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I. INTRODUCTION

M IMO, i.e., multiple-input multiple-output, wireless links are a mature research subject and their theory is already well understood [START_REF] Tse | Fundamentals of Wireless Communication[END_REF]. However, the extensive body of literature on link-level analysis conventionally concerns signal models of the form y = Hx + n reckoning with an additive thermalnoise term, namely n, only at the receiver after the fading channel H. In this paper, we investigate single-user MIMO channels and adopt a generalized ('binoisy') input-output relation from [START_REF] Schenk | Performance of MIMO OFDM systems in fading channels with additive TX and RX impairments[END_REF]- [START_REF] Zhang | On the MIMO capacity with residual transceiver hardware impairments[END_REF]:

y = H(x + v) + w, (1) 
where w is an additive receive-side distortion-plus-noise component. The system model [START_REF] Tse | Fundamentals of Wireless Communication[END_REF] allows including an additive noise term, namely v, also at the transmitter, thus making the total effective noise term Hv + w colored and correlated with the fading channel. This small but significant complement yields a MIMO link model whose performance analysis is still an open research niche in many respects.

Although we primarily aim at extending the capacity theory of binoisy SU-MIMO channels under fading without committing to any particular application, the signal model (1) originally stems from the practical need for modeling the combined effect of various transceiver hardware impairments which are detailed in [START_REF] Fettweis | Dirty RF: A new paradigm[END_REF], [START_REF] Schenk | RF Imperfections in High-rate Wireless Systems: Impact and Digital Compensation[END_REF], and the references therein. However, it is worth acknowledging that the additive noise assumed herein is only a simplified representation of complex nonlinear phenomena occurring due to hardware impairments, especially when considering their joint coupled effects or trying to model residual distortion after compensation. Thus, the binoisy signal model should be regarded as a compromise between facilitating theoretical analysis and resorting to measurements or simulations under more accurate modeling. Yet the central limit theorem further justifies the model by averaging the combined effects of different impairments to additive Gaussian noise when the signal model ( 1) is understood to represent a single narrowband subcarrier within a wideband system. Additive receiver hardware impairments can be incorporated into the conventional signal model by increasing the level of the thermal-noise term n by a constant noise figure, e.g., about 3-5 dB, or by scaling it in proportion to the input signal level such that it matches with w. On the other hand, regarding the joint effect of transmitter hardware impairments as an additive transmit-side noise term v is analogous to the principles of practical radio conformance testing. In particular, the common transmitter quality indicator is error-vector magnitude (EVM) which reduces the distortion effects to an additive component and measures its level relatively to signal amplitude [START_REF] Gregorio | EVM analysis for broadband OFDM direct-conversion transmitters[END_REF].

Typical target EVM values guarantee that the signal x is at least 20-30 dB above the transmit-side noise v. On the other hand, for basic discrete channel inputs such as quadrature phase-shift keying (QPSK), Hx is usually at most 10-15 dB above the receive-side noise w, after which the communication is not anymore limited by noise but the lack of entropy in the modulation alphabet. This implies that transmitter hardware impairments can be justifiably omitted in the analysis of simple low-rate wireless systems: Either Hv is well below the receive-side noise w (say 5-20 dB) or the signal-to-noise ratio (SNR) is set to an uninterestingly high level. However, there has been a trend to improve data rates by using, e.g., quadrature amplitude modulation (QAM) up to 64-QAM at relatively high SNR, in which case the transmit-side noise begins to play a notable role in the link-level performance.

The considered system setup corresponding to [START_REF] Tse | Fundamentals of Wireless Communication[END_REF] is shown in Fig. 1. As for MIMO processing, we focus on regular spatial multiplexing where a conventional transmitter separately encodes and sends an independent stream at each of its antennas without having channel state information or being aware of the transmit-side noise it produces; the receiver jointly decodes the output signals of the MIMO channel knowing its instantaneous realization H and some noise statistics. However, conventional receivers are designed and implemented based on the conventional signal model (where v = 0) due to which they are prone to lapse into suboptimal mismatched decoding by inaccurately postulating the statistics of the actual noise term Hv + w. Even if off-the-shelf receivers can adapt to colored receiver noise, they may not be able to track the variable statistics of the component Hv propagated from the transmitter since it is correlated with the fading channel. Only an advanced receiver would be able to perform matched decoding knowing perfectly the noise statistics as if it was designed and implemented explicitly based on the generalized binoisy signal model [START_REF] Tse | Fundamentals of Wireless Communication[END_REF].

A. Related Works

The key reference results for the present study are reported in [START_REF] Schenk | Performance of MIMO OFDM systems in fading channels with additive TX and RX impairments[END_REF]- [START_REF] Zhang | On the MIMO capacity with residual transceiver hardware impairments[END_REF]. These seminal works originally formulated the research niche around [START_REF] Tse | Fundamentals of Wireless Communication[END_REF] and established the baseline understanding of MIMO communication in the presence of transmit-side noise with numerical simulations and theoretical analysis. The majority of the related works, e.g., [START_REF] Schenk | Performance of MIMO OFDM systems in fading channels with additive TX and RX impairments[END_REF], [START_REF] Göransson | Effect of transmitter and receiver impairments on the performance of MIMO in HSDPA[END_REF], [START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF], [START_REF] Studer | System-level implications of residual transmit-RF impairments in MIMO systems[END_REF], concern regular spatial multiplexing using separate encoding like the present paper but also different variations of joint encoding have been creditably investigated, e.g., in [START_REF] Suzuki | Transmitter noise effect on the performance of a MIMO-OFDM hardware implementation achieving improved coverage[END_REF], [START_REF] González-Coma | Impact of transmit impairments on multiuser MIMO non-linear transceivers[END_REF]. On the other hand, all the studies that we are aware of assume (implicitly) advanced receivers that know the presence of transmit noise, no matter what form of decoding is used.

Especially, the reference results are polarized such that the scope of analytical studies [START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF], [START_REF] Studer | System-level implications of residual transmit-RF impairments in MIMO systems[END_REF] typically differs from that of studies reporting simulations [START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF], [START_REF] González-Coma | Impact of transmit impairments on multiuser MIMO non-linear transceivers[END_REF], [START_REF] González-Coma | Transmit impairments influence on the performance of MIMO receivers and precoders[END_REF] or measurements [START_REF] Suzuki | Transmitter noise effect on the performance of a MIMO-OFDM hardware implementation achieving improved coverage[END_REF]- [START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF]. Except for [START_REF] Schenk | Performance of MIMO OFDM systems in fading channels with additive TX and RX impairments[END_REF], practical discrete modulation schemes, e.g., QAM, have not been previously analytically evaluated in the presence of transmit noise, and simulation-based studies usually concern bit/symbol/packet error rates, not transmission rates which could be more interesting when studying modern adaptive encoding. In contrast, all the analytical capacity studies assume Gaussian signaling and the throughput simulations of [START_REF] Göransson | Effect of transmitter and receiver impairments on the performance of MIMO in HSDPA[END_REF] with adaptive modulation and coding are their closest counterpart when it comes to experimental work.

If the receiver does not properly account for the additional transmit-side noise in the received signal, conventional mutual information (MI) is not anymore the correct upper bound for coded transmissions. Rather, due to mismatched decoding, one has to employ other metrics, such as generalized mutual information (GMI) [START_REF] Merhav | On information rates for mismatched decoders[END_REF], [START_REF] Ganti | Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit[END_REF] adopted herein. Another common use for GMI is the analysis of bit-interleaved coded modulation [START_REF] Guillén I Fàbregas | Bit-interleaved coded modulation[END_REF], while also transceiver hardware impairments [START_REF] Zhang | A general framework for transmission with transceiver distortion and some applications[END_REF] and effects of imperfect channel state information at multi-antenna receiver [START_REF] Asyhari | Nearest neighbor decoding in MIMO block-fading channels with imperfect CSIR[END_REF], [START_REF] Weingarten | Gaussian codes and weighted nearest neighbor decoding in fading multiple-antenna channels[END_REF] are analyzed in terms of GMI. In particular, MI and GMI are evaluated herein using the replica method [START_REF] Nishimori | Statistical Physics of Spin Glasses and Information Processing[END_REF], [START_REF] Mézard | Information, Physics, and Computation[END_REF], originating from the field of statistical physics and introduced to the analysis of wireless systems by [START_REF] Tanaka | A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors[END_REF], [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF]. Since then, the replica method has been applied to various problems in communication theory, e.g., MIMO systems [START_REF] Müller | Channel capacity and minimum probability of error in large dual antenna array systems with binary modulation[END_REF]- [START_REF] Takeuchi | On an achievable rate of large Rayleigh block-fading MIMO channels with no CSI[END_REF]. For some special cases like Gaussian signaling, the replica trick renders exact asymptotic results when the number of antennas grows without bound, while they can be otherwise considered accurate approximations as shown by comparisons to Monte Carlo simulations.

