂xp = − B(x)

1 +m2
, (3.3)

so that the system (3.1)–(3.2) is rewritten as

∂tm−D2∂2
xxm =

(
c2B(x)2

(1 +m2)2
− |m|2(γ−1)

)
m. (3.4)
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3.1 Extinction of solutions for −1 ≤ γ ≤ 1 and small sources

We show that if the source term S is small enough in a suitable sense, then solutions of (3.4) converge
to zero, either in infinite time for 1/2 ≤ γ ≤ 1, or in finite time for −1 ≤ γ < 1/2. In the latter case
it means that the solutions can only exist on finite time intervals, since the algebraic term |m|2(γ−1)m is
singular at m = 0 and solutions of (3.4) cannot be extended beyond the point where they reach zero.

Lemma 4. Let D ≥ 0, −1 ≤ γ ≤ 1, m0 ∈ L∞(0, 1) and c ‖B‖L∞(0,1) < Zγ with

Zγ :=
2

γ + 1

(
1− γ
1 + γ

) γ−1
2

, Z1 := 1. (3.5)

Without loss of generality, let infx∈(0,1) |m0(x)| > 0, and m be a weak solution of (3.4) with homogeneous
Neumann boundary conditions and m(t = 0) = m0.

Then, for 1/2 ≤ γ ≤ 1, ‖m‖L1(0,1) converges to zero as t→∞. For −1 ≤ γ < 1/2 there exists a finite
break-down time T0 > 0 such that infx∈(0,1) |m(T0, x)| = 0.

Proof. For m > 0 we define the positive function

hγ(m) := m2(γ−1) (1 +m2)2. (3.6)

It can be easily shown that for all −1 ≤ γ ≤ 1,

inf
0<m<∞

hγ(m) = Z2
γ > 0.

Consequently, the assumption c‖B‖L∞(0,1) < Zγ implies

c2‖B‖2L∞(0,1)

(1 +m2)2
− |m|2(γ−1) < 0 for all m ∈ R.

As a consequence of the maximum principle for (3.4), we have the a-priori bound

‖m(t)‖L∞(0,1) ≤M := ‖m0‖L∞(0,1) for all t ≥ 0.

Now, we can conclude that there exists a δ > 0 such that

c2‖B‖2L∞(0,1)

(1 +m2)2
− |m|2(γ−1) < −δ for |m| ≤M. (3.7)

As long as infx∈(0,1) |m(t)| > 0, we can multiply (3.4) with sign(m) and integrate over Ω = (0, 1),

d

dt

∫ 1

0
|m| dx = D2

∫ 1

0
(∂2
xxm) sign(m) dx+

∫ 1

0

(
c2B2|m|

(1 +m2)2
− |m|2γ−1

)
dx.

On the one hand, the Kato inequality [3] for the first term of the right-hand side yields

D2

∫ 1

0
(∂2
xxm) sign(m) dx ≤ D2

∫ 1

0
∂2
xx|m|dx = D2

[
∂x|m|

]1

x=0
= D2

[
(∂xm) sign(m)

]1

x=0
= 0,
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where the boundary term vanishes due to the homogeneous Neumann boundary conditions. Now, for
1/2 ≤ γ ≤ 1, (3.7) implies ∫ 1

0

(
c2B2|m|

(1 +m2)2
− |m|2γ−1

)
dx < −δ

∫ 1

0
|m| dx,

so that

d

dt

∫ 1

0
|m| dx < −δ

∫ 1

0
|m| dx

and by Gronwall lemma we conclude exponential convergence of ‖m‖L1(0,1) (or, due to the maximum
principle, any Lq-norm of m with q <∞) to zero as t→∞.

For −1 ≤ γ < 1/2, from (3.7) and the behaviour near m ≈ 0 it follows that there exists a δ̃ > 0 such
that

c2‖B2‖L∞(0,1)|m|
(1 +m2)2

− |m|2γ−1 < −δ̃ for |m| ≤M.

Therefore, we have

d

dt

∫ 1

0
|m| dx ≤ −δ̃

and conclude the result with T0 <
∥∥m0

∥∥
L1(0,1)

/δ̃.

Remark 2. For γ < −1, there exists a unique positive solution mb of the equation

c2B2

(1 +m2)2
− |m|2(γ−1) = 0

for each cB > 0. Consequently, the claim of Lemma 4 cannot be extended to the case γ < −1 in a
straightforward way. It can be done under the smallness assumption on the initial datum |m0(x)| < mb(x)
for all x ∈ (0, 1), but we will skip the technical details here.

3.2 Nonlinear stability analysis for D = 0

In Section 6.1 of [7] we studied the nonlinear asymptotic stability of the 1d network formation system
with D = 0 and γ ≥ 1. We now extend that analysis to values γ ≥ 1/2.

Setting D = 0 in (3.4), we obtain

∂tm =

(
c2B(x)2

(1 +m2)2
− |m|2(γ−1)

)
m, (3.8)

which we interpret as a family of ODEs for m = m(t) with the parameter x. Assuming that S > 0 on
(0, 1), we have B(x) > 0 on (0, 1).

9



Clearly, m = 0 is a steady state for (3.8); with γ = 1/2 we interpret m/|m| = 0 for m = 0. To find
nonzero steady states, we solve the algebraic equation

c2B(x)2

(1 +m2)2
− |m|2(γ−1) = 0,

in other words, we look for the roots of hγ(m)− c2B2(x) = 0 with hγ given by (3.6). We distinguish the
cases:

• γ > 1: The ODE (3.8) has three stationary points: unstable m0 = 0 and stable ±ms. There-
fore, the asymptotic steady state for (3.8) subject to the initial datum m0 = m0(x) on (0, 1) is
ms(x)sign(m0(x)).

• γ = 1:

* If c|B(x)| > 1, then there are three stationary points, unstable m0 = 0 and stable ±
√
c|B(x)| − 1.

* If c|B(x)| ≤ 1, then there is the only stable stationary point m = 0.

Thus, the solution of (3.8) subject to the initial datum m0 = m0(x) on (0, 1) converges to the
asymptotic steady state χ{c|B(x)|>1}(x)sign(m0(x))

√
c|B(x)| − 1.

• For 1/2 ≤ γ < 1 the picture depends on the size of c|B(x)| relative to Zγ defined in (3.5).

* If c|B(x)| > Zγ , then (3.8) has five stationary points, stable m0 = 0, unstable ±mu and stable
±ms, with 0 < mu < ms.

* If c|B(x)| = Zγ , then zero is a stable stationary point and there are two symmetric nonzero
stationary points (attracting from ±∞ and repulsing towards zero).

* If c|B(x)| < Zγ , then there is the only stable stationary point m = 0.

Remark 3. The above asymptotic stability result for the case 1/2 ≤ γ < 1 shows that, at least in the case
D = 0, the assumption c ‖B‖L∞(0,1) < Zγ of Lemma 4 is optimal.

4 Stationary solutions in the multidimensional setting for D = 0

In the multidimensional setting we are able to construct pointwise stationary solutions of (1.6)–(1.7).
Regarding the number of possible solutions, we obtain the same picture as in the previous Section 3.2.
However, we are not able to provide a stability analysis.

We denote u := (I +m⊗m)∇p, so that (1.6) gives

−∇ · u = S

and

∇p = (I +m⊗m)−1u =

(
I − m⊗m

1 + |m|2

)
u. (4.1)

The activation term c2(m · ∇p)∇p in (1.7) is then expressed in terms of u as

c2(m · ∇p)∇p = c2 m · u
1 + |m|2

(
I − m⊗m

1 + |m|2

)
u.
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Therefore, stationary solutions of (1.6)–(1.7) with D = 0 satisfy

c2 m · u
1 + |m|2

u =

(
c2 (m · u)2

(1 + |m|2)2
+ |m|2(γ−1)

)
m. (4.2)

Clearly, m(x) = 0 is a solution for any u ∈ Rd. On the other hand, if m(x) 6= 0, then there exists a
nonzero scalar β(x) ∈ R \ {0} such that m(x) = β(x)u(x). Denoting z := β(x)|u(x)| and inserting into
(4.2) gives

c2|u|2

1 + z2
=

c2|u|2z2

(1 + z2)2
+ |z|2(γ−1),

which further reduces to

c|u| = |z|γ−1(1 + z2). (4.3)

We now distinguish the cases:

• For γ > 1 the equation (4.3) has exactly one positive solution z > 0 for every |u| > 0.

