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We  determine  approximate,  analytical  solutions  for  average,  periodic  trajectories  of  particles  that  are
accelerated by the turbulent shearing of a fluid between collisions with a hydrodynamically rough bed. We
indicate how the viscosity of the fluid may influence the collisions with the bed. The approximate solutions
compare well with periodic solutions for average periodic trajectories over rigid-bumpy and erodible beds
that are generated numerically. The analytic solutions permit the determination of the relations between
the particle flux and the strength of the shearing flow over a range of particle and fluid properties that vary
between those for sand in air and sand in water.

1. Introduction

The transport  of  sediments  by  the shearing  of  a  turbulent  fluid  over  a  rigid  or  an erodible  bed is  an
important phenomenon in many civil and industrial applications. Despite several decades of investigation
on this topic,  its description largely relies on empirical formulations, and a complete theory in which the
various  physical  mechanisms  are  treated  in  a  transparent  way  is  lacking.  Indeed,  sediment  transport
consists  of  different  regimes,  each characterized by  a  different  mode of  transport  and therefore,  by  a
different physics.

If, for simplicity, we focus on spheres of uniform size and mass, the strength of the shearing flow
controls the mode of transport. Below a certain threshold, the forces that the fluid transmits to the particles
are not sufficient to set them in motion. Above the threshold, a few erratic particles are seen to slide, roll
and jump, in an intermittent way, associated with the local burst of turbulence (Ancey et al. 2008, Drake et
al. 1988, Lajeunesse et al. 2010, Nelson et al. 1995, Radice et al. 2009).

If the strength of the shearing flow increases, the number of moving particles increases as well, and
they move by successive jumps over the bed without intermediate periods  of  rest.  This  regime, called
saltation,  is  the  primary  mode  of  transport  in  Aeolian  sand  transport,  and  has  been  investigated
theoretically  (Bagnold  1941,  Bagnold  1966,  Owen  1964,  Ungar  &  Haff  1987,  Sauermann  et  al.  2001,
Andreotti 2004, Jenkins et al. 2010), experimentally (Bagnold 1941, Nalpanis et al. 1993, Foucaut & Stanislas
1997, Iversen & Rasmussen 1999, Ho et al. 2014) and numerically (Anderson & Haff 1988, Kok & Renno
2009). More references can be found in recent reviews on Aeolian transport (Durán et al. 2011, Kok et al.
2012, Valance et al. 2015). Saltation may also be relevant in aquatic flows  (Fernandez Luque & van Beek
1976, Abbot & Francis 1977, Ancey et al. 2002, Niño & García 1998). The differences in saltation occur
because of the difference in the mass density of the material of the grains relative to that of air and water
and the differences in the kinematic viscosities of the two fluids. Saltation of grains of other mass densities
in other atmospheres and other gravities is possible and has been described (Burr et al. 2015, Greeley et al.
1984, Iversen & White 1982, White 1979).

Stronger shearing flows make inter-particle collisions above the bed probable, and these collisions
provide a mechanism to sustain the weight of the particles (Berzi & Fraccarollo 2013, Jenkins & Hanes 1998,
Pasini & Jenkins 2005). At even stronger shearing, the weight of the particles is counter-balanced by the
mean turbulent lift – turbulent suspension (Drew 1975, McTigue 1981, Hsu et al. 2003). If the particle sizes
and/or masses are poly-dispersed, the different regimes may coexist at a given strength of the shearing
flow.
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 Here, we focus on continuing saltation, defined as the regime in which the mean motion of the fluid
is strong enough to cause continuing motion of the particles through successive jumps between collisions
with the bed; the probability of having collisions above the bed is negligible, and the interaction of the
particles with the bed is crucial in determining the characteristics of the jumps. Particularly relevant to
continuing saltation, in the range of parameters between sand particles in air and water, are the discrete
numerical  simulations  of  Durán  et  al.  (2012).  They  consider  identical  spheres  in  two  dimensions  that
interact with a turbulent shearing flow above a dense aggregate of spheres with which they collide. In their
simulations, they measured average flow quantities and could infer from their measurements how these
scaled with the strength of the shearing flow and the properties of the particles and fluid.  Jenkins and
Valance (2014) obtained simpler solutions of average, periodic, Aeolian saltation trajectories and were able
to reproduce and extend the relations  determined by  Durán et  al.  (2012).  Jenkins  and Valance  (2014)
considered sand particles in air that are accelerated by the wind between collisions with either a rigid,
bumpy bed or an erodible, particle bed. Collisions were characterized by coefficients of restitution for the
total and vertical components of the velocity that depend on the geometry of the collision.