B. Summary of Contributions

In this paper, we investigate two aspects of binoisy MIMO channels that are unexplored in related works despite their fundamental role in understanding the effects of hardware impairments in wireless systems. Firstly, analytical capacity results are limited to Gaussian signaling while practical digital modulation is evaluated only based on simple simulations or measurements. Secondly, the earlier literature focuses on the optimistic case of matched decoding by employing receivers that are actually not available off the shelf but implicitly updated to take account of transmit-side noise.

In particular, this paper contributes to the capacity theory of MIMO communication links by examining the effects of transmit-side noise as follows.

• Analytical GMI expressions are calculated for studying the rate loss of mismatched decoding when using a conventional receiver which is unaware of the transmitside noise. Especially, it is shown that the performance remains the same irrespective of how well the noise covariance matrix is known if it is a constant.

• The above analysis is further translated into corresponding asymptotic high-SNR limits for Gaussian signaling as a complement for the results of [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF], which covers matched decoding and conventional MI.

• The analytical expressions provided for both conventional MI and GMI cover many practical discrete modulation schemes such as variations of PSK and QAM. This resolves the serious problem that evaluating (G)MI with direct Monte Carlo simulations for the present system is computationally infeasible except for cases with small number of antennas and low order modulation sets. Extending beyond the scope of the paper, the replica analysis of GMI is also a new aspect at large.

C. Outline of the Paper and Its Nomenclature

After the considered system model is specified in the following section, the main analytical content of this paper is divided into two parts: Section III concerns the performance of conventional suboptimal receivers under mismatched decoding, which is analyzed based on GMI; and Section IV studies conventional MI with advanced receivers, which are aware of transmitter noise and, thus, capable of optimal matched decoding. In Section V, the presented theory is illustrated with numerical results, including simulations for double-checking its accuracy, which is finally followed by concluding remarks in the last section. Some general results from literature that are used throughout the paper for derivations are collected in Appendix A for the convenience of the reader. Appendices B contains general description of the replica method and Appendix C sketches the derivation of the main results in Section III.

Notation: Complex Gaussian random variables (RVs) are always assumed to be proper and the density of such x ∈ C N with mean µ and covariance R is denoted g(x | µ; R). For the zero-mean proper Gaussians, we say they are circularly symmetric complex Gaussian (CSCG). For convenience, both discrete and continuous RVs are said to have a probability density function (PDF) that is denoted by p, and we do not separate RVs and their realizations. For postulated PDFs we write q and add tilde on top of the related RVs (most of the time). Given a RV x that has a PDF p(x), we write x ∼ p(x) (and x ∼ q(x) for the postulated case). Statistical expectation is denoted E{ • } and, unless stated otherwise, calculated over all randomness in the argument using true or postulated PDFs, depending on which type of RVs are present. Integrals w.r.t. real-valued variables are always over R (for vectors over the appropriate product space) and we tend to omit the integration limits for notational simplicity. For a complex variable z = x + jy, we denote ( )dz = ( )dxdy, and similarly for complex vectors. Logarithms are natural logs and denoted ln unless stated otherwise. II. SYSTEM MODEL Consider the system model depicted in Fig. 1 and the signal model of y ∈ C N written in [START_REF] Tse | Fundamentals of Wireless Communication[END_REF] where H ∈ C N ×M is the channel matrix and x ∈ C M the signal of interest. The receiveside distortion plus noise component is divided into two parts, namely w = n + ω ∈ C N where n is caused by thermal noise and ω represents hardware impairments arising from the non-ideal behavior of the radio-frequency (RF) transceivers. Similarly, v = m + ν ∈ C M where m and ν are related to thermal noise and hardware impairments or distortions, respectively, at the transmit-side. In practice, the effect of m is often negligible compared to ν. In conventional MIMO literature it is common to consider only the thermal noise at the receiver, which translates to assuming ω = ν = m = 0 in our more generic system model.

Let us denote the PDF of the transmit vector x by p(x) and assume it factorizes as

p(x) = M m=1 p(x m ), (2) 
so that independent streams are transmitted at each transmit antenna. Furthermore, let p(x m ) be a zero-mean distribution with variance γm . For later convenience, we let Γ be a diagonal matrix whose non-zero elements are given by γ1 , . . . , γM , that is, Γ = E{xx H }. The channel H is assumed to have independent identically distributed (IID) CSCG elements with variance 1 1/M . The thermal noise samples at the transceivers 1 Typically the total power emitted from the transmit antennas in MIMO systems is constant; that is, tr(Γ) = γ, where γ is some fixed power budget that does not depend on M . Hence the elements of Γ need to be functions of M in order to satisfy the transmit power normalization. For the following analysis, however, it is more convenient to treat the elements of Γ to be independent of M and let the transmit power normalization be a part of the channel. Clearly, both approaches are mathematically fully equivalent.

are modeled as CSCG random vectors m and n that have independent elements. For simplicity, we assume that any given noise or hardware impairment component is independent of any other RVs in the system. The transmit-and receiveside impairments ν and ω are taken to be CSCG random vectors with covariance matrices R ν and R ω , respectively. The distortion plus noise vectors v and w are thus CSCG random vectors whose covariance matrices we denote R v and R w , respectively. Notice that these matrices can be functions of the statistics of some other RVs albeit we suppress the explicit statement of such dependence at this point for notational convenience. The SNR without transmit-side noise is defined as tr(Γ)/ tr(R w ).

The PDF of the received signal, conditioned on x, v and H, is given by

p(y | x, v, H) = g(y | H(x + v); R w ), (3) 
and the receiver is assumed to know H and the true distribution p(x) of the channel input. However, the additional transmit-side term v is in general unknown at the receive-side and, thus, the PDF (3) cannot be directly used for detection and decoding. Herein, we consider two different scenarios for the joint decoding operation at the receiver:

1) The receiver knows H, the PDFs of the noise plus distortion terms v and w as well as the distribution of the data vector x. Matched joint decoding is then based on the conditional PDF

p(y | x, H) = E v {g(y | H(x + v); R w )} (4) = g(y | Hx; R w + HR v H H ), (5) 
where the second equality follows by first using (62) to calculate the expectation w.r.t. v and simplifying the end result using (63) and (64). Note that the effective noise covariance matrix in (5) depends now on the instantaneous channel realization H.

2) The receiver has perfect knowledge of H and the PDF of the data vector x. Instead of (4), however, the device uses a postulated channel law

q(y | x, H) = g(y | Hx; R), (6) 
for mismatched joint decoding [START_REF] Merhav | On information rates for mismatched decoders[END_REF], [START_REF] Ganti | Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit[END_REF]. In contrast to R w in [START_REF] Suzuki | Practical performance of MIMO-OFDM-LDPC with low complexity double iterative receiver[END_REF], that is a random matrix, the postulated covariance matrix R in ( 6) is fixed. If matched joint decoding is employed, the conventional metric for evaluating the (ergodic) achievable rate of the system for given input distribution p(x) is the MI between the channel inputs and outputs, namely, [START_REF] González-Coma | Impact of transmit impairments on multiuser MIMO non-linear transceivers[END_REF] where p(y | H) = E x {p(y | x, H)} and the expectation is w.r.t. all RVs in the system model, including the channel matrix H. From the system design perspective, however, it might be impractical to use [START_REF] Suzuki | Practical performance of MIMO-OFDM-LDPC with low complexity double iterative receiver[END_REF] due to complexity of implementation, resulting in mismatched decoding. To lower bound the true maximum rate that can be achieved reliably over channel [START_REF] Tse | Fundamentals of Wireless Communication[END_REF] when decoding rule ( 6) is used at the receiver, we use GMI that is discussed in the next section.

I(y; x) = E{ln p(y | x, H)} -E{ln p(y | H)},

III. MISMATCHED JOINT DECODING: GENERALIZED MUTUAL INFORMATION

A. Definition and the Special Case of Gaussian Signaling

Let us assume that the received signal is given by (1) but the receiver uses (6) for decoding. Given p(x), the (ergodic) GMI between the channel inputs and outputs is defined as [START_REF] Merhav | On information rates for mismatched decoders[END_REF], [START_REF] Ganti | Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit[END_REF] 

I GMI (y; x) = sup s>0 I (s) GMI (y; x), (8) 
where, denoting q (s) (y | H) = E x {q(y | x, H) s }, the sdependent part reads

I (s) GMI (y; x) = E{ln q(y | x, H) s } -E{ln q (s) (y | H)}. (9)
Since we consider ergodic rates, the expectations in (9) are w.r.t. all RVs in the system model, including the channel matrix H. If I is the maximum ergodic rate that can be transmitted over the channel (1) using input distribution p(x) and decoding rule (6), then I ≥ I GMI [START_REF] Merhav | On information rates for mismatched decoders[END_REF], [START_REF] Ganti | Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit[END_REF]. Herein, the decoding based on the true channel law (4) cannot be obtained as a special case of the mismatched case since R is fixed (see footnote 6 and (87) in Appendix C) and, thus, the case of matched decoding is considered separately in Section IV.