• For γ = 1 the equation (4.3) has exactly one positive solution z > 0 for every |u| > 1/c and no
positive solutions for |u| ≤ 1/c.

• For 1 > γ ≥ 1/2 (in fact for γ > −1, but we discard the values of γ < 1/2), if c|u| > Zγ with Zγ
given by (3.5), there exist exactly two positive solutions z1, z2 > 0 of (4.3) for every c|u| > 0. If
c|u| = Zγ , there is one positive solution z > 0, and if c|u| < Zγ , (4.3) has no solutions.

Let us recall that in [7] we considered stationary solutions (m0, p0) of (1.6)–(1.7) in the case D = 0,
γ > 1. These are constructed by fixing measurable disjoint sets A+ ⊆ Ω, A− ⊆ Ω and setting

m0(x) :=
(
χA+(x)− χA−(x)

)
c

1
γ−1 |∇p0(x)|

2−γ
γ−1∇p0(x), (4.4)

where p0 ∈ H1
0 (Ω) solves the nonlinear Poisson equation

−∇ ·
[(

1 + c
2

γ−1 |∇p0(x)|
2

γ−1χA+∪A−(x)
)
∇p0(x)

]
= S, (4.5)

subject to - say - homogeneous Dirichlet boundary condition. The steady states p0 ∈ H1
0 (Ω)∩W 1,2γ/(γ−1)

0 (A+∪
A−) were found as the unique minimizers of the uniformly convex and coercive functional

Fγ [p] :=
1

2

∫
Ω
|∇p|2 dx+ c

2
γ−1

γ − 1

2γ

∫
A+∪A−

|∇p|
2γ
γ−1 dx−

∫
Ω
pS dx,

see Theorem 6 in [7]. Let us remark that the linearized stability analysis performed in Section 6.2 of [7]
implies that in the case D = 0, γ > 1 the linearly stable (in the sense of Gâteaux derivative) networks
fill up the whole domain due to the necessary condition meas(A+ ∪ A−) = meas(Ω). In the 1d case, the
nonlinear stability analysis of Section 3.2 above implies that the same holds also for the (nonlinearly)
stable stationary solution. On the other hand, for γ = 1 the stationary solution m0 must vanish on the
set {x ∈ Ω; |u(x)| ≤ 1/c}. We shall return to this case below.
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4.1 Stationary solutions in the multidimensional setting for D = 0, 1/2 ≤ γ < 1

Inserting the formula m(x) = z(x)
|u(x)|u(x) into (4.1) gives

∇p(x) = u(x) for m(x) = 0,

=
u(x)

1 + z(x)2
for m(x) 6= 0.

Consequently, we choose mutually disjoint measurable sets A0, A1, A2 such that A0 ∪A1 ∪A2 = Ω, and
construct the stationary pressure gradient as

∇p(x) = a(x, |u(x)|2)u(x)

with

a(x, r) = χ{r<Z} + χ{r≥Z}

(
χA0(x) +

χA1(x)

1 + z1(r)2
+

χA2(x)

1 + z2(r)2

)
, (4.6)

where we denoted Z := Z2
γ/c

2, and z1(r), z2(r) are the two positive solutions of (4.3) with r = |u|2, i.e.,

c2r = |z(r)|2(γ−1)(1 + z(r)2)2. (4.7)

We denote by z1(r) the branch of solutions of (4.7) that is decreasing in r, while z2(r) is increasing.
Consequently,

range(z1) = (0, z(Z)], range(z2) = [z(Z),∞),

where we denoted z(Z) := z1(Z) = z2(Z).
We assume

∫
Ω S(x) dx = 0 and prescribe the homogeneous Neumann boundary condition for p,

∇p · ν = 0 on ∂Ω,

where ν is the outer normal vector to ∂Ω. We perform the Helmholtz decomposition of u as

u = ∇ϕ+ curl U,

where ϕ solves

−∆ϕ = S in Ω,

∇ϕ · ν = 0 on ∂Ω.

The identity curl ∇p = curl(a(x, |u|)u) = 0 gives the equation

curl
[
a(x, |∇ϕ+ curl U |2)(∇ϕ+ curl U)

]
= 0, (4.8)

subject to the boundary condition curl U · ν = 0 on ∂Ω.
We define A(x, r) :=

∫ r
0 a(x, s) ds ≥ 0 and for given ϕ = ϕ(x) the functional

I(U) :=
1

2

∫
Ω
A(x, |∇ϕ+ curl U |2) dx. (4.9)
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It is easily checked that (4.8) is the Euler-Lagrange equation corresponding to critical points of I.
We will now check whether I is convex. For any fixed vector ξ ∈ Rd have

1

2
ξ ·D2

wwA(x, |∇ϕ+ w|2)ξ =
1

2

d∑
i=1

d∑
j=1

∂2
wiwjA(x, |∇ϕ+ w|2)ξiξj

= 2
∂2A

∂r2
(x, |∇ϕ+ w|2)(ξ · (∇ϕ+ w))2 +

∂A

∂r
(x, |∇ϕ+ w|2)|ξ|2,

where ∂A
∂r = ∂A

∂r (x, r) is the derivative of A with respect to the second variable. Therefore, convexity of
I(U) is equivalent to the condition

2
∂2A

∂r2
(x, |v|2)(ξ · v)2 +

∂A

∂r
(x, |v|2)|ξ|2 ≥ 0 for all v, ξ ∈ Rd. (4.10)

Using the decomposition ξ = λv + v⊥ with λ = ξ·v
|v|2 and v⊥ · v = 0 gives

λ2|v|2
(

2
∂2A

∂r2
(x, |v|2)|v|2 +

∂A

∂r
(x, |v|2)

)
+
∂A

∂r
(x, |v|2)|v⊥|2 ≥ 0.

Consequently, (4.10) is equivalent to the conditions

∂A

∂r
(x, r) ≥ 0, 2

∂2A

∂r2
(x, r)r +

∂A

∂r
(x, r) ≥ 0

for all x ∈ Ω, r > 0. Note that ∂A
∂r (x, r) = a(x, r) ≥ 0 due to (4.6), so that we only need to verify the

second condition. We choose a compactly supported nonnegative test function ψ ∈ C∞0 (Ω, [0,∞)) and
integrate by parts to obtain∫ ∞

0

∫
Ω

(
2
∂2A

∂r2
(x, r)r +

∂A

∂r
(x, r)

)
ψ(x, r) dx dr = −

∫ ∞
0

∫
Ω
a(x, r)

(
2r
∂ψ

∂r
+ ψ

)
dx dr.

Inserting for a = a(x, r) the expression (4.6), we calculate

−
∫ ∞

0

∫
Ω
a(x, r)

(
2r
∂ψ

∂r
+ ψ

)
dx dr =

∫ Z

0

∫
Ω
ψ(x, r) dx dr +

∫ ∞
Z

∫
A0

ψ(x, r) dx dr − 2Z

∫
A1∪A2

ψ(x, Z) dx

+

∫ ∞
Z

∫
A1

ψ(x, r)

1 + z1(r)2
dx dr +

∫ ∞
Z

∫
A2

ψ(x, r)

1 + z2(r)2
dx dr

+
2Z

1 + z1(Z)2

∫
A1

ψ(x, Z) dx+
2Z

1 + z2(Z)2

∫
A2

ψ(x, Z) dx

+
4

c2

∫ z1(Z)

0

∫
A1

s2γ−1ψ(x, z−1
1 (s)) ds− 4

c2

∫ ∞
z2(Z)

∫
A2

s2γ−1ψ(x, z−1
2 (s)) ds.

