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Abstract

Based on a representation in terms of determinants of order 2N , an
attempt to classification of quasi rational solutions to the one dimensional
focusing nonlinear Schrödinger equation (NLS) is given and several con-
jectures about the structure of the solutions are also formulated. These
solutions can be written as a product of an exponential depending on t by
a quotient of two polynomials of degree N(N+1) in x and t depending on
2N−2 parameters. It is remarkable to mention that in this representation,
when all parameters are equal to 0, we recover the PN breathers.

PACS numbers :
33Q55, 37K10, 47.10A-, 47.35.Fg, 47.54.Bd

1 Introduction

The term of rogue wave was introduced in the scientific community by Draper
in 1964 [1]. The usual criterion to describe rogue waves in the ocean can be
formulated as follows : the vertical distance from trough to crest is two or more
times greater than the average wave height among one third of the highest waves
in a time series (10 to 30 min). Such types of waves have already been observed;
the first rogue wave was recorded by scientific measurement in North Sea was
made on the oil platform of Draupner in 1995.
We consider the one dimensional focusing nonlinear Schrödinger equation (NLS)
to describe the phenomenon of the rogue waves. This equation was first solved
by Zakharov and Shabat in 1972 by using the inverse scattering method [2, 3].
The first quasi rational solutions to NLS equation were constructed in 1983 by
Peregrine [4]. It is well known that Akhmediev, Eleonski and Kulagin obtained
the first higher order analogue of the Peregrine breather [5, 6] in 1986, and
other analogues of the Peregrine breathers of order 3 and 4 were constructed in
a series of articles by Akhmediev et al. [7, 8, 9] using Darboux transformations.
Since the beginning of the years 2010, many works about NLS equation have
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been published. Rational solutions to the NLS equation were written in 2010 as
a quotient of two wronskians [10]; in [11] another representation of the solutions
to the NLS equation in terms of a ratio of two wronskians of even order 2N
using truncated Riemann theta functions in 2011 was given; in 2012, Guo, Ling
and Liu found solutions as a ratio of two determinants [12] using generalized
Darboux transformation; a new approach was proposed by Ohta and Yang in
[13] using Hirota bilinear method; in 2013 rational solutions in terms of deter-
minants which do not involve limits were given in [14].
A new representation has been found as a ratio of a determinant of order N +1
by another one of order N by Ling and Zhao in [15]. Very recently in 2014,
another approach has been given in [16] using a dressing method in which the
solutions are expressed as the quotient of a determinant of order N + 1 by an-
other one of order N .
Here we present multi-parametric families of quasi rational solutions to NLS
equation of order N in terms of determinants of order 2N depending on 2N − 2
real parameters. With this representation, at the same time, the well-known
ring structure, but also the triangular shapes also given by Ohta and Yang [13],
Akhmediev et al. [17] are found.
These solutions can be expressed as a ratio of two polynomials of degreeN(N+1)
of x and t multiplied by an exponential depending on t. It is important to stress
that with this representation we get Peregrine breathers PN of order N when
all parameters are equal to 0.
We summarize our results obtained on solutions to NLS equation. Based on
this study, we can deduce a classification of the solutions to the present NLS
equation. For a generalized NLS equation with complementary terms of non-
linearity of order 5, a classification have already been done by Winternitz and
Gagnon using an algebraic approach [18, 19, 20]. In no case here we use such
an approach. We try to classify the quasi rational solutions by means of the
patterns of their modulus in the (x, t) plane according to the order N and the
parameters ãj and b̃j , 1 ≤ j ≤ N − 1.

2 Families of solutions to NLS equation depend-

ing on 2N − 2 parameters.

We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0. (1)

Then we get the following result [21] :

Theorem 2.1. Function v defined by

v(x, t) = exp(2it− iϕ)×
det((njk)j,k∈[1,2N]

)

det((djk)j,k∈[1,2N]
)

(2)

is a quasi-rational solution to the NLS equation (1)

ivt + vxx + 2|v|2v = 0,
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quotient of two polynomials N(x, t) and D(x, t) depending on 2N − 2 real pa-
rameters ãj and b̃j, 1 ≤ j ≤ N − 1.
N and D are polynomials of degrees N(N + 1) in x and t, where

nj1 = ϕj,1(x, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2ϕj,1

∂ǫ2k−2 (x, t, 0),

njN+1 = ϕj,N+1(x, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2ϕj,N+1

∂ǫ2k−2 (x, t, 0),

dj1 = ψj,1(x, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2ψj,1

∂ǫ2k−2 (x, t, 0),

djN+1 = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2ψj,N+1

∂ǫ2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

Functions ϕ and ψ are defined in (3),(4), (5), (6).