We are first interested in evaluating the s-dependent part of the normalized GMI per transmit stream M -1 I (s) GMI (y; x) for given s > 0. The optimization over the free parameter s is carried out after the suitable expressions are found. The first term in ( 9) can be written as

1 M E{ln q(y | x, H) s } = - =c (s) s M N ln π + ln det R - s M E (Hv + w) H R-1 (Hv + w) = -c (s) - s M tr( R-1 R w ) + 1 M tr( R-1 ) tr(R v ) . ( 10 
)
The first equality follows from ( 6) by the fact that y -Hx = Hv + w when x is given. The second equality is a consequence of the assumption that the channels and noise vectors are all mutually independent and H has zero-mean IID entries with variance 1/M . Notice that ( 10) is independent of p(x) and hence valid for all channel inputs. Evaluating the second term in ( 9) is more complicated but for the special case of Gaussian inputs we have the result shown below.

Example 1. For the special case of Gaussian inputs; that is,

p(x) = g(x | 0; Γ), 1 M I (s) GMI (y; x) = 1 M E H ln det R + sHΓH H +s tr R w + H(R v + Γ)H H R + sHΓH H -1 -s tr( R-1 R w ) - s M tr( R-1 ) tr(R v ) -ln det R . ( 11 
)
The result is obtained by first using (62) and then simplifying with (63) and (64). Inserting the RHS of (1) into the obtained expression and taking the expectations w.r.t. the noise terms v and w completes the derivation. ♦

Example 1 shows that for Gaussian signals we only need to average over the channel to obtain the s-dependent part of GMI. This is doable with Monte Carlo simulation. However, finding the optimal s is time consuming even in this case and a simple analytical expression that does not explicitly depend on the form of the marginals in (2) would be highly desirable. With this in mind, we adopt the following restriction to our system model from the physical characteristics of typical real transmitters for simplifying the analysis.

Assumption 1. The covariance matrix for the transmit-side distortion plus noise term v is diagonal so that we may write

R v = R m + R ν = diag(r (1) v , . . . , r (M ) v
). Hence, v has independent (but not necessarily identically distributed) entries drawn according to

p(v m ) = g(v m | 0; r (m) v ).
♦

The physical meaning of this assumption is that hardware impairments at different transmitter branches arise in separate electrical components and there are no mechanisms which generate significant correlation between the elements of the distortion noise vector. Furthermore, it is actually not necessary for the replica analysis but it helps simplify the end result to a form whose numerical evaluation is computationally easy.

B. Analytical Results via the Replica Method

If the goal is to calculate the expectations related to the latter term in [START_REF] González-Coma | Transmit impairments influence on the performance of MIMO receivers and precoders[END_REF] analytically and for general input distributions, we need to employ somewhat more advanced analytical tools than the basic probability calculus used in Example 1. As we shall see shortly, employing the replica method provides a formula that is applicable to a variety of input constellations, such as Gaussian or QAM. To begin, let us first denote

- 1 M E ln q (s) (y | H) = c (s) + f (s), (12) 
where c (s) is defined in [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF] and the latter term, equivalent of the so-called free energy in statistical mechanics, reads

f (s) (13) = - 1 M E ln E x e -[H(x+v-x)+w] H s R-1 [H(x+v-x)+w] .

Now the inner expectation over the postulated channel input

x is w.r.t. a generic PDF (2) and cannot be solved using (62) as before. The outer expectation is w.r.t. the rest of the RVs in the system, namely {x, v, w, H}. Due to ( 9) and ( 10) the expression to be optimized in the GMI formula thus becomes

1 M I (s) GMI (y; x) = f (s) - s M tr( R-1 R w ) + 1 M tr( R-1 ) tr(R v ) . ( 14 
)
Remark 1. By ( 13) and ( 14), it is clear that if the receiver assumes that the additive noise in the system is spatially white R = rI N with some finite sample variance r, the GMI remains the same for all r > 0 since the optimization over s > 0 in (8) can be replaced by an optimization over a new variable s = s/r > 0. Thus, if the receiver uses R = rI N for decoding, the GMI is the same for all r > 0 when the transmit and receive covariance matrices R v and R w are fixed. ♦

The main obstacle in evaluating ( 14) is clearly f (s). This term happens to be, however, of a form that can be tackled by the replica method (see Appendix B). The following result is derived in Appendix C under the assumption of the so-called replica symmetric (RS) ansatz when the system approaches the large system limit (LSL), that is, M, N → ∞ with finite and fixed ratio α = M/N > 0. The limit notation is omitted below and the results should therefore be interpreted as approximations for systems that have finite dimensions.

Proposition 1. Let m = 1, . . . , M and denote

χ m = x m + v m , (15) 
χm = xm , (16) 
where

x m , xm ∼ p(x m ) and v m ∼ g(v m | 0; r (m) v )
are independent for all m by assumption. Let

p(z m | χ m ) = g(z m | χ m ; η -1 ), (17) 
q(z m | χm ) = g(z m | χm ; ξ -1 ), (18) 
be the PDF of an output z m of an additive white Gaussian noise (AWGN) channel whose input is either (15) or ( 16), respectively, and corrupted by additive noise with variance η -1 or ξ -1 , respectively. The parameters η, ξ satisfy

η = 1 α 1 N tr Ω-1 2 1 N tr Ω-1 Ω Ω-1 , (19) 
ξ = 1 αN tr Ω-1 , (20) 
for the given matrices

Ω = R w + εI N , (21) 
Ω = s -1 R + εI N , (22) 
and variables

ε = 1 M M m=1 E |v m + x m -xm q | 2 , (23) 
ε = 1 M M m=1 E |x m -xm q | 2 . ( 24 
)
The notation xm q above refers to a decoupled posterior mean estimator

xm q = E xm {x m q(z m | xm )} q(z m ) , ( 25 
)
where q(z m ) = E χm {q(z m | χm )}. If we also write p(z m ) = E χm {p(z m | χ m )}, the free energy f (s) defined in ( 14) is given under the assumption of the RS ansatz by

f RS (s) = 1 αN ln det Ω + tr Ω-1 Ω -ln det(s -1 R) -ln π ξ + ξ η + 1 M M m=1 p(z m ) ln q(z m )dz m -ξε + ξ(ξ -η) η ε. ( 26 
)
If multiple solutions to the coupled fixed point equations ( 19) -(24) are found, the one minimizing (26) should be chosen.

Proof: An outline of the derivation is given in Appendix C.

The above result extends some previous works such as [START_REF] Tanaka | A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors[END_REF], [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF] in the direction of correlated noise at the receiver and additive transmit-side impairments. It is thus clear that the original GMI term (9) of the MIMO system that suffers from transceiver hardware impairments has an interpretation in terms of an equivalent decoupled2 scalar system. This decoupled channel has only additive distortions but unlike in the conventional case of replica analysis [START_REF] Tanaka | A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors[END_REF], [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF], the transmitside has its own noise term. It should be remarked, however, that the implicit assumption here is that f RS (s) = f (s); that is, the system is not replica symmetry breaking (RSB). We leave the RSB case as a possible future work and check the validity of the solution with selected numerical simulations.

For simplicity of presentation, we consider next a few practical special cases of Proposition 1 where the transmit power is the same for all antennas and the noise and distortions at the transmit-side are spatially uncorrelated, namely, Γ = γI M and R v = r v I M . The receiver postulates spatially white noise R = rI N with some variance r > 0. This allows us to write

1 M I GMI (y; x) = sup s>0 f (s) -α -1 s[N -1 tr(R w ) + r v ] , (27) 
where f (s) is given by ( 13) with s R-1 replaced by sI N . Furthermore, in this case all variables are identically distributed for all m = 1, 2, . . . , M so we may omit the subscripts related to m in the following. We still need to fix the input distribution (2) to obtain the parameters ( 23) and [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF]. For this, we give two concrete examples: 1) Gaussian signaling; and 2) discrete channel inputs, such as, QAM. The parameter ξ can then be obtained explicitly as

ξ = γs(1 -α) -α + 4αγs + [γs(1 -α) -α] 2 2αγ , (28) 
while η and ε are obtained by solving the coupled fixed point equations

η = 1 α[N -1 tr(R w ) + ε] , (29) 
ε = ηr v + γ(η + ξ 2 γ) η(1 + ξγ) 2 = γ + r v (1 + ξγ) 2 + 1 η(1 + 1/ξγ) 2 . (30)
Additional algebra shows that for IID Gaussian inputs, the free energy (26) reduces to

f RS (s) = 1 α ξ η + ln s + ln 1 αξ -ξε + ln(1 + ξγ)+ ξr v 1 + ξγ . (31) 
Note that the expression for parameter ε in ( 24) is not explicitly given here but it is implicitly a part of ( 28) due to relations [START_REF] Weingarten | Gaussian codes and weighted nearest neighbor decoding in fading multiple-antenna channels[END_REF] and [START_REF] Mézard | Information, Physics, and Computation[END_REF].

♦ TABLE I HOW TO OBTAIN GMI FOR GAUSSIAN SIGNALING FROM EXAMPLE 2 1)
Choose the parameters that define the MIMO system of interest, namely, antenna ratio α = M/N , transmit-and receive-side distortion plus noise covariance matrices Rv = rvI M and Rw, respectively, and the average transmit power per antenna γ. Let also the optimization parameter s > 0 be given. 2) Plug the values of {α, γ, s} to (28) and obtain ξ.