Note that even if we set A2 := ∅, the third term of the right-hand side cannot be, in general, balanced by
the other ones. Consequently, we do not have convexity of I(U).

To check coercivity, we take r > Z, then

A(x, r) = Z + (r − Z)χA0(x) + χA1(x)

∫ r

Z

ds

1 + z1(s)2
+ χA2(x)

∫ r

Z

ds

1 + z2(s)2
.
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With (4.7) we have for both branches z1, z2,

c2r = |z|1(γ+1)
(
1 + 2z−2 + z−4

)
.

Consequently, the increasing branch z2(r)→∞ when r →∞ and c2r ∼ z2(r)2(1+γ), so that

1

1 + z2(r)2
∼ c−

2
1+γ r

− 1
1+γ

and ∫ r ds

1 + z2(s)2
∼ r

γ
1+γ .

Noting that r = |u|2 = |curl U + ∇ϕ|2, the energy estimate gives (at least) control of |curl U |
2γ

1+γ .
For 1/2 ≤ γ < 1 this gives the range 2/3 ≤ 2γ

1+γ < 1 which is not enough to obtain usable coercivity
estimates. Thus, the existence of stationary points of the functional I remains open for 1/2 ≤ γ <
1, however, the corresponding variational formulation (4.9) can be used as an alternative method for
numerical simulations.

4.2 Stationary solutions in the multidimensional setting for D = 0, γ = 1

In the case γ = 1, the stationary version of (1.7) with D = 0 reads

c2(∇p0 ⊗∇p0)m0 = m0,

i.e., m0 is either the zero vector or an eigenvector of the matrix c2(∇p0 ⊗ ∇p0) with eigenvalue 1. The
spectrum of c2(∇p0 ⊗∇p0) consists of zero and c2|∇p0|2, so that m0 6= 0 is only possible if c2|∇p0|2 = 1.
Therefore, for every stationary solution there exists a measurable function λ = λ(x) such that

m0(x) = λ(x)χ{c2|∇p0|2=1}(x)∇p0(x)

and p0 solves the highly nonlinear Poisson equation

−∇ ·
[(

1 +
λ(x)2

c2
χ{c2|∇p0|2=1}(x)

)
∇p0

]
= S

subject to the homogeneous Dirichlet boundary condition p0 = 0 on ∂Ω.
A simple consideration suggests that stable stationary solutions of (1.6)–(1.7) with D = 0 should be

constructed as

−∇ ·
[
(1 + a(x)2)∇p0

]
= S, p0 ∈ H1

0 (Ω), (4.11)

c2|∇p0(x)|2 ≤ 1, a.e. on Ω, (4.12)

a(x)2
[
c2|∇p0(x)|2 − 1

]
= 0, a.e. on Ω, (4.13)

for some measurable function a2 = a(x)2 on Ω which is the Lagrange multiplier for the condition (4.12).
This condition follows from the nonpositivity of the eigenvalues of the matrix c2(∇p0 ⊗∇p0)− I, which
is heuristically a necessary condition for linearized stability of the stationary solution of (1.6)–(1.7) with
D = 0. The function λ = λ(x) can be chosen as λ(x) := ca(x).
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4.2.1 Variational formulation

We claim that solutions of (4.11)–(4.13) are minimizers of the energy functional

J [p] :=

∫
Ω

(
|∇p|2

2
− Sp

)
dx (4.14)

on the set M := {p ∈ H1
0 (Ω), c2|∇p|2 ≤ 1 a.e. on Ω}.

Lemma 5. Let S ∈ L2(Ω). There exists a unique minimizer of the functional (4.14) on the set M. It
is the unique weak solution of the problem (4.11)–(4.13) with homogeneous Dirichlet boundary conditions
on Ω and with a ∈ L2(Ω).

Proof. The functional J is convex and, due to the Poincaré inequality, coercive on H1
0 (Ω). Therefore,

a unique minimizer p0 ∈ H1
0 (Ω) exists on the closed, convex set M. Clearly, (4.11)–(4.13) is the Euler-

Lagrange system corresponding to this constrained minimization problem, so that p0 is its weak solution.
Moreover, using p0 as a test function and an application of the Poincaré inequality yields∫

Ω
(1 + a2)|∇p0|2 dx =

∫
Ω
Sp0 dx

≤
∫

Ω
|∇p0|2 dx+ C

∫
Ω
S2 dx.

With (4.13) we have then ∫
Ω
a2 dx = c2

∫
Ω
a2∇|p0|2 dx ≤ c2C

∫
Ω
S2 dx,

so that a ∈ L2(Ω).
Next, we prove that any weak solution p0 ∈ H1

0 (Ω), a2 ∈ L1(Ω) of (4.11)–(4.13) is a minimizer of
(4.14) on the set M. Indeed, we consider any q ∈M and use (p0 − q) as a test function for (4.11),∫

Ω
(1 + a2)∇p0 · ∇(p0 − q) dx =

∫
Ω
S(p0 − q) dx.

The Cauchy-Schwarz inequality for the term ∇p0 · ∇q gives

1

2

∫
Ω

(1 + a2)|∇p0|2 dx ≤ 1

2

∫
Ω

(1 + a2)|∇q|2 dx+

∫
Ω

(p0 − q)S dx.

Moreover, (4.13) gives a2|∇p0|2 = a2/c2, and with |∇q| ≤ 1/c2 we have∫
Ω

(
|∇p0|2

2
− p0S

)
dx+

1

2c2

∫
a2 dx ≤

∫
Ω

|∇q|2

2
− qS dx+

1

2c2

∫
a2 dx,

so that J [p0] ≤ J [q].
Finally, let pi ∈ H1

0 (Ω), ai ∈ L2(Ω), i = 1, 2, be two weak solutions of (4.11)–(4.13). We take the
difference of (4.11) for p1 and p2 and test by (p1 − p2):∫

Ω

[
(1 + a2

1)∇p1 − (1 + a2
2)∇p2

]
· (∇p1 −∇p2) dx = 0.
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We use the Cauchy-Schwarz inequality for∫
Ω

(a2
1 + a2

2)(∇p1 · ∇p2) dx ≤ 1

2

∫
Ω

(a2
1 + a2

2)|∇p1|2 dx+
1

2

∫
Ω

(a2
1 + a2

2)|∇p2|2 dx ≤ 1

c2

∫
Ω

(a2
1 + a2

2),

where the second inequality comes from (4.12). Consequently, we have∫
Ω
|∇p1 −∇p2|2 dx+

∫
Ω
a2

1|∇p1|2 + a2
2|∇p2|2 ≤

1

c2

∫
Ω

(a2
1 + a2

2).

Finally, using (4.13) we obtain ∫
Ω
|∇p1 −∇p2|2 dx ≤ 0

and conclude that p1 = p2 a.e. on Ω.

Remark 4. The gradient constrained variational problem (4.14) was studied in [5] as a model for twisting
of an elastic-plastic cylindrical bar. There it was shown that the unique solution has C1,1-regularity in Ω;
see also [16, 17].

4.2.2 A penalty method for D = 0, γ = 1

Solutions of (4.11)–(4.13) can also be constructed via a penalty approximation. Although the variational
formulation used in the previous section is a short, effective and elegant way to prove existence of solutions,
we provide the alternative penalty method here, since it provides approximations of the solution and since
we find the related analytical techniques interesting on their own. For the following we assume Ω to be the
unit cube (0, 1)d and prescribe periodic boundary conditions on ∂Ω to discard of cumbersome boundary
terms.