A collision of a particle with a rigid, bumpy bed involves only its rebound. At a given strength of the
wind, the particle flux associated with the trajectories over a rigid bed exhibits a maximum when plotted
against the mass of particles per unit area above the bed – the mass hold-up. That is, for a given particle
flux, there are two possible mass hold-ups; of these two, that for which the flux decreases with mass hold-
up is  conjectured to be unstable.  Collisions with erodible  beds often involve  both the rebound of  the
colliding particle and the ejection of others. Experiments that involve a single impacting particle show that
there is a critical impact velocity below which there is only rebound and no ejection (Beladjine et al. 2007).
In a natural flow over a particle bed, there is a distribution of impact velocities below the critical velocity. In
our analysis of steady flows, we assume that this distribution and the mass hold-up adjust, so that the
maximum possible value of the particle flux for the given wind speed is attained.

Here, the solutions of periodic saltation trajectories are further extended to more general systems
than  sand  in  air  on  Earth  and,  more  importantly,  approximate  analytical  solutions  of  the  trajectory
equations are derived. They permit the determination of the dependence of the flow quantities on the
strength of the turbulent shearing, gravity, and the properties of the grains and the fluid. The analytical
solution agrees well with the numerical solutions of the periodic trajectories over rigid beds. For flows over
erodible beds, we extend the criterion of Jenkins and Valance (2014), based on the average of a uniform
distribution,  for  the determination  of  the unique particle  flux  associated with  a  given  strength  of  the
shearing flow. This permits the prediction of the evolution of scaling of the particle flux with the strength of
the shearing flow from Aeolian to aquatic saltation, as first seen by Durán et al. (2012) in their numerical
simulations.

The paper is organized as follows. The equations governing the periodic motion of the particles and
the fluid flow are described in Section 2. The analytical solutions for the rigid and the erodible bed case are
introduced in Section 3 and 4, respectively. Conclusions are drawn in Section 5.
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2. Trajectory equations

We briefly summarize the equations, already introduced by Jenkins and Valance  (2014), that govern the
periodic saltating motion of a sphere of diameter d and mass density s over a horizontal bed. A turbulent
shearing flow of a fluid of mass density  f and molecular viscosity  f drives the flow in the presence of
gravity, with  g the gravitational acceleration. The horizontal velocity of the turbulent fluid is  U, and the
horizontal and vertical components of the particle velocity are x and y, respectively. We assume that the
flow is steady and uniform, so that the velocities are only functions of the vertical distance from the bed y.
The flow configuration is depicted in Fig. 1.

Figure 1. Sketch of the periodic trajectory.

We  characterize  the  particles  through  the  fall  particle  Reynolds  number

( ) 3/2R 1 / /f fg dr s s m= -
, where  = s/f is the density ratio. All quantities are made dimensionless

using the diameter and mass density of the particle and the reduced gravitational acceleration g(s-1)/s. We
characterize  the  drag  exerted  on  the  particles  through  a  nonlinear  drag  coefficient,  which  is,  in
dimensionless form,

( )2 20.3 18
,

Stx yD U x x
s

= - + +

(1)

where
St Rs=

is  a  Stokes  number.  In  the  following,  we  use  the  subscripts  plus  and  minus  to  label

quantities in the upward and downward parts of a trajectory, respectively.
The upward and downward components of the particle velocity are governed by

( )d
,

d
x

y xD U
y

x
x x

+
+ + += -

(2)

d
1 ,

d
y

y yD
y

x
x x

+
+ + += - -

(3)

and

( )d
,

d
x

y xD U
y

x
x x

-
- - -= -

(4)
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-
- - -= - -

(5)

respectively. The horizontal coordinates x+ and x- are functions of the vertical coordinate y,

d
,

dy x

x

y
x x

+
+ +=

(6)

and

d
.

dy x

x

y
x x

-
- -=

(7)

The average particle velocity u, and the particle shear stress s are

,x xc c
u

c c

x x+ + - -

+ -

+
º

+

(8)

and

( ) ,y x y xs c cx x x x+ + + - - -º - +
(9)

where c is the particle concentration. In steady, uniform saltation, the vertical mass fluxes of ascending and
descending particles must balance at any point, and must be independent of the vertical position. Hence,

0 ,y yc cx x f+ + - -= - =
(10)

where 0 is the vertical mass flux at the bed. The upward flux is sometimes referred to as the pick-up
function.