3) Insert ξ along with the rest of the necessary parameters in [START_REF] Couillet | Random Matrix Methods for Wireless Communications[END_REF] and [START_REF] Wen | On the sum-rate of uplink MIMO cellular systems with amplify-and-forward relaying and collaborative base stations[END_REF], and solve η numerically, e.g., using an iterative substitution method. 4) Use the solutions of ξ and η in [START_REF] Girnyk | Large-system analysis of correlated MIMO multiple access channels with arbitrary signaling in the presence of interference[END_REF] to obtain the free energy. 5) Optimize [START_REF] Takeuchi | On an achievable rate of large Rayleigh block-fading MIMO channels with no CSI[END_REF] over s > 0.

The computational formula for obtaining the GMI with the above example is detailed in Table I. Notice that there are two non-trivial steps in the algorithm: 1) the optimization over s > 0; and 2) the problem of solving a system of two nonlinear equations with two unknowns. The first difficulty is not specific to the current study and is present in any work that considers GMI as means to analyze mismatched decoding. The computational complexity of the second problem is negligible compared to the original task of taking an expectation over the channel matrices in [START_REF] Zhang | On the MIMO capacity with residual transceiver hardware impairments[END_REF]. Indeed, a typical solution for η and ε is obtained after some tens of iterations of an iterative substitution method.

For the high-SNR case where γ → ∞ for a fixed covariance matrix R w , the result in Example 2 can be further simplified as shown in Example 3 below.

Example 3. Let us consider the case of Gaussian signaling as given in Example 2 in the limit γ → ∞. We assume for simplicity (see, e.g., [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF]) that R w = r w I N and r v = γκ 2 where κ > 0 and r w > 0 are fixed and finite parameters. At high-SNR, there are two possibilities for the parameter s = s/r in the GMI: 1) the optimal value of s is a strictly positive constant; and 2) the value of s goes to zero when γ → ∞. For the first case, M -1 I (s) GMI (y; x) → -∞ so in order to obtain a consistent solution for the fixed point equations, the parameter s has to be inversely proportional to γ, i.e., s = s γ /γ where s γ is a strictly positive finite constant. Then ξ → 0 as γ → ∞, and the normalized GMI reduces to

1 M I ∞ GMI (y; x) = sup sγ >0 1 α ln s γ αξ γ + ln(1 + ξ γ ) + κ 2 ξ γ 1 + ξ γ - s γ κ 2 α , (32) 
in the limit γ → ∞. The auxiliary parameter ξ γ ξγ > 0 is given by

ξ γ = s γ (1 -α) -α + 4αs γ + [s γ (1 -α) -α] 2 2α . (33) 
Compared to the finite-SNR case in Example 2, the GMI is now directly given by [START_REF]Asymptotic performance analysis of a K-hop amplify-andforward relay MIMO channel[END_REF]. ♦

The next example provides explicit formulas for the computation of GMI given finite discrete constellations, such as, PSK or QAM.

Example 4. Let A be a discrete modulation alphabet with fixed and finite cardinality |A| and consider the GMI [START_REF] Takeuchi | On an achievable rate of large Rayleigh block-fading MIMO channels with no CSI[END_REF]. Let the channel inputs x m be drawn independently and uniformly from A. The parameters of the decoupled channel model in Proposition 1 can be obtained by first solving ξ and ε from

ξ = s α(1 + sε) , (34) 
ε = γ -q(z)| x q | 2 dz, (35) 
using the following definitions for the decoupled estimator and the postulated channel probability

x q = 1 q(z)|A| x∈A xg(z | x; ξ -1 ), (36) 
q(z) = 1 |A| x∈A g(z | x; ξ -1 ), (37) 
respectively. Note that this implies solving two parameters from two nonlinear equations and can be done, for example, by using an iterative substitution method. After obtaining the solutions for ξ (and ε), the rest of the parameters can be obtained by solving the two coupled equations

η = 1 α[N -1 tr(R w ) + ε] , (38) 
ε = E |v + x -x q | 2 , (39) 
for η and ε, where the expectation is w.r.t. the true joint probability of {x, v, z}. Finally, the free energy reads

f RS (s) = 1 α ξ η + ln s + ln 1 αξ -ξε + ξ(ξ -η) η ε - ξ η + ln π ξ + p(z) ln q(z)dz , (40) 
where we denoted

p(z) = 1 |A| x∈A g(z | x; η -1 + r v ), (41) 
for the decoupled PDF of the received signal. ♦

Notice that the form of η in Example 4 is the same as in Example 2, but the parameter ε has now a different structure. Compared to the Gaussian case, the equivalent result for IID discrete channel inputs looks in general more cumbersome. First of all, we need to solve now two sets of equations instead of just one. They both contain terms that involve |A| summations and there are also two expectations left to evaluate, one in [START_REF] Müller | Vector precoding for wireless MIMO systems and its replica analysis[END_REF] and another in (39). However, both expectations involve only scalar variables. This is in stark contrast to the original problem that involved computing |A| M summations for every channel and noise / distortion realization and taking expectation over the channel and noise that are multidimensional integrals. This makes direct Monte Carlo computation of the GMI for discrete signaling in practice infeasible for large constellations and numbers of antennas.

IV. MATCHED JOINT DECODING

A. Definition and the Special Case of Gaussian Signaling

Let us now consider the case of matched decoding where the correct channel transition probability ( 5) is utilized at the

I(y; x) = M ln |A| -N - 1 |A| x∈A M E v,w,H ln x∈A M e -[H(x-x+v)+w] H (Rw+HRvH) -1 [H(x-x+v)+w] (44) 
receiver. The first entropy term in [START_REF] González-Coma | Impact of transmit impairments on multiuser MIMO non-linear transceivers[END_REF] reads

E{ln p(y | x, H)} = -E H {ln det(R w + HR v H H )} -c, (42) 
where c = N ln(eπ). It should be remarked that there is still an expectation left w.r.t. the channel realizations H in (42). This could be evaluated, for example, using Monte Carlo methods or random matrix theory [START_REF] Tulino | Random matrix theory and wireless commu-nications[END_REF], [START_REF] Couillet | Random Matrix Methods for Wireless Communications[END_REF]. For the special case of Gaussian inputs, the identities in Appendix A allow us to partially calculate also the latter entropy term in [START_REF] González-Coma | Impact of transmit impairments on multiuser MIMO non-linear transceivers[END_REF], providing the following result that is useful for Monte Carlo simulations.

Example 5. Let p(x) = g(x | 0; Γ). Then,

1 M I(y; x) = 1 M E H {ln det(R w + H(Γ + R v )H H )} - 1 M E H {ln det(R w + HR v H H )}, (43) 
is the normalized ergodic MI for matched decoding. ♦

The above expression is relatively easy to compute also by brute-force Monte Carlo methods since there is only an expectation over the fading. Unfortunately, to the best of our knowledge, the latter entropy term in ( 7) is mathematically intractable for rigorous methods like random matrix theory when p(x) is an arbitrary distribution that satisfies (2). For example, given discrete inputs as in Example 4, calculating E{ln p(y | H)} and combining it with (42) reduces the MI to (44) given at the top of this page. This form is computationally very complex and can be evaluated using Monte Carlo methods only for small number of antennas and simple constellations. To obtain a result for general input distribution p(x) that has lower computational complexity, we resort to the replica method (see Appendix B). As before, the results that follow have been written in a simplified form where the assumption of LSL is suppressed for notational simplicity.

B. Analytical Results via the Replica Method

Proposition 2. Let us write for notational convenience

χ m = x m + v m , m = 1, . . . , M, (45) 
where

x m ∼ p(x m ) and v m ∼ g(v m | 0; r (m) v ) are independent for all m. Let p(z m | χ m ) = g(z m | χ m ; η -1 ), (46) 
be a conditional PDF of an AWGN channel whose input is (45) and noise variance is η -1 . The conditional mean estimator of χ m received over this channel reads

χ m = E χm {χ m p(z m | χ m )} E χm {p(z m | χ m )} , ( 47 
)
where the parameter η is given, along with another parameter ε, as the solution to the coupled fixed point equations

η = 1 αN tr (R w + εI N ) -1 , (48) 
ε = 1 M M m=1 γm + r (m) v -E| χ m | 2 . ( 49 
)
If we also define a second set of parameters η and ε that are solutions to the coupled fixed point equations

η = 1 αN tr (R w + ε I N ) -1 , (50) 
ε = 1 M M m=1 r (m) v 1 + η r (m) v , (51) 
the per-stream MI is finally given by

1 M I(y; x) = ln det(R w + εI N )-ln det(R w + ε I N ) αN -(ηε -η ε ) + 1 M M m=1 I(z m ; χ m ) -ln(1 + η r (m) v ) , (52) 
where

I(z m ; χ m ) = -1 -ln π η -p(z m ) ln p(z m )dz m , ( 53 
)
is the MI of the Gaussian channel defined by (45) and (46).