We consider the penalized problem

−∇ ·
[(

1 +
(|∇pε|2 − 1/c2)+

ε

)
∇pε

]
= S, pε ∈ H

1
(Ω), (4.15)

where A+ := max(A, 0) denotes the positive part of A and H
1
(Ω) =

{
u ∈ H1

per(Ω),
∫

Ω u dx = 0
}

. Here

H1
per(Ω) denotes the space of H1

loc(Rd)-functions with (0, 1)d-periodicity.

Theorem 2. For any S ∈ L2(Ω) with
∫

Ω S(x) dx = 0 there exists a unique weak solution p ∈ H1
(Ω) of

(4.15).

Proof: The functional Fε : H
1
(Ω)→ R ∪ {∞},

Fε[p] :=
1

2

∫
Ω
|∇p|2 dx+

1

4ε

∫
Ω

(|∇p|2 − 1/c2)2
+ dx−

∫
Ω
pS dx,

is uniformly convex and coercive on H
1
(Ω). The classical theory (see, e.g., [6]) provides the existence

of a unique minimizer pε ∈ H
1
(Ω) of Fε, which is a weak solution of the corresponding Euler-Lagrange

16



equation (4.15). The uniqueness of solutions follows from the monotonicity of the function F : Rd → Rd,
F (x) = (|x|2 − 1/c2)+x.

We will prove convergence of a subsequence of {pε}ε>0, solutions of (4.15), towards a solution of
(4.11)–(4.13) as ε→ 0. We introduce the notation

aε :=
(|∇pε|2 − 1/c2)+

ε
. (4.16)

Theorem 3. Let S ∈ H1(Ω) with
∫

Ω S(x) dx = 0, d ≤ 3 and (pε)ε>0 ⊂ H
1
(Ω) be a family of solutions of

(4.15) constructed in Theorem 2, and (aε)ε>0 ⊂ L2(Ω) given by (4.16). Then there exist a subsequence of

(pε, aε) and p ∈ H1
(Ω), a2 ∈ L2(Ω) such that, as ε→ 0,

• ∇pε → ∇p strongly in L2(Ω) and strongly in L4(Ω).

• (1 + aε)∇pε ⇀ (1 + a2)∇p weakly in L1(Ω), so that (4.11) is satisfied in the weak sense.

• (|∇pε|2 − 1/c2)+ = εaε → 0 strongly in L2(Ω), so that (|∇p|2 − 1/c2)+ = 0 and (4.12) is satisfied
a.e.

• aε
[
|∇pε|2 − 1/c2

]
= εa2

ε → 0 strongly in L1(Ω), and aε
[
|∇pε|2 − 1/c2

]
⇀ a

[
|∇p|2 − 1/c2

]
weakly

in L1(Ω) if d ≤ 3, so that (4.13) is satisfied a.e.

The proof of the above Theorem is based on the following a priori estimates:

Lemma 6. The family (pε)ε>0 constructed in Theorem 2 is uniformly bounded in L∞(Ω).

Proof: This is a direct consequence of the maximum principle for (4.15).

Lemma 7. Let S ∈ H1(Ω). Then the solutions pε of (4.15) satisfy∫
Ω
|∇2pε|2dx ≤ C ‖∇S‖2L2(Ω) ,

∫
Ω

(1 + aε)|∇2pε|2 dx ≤ C ‖∇S‖2L2(Ω) .

Proof. We use the short-hand notation ∂i := ∂xi and denote pi := ∂ipε and pij := ∂2
ijpε. Moreover, we set

wε(x) := |∇pε(x)|. We use the Bernstein method and differentiate (4.15) with respect to xj :

−∂i [(1 + aε) pij ]−
1

ε
∂i
[
χ{(cw−1)+}(∂jw

2)pi
]

= Sj .

Then we multiply by pj and integrate by parts∫
Ω

(1 + aε) p
2
ij dx+

1

ε

∫
{(cw−1)+}

(∂jw
2)pipij dx =

∫
Ω
Sjpj dx.

Now we use the identity 2pipij = (∂jw
2), so that the second term of the left-hand side becomes

1

2ε

∫
{(cw−1)+}

(∂jw
2)2 dx =

1

2ε

∫
Ω

[
∂j(w

2 − 1/c2)+

]2
dx.
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Therefore, we have ∫
Ω

(1 + aε) p
2
ij dx+

1

2ε

∫
Ω

[
∂j(w

2 − 1/c2)+

]2
dx =

∫
Ω
Sjpj dx.

Using aε ≥ 0 and the nonnegativity of the second term of the left-hand side, we write

1

2

∫
Ω

(1 + aε) p
2
ij dx+

1

2

∫
Ω
p2
ij dx ≤

∫
Ω

(1 + aε) p
2
ij dx ≤

∫
Ω
Sjpj dx.

The claim follows by using a Cauchy-Schwarz and Poincaré inequality (with constant CΩ) in the right-hand
side, ∫

Ω
Sjpj dx ≤ 1

2δ

∫
Ω
S2
j dx+

δ

2

∫
Ω
p2
j dx ≤ 1

2δ

∫
Ω
|∇S|2 dx+

δCΩ

2

∫
Ω
|∇2p|2 dx,

and choosing δ such that δCΩ
2 < 1/2,

1

2

∫
Ω

(1 + aε) p
2
ij dx+ C

∫
Ω
p2
ij dx ≤ 1

2δ

∫
Ω
|∇S|2 dx,

with C = 1
2 −

δCΩ
2 > 0.

Lemma 8. The solutions pε of (4.15) and aε given by (4.16) satisfy∫
Ω

(1 + aε)
2|∇2pε|2 dx ≤ ‖S‖2L2(Ω) ,

∫
Ω
|∇aε · ∇pε|2 dx ≤ 2 ‖S‖2L2(Ω) .

Proof: We again use the short-hand notation from the previous proof, and, moreover, denote ai := ∂iaε.
We take the square of (4.15),

∫
Ω
S2 dx =

∫
Ω

[
d∑
i=1

∂i[(1 + aε)pi]

] d∑
j=1

∂j [(1 + aε)pj ]

 dx

=
d∑
i=1

d∑
j=1

∫
Ω

[∂j [(1 + aε)pi]][∂i(1 + aε)pj ]] dx

=
d∑
i=1

d∑
j=1

∫
Ω

[ajpi + (1 + aε)pij ][aipj + (1 + aε)pij ]] dx

=

(
d∑
i=1

∫
Ω
aipi dx

)2

+

d∑
i=1

d∑
j=1

∫
Ω

(1 + aε)pij(ajpi + aipj) dx+

∫
Ω

(1 + aε)
2|∇2pε|2 dx.

In the middle term of the last line we use the identity ∂xi |∇p|2 = 2
∑d

j=1 pjpij , so that

d∑
i=1

d∑
j=1

∫
Ω

(1 + aε)pij(ajpi + aipj) dx =

d∑
i=1

∫
Ω

(1 + aε)ai∂xi |∇p|2 dx.
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Morever, denoting w := |∇p|2, we realize that aε(w) = (w−1/c2)+

ε is a nondecreasing function of w, so that
ai∂xi |∇p|2 = (∂xiaε(w))(∂xiw) = a′ε(w)(∂xiw)2 ≥ 0. Consequently, the middle term is nonnegative and
we have ∫

Ω
(1 + aε)

2|∇2pε|2 dx ≤
∫

Ω
S2 dx.

Now, knowing that (1 + aε)∆pε is bounded in L2(Ω) due to Lemma 7, and expanding the derivatives in
(4.15),

(1 + aε)∆pε +∇pε · ∇aε = −S,

we conclude

‖∇pε · ∇aε‖L2(Ω) ≤ ‖S‖L2(Ω) + ‖(1 + aε)∆pε‖L2(Ω) ≤ 2 ‖S‖L2(Ω) .

Lemma 9. The sequence (aε)ε>0 defined in (4.16) is uniformly bounded in L2(Ω).