ϕ4j+1,k = γ4j−1
k sinXk, ϕ4j+2,k = γ4jk cosXk,

ϕ4j+3,k = −γ4j+1
k sinXk, ϕ4j+4,k = −γ4j+2

k cosXk,
(3)

for 1 ≤ k ≤ N , and

ϕ4j+1,N+k = γ2N−4j−2
k cosXN+k, ϕ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

ϕ4j+3,N+k = −γ2N−4j−4
k cosXN+k, ϕ4j+4,N+k = γ2N−4j−5

k sinXN+k,
(4)

for 1 ≤ k ≤ N .

ψ4j+1,k = γ4j−1
k sinYk, ψ4j+2,k = γ4jk cosYk,

ψ4j+3,k = −γ4j+1
k sinYk, ψ4j+4,k = −γ4j+2

k cosYk,
(5)

for 1 ≤ k ≤ N , and

ψ4j+1,N+k = γ2N−4j−2
k cosYN+k, ψ4j+2,N+k = −γ2N−4j−3

k sinYN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cosYN+k, ψ4j+4,N+k = γ2N−4j−5

k sinYN+k,
(6)

for 1 ≤ k ≤ N .
Arguments Yk and Yk are defined by

Xν = κνx/2 + iδνt− ix3,ν/2− ieν/2,
Yν = κνx/2 + iδνt− ix1,ν/2− ieν/2,

for 1 ≤ ν ≤ 2N .
These terms are defined by means of λν such that −1 < λν < 1, ν = 1, . . . , 2N ,

−1 < λN+1 < λN+2 < . . . < λ2N < 0 < λN < λN−1 < . . . < λ1 < 1
λN+j = −λj , j = 1, . . . , N.

(7)

κν , δν and γν are defined by

κj = 2
√

1− λ2j , δj = κjλj , γj =
√

1−λj

1+λj
,

κN+j = κj , δN+j = −δj , γN+j = 1/γj , j = 1 . . . N.
(8)

The parameters aj and bj in the form

aj =

N−1
∑

k=1

ãkj
2k+1ǫ2k+1, bj =

N−1
∑

k=1

b̃kj
2k+1ǫ2k+1, 1 ≤ j ≤ N. (9)
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Complex numbers eν 1 ≤ ν ≤ 2N are defined by

ej = iaj − bj , eN+j = iaj + bj , 1 ≤ j ≤ N, a, b ∈ R. (10)

The terms xr,ν (r = 3, 1) are defined by

xr,ν = (r − 1) ln γν−i
γν+i

, 1 ≤ j ≤ 2N. (11)

Moreover, we have the following result which states that the highest ampli-
tude of the modulus of the Peregrine breather of order N 1 :

Theorem 2.2. The function v0 defined by

v0(x, t) = exp(2it− iϕ)×

(

det((njk)j,k∈[1,2N ])

det((djk)j,k∈[1,2N ])

)

(ãj=b̃j=0, 1≤j≤N−1)

(12)

is the Peregrine breather of order N solution to the NLS equation (1) whose
highest amplitude in module is equal to 2N + 1.

3 Hierarchy of solutions to NLS equation depend-

ing on 2N − 2 parameters

The solutions for orders N = 3 until N = 10 with 2N − 2 parameters have been
explicitly constructed by the present author [23, 24, 25, 26, 27, 28] with the help
of M. Gastineau in the cases N = 9 and N = 10 [29, 30].
From these various studies, it appears that the solutions have quite particular
structures depending on parameters ãj and b̃j . Parameters ãj and b̃j play a
similar role in obtaining the structures of the solutions. One can thus establish
a certain number of conjectures about these solutions at the order N .
We illustrate these conjectures by figures of the solutions in the (x; t) plane.

3.1 Case a1 6= 0 (or b1 6= 0)

For ã1 6= 0 or b̃1 6= 0 and other parameters equal to 0, one obtains a triangle

with N(N+1)
2 peaks.

It is important to note that a triangle is obtained only in this case; in all the
other cases for only one parameter non equal to 0, we obtain rings.

1This result and the proof has been published in J.P.A [22]
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Figure 1: Solution to NLS, N=3, ã1 = 104 : triangle with 6 peaks; on the right,
N=4, ã1 = 103 : triangle with 10 peaks.

Figure 2: Solution to NLS, N=5, ã1 = 104 : triangle with 15 peaks; on the
right, N=6, ã1 = 103 : triangle with 21 peaks.

Figure 3: Solution to NLS, N=7, ã1 = 104 : triangle with 28 peaks; on the
right, sight from top.

Figure 4: Solution to NLS, N=8, ã1 = 106 : triangle with 36 peaks; on the
right, sight from top.
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Figure 5: Solution to NLS, N=9, ã1 = 103 : triangle with 45 peaks; on the
right, sight from top.

Figure 6: Solution to NLS, N=10, ã1 = 103 : triangle with 55 peaks; on the
right, sight from top.

3.2 Case aN−1 6= 0 (or b1 6= 0), N ≥ 3

For ãN−1 6= 0 or b̃N−1 6= 0 and other parameters equal to 0, one obtains only
one ring of 2N − 1 peaks with in the center Peregrine PN−2 of order N − 2 2;
here, N ≥ 3.