Proof:

The result can be obtained using Appendix B for two separate MIMO channels. For the first one, we replace everywhere x a → x a + v a , a = 0, 1, . . . , u and and an application of the RM provides the equations (45)-(49). The formulas (50)-(53), on the other hand, are obtained by substituting x a → v a , a = 0, 1, . . . , u in Appendix B.

Just like Proposition 1 in Section III, Proposition 2 is valid for any input distribution that satisfies [START_REF] Schenk | Performance of MIMO OFDM systems in fading channels with additive TX and RX impairments[END_REF]. The solutions to the coupled equations ( 48) and (49) as well as ( 50) and (51) can be obtained numerically, e.g., using an iterative substitution method.

For concreteness, we again give examples for Gaussian and discrete signaling when the noise plus distortion is spatially white R v = r v I M and transmit power is uniformly allocated Γ = γI M . This makes the channels m = 1, 2, . . . , M identically distributed so we omit the subscript m in the following.

Example 6. Let R v = r v I M and consider the special case of Gaussian inputs p(x) = g(x | 0; γI M ). Then

I(z; χ) = ln 1 + η(γ + r v ) , (54) 
ε = γ + r v 1 + η(γ + r v ) , (55) 
and the rest of the parameters are given in Proposition 2. ♦

We next consider the high-SNR case γ → ∞ as in Example 3 and compare it to the result obtained in [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF] using completely different mathematical methods.

Example 7. For the case R w = r w I, R v = κ 2 γI (see, e.g., [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF]) we find that if α ≤ 1 then γ → ∞ yields η = η and ε = ε . The high SNR limit is therefore

1 M I ∞ (y; x) = log 1 + κ 2 κ 2 , α ≤ 1. (56) 
For the case α > 1, both η and η tend to zero at high SNR while ε and ε grow without bound. This is not yet sufficient to solve (52). However, combining this with the relations η ε = ηε and ε = ε κ 2 1+κ 2 , that hold in the limit γ → ∞ for α > 1, provides the second part of the high SNR result

1 M I ∞ (y; x) = 1 α log 1 + κ 2 κ 2 , α > 1. (57) 
The asymptotic mutual information expressions in ( 56) and (57) coincide exactly with the results obtained previously in [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF], as expected. ♦ Example 8. If the channel inputs are from a discrete alphabet A as in Example 4, the parameter ε in (49) is obtained using

χ = 1 p(z) x∈A 1 |A| g(z | x; η -1 + r v ) x + ηr v z 1 + ηr v , (58) 
E| χ | 2 = p(z)E | χ | 2 dz, (59) 
in Proposition 2. Here p(z) is given by (41) and χ denotes the conditional mean estimator of (45) from the observations (46). The related MI term reads by definition

I(z; χ) = ln η eπ -p(z) ln p(z)dz. (60) 
Both ( 49) and (60) need, in general, to be solved numerically.♦

V. NUMERICAL EXAMPLES

In the following, assume for simplicity that Γ = γI, R w = I and R v = κ 2 γI, where κ = 10 EVM/20 and EVM denotes the EVM of the transmitter in decibels. The SNR without transmit-side noise is therefore simply γ, or in decibels, γdB = 10 log 10 (γ). Furthermore, all cases assume a symmetric antenna setup α = M/N = 1 for simplicity.

The first numerical experiment plotted in Fig. 2 examines the accuracy of the asymptotic analytical results when applied to finite-sized systems. The EVM is fixed to a rather pessimistic value EVM = -10 dB to highlight the differences between the ideal and imperfect hardware configurations. The normalized rate is shown using the asymptotic replica analysis (lines) and Monte Carlo simulations (markers) for a finitesize symmetric antenna setup with M = N = 4. In the case of Gaussian signaling, plotted in Fig. 2(a), the analytical approximations for the normalized rate M -1 I(y; x) given by Examples 2 and 6 are quite good when compared to the finite size simulations based on Examples 1 and 5. For discrete signaling depicted in Fig. 2(b) we have plotted only the case of matched decoding due to the computational complexity of Monte Carlo simulations in the mismatched case. The gap between asymptotic result presented in Example 8 and Monte Carlo averaging of (44) is similar to the Gaussian case for both constellations. Figure 2 shows that the analytical approximation given by the replica method is reasonably good already at M = N = 4, even though formally the limit M, N → ∞ is required by the analysis. Note that Monte Carlo simulation of (44) has exponential computational complexity and the system size cannot be increased much higher than M = 4. Therefore, the rest of the examples are generated using only the analytical results given in the previous sections.

Figure 3 illustrates the performance of an M = N MIMO system for a more realistic EVM value EVM = -20 dB. For the case of matched decoding we used Examples 6 and 8, while Examples 2 and 4 were used to obtain the curves representing mismatched decoding. In Fig. 3(a), the normalized rate M -1 I(y; x) is depicted as a function of SNR γ in decibels. For clarity of presentation, we have plotted only the ideal case and the case of non-ideal hardware with matched decoding. The Gaussian curves (black lines) here are the same as the simulation curves in [10, Fig. 2] given the parameter value κ = 0.1. Apart from 64-QAM and Gaussian signaling, the figure seems to imply that lower order constellations exhaust the source entropy before the transmitside noise has any significant effect for this choice of EVM. To see more clearly the effect of transmit noise, Fig. 3(b) shows the rate loss (in percentage) for the case with transmit noise EVM = -20 dB when compared to the ideal case EVM = -∞ dB. The solid lines represent again matched decoding while dash-dotted lines are for mismatched decoding. As expected, mismatched decoding reduces the achievable rate when compared to matched decoding, but the effect is relatively minor when compared to the total rate loss caused by the presence of transmit noise itself. The markers depict the points where maximum relative rate loss is experienced for matched decoding. The same markers are also plotted in Fig. 3(a) for comparison.

In Fig. 4 we have plotted the asymptotic high-SNR results given in Examples 3 and 7. Note that given a finite value of EVM, the normalized rates for matched and mismatched decoding have a gap in this case. For more realistic, but still quite high SNR values of 20 dB and 30 dB, the two decoding strategies converge to the same value roughly when γdB < -EVM. The apparent discrepancy is explained by recalling that the asymptotic cases assume γ → ∞ for a fixed and nonzero EVM and, thus, as a finite SNR approximation implies γ 1/κ 2 . As may be observed from the lower right corner of the figure, the SNR values 20 dB and 30 dB have also a similar behavior near γ 1/κ 2 . Thus, the high-SNR result is consistent with the finite-SNR cases.

It is important to guarantee certain performance when designing a system. The maximum EVM that leads to at most 5% rate loss (as compared to having ideal hardware) for a fixed input distribution and different given SNRs is plotted in Fig. 5. For Gaussian signaling we have plotted both the matched and mismatched cases while discrete cases assume matched joint decoding for simplicity. As expected, the EVM requirement for Gaussian signaling is a monotonically decreasing, but not linear, function of SNR. A simple linear approximation that provides a lower bound for the case of Gaussian signaling with matched decoding is given by

EVM = -0.7 • γdB -13, (61) 
in decibels for the depicted region. This can be used as a simple rule-of-thumb for worst-case maximum allowed EVM in the system, although we recommend that EVM target values obtained in this way are always rounded down to 1-5 dB precision to include extra safety margin. For discrete constellations, the EVM requirement first follows the Gaussian case but then starts to get looser at higher SNRs. This is expected, as can be observed from Fig. 3(a), since the maximum achievable rate for a discrete constellation saturates at a certain SNR when the input distribution runs out of entropy. After this point, the rate loss can be held fixed for increasing SNR by increasing the transmit-side noise variance, or EVM, accordingly.

VI. CONCLUSIONS AND FUTURE WORK

Considering a 'binoisy' channel model, we have derived asymptotic expressions for the achievable rate of SU-MIMO systems suffering from transceiver hardware impairments. For matched decoding, where the receiver is designed and implemented explicitly based on the generalized system model, expressions for the ergodic mutual information between the channel inputs and outputs have been given. In addition, a simplified receiver that neglected the hardware imperfections and performed mismatched detection and decoding has been Maximum allowed EVM in decibels for matched decoding so that the system experiences at most 5% loss in rate compared to the case with ideal hardware (EVM = -∞ dB). Markers depict the worst case EVM requirement for the discrete constellations and parenthesis in the legend provide the respective values as (γ dB , EVM). All discrete cases correspond to matched joint decoding at the receiver. studied via generalized mutual information. The mathematical expressions provided in the paper cover practical discrete modulation schemes, such as, quadrature amplitude modulation, as well as Gaussian signaling. The numerical results showed that for realistic system parameters, the effects of transmit-side noise and mismatched decoding become significant only at high modulation orders. Furthermore, the effect of mismatched decoding was found to be relatively minor compared to the total rate loss caused by the presence of transmit noise itself. The results were also used to identify the maximum EVM values that allows for certain system operation.