Proof: We multiply (4.15) by aεpε and integrate by parts. This gives∫
Ω

(1 + aε)aε|∇pε|2 dx+

∫
Ω

(1 + aε)pε∇pε · ∇aε dx =

∫
Ω
Spεaε dx.

We write the first term as∫
Ω

(1 + aε)aε|∇pε|2 dx =

∫
Ω

(1 + aε)aε(|∇pε|2 − 1/c2) dx+
1

c2

∫
Ω

(1 + aε)aε dx

= ε

∫
Ω

(1 + aε)a
2
ε dx+

1

c2

∫
Ω

(1 + aε)aε dx.

Due to the nonnegativity of the first term, we have

1

c2

∫
Ω
a2
ε dx ≤ 1

c2

∫
Ω

(1 + aε)aε dx ≤
∫

Ω
(1 + aε)aε|∇pε|2 dx

≤ ‖S‖L2(Ω) ‖pε‖L∞(Ω) ‖aε‖L2(Ω) + ‖∇pε · ∇aε‖L2(Ω) ‖pε‖L∞(Ω) ‖1 + aε‖L2(Ω)

≤ 1

2δ
‖S‖2L2(Ω) ‖pε‖

2
L∞(Ω) +

δ

2
‖aε‖2L2(Ω)

+
1

2δ
‖∇pε · ∇aε‖2L2(Ω) ‖pε‖

2
L∞(Ω) + δ

(
|Ω|2 + ‖aε‖2L2(Ω)

)
for any δ > 0. Then, an application of Lemmata 6 and 8 gives a constant C > 0 such that

1

c2
‖aε‖2L2(Ω) ≤ C(1 + δ−1) +

3δ

2
‖aε‖2L2(Ω)

and choosing δ > 0 small enough, we conclude.

Now we are ready to prove Theorem 3:
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Proof: From Lemma 7 we conclude that ∇2pε is uniformly bounded in L2(Ω), so, in d ≤ 3 spatial
dimensions, ∇pε converges strongly in L4(Ω) to ∇p due to the compact Sobolev embedding.

Since aε is bounded in L2(Ω) by Lemma 9, there exists a weakly converging subsequence to a2 ∈ L2(Ω).
Thus, due to the strong convergence of ∇pε, the product (1 + aε)∇pε converges weakly in L1(Ω) to
(1 + a2)∇p.

Clearly, εaε → 0 strongly in L2(Ω). Moreover, due to the inequality |a+ − b+| ≤ |a− b|, we have

0 ≤
∫

Ω

∣∣(|∇pε|2 − 1/c2)+ − (|∇p|2 − 1/c2)+

∣∣ dx ≤
∫

Ω

∣∣|∇pε|2 − |∇p|2∣∣ dx,

so that the strong convergence of ∇pε in L2(Ω) implies

εaε = (|∇pε|2 − 1/c2)+ → (|∇p|2 − 1/c2)+ strongly in L1(Ω).

Consequently, (|∇p|2 − 1/c2)+ = 0 a.e.
Clearly, εa2

ε → 0 strongly in L1(Ω). The strong convergence of ∇pε in L4(Ω) and weak convergence
(of a subsequence of) aε in L2(Ω) implies

εa2
ε = aε

[
|∇pε|2 − 1/c2

]
⇀ a2

[
|∇p|2 − 1/c2

]
weakly in L1(Ω).

Consequently, a2
[
|∇p|2 − 1/c2

]
= 0 a.e.

Finally, let us note that uniqueness of solutions of the system (4.11)–(4.13) was already proved in
Lemma 5.

4.3 Stationary solutions via the variational formulation for D = 0, 1/2 ≤ γ < 1

Let us recall that in [7] we constructed stationary solutions (m0, p0) of (1.6)–(1.7) in the case γ > 1,
D = 0 by using (4.4) and employing the variational formulation of the nonlinear Poisson equation (4.5).

Clearly, this approach fails for γ < 1 due to the singularity of the term |∇p0(x)|
2−γ
γ−1∇p0(x) at |∇p0| = 0

and the resulting non-boundedness from below of the associated functional. However, stationary solutions
can be constructed by “cutting off” small values of |∇p0|. For simplicity, we set the activation parameter
c2 := 1 in this section.

We fix a measurable set A ⊂ Ω and a constant α > 0 to be specified later, and define the stationary
solution of (1.6), (1.7) for D = 0:

m0 = χAχ{|∇p0|>α}|∇p0|
2−γ
γ−1∇p0, (4.17)

where p0 solves

−∇ · [(1 +m0 ⊗m0)∇p0] = S.

This is the Euler-Lagrange equation corresponding to the functional Fα : H1
0 (Ω)→ R,

Fα[p] =

∫
Ω

|∇p|2

2
+
γ − 1

2γ
χA(x)

(
|∇p|

2γ
γ−1 − α

2γ
γ−1

)
−

dx. (4.18)
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We examine the convexity of F in dependence on the value of α. Defining F : Rd → R,

F (ξ) :=
|ξ|2

2
+
γ − 1

2γ

(
|ξ|

2γ
γ−1 − α

2γ
γ−1

)
−
,

we calculate the Hessian matrix

D2F (ξ) = F ′′(|ξ|)ξ ⊗ ξ
|ξ|2

+ F ′(|ξ|)
(
I

|ξ|
− ξ ⊗ ξ
|ξ|3

)
.

This has the eigenvectors ξ and ξ⊥ and a quick inspection reveals that F is convex as a function of ξ if
and only if F ′(|ξ|) ≥ 0 and F ′′(|ξ|) ≥ 0. Writing r := |ξ|, we have

F ′(r) = r + r
γ+1
γ−1 , r > α,

= r, r < α,

and

F ′′(r) = 1 + δ(r − α)α
γ+1
γ−1 +

γ + 1

γ − 1
r

2
γ−1 , r ≥ α,

= 1, r < α.

Thus, F is a uniformly convex function on Rd if and only if α > αγ with

αγ :=

(
1− γ
1 + γ

) γ−1
2

. (4.19)

Lemma 10. Let 1/2 ≤ γ < 1 and α > αγ with αγ given by (4.19). Then the functional (4.18) is coercive
and uniformly convex on H1

0 (Ω) and the unique minimizer p0 with m0 given by (4.17) is a stationary
solution of (1.6)–(1.7).

Unfortunately, in the spatially one-dimensional case we are able to show that the above construction
delivers the nonlinearly unstable steady states (as long as m0 6≡ 0), so these solutions will never be
observed in the long time limit of the system (1.6)–(1.7). For simplicity, we set Ω := (0, 1) and A = ∅.
Let us recall that the 1d problem with D = 0 reduces to the ODE family

∂tm =

(
B(x)2

(1 +m2)2
− |m|2(γ−1)

)
m. (4.20)

As calculated in Section 3.2, the nonlinearly stable stationary solution of (4.20) for 1/2 < γ < 1 is

m(x) = 0, if |B(x)| ≤ Zγ ,
m(x) ∈ {0,±ms(x)}, if |B(x)| > Zγ ,

where Zγ is given by (3.5) and ms > 0 is the largest solution of

B(x)2

(1 +m2)2
= |m|2(γ−1),

21



with B(x) =
∫ x

0 S(y) dy > 0. Note that for |B(x)| > Zγ the above algebraic equation has four solutions
±mu, ±ms with 0 < mu < ms, and mu is the unstable, ms stable solution for (4.20). Moreover, note that

Zγ =
2

1 + γ
αγ ,

so that Zγ > αγ .
Now, let (m0, p0) be the solution constructed in Lemma 10, i.e., p0 is the unique minimizer of (4.18)

and m0 is given by (4.17). Clearly, to have a nonzero stable state m0 = m0(x) for some x ∈ Ω, it is
necessary that

|B(x)| > Zγ and |∂xp0(x)| > α > αγ .