Figure 7: Solution to NLS, N=3, ã2 = 106 : ring with 5 peaks, P1 in the center;
on the right, N=4, ã3 = 108 : ring with 7 peaks, P2 in the center.

2This conjecture has already been formulated by different authors, in particular by Akhme-
diev et al. [41]
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Figure 8: Solution to NLS, N=5, ã4 = 1010 : ring with 9 peaks, P3 in the center;
on the right, N=6, ã5 = 1015 : ring with 11 peaks, P4 in the center.

Figure 9: Solution to NLS, N=7, ã6 = 1012 : ring with 13 peaks, P5 in the
center; on the right, sight from top.

Figure 10: Solution to NLS, N=8, ã7 = 1010 : ring with 15 peaks, P6 in the
center; on the right, sight from top.

Figure 11: Solution to NLS, N=9, ã8 = 1020 : ring with 17 peaks, P7 in the
center; on the right, sight from top.
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Figure 12: Solution to NLS, N=10, ã9 = 1019 : ring with 19 peaks, P8 in the
center; on the right, sight from top.

3.3 Case aN−2 6= 0 (or b1 6= 0), N ≥ 5

For ãN−2 6= 0 or b̃N−2 6= 0 and other parameters equal to 0, one obtains two
concentric rings of 2N − 3 peaks with in the center Peregrine PN−4 of order
N − 4; here N ≥ 5.

Figure 13: Solution to NLS, N=5, ã3 = 106 : 2 rings with 7 peaks, P1 in the
center; on the right, N=6, ã4 = 1010 : 2 rings with 9 peaks, P2 in the center.

Figure 14: Solution to NLS, N=7, ã5 = 1015 : 2 rings with 11 peaks, P3 in the
center; on the right, sight from top.
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Figure 15: Solution to NLS, N=8, ã6 = 1020 : 2 rings with 13 peaks, P4 in the
center; on the right, sight from top.

Figure 16: Solution to NLS, N=9, ã7 = 1020 : 2 rings with 15 peaks, P5 in the
center; on the right, sight from top.

Figure 17: Solution to NLS, N=10, ã8 = 1019 : 2 rings with 17 peaks, P6 in the
center; on the right, sight from top.

3.4 Case aN−3 6= 0 (or bN−3 6= 0), N ≥ 7

For ãN−3 6= 0 or b̃N−3 6= 0 and other parameters equal to 0, one obtains three
concentric rings of 2N − 5 peaks with in the center Peregrine PN−6 of order
N − 6; here N ≥ 7.
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Figure 18: Solution to NLS, N=7, ã4 = 1010 : 3 rings with 9 peaks, P1 in the
center; on the right, sight from top.

Figure 19: Solution to NLS, N=8, ã5 = 1020 : 3 rings with 11 peaks, P2 in the
center; on the right, sight from top.

Figure 20: Solution to NLS, N=9, ã6 = 1015 : 3 rings with 13 peaks, P3 in the
center; on the right, sight from top.

Figure 21: Solution to NLS, N=10, ã7 = 1016 : 3 rings with 15 peaks, P4 in the
center; on the right, sight from top.

3.5 General case

We recall the well known conjecture :
at order N , for a1 6= 0 or b1 6= 0, the modulus of the solution to the

NLS equation presents the configuration of a triangle with N(N+1)/2
peaks in the (x, t) plane.
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From the previous study, we can make the following conjecture :
at order N , for only one parameter non equal to 0, aN−i 6= 0 or bN−i 6= 0,
the modulus of the solution to the NLS equation presents i concentric

rings with 2N − 2i + 1 peaks and in the center Peregrine breather of

N − 2i order, for 1 ≤ i ≤ [N2 ] in the (x, t) plane, with the convention that
P0 represent 0 peak.
It would be relevant to study the cases for the integers i such that i > N

2 and the
parameters aN−i 6= 0 or bN−i 6= 0; the structure seems to be more complicated
and would be clarified.

4 Conclusion

The structure of quasi-rational solutions to the one dimensional focusing NLS
equation at order N has been given here as a product of an exponential depend-
ing on t by a ratio of two polynomials of degree N(N + 1) in x and t.
These solutions appear as 2N − 2-parameters deformations of the Peregrine
breather PN of order N : if ãi = b̃i = 0 for 1 ≤ i ≤ N , we obtain the classical
Peregrine breather. This PN breather has an higher amplitude in module equal
to 2N + 1.
There are currently many applications in nolinear optics or hydrodynamics as
recent works by Akhmediev et al. [42] or Kibler et al. [43] attest it in particular.
A beginning of classification of the solutions to NLS equation was started with
Akhmediev et al. [44]. It would be important in the future to prove the con-
jectures given in this paper and to give a complete classification for order N of
the quasi rational solutions to the NLS equation.
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