A. Future Work

For the ease of exposition, the present paper considered the analysis of a relatively simple SU-MIMO system where the had IID Gaussian elements. An extension of the replica analysis to Rayleigh fading channels with Kronecker correlation can be done by following, e.g., the derivations in [START_REF] Wen | Spatially correlated MIMO multiple-access systems with macrodiversity: Asymptotic analysis via statistical physics[END_REF]. Establishing the effects of transmit-side noise for the case of correlated channel is an important avenue for future work.

As a further extension, it is important to investigate whether similar phenomena as observed in the present paper are present also for more complicated signal models with discrete channel inputs. Such systems already analyzed in the ideal setting with the replica method include, for example, multiuser MIMO and base station collaboration [START_REF] Wen | On the sum-rate of uplink MIMO cellular systems with amplify-and-forward relaying and collaborative base stations[END_REF], channels with interference and precoding [START_REF] Girnyk | Large-system analysis of correlated MIMO multiple access channels with arbitrary signaling in the presence of interference[END_REF] and K-hop relay channels [START_REF]Asymptotic performance analysis of a K-hop amplify-andforward relay MIMO channel[END_REF]. Combining the ideas from the present paper and [START_REF] Wen | On the sum-rate of uplink MIMO cellular systems with amplify-and-forward relaying and collaborative base stations[END_REF]- [START_REF]Asymptotic performance analysis of a K-hop amplify-andforward relay MIMO channel[END_REF] would provide a possible approach to solving such cases.

APPENDIX A USEFUL RESULTS

Here we collect useful results that are used often in the paper. All matrix operations below are implicitly assumed to be well-defined. The Gaussian integration formula for vector x ∈ C N is given by (see, e.g., [33, Appendix I])

1 π N e -x H M x+2 {b H x} dx = 1 det(M ) e b H M -1 b , (62) 
and used in Sections II -IV and Appendix C. Similarly, the matrix inversion lemma [START_REF] Bernstein | Matrix mathematics: theory, facts, and formulas[END_REF] (

W -1 + U T -1 V H ) -1 = W -W U (T + V H W U ) -1 V H W , (63) 
and the related determinant identity

det(W -1 + U T -1 V H ) = det(T + V H W U ) det(W -1 ) det(T -1 ), (64) 
are employed several times in the paper.

APPENDIX B REPLICA METHOD

Consider a function Z that maps RVs to real numbers 3and define two sets of RVs, V ∈ V and X ∈ X , with joint probability P V,X . Assume for convenience that P V,X can be described in terms of a joint PDF p(V, X) and denote the marginal PDFs of X and V p X (X) and p V (V ), respectively. Then, both in statistical mechanics and communication theory, we often encounter a formula

f = - 1 M E V ln E X {Z(V, X)} = - 1 M V p V (V ) ln Z(V ) dV, (65) 
where Z(V ) = X p X (X)Z(V, X)dX. In physics jargon, the variables V are said to be quenched and the quantity (65) is the average free energy density of a system whose partition function is Z(V ). Two concrete examples of (65) are:

1) Let Z(V, X) = g(y | Hx; R w ) be the conditional PDF of the observation in an ideal MIMO channel with V = {y, H} and X = {x}, where x has IID elements from a discrete modulation set A, such as PSK or QAM. Then (65) represents a normalized version of the second term in [START_REF] González-Coma | Impact of transmit impairments on multiuser MIMO non-linear transceivers[END_REF], namely, the (normalized) total entropy of the received signal y given a realization of H and averaged over all possible realizations of H. 2) Let Z(V, X) = e βσ H Jσ , where β > 0 denotes the inverse temperature, V = J ∈ R M ×M a coupling matrix and X = σ ∈ {±1} M a spin configuration. If p V (V ) is a uniform probability over σ and J has, e.g., IID Gaussian elements, then (65) is the average free energy density of a mean-field Ising spin glass in the absence of external field (up to trivial constants).

In both cases, f captures important properties of the system at hand and obtaining a computable formula for (65) would be of great interest. This seems infeasible though since the number of terms in the expectation is exponential in M .

A. Outline of the Replica Method

One method for solving (65) is the replica method (RM) from equilibrium statistical mechanics. While the RM is extremely versatile, it unfortunately lacks mathematical rigor in some parts (see, e.g., [START_REF] Nishimori | Statistical Physics of Spin Glasses and Information Processing[END_REF]- [START_REF] Tanaka | A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors[END_REF]). However, due to its success both in physics and engineering, it is generally agreed to be at least a valuable starting point for analysis of problems that seem otherwise too difficult to handle. A cursory overview of literature about the RM inside a specific field or topic may paint the picture that the RM is a fixed set of mathematical methods which can be applied to any suitable problem at hand. This is not entirely accurate and conceptually the RM can be seen more like a systematic way of turning a very difficult problem into a more manageable one than a set of specific tools that actually solve the problem. Indeed, the mathematical methods that are used at different stages of the RM can often be chosen from a variety of choices, although it is very common to have some form of large deviations theory as part of the analysis (see Step 2 below). Thus, instead of trying to be entirely general, we describe next (one form of) the steps taken in the RM in the context of the first example above.

Step 1 (Replica trick). Consider (65) and write it as

f = - 1 M lim u→0 + ∂ ∂u ln E V {[Z(V )] u } = - 1 M lim u→0 + ∂ ∂u ln E V x∈A M p X (x)Z(V, x) u = - 1 M lim u→0 + ∂ ∂u ln Ξ(u), (66) 
where u ∈ R and we denoted

Ξ(u) = E V {[Z(V )] u }.
Then, assume that we can treat u as an integer when we take the expectation, namely,

Ξ(u) = E V u a=1 xa∈A N p X (x a )Z(V, x a ) (67) = 1 π uN (det R w ) u ×E V {xa} u a=1 e -(y-Hxa) H R -1 w (y-Hxa) p X (x a ) ,
where the summation in the last expression is over the set {x a } u a=1 . After taking the expectations, if we manage to write (67) in a form that does not explicitly force u to be an integer, invoke analytical continuity to extend u to real numbers. ♦

The step above is at the very heart of the RM. It is important to realize that the equalities in (66) are provably true if differentiation under the integral sign is permitted and u ∈ R. The part lacking rigorous mathematical justification is (67), especially when combined with the next two steps. Somewhat surprisingly, however, the end results of RM can sometimes be proved to be exact. Examples of such cases are: MIMO channel with Gaussian inputs, random energy model (REM) and Sherrington-Kirkpatrick model of spin glasses (see, e.g., [START_REF] Nishimori | Statistical Physics of Spin Glasses and Information Processing[END_REF]- [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF] and references therein).

Step 2 (Large system limit). Let the system approach the LSL, that is, the dimensions of the channel matrix H grow without bound at a finite and fixed ratio α = M/N > 0. Furthermore, assume that the limits w.r.t. u and M commute, so that we can first calculate the expectations in (67) in the LSL and then let u → 0, as in (66). ♦

The LSL assumption is natural in equilibrium statistical mechanics (e.g. the second example above), where the systems contain usually very large numbers of interacting particles M . In communication theory, the equivalent would be, e.g., a MIMO systems with large antenna arrays or a CDMA with large number of simultaneous users. It is in fact quite common to write the LSL assumption directly as a part of the replica trick in (66). The steps are separated here since the replica trick could also be used for finite sized systems. Due to mathematical difficulty of such cases, however, both steps are usually found together. The assumption of commuting limits is typically postulated a priori and rigorous justification of this step is beyond the scope of this paper.

Let us denote the true transmitted vector x 0 , so that y = Hx 0 + w is the generating model for the observation y and we can equivalently write V = {w, x 0 , H}. Returning then to Step 1, we note that although the replicated vectors {x a } u a=1 act as IID RVs drawn according to p X in (67) when conditioned on V , they can be correlated if not conditioned on V . We examine this through the empirical correlations between the vectors in the set X u+1 = {x a } u a=0 using overlap matrix Q ∈ C (u+1)×(u+1) , whose (a, b)th element 4 is given by Q a,b = M -1 x H b x a . Then, the structure that is imposed on Q divides the replica analysis into two rough categories as described below.

Step 3 (Replica symmetry). The RS ansatz or RS assumption means that the indexes a = 1, . . . , u are permutation symmetric and Q can be written in terms of four parameters, for example,

Q 0,0 = p, Q 0,a = m, a ≥ 1, Q a,a = Q, a ≥ 1, and Q a,b = q, a = b ≥ 1. Note that Q = Q H by construction.
If Q is not of the RS form, it is said to have replica symmetry breaking (RSB) structure whose analysis is much more involved [START_REF] Nishimori | Statistical Physics of Spin Glasses and Information Processing[END_REF], [START_REF] Mézard | Information, Physics, and Computation[END_REF].

The importance of the RS assumption will become clear when we present a rough sketch of the analysis of an ideal MIMO channel. We also note that the overlap matrix given in Step 3 allows the "zeroth" index to be treated separately to take into account the possibility that either x 0 has different distribution than x a when a ≥ 1, or the decoder uses mismatched statistics, i.e., Z(V, x a ) does not match the probability law of the observation y = Hx 0 + w as in Appendix C. For the simplified case considered below, however, we have p = Q and m = q since the indexes a = 0, 1, . . . , u can be treated on equal footing and two parameters is sufficient to define the RS form of Q.