Moreover, if m0(x) 6= 0, we have the formulas

|m0| = |∂xp0|
1

γ−1 and |B(x)| = |m0|γ−1(1 + |m0|2) = |∂xp0|
(

1 + |∂xp0|
2

γ−1

)
.

Thus, defining fγ(u) := u
(

1 + u
2

γ−1

)
for u > 0, we have |B(x)| = fγ(|∂xp0|). The function fγ(u) has a

unique strict minimum on R+ at u = αγ > 0 and fγ(αγ) = Zγ . Since limu→0 fγ(u) = limu→+∞ fγ(u) =
+∞, for each |B(x)| > Zγ there exist 0 < u1 < αγ < u2 such that fγ(u1) = fγ(u2) = |B(x)|. Clearly, u1,

u2 correspond to the nonzero steady states mu, ms of (4.20), and since |m0| = |∂xp0|
1

γ−1 is a decreasing
function of u = |∂xp0| and mu < ms, the unstable steady state mu corresponds to u2, while the stable
steady state ms corresponds to u1. Since, by construction, we have to choose u = |∂xp0| > αγ in order to
have m0(x) 6= 0, we are in fact choosing u2 and thus the unstable steady state mu.

5 Numerical Method and Examples

The model has the ability to generate fascinating patterns and we illustrate this with numerical experi-
ments performed in two space dimensions using a Galerkin framework. These interesting patterns show
up if the diffusivity in the system is low, i.e. D � 1, and the pressure gradient is large. In this context
let us also mention [1, 8], where numerical simulations for Eqs. (1.6)–(1.7) have been presented.

Furthermore, we want to demonstrate that the results of the analysis in one dimension are also relevant
for the two dimensional setting. For instance, for γ < 1/2 we are interested in extinction in finite time of
the solution, cf. Section 3.1, and for 1/2 ≤ γ < 1 we demonstrate instability of solutions constructed in
Section 4.3.

5.1 Mixed variational formulation

Since we are interested in the case D � 1, it turns out to be useful to reformulate Eq. (1.7) as a mixed
problem. Consequently, setting σ = ∇m, we consider

−∇ · [(rI +m⊗m)∇p] = S in Ω× (0, T ),

p = 0 on Γ× (0, T ),

ν · (rI +m⊗m)∇p = 0 on ∂Ω \ Γ× (0, T ),

∂tm−D2∇ · σ = c2(∇p⊗∇p)m− |m|2(γ−1)m in Ω× (0, T ),

σ −∇m = 0 in Ω× (0, T ),

m = 0 on ∂Ω× (0, T ),
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with m(t = 0) = m0 in Ω. Here, Γ ⊂ ∂Ω denotes the Dirichlet part of the boundary, and we denote by
H1

0,Γ(Ω) = {p ∈ H1(Ω) : p|Γ = 0} the space of Sobolev functions vanishing on Γ. Additionally, we need the

space H(div) = {µ ∈ L2(Ω)2 : ∇·µ ∈ L2(Ω)}. As a starting point for our Galerkin framework we consider
the following weak formulation: Find (p,m, σ) ∈ L∞(0, T ;H1

0,Γ(Ω))×L2(0, T ;L2(Ω)2)×L2(0, T ;H(div)2)
such that ∫

Ω
(rI +m⊗m)∇p · ∇q dx =

∫
Ω
Sq dx,∫

Ω
∂tm · v dx−

∫
Ω
D2∇ · σ · v dx =

∫
Ω
fγ,c(m,∇p) · v dx,∫

Ω
σ · µ dx+

∫
Ω
m · ∇ · µdx = 0,

for all (q, v, µ) ∈ H1
0,Γ(Ω)× L2(Ω)2 ×H(div)2, and m(t = 0) = m0 in Ω. Here, we use the abbreviation

fγ,c(m,∇p) = c2(∇p⊗∇p)m− |m|2(γ−1)
ρ m,

where |m|ρ =
√
m2

1 +m2
2 + ρ is a regularized absolute value with regularization parameter ρ ≥ 0. Any

strong solution (m, p) to (1.6)–(1.7) satisfying the above boundary conditions yields a solution to the flux
based weak formulation in case ρ = 0 and γ > 1/2. Homogeneous Neumann boundary conditions for m
result in homogeneous Dirichlet boundary conditions for σ · ν on ∂Ω, and the function space for σ has to
be adapted accordingly.

5.2 Space discretization

To obtain a space discretization, we let {Th} be a family of regular quasi-uniform triangulations of Ω
with h = maxT∈Th hT and hT =

√
|T | for all T ∈ Th. For the approximation of the pressure p we choose

standard Lagrangian finite elements, i.e. continuous, piecewise linear functions

Ph = {vh ∈ C0(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th, vh|Γ = 0} ⊂ H1
0,Γ(Ω).

For the approximation of the conductance vector m we choose piecewise constant functions

Mh = {vh ∈ L2(Ω) : vh|T ∈ P0(T ) ∀T ∈ Th},

and for the approximation of σ we choose lowest order Raviart-Thomas elements

Vh = {vh ∈ H(div) : vh|T ∈ RT0(T ) = P0(T ) + xP0(T ) ∀T ∈ Th}.

The resulting Galerkin approximation is then as follows. Find (ph,mh, σh) ∈ L∞(0, T ;Ph)×L2(0, T ;M2
h)×

L2(0, T ;V 2
h ) such that for a.e. t ∈ (0, T ]∫

Ω
(rI +mh(t)⊗mh(t))∇ph(t) · ∇qh dx =

∫
Ω
Sqh dx,∫

Ω
∂tmh(t) · vh dx−

∫
Ω
D2∇ · σh(t) · vh dx =

∫
Ω
fγ,c(mh(t),∇ph(t)) · vh dx,∫

Ω
σh(t) · µh dx+

∫
Ω
mh(t) · ∇ · µh dx = 0,

23



for all (qh, vh, µh) ∈ Ph ×M2
h × V 2

h , and mh(t = 0) = m0
h in Ω. Here, m0

h denotes the L2-projection of m0

onto Mh. Assuming sufficient regularity of solutions, the method applied to the stationary problem is of
first order in the L2(Ω)-norm and also first order in the L2(Ω)-norm for ∇p and σ. The L2(Ω)-projection
of m is approximated with second order in L2(Ω) if fγ,c(m,∇p) ∈ H1(Ω). Our analytical results do not
provide such regularity; however, even for regular solutions the error estimates are in practice not very
helpful since the constants depend on norms of derivatives of solutions which are locally very large in the
small diffusion - large activation regime. For details on the approximation spaces, mixed finite elements
and corresponding error estimates see for instance [4].

5.3 Time discretization

For the discretization of the time variable let 0 = t0 < t1 < . . . < tK = T denote a partition of [0, T ]. By
mk
h ≈ mh(tk), pkh ≈ ph(tk) and σkh ≈ σh(tk), 0 ≤ k ≤ K, we denote the corresponding approximation in

time, which is obtained by solving the following implicit-explicit (IMEX) first-order Euler scheme∫
Ω

(rI +mk
h ⊗mk

h)∇pkh · ∇qh dx =

∫
Ω
Sqh dx, (5.1)∫

Ω
mk+1
h · vh − δk+1D2∇ · σk+1

h · vh dx =

∫
Ω

(
mk
h + δk+1fγ,c(m

k
h,∇pkh)

)
· vh dx, (5.2)∫

Ω
σk+1
h · µh dx+

∫
Ω
mk+1
h · ∇ · µh dx = 0, (5.3)

for all (qh, vh, µh) ∈ Ph×M2
h×V 2

h , and δk+1 = tk+1−tk. We note that for D = 0 Eq. (1.7) is an ODE, and
(5.2) amounts to an explicit Euler scheme for approximating mh(t) on each triangle T ∈ Th. In addition,
there is no coupling between the different triangles in this case, and consequently no numerical diffusion
is introduced into the system.

The discrete counterpart of the energy defined in (1.5) is defined as follows

Eh(mk
h) =

1

2

∫
Ω
D2|σkh|2 +

|mk
h|

2γ
ρ

γ
+ c2|mk

h · ∇pkh|2 + c2|∇phk |2 dx.

Our main guideline for obtaining a stable scheme is to ensure that Eh(mk+1
h ) ≤ Eh(mk

h) for all k ≥ 0, which
is inspired by but weaker than (2.4). We choose an adaptive time-stepping according to the following rule:
δ1 = 1/(2c2‖|∇p0

h|‖2∞), t1 = t0+δ1, δ2 = δ1. Let δk be given. If δk ∈ (1/(20c2‖|∇pkh|‖2∞), 9/(10c2‖|∇pkh|‖2∞))
then δk+1 = δk, otherwise set δk+1 = 1/(2c2‖|∇pkh|‖2∞), and tk+1 = tk + δk+1. Moreover, we let δk be
sufficiently small. This choice of time-step is motivated by the solution of the ODE system

m̃t =

(
0 0
0 c2|∇p|2

)
m̃, m̃(0) = m̃0,

which is obtained from Eq. (1.7) with D = 0 and no relaxation term through diagonalization. Assuming
∇p(t) does not depend on t, the solution is given by

m̃1(t) = m̃0,1, m̃2(t) = exp(c2|∇p|2t)m̃0,2.

Since c2∇pkh ⊗ ∇pkh is positive semi-definite the explicit Euler method is unstable for all choices of δk.
Stability might however be retained through the relaxation term as soon as c2∇pkh ⊗ ∇pkh − |mk

h|2(γ−1)I
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Figure 1: From left to right: Triangulation Th of Ω with 1, 678 vertices and 3, 196 triangles; initial datum
m0

1, while m0
2 = 0; initial pressure p0

h; decadic logarithm of the absolute value of the initial velocity |u0
h|.

Note that p0
h and |u0

h| are the same for all values of γ.

is negative definite, i.e. if c2|∇pkh|2 < |mk
h|2(γ−1); cf. Section 4.2. Besides this stability issue there is an

additional linearization error by treating ∇pkh explicitly. Hence, if ∇pkh is changing rapidly, then δk should
be sufficiently small to obtain a reasonable accuracy. A detailed investigation of stable and accurate
time-stepping schemes is however out of the scope of this paper and is left for further research; let us
mention [11, 15] for IMEX schemes in the context of reaction-diffusion equations.

5.4 Setup

As a computational domain we consider a diamond shaped two-dimensional domain with one edge cut, see
Figure 1. We use a refined triangulation with 102, 905 vertices and 204, 544 triangles, which corresponds
to h ≈ 0.0032. The Dirichlet boundary is defined as Γ = {x ∈ R2 : x1 = 0} ∩ ∂Ω. If not stated otherwise,
we let

S = 1, r =
1

10
, c = 50, D =

1

1000
, γ =

1

2
, ρ = 10−12,

where ρ is the regularization parameter defined in Section 5.1, and define the initial datum as

m0
1(x) =

{
1, x ≤ 0.3 and |y| ≤ 0.0125,

0, else,
m0

2 = 0.

The main quantity of interest is the discrete velocity defined as

ukh = (rI +mk
h ⊗mk

h)∇pkh,

see also Section 4. The initial velocity u0
h and the initial pressure p0

h do not depend on γ or D, and
they are depicted in Figure 1. Since the numerical simulation is computationally expensive, we could not
compute a stationary state in many examples below. However, in order to indicate that the presented
solutions are near a stationary state, we define the stationarity measures

Ekh,t =
Eh(mk

h)− Eh(mk−1
h )

δk
and mk

h,t =
‖mk

h −m
k−1
h ‖L2(Ω)

δk
.

Furthermore, we define the quantity

sk =
‖ukh‖L2(Ω)

‖ukh‖L1(Ω)

,

which measures the sparsity of the network. In order to demonstrate the dependence of the solution on
the different parameters in the system we first present some simulations for varying parameter values.
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Figure 2: Stationary velocity |ukh| for γ = 1
2 and D = 1

2 in a Log10-scale, and corresponding evolution of
Eh(mk

h). The stationary state is reached for t = 3.2898.

5.5 Varying D

The proliferation of the network and its structure is crucially influenced by diffusion. In the limit of
vanishing diffusion D = 0 the support of the conductance vector cannot grow. If diffusion is too large,
interesting patterns will not show up in the stationary network. In the following we investigate the
influence of different values for D ∈ {1

2 ,
1
10 ,

1
100 ,

1
1000} on the network formation, while keeping γ = 1/2

fixed. For D ≥ 1/10, the obtained velocities are dominated by diffusion and no fine scale structures
appear in the network, see Figures 2 and 3. For D = 1/100 the resulting velocity is still diffusive, but
some large scale structure is visible, see Figure 4. Decreasing the diffusion coefficient even further to
D = 1/1000, the network builds fine scale structures, see Figure 5. We note that the velocity is not near
a stationary state here. For this very small D = 1/1000, we have to be careful in interpreting the results.
Our simulations have shown a strong mesh dependence for this case, which is not apparent for D ≥ 1/2.
We are not able to fully explain this behavior, but the comparison on different meshes for large diffusion
and moderate values of c, which makes in turn c∇p moderate, suggest that the mesh is too coarse to be
able to resolve the diffusion process properly in the presence of strong activation. Here, one should use
finer meshes to resolve this issue, which however also leads to prohibitively long computation times. A
modification of the existing scheme to cope with this issue is left to further research.

Nonetheless, we believe that the velocities presented here are qualitatively correct, as they structurally
show the right behavior, i.e. the smaller the diffusion D the finer the scales in the network are, and
the higher the sparsity index sk is, see also Table 1. Let us remark that the closer γ is to 1/2, the
sparser the structures should be in a stationary state, which complies with the well-known fact that
L1-norm minimization promotes sparse solutions. Furthermore, even though the results in Figure 5 are
quantitatively very different, they possess qualitatively the same properties; namely the thickness of the
primary, secondary and tertiary branches. Let us again emphasize that the results of Figure 5 are far
from being stationary, and the networks are likely to change their structure when further evolving.

5.6 Varying γ

In order to demonstrate the dependence of the network formation process on the relaxation term, we let
γ ∈ {3

5 ,
3
4 , 1,

3
2 , 2}; for γ = 1

2 see Section 5.5. For γ ∈ {3
2 , 2} the results are depicted in Figure 9 and

Figure 10. From the evolution of the energies and from Table 2 we may conclude that for these two
values of γ we are near a stationary state, and that for γ > 1 no fine scale structures built up. For
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Figure 3: Near stationary velocity |ukh| for γ = 1
2 and D = 1

10 in a Log10-scale, and corresponding evolution
of Eh(mk

h) and ‖c|∇pkh|‖L∞(Ω).

Figure 4: Near stationary velocity |ukh| for γ = 1
2 and D = 1

100 in a Log10-scale, and corresponding
evolution of Eh(mk

h) and ‖c|∇pkh|‖L∞(Ω).

Figure 5: Left panel: Velocity |ukh| for γ = 1
2 and D = 1

1000 in a Log10-scale computed on a refined trian-
gulation from the uniform grid shown in Figure 1 with 102, 905 vertices, cf. Section 5.4. Corresponding
velocity (middle panel) computed on a refinement with 107, 009 vertices of the non-uniform grid shown
in the right panel. For the refined non-uniform grid we have minhT = 0.0017 and maxhT = 0.0043.
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D 1
2

1
10

1
100

tk 3.2898 14.6883 32.333
Ekh,t −1.1× 10−5 −2.9× 10−6 −1.5× 10−2

mk
h,t 6.2× 10−7 4.5× 10−2 2.8× 10−1

sk 1.344153 1.348375 1.576061

Table 1: Stationarity and sparsity measures for different values of D and γ = 1
2 , see Section 5.5.