Next we give a brief and informal example of replica analysis for ideal MIMO channel. The reader may be surprised to find out that most of the discussion below deals with details about how to obtain the necessary formulas when we follow the three stages above and not about those stages per se.

B. Average Over the Channel and Noise

The starting point of our replica calculations is (67), where we use the generating model of y to write in the exponential y-Hx a = w-H(x 0 -x a ). The first task is then to compute the expectation w.r.t. w and H for a fixed X u+1 = {x a } u a=0 that satisfies the correlations of the RS overlap matrix Q. Note that we cannot assume anymore that the vectors in X u+1 are independent since we changed the order of expectations in (67) and the average over X u+1 is carried out (later) without conditioning on w and H. With this in mind, it follows that given X u+1 , the set {Hx a } consists of CSCG RVs with correlations

E H {(Hx a )(Hx b ) H } = M -1 x H b x a I N = Q a,b I N that
are deterministic in the LSL. Thus, we can replace {H(x 0 -x a )} u a=1 by a set of CSCG RVs {∆ a } u a=1 and use Gaussian integration (62) to average over both w and {∆ a } u a=1 to obtain (for details, see Appendix C-B.)

Ξ(u) = e N G (u) (Q) µ(Q)dQ, (68) 
G (u) (Q) = -u ln det[R w + (Q -q)I N ] -u ln π -ln(u + 1) (69) 
where Q should be understood to be in its RS parametrized form and µ(Q) is the PDF of the overlap matrix Q.

Remark 2. Firstly, note that due to the RS assumption (Step 3), the function ( 69) is of a form that does not restrict u to be an integer, as desired. This is one of the reasons why we need to express matrix Q in a parametrized way instead of using it "as-is". Secondly, there is some universality in this derivation and the form (68) is a typical result of replica analysis. In some cases, however, different techniques are needed. One example is non-IID "mixing matrix" that requires direct matrix integration [START_REF] Müller | Vector precoding for wireless MIMO systems and its replica analysis[END_REF], [START_REF] Vehkaperä | Analysis of regularized LS reconstruction and random matrix ensembles in compressed sensing[END_REF]. ♦

C. Distribution of the Overlap Matrix and Large Deviations

The second major step in the analysis is to find an explicit formula for µ(Q), i.e., for the probability weight of the set {x a } u a=0 that satisfies Q a,b = M -1 x H b x a . The form of (68) suggest that we should try to represent µ(Q) as an exponential whose argument is linear in N (or M ) so that we can employ Laplace's method or the method of steepest descent to evaluate the integral w.r.t. Q. If x a ∈ R M , due to (2), the elements of x a are IID for all a = 0, 1, . . . , u and µ follows the large deviation principle [START_REF] Mézard | Information, Physics, and Computation[END_REF], [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]. Informally this implies5 µ(Q) e -M c (u) (Q) , where the rate function

c (u) (Q) = sup Q tr(Q Q) -lim M →∞ 1 M ln φ (u) ( Q) , (70) 
describes the exponential behavior of the probability,

φ (u) ( Q) = E Xu+1 exp u a,b=0 Qa,b x H b x a , (71) 
is the moment generating function (MGF) associated with µ(Q) and the supremum is over all (u + 1) × (u + 1) matrices Q that have the same RS form as Q, that is, Q0,0 = p, Q0,a = m, a ≥ 1, Qa,a = Q, a ≥ 1, and Qa,b = q, a = b ≥ 1. Thus, we can assess (68) in the LSL up to the leading order by using the exponential form of µ and Laplace's method, namely,

Ξ(u) e M α -1 G (u) (Q) e -M c (u) (Q) dQ = exp N [α -1 G (u) (Q) -c (u) (Q)] dQ (72) exp M sup Q, Q T (u) (Q, Q) , (73) 
where we denoted for notational convenience

T (u) (Q, Q) = 1 α G (u) (Q) -tr(Q Q) + lim M →∞ 1 M ln φ (u) ( Q). (74 
) For complex vectors {x a }, the end result is essentially the same and the solution to the supremum is found among the critical points of the argument (see e.g., [START_REF] Wen | Spatially correlated MIMO multiple-access systems with macrodiversity: Asymptotic analysis via statistical physics[END_REF], [START_REF] Takeuchi | On an achievable rate of large Rayleigh block-fading MIMO channels with no CSI[END_REF], [START_REF] Müller | Vector precoding for wireless MIMO systems and its replica analysis[END_REF]). The large deviations analysis also guarantees that Q is in general a real symmetric matrix and if (Q * , Q * ) is the solution of the optimization problem in (73) then T (u) (Q * , Q * ) ∈ R, as expected since f is in our case real.

However, in RM there is some ambiguity as to whether the correct point in the saddle-point approximation (73) minimizes or maximizes the exponential when we let u → 0 [START_REF] Nishimori | Statistical Physics of Spin Glasses and Information Processing[END_REF], [START_REF] Mézard | Information, Physics, and Computation[END_REF]. Thus, in RM, we seek in practice the critical points and (66) is thus of the form

f = -lim u→0 + ∂ ∂u extr Q, Q T (u) (Q, Q) , (75) 
where extr X {h(X)} denotes finding the critical points of a function h(X).

D. Decoupled MGF and Critical Points

The second part of replica analysis where the RS assumption plays an important role (for the first one, see Remark 2) is when we try to solve (71) and find the critical points of T (u) (Q, Q). For the simplified setup in this section where Q and Q are represented with parameter {Q, q} and { Q, q}, respectively, the MGF can be expressed as (see, e.g., [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF] for details)

φ (u) ( Q) = M m=1 q π -u E xm g(z m | x m ; q-1 ) u+1 dz m , (76) 
where z m are just dummy variables. On the other hand, finding the critical points involves taking eight partial derivatives for the RS case in Step 3 (for the simplified case here, four is enough). Then, one should pick the solution that satisfies the conditions at the critical point while providing the global extremum of (66). In the case considered here, we can actually get rid of two parameters since p = M -1 E x 2 and p = 0 always at the critical point. Note that if we did not parametrize Q, the critical points would be described by u(u+1) equations and Ξ(u) would depend explicitly on the fact that u is an integer. This is one of the reasons why even the full-RSB solution (see [START_REF] Nishimori | Statistical Physics of Spin Glasses and Information Processing[END_REF], [START_REF] Mézard | Information, Physics, and Computation[END_REF]) uses a round-about way of presenting Q instead of using it "as-is". Finally, we remark that it is quite common (see, e.g., [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF]) to represent the end result in terms of new variables. For example, if we have equal transmit powers for each antennas γ = γm in the simplified case considered here, then the parameters η = q and ε = Q -q = γ -q fully describe the RS matrices Q and Q at the critical point. The former variable is inverse noise variance of a decoupled Gaussian channel

z = x + w, p(w) = g(w | 0; η -1 ), (77) 
and the latter variable ε is the MMSE of this channel when the inputs are drawn according to p X (x). The rest of RM is straightforward, albeit tedious algebra to arrive at (66).

APPENDIX C REPLICA ANALYSIS FOR MISMATCHED CASE

The analysis herein follows the main steps of RM as listed in Appendix B. Reader who is not familiar with the RM is encouraged to use discussion there as a guide to the derivations below.

A. Replica Trick

Let us consider the function f (s) (free-energy) defined in [START_REF] Schenk | RF Imperfections in High-rate Wireless Systems: Impact and Digital Compensation[END_REF]. We then postulate that it can be expressed in the LSL using the standard replica trick (cf. Appendix B)

f (s) = -lim M →∞ 1 M lim u→0 ∂ ∂u ln Ξ (u,M ) (s), (78) 
where we defined for later convenience

Ξ (u,M ) (s) = E u a=1
e -[w+H(χ0-χa)] H Σ -1 [w+H(χ0-χa)] ,

(79) and denoted6 Σ = s -1 R along with χ 0 = x 0 + v 0 and χ a = x a , a = 1, . . . , u. Here x 0 is the original transmit vector in (1) and {x a } u a=1 are replicated data vectors, which are IID drawn according to p(x) when conditioned on {x 0 , v 0 , w, H}. On the other hand, v 0 represents the noise plus distortion component at the transmit-side that is CSCG with covariance matrix R v . Starting with (79), the goal is then to obtain a functional expression for Ξ (u,M ) (s) in the LSL that does not enforce u to be an integer and then use (78) to obtain the desired quantity. In the following, explicit limit notations are often omitted for notational convenience.