Figure 6: Near stationary velocity |ukh| for γ = 3
5 , D = 1

1000 in a Log10-scale for different times, and
corresponding evolution of the Eh(mk

h) and ‖c|∇p|‖L∞(Ω) vs. time in a logarithmic scaling.

γ = 1, depicted in Figure 8, network structures appear for large times. This may also be indicated by
the oscillating behavior of ∇p for larger times. The changes in energy are however already small. In
view of Section 4.2, stable solutions should satisfy c‖|∇pkh|‖L∞(Ω) ≤ 1 in the limiting case D = 0. Here,

D = 1/1000, and c|∇pkh| ≤ 2 is in accordance with this analysis.
For γ ∈ {3

5 ,
3
4} we observe fine scale structures, which are depicted in Figure 6 and Figure 7. As

remarked in the previous section, the network evolution is influenced by the underlying grid due to coarse
discretization, very small diffusion, and very large activiation terms. Note that for small times we have
c‖|∇p‖L∞(Ω) ≈ 4000, which enters quadratically in the activation term. The closer γ is to 1 the less the

relaxation term promotes sparsity. This might explain that for γ ≥ 3
4 we see two branches originating

from the Dirichlet boundary Γ = ∂Ω∩{x1 = 0}. Since the pressure gradient is very large at the transition
of Dirichlet to Neumann boundary, artificial conductance is created. Notice that these two branches do
not appear for γ ∈ {1

2 ,
3
5}. In this context let us mention that in several situations L1-type minimization

can be performed exactly by soft-shrinkage, where values below a certain threshold, which corresponds
to δk here, are set to 0. Hence, small values of m, due to round-off or small diffusion, will less affect the
evolution.

5.7 Unstable stationary solutions for D = 0 and 1
2
≤ γ < 1

In Section 4.3 we have constructed stationary solutions for D = 0 and 1
2 ≤ γ < 1. In one dimension

our stability analysis shows that these stationary states are not stable. In the following, we indicate that
these stationary states are unstable also in two dimensions. To do so, we compute the minimizer of the
functional Fα defined in (4.18) with

α = αγ = c−
1
4

(1− γ
1 + γ

) γ−1
2
,
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Figure 7: Velocity |ukh| for γ = 3
4 , D = 1

1000 in a Log10-scale, and corresponding evolution of the Eh(mk
h)

and ‖c|∇p|‖L∞(Ω) vs. time in a logarithmic scaling.

Figure 8: Velocity |ukh| for γ = 1, D = 1
1000 in a Log10-scale, and corresponding evolution of the Eh(mk

h)
and ‖c|∇p|‖L∞(Ω) vs. time in a logarithmic scaling.

Figure 9: Velocity |ukh| for γ = 3
2 , D = 1

1000 in a Log10-scale, and corresponding evolution of the Eh(mk
h)

and ‖c|∇p|‖L∞(Ω) vs. time in a logarithmic scaling.
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Figure 10: Velocity |ukh| for γ = 2, D = 1
1000 in a Log10-scale, and corresponding evolution of the Eh(mk

h)
and ‖c|∇p|‖L∞(Ω) vs. time in a logarithmic scaling.

γ 3
5

3
4 1 3

2 2

tk 121.5026 131.7063 140.3437 89.9778 95.1952
Ekh,t −1.3× 10−2 −3.4× 10−3 −2.1× 10−3 −4.2× 10−7 −9.8× 10−7

mk
h,t 2.1× 10−1 9.1× 10−2 1.1× 10−1 1.7× 10−4 1.1× 10−5

sk 3.547262 4.153456 1.555159 1.181271 1.161117

Table 2: Stationarity and sparsity measures for different values of γ and D = 1
1000 , see Section 5.6. For

γ ∈ {3
2 , 2} the change in the energy Eh is already within machine accuracy.

which is (4.19) for general values of c. For the minimization we use a gradient descent method with
step-sizes chosen by the Armijo rule [12]. The iteration is stopped as soon as two subsequent iterates of
the pressure, say pk and pk+1, satisfy ‖pk−pk+1‖H1(Ω)/‖pk‖H1(Ω) < 10−15, i.e. they coincide up to round-
off errors. Since the derivative of Fα is discontinuous, one should in general use more general methods
from convex optimization to ensure convergence of the minimization scheme, for instance proximal point
methods [14]. However, in our example also the gradient descent method converged. We set γ = 1/2,
r = 1 and c = 50. Moreover, we let A = {x ∈ R2 : (x1 − 1)2 − x2

2 < 1/4} ⊂ Ω, see Figure 11. The
stationary conductance m0 is computed via (4.17) and satisfies

‖c∇p0 ⊗ c∇p0m0 − |m0|2(γ−1)m0‖L2(Ω) ≈ 2× 10−16,

which shows stationarity of the resulting solution (p0,m0) up to machine precision. The resulting sta-
tionary pressure and conductances are depicted in Figure 11.

In order to investigate the stability of the stationary state, we let η denote uniformly distributed
random noise on [−1

2 ,
1
2 ], which we normalize such that ‖η‖L2(Ω) = 1. We set

m0
η = (1 +

η

1000
)m0

as initial datum for our time-stepping scheme. The resulting evolution is depicted in Figure 12. Since the
added noise is very small, the first picture in Figure 12 is visually identical to the absolute value |m0| of
the unperturbed stationary solution. We observe that mη(t) does not converge to m0, showing instability
of the stationary state (p0,m0).
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Figure 11: Stationary solution for D = 0 and γ = 1/2 via minimization of Fα defined in (4.18). From left
to right: Indicator function χA of the set A. Stationary pressure p0. Stationary conductances m0,1 and
m0,2.

Figure 12: Evolution of the absolute value of the perturbed stationary solution m0
η computed in Section 5.7

for different times in a logarithmic scale.

5.8 Finite time break-down for γ < 1/2

In Section 3.1 we have proven that m decays exponentially to zero for −1 ≤ γ ≤ 1, and that m becomes
zero after a finite time if γ < 1/2 and the quantity cS is sufficiently small. In this case, the relaxation term
|m|2(γ−1)m develops a singularity and is meaningless in the limit |m| → 0. In the following we demonstrate
numerically that this happens also in two dimensions, which complements the one-dimensional analysis of
Section 3.1. In view of Section 3.1, we replace the homogeneous Dirichlet conditions for m by homogeneous
Neumann conditions. For our test we set c = 1 and ρ = 0. To start with a strictly positive initial datum,
we modify m0 as follows

m̃0
1 = m0

1 + 10−3, m̃0
2 = m0

2,

and we define the extinction time as

Tex,γ = min{t = tk : min
x∈Ω
|mk

h(x)| < 10−8}.

The results are depicted in Table 3. We observe that the smaller γ the shorter the extinction time is.
Monotone increase of γ 7→ Tex,γ might be expected since for smaller values of γ the relaxation term
becomes more singular as m→ 0. Therefore, for smaller γ the relaxation term dominates the activation
term already for smaller times. In particular, fγ,c(m

k
h,∇pkh) acts like a sink. The threshold 10−8 seems

to be somewhat arbitrary in the first place. However, in all our numerical simulations minx∈Ω |mk
h(x)|

decreased in a continuous fashion to values being approximately 10−6, and then dropped below the
threshold in one step. Therefore, all threshold values in the interval [10−8, 10−6] would yield the same
Tex,γ in these examples. This result indicates that Lemma 4 might be extended to multiple dimensions.
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γ 0 1
10

1
4

2
5

Tex,γ 5.3× 10−7 2.6× 10−6 2.1× 10−5 2.1× 10−4

minx∈Ω |mk
h(x)| 5.9× 10−9 5.4× 10−9 3.7× 10−12 2.8× 10−10

Table 3: Extinction times Tex,γ for different values of γ.
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[3] J. Àvila and A. Ponce: Variants of Kato’s inequality and removable singularities. Journal d’Analyse
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