B. Average Over the Channel and Noise

To proceed with the evaluation of (79), we first make the RS assumption

p = M -1 χ 0 2 , (80) 
m = M -1 χ H 0 χ a , a = 1, . . . , u, (81) 
Q = M -1 χ a 2 , a = 1, . . . , u, (82) 
q = M -1 χ H a χ b , a = b ∈ {1, . . . , u}. (83) 
and remind the reader that if we average first over H, the empirical correlations between {x a } u a=0 are not zero in general as discussed in Appendix B. Thus, noticing that

E H {[H(χ 0 -χ a )][H(χ 0 -χ b )] H } = p -(m + m * ) + Q I N , a = b, p -(m + m * ) + q I N , a = b, (84) 
we may replace {H(χ 0 -χ a )} u a=1 in (79) in the LSL by CSCG vectors {∆ a } u a=1 that are constructed as

∆ a = d a Q -q + t p -(m + m * ) + q (85) = d a √ A + t √ B, (86) 
where t, {d a } u a=1 are IID standard complex Gaussian RVs independent of w. Plugging (86) into Ξ (u,M ) (s) and recalling that Σ is a fixed predefined matrix gives Ξ (u,M ) (s) = 1 det(R w ) E dw π N e -w H (R -1 w +uΣ -1 )w × dt π N e -t H (I+uBΣ -1 )t-2 {w H (u √ BΣ -1 )t} 

where the second line is also obtained through Gaussian integration. The above holds for any R w and Σ that are Hermitian and invertible. The determinants in (89) can be further simplified using (64), so that recalling Σ = s -1 R and defining two auxiliary matrices Ω(p, m, q) = R w + (p -(m + m * ) + q)I N , (90)

Ω(Q, q) = s -1 R + (Q -q)I N , (91) 
that are both Hermitian, we finally have

Ξ (u,M ) (s) = det(s -1 R) u E e G (u) (p,m,q,Q) , (92) 
G (u) (p, m, q, Q) = (1 -u) ln det Ω(Q, q)

-ln det Ω(Q, q) + uΩ(p, m, q) , (93)

Using the differentiation rule ∂ ∂x ln det A = tr A -1 ∂A ∂x , where the partial derivative should be understood as an elementwise operation on A, we also obtain for later use the equalities

∂ ∂p G (u) (Q) = -u tr ( Ω + uΩ) -1 , (94) 
∂ ∂m G (u) (Q) = ∂ ∂m * G (u) (Q) = u tr ( Ω + uΩ) -1 , (95) 
∂ ∂q G (u) (Q) = u(u -1) tr Ω-1 Ω( Ω + uΩ) -1 , (96) 
∂ ∂Q G (u) (Q) = u tr Ω-1 Ω( Ω + uΩ) -1 -u tr Ω-1 , (97) 
where the dependencies to {p, m, q, Q} were omitted on the RHSs of the equations for notational simplicity.

C. Distribution of the Overlap Matrix and Large Deviations

Let us now write the general form of empirical correlations between {∆ a } as

1 M E H {∆ H b ∆ a } = χ 0 2 M - χ H b χ 0 M - χ H 0 χ a M + χ H b χ a M = Q 0,0 -Q 0,b -Q a,0 + Q a,b , (98) 
where Q a,b are the elements of the overlap matrix Q ∈ C (u+1)×(u+1) and have the obvious definitions. We then need to find a suitable formula for the rate function (70). By the RS assumption, tr(Q Q) = pp + u m(m + m * ) + uQ Q + u(u -1)q q, (99

)
since Q is real symmetric and we may write (78) as in (100) at the top of the next page, where the per-antenna rate function reads 

φ (u) m ( Q) = E {χa,

D. Decoupled MGF and Critical Points

The first set of equations for the critical point arises from the equality

∂ ∂x tr(Q Q) = 1 M ∂ ∂x G (u) (Q), (102) 
for x ∈ {p, m, q, Q}. The partial derivatives on the LHS are trivial due to (99) and the RHSs we already obtained in (94)-(97). If we drop the explicit dependence of Ω and Ω on {p, m, q, Q} for notational simplicity, the RS conjugate parameters satisfy

p = -u 1 M tr ( Ω + uΩ) -1 = -u m, (103) 
m = 1 M tr ( Ω + uΩ) -1 , (104) q 
= 1 M tr Ω-1 Ω( Ω + uΩ) -1 , (105) 
Q = 1 M tr Ω-1 Ω( Ω + uΩ) -1 - 1 M tr Ω-1 . ( 106 
)
Note that the above implies that in the limit u → 0, we have p → 0, and m → -( Q -q), so that the relevant critical point can be written by using two instead of four "tilde-parameters". The next task is to obtain an explicit expression for the percomponent moment generating function (MGF) in (101) that does not require u to be an integer. Since this part is closely similar to the analysis carried out, e.g., in [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF] we omit the details of the derivations. Following the notation of [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF], we let ξ = m and η = m2 /q which is sufficient to describe Q here. Then, if we denote χ m = x m + v m and χm = xm , the scalar MGF (101) can be written as ). As a consequence of the above, u does not need to be an integer anymore and the limit u → 0 is well defined. From the partial derivatives of {p, m, q, Q} we obtain the second set of conditions at the critical point

φ (u) m ( Q) =
p = lim M →∞ 1 M M m=1 E|x m + v m | 2 , (108) 
Q = lim M →∞ 1 M M m=1 E |x m | 2 q , (109) 
m = lim M →∞ 1 M M m=1 E(x m + v m ) x * m q , (110) 
q = lim M →∞ 1 M M m=1 E x * m q x * m q , (111) 
where

x m , xm ∼ p(x m ), v m ∼ g(v m | 0; r m v ), f (x m ) q = E xm f (x m ) q(z m | xm ) q(z m ) , (112) 
and q(z m ) = E xm q(z m | xm ). The interpretation is that (112) represents the conditional mean estimator for postulated channel q(z m | χm ) when the true channel is given by p(z m | χ m ). Then the true ε = p-(m+m * )+q, and postulated ε = Q-q MMSE reduce to [START_REF] Tanaka | A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors[END_REF] and [START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF], respectively. Finally, computing the partial derivatives w.r.t. u in (100) and taking the limit u → 0 provides after some algebra the free energy [START_REF] Wen | Spatially correlated MIMO multiple-access systems with macrodiversity: Asymptotic analysis via statistical physics[END_REF].
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 1 Fig.1. System model for non-ideal MIMO communications with transmit and receive distortion. The receiver might be misinformed or ignorant of some of the variables in the transmission chain leading to mismatched decoding.
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 2 Let the channel inputs (2) be IID Gaussian, namely, p(x) = g(x | 0; γI M ) so that p( χm ) = p(x m ) = g(x | 0; γ) and p(χ m ) = g(χ m | 0; γ + r v ) in Proposition 1.
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 23 Fig. 2. Normalized rate M -1 I(y; x) in bits per channel use (cu) vs. SNR for MIMO transmission. Lines for replica results and markers for Monte Carlo simulations for M = N = 4 antenna configuration. Selected cases of ideal hardware EVM = -∞ dB and hardware impairments (EVM = -10 dB) with matched and mismatched decoding are plotted.
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 4 Fig.[START_REF] Suzuki | Transmitter noise effect on the performance of a MIMO-OFDM hardware implementation achieving improved coverage[END_REF].Normalized rate M -1 I(y; x) in bits per channel use vs. EVM in decibels for MIMO transmission with Gaussian signaling. Solid lines for matched decoding and dash-dotted lines for mismatched decoding.
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  χ * b,m χ a,m , (101) and χ a = [χ a,1 • • • χ a,M ] T .

E

  dz m e uξ(|zm| 2 -|χm| 2 ) ×p(z m | χ m ) E χm q(z m | χm ) u , (107)f RS = -lim u(m m * + mm * ) + uQ Q + u(u -1)z m | χ m ) = g(z m | χ m ; η -1 ) and q(z m | χm ) = g(z m | χm ; ξ -1

This decoupling property is ubiquitous in replica analysis (see for example[START_REF] Tanaka | A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors[END_REF],[START_REF] Guo | Randomly spread CDMA: Asymptotics via statistical physics[END_REF]) as well as in random matrix theory (see[START_REF] Tulino | Random matrix theory and wireless commu-nications[END_REF],[START_REF] Couillet | Random Matrix Methods for Wireless Communications[END_REF] and references therein), and is one of the key reasons why the asymptotic methods provide computationally feasible solutions for complex problems.

In the following we refrain differentiating random variables and their realizations for notational convenience. Also, Z and, as a result, f can depend on some parameters (non-random variables) that are not explicitly stated.

The row/column indexes of Q are 0, 1, . . . , u so that the correlations are measured also w.r.t. the true transmitted vector x 0 . Furthermore, due to (2), the empirical correlations can be expected to converge to the true ones in the LSL postulated in Step 2.

We use notation a M b M to denote "equality up to the leading exponential order", that is lim M →∞ M -1 ln(a M /b M ) = 0.

We remind the reader that for the case of mismatched decoding, the postulated covariance matrix R is fixed by definition so that Σ = s -1 R is also a fixed predefined matrix. This is in contrast to the case of matched decoding[START_REF] Suzuki | Practical performance of MIMO-OFDM-LDPC with low complexity double iterative receiver[END_REF], where the effective covariance matrix Rw +HRvH is random and depends directly on the channel matrix H.
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