The fluid shear stress, S, is the difference between the dimensionless fluid shear stress far from the
bed,  S* -  the  Shields  parameter  – and the particle  shear  stress:  S = S*-s.  In  this  paper,  we restrict  our
attention to hydrodynamically  rough beds;  so,  upon employing  Prandtl’s  mixing  length hypothesis,  the
horizontal velocity of the turbulent fluid is given in terms of S by

( )
( )

1/2

0

d
,

d

SU

y y y

s
k

=
+

(11)

where  = 0.41 is Karman’s constant and y0 is the dimensionless roughness length, here taken to be 1/30

(Jenkins & Valance 2014, Van Rijn 1984). The assumption that the bed is rough requires that 
( )1/2*R Ss

 be

larger than 70 (Gersten & Schlichting 2000); then the thickness of the viscous sub-layer is much smaller than
the particle diameter.
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The system of Eqs. 2 through 7 and 11 permits the determination of the seven unknowns x
+, y

+, x
-,

y
-,  x+,  x- and U, after the application of seven boundary conditions. The latter are the kinematic relations

( )0 0x+ =
,  

( )0x L- =
,  

( ) ( )x H x H+ -=
,  

( ) ( )x xH Hx x+ -=
,  

( ) ( ) 0y yH Hx x+ -= =
, where H and L are the

height and the length of the periodic particle trajectory, and the no-slip condition  
( )0 0U =

. When two

further boundary conditions are introduced, the trajectory height and length can be determined as part of
the solution. Experiments and numerical simulations (Beladjine et al. 2007, Crassous et al. 2007, Oger et al.
2005) have shown that the particles rebound at a bumpy bed according to

0 0 ,ex x+ -=
(12)

where the subscript 0 indicates evaluation at the bed, and

0 0 ,y y yex x+ -= -
(13)

where 
2 2
x yx x xº +

 is the magnitude of the particle velocity. In the absence of significant damping due to

the presence of a viscous fluid, 
sine a b qº -

 and 
/ siny y ye a bqº -

, in which a, b, ay and by are numerical

constants that depend on the coefficients of normal restitution and sliding friction of the particles and
whether the bed is rigid or erodible (Beladjine et al. 2007, Crassous et al. 2007, Oger et al. 2005) and  is

the angle between the bed and the incident trajectory: 
0 0tan /y xq x x- -º -

. In what follows, we use a = 0.87,

b = 0.72,  ay = 0.30 and  by = 0.15 for both the impact of spheres on a rigid,  bumpy bed and on a three-
dimensional  bed  of  like  spheres  (Beladjine  et  al.  2007).  Also,  we  indicate  the  modifications  of  these
expressions to account for viscous dissipation in the way suggested by Yang and Hunt (2006), and already
implemented  to  predict  collisional  sediment  transport  (Berzi  &  Fraccarollo  2013).  In  this  case,  the
coefficients of restitution are assumed to depend on the Stokes number, so that

( )
0 0

62 1
,

St

e
ex x+ - +

= -

(14)

and

( )
0 0

62 1
,

St
y

y y y

e
ex x+ -

+
= - -

(15)

 For saltation over rigid, bumpy beds, there are no additional conditions, so that the solution is
determined by the specification of two control parameters: the Shields parameter, S*, and the upward flux
0. The latter can be equivalently replaced by the mass hold-up, as in Jenkins & Valance (2014); or by the
horizontal particle flux Q = 0L, as in the experiments (Ho et al. 2011); or by the vertical velocity after the
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rebound 
0yx

+
, the take-off velocity, as in the present work. In any case, there is a range of possible particle

fluxes that can be steadily sustained at a given strength of the fluid flow.
For saltation over erodible beds, experiments  (Creyssels et al. 2009, Meyer-Peter & Müller 1948)

and numerical simulations  (Durán et al. 2012) show that there is only one particle flux associated with a
given Shields parameter, no matter what the density ratio. In the formulation of the periodic boundary-
value problem, that means that there is an additional constraint that permits the determination of the
upward flux – or equivalently the horizontal particle flux – as part of the solution. Trajectories over erodible
beds  often  involve  both  the  rebound  of  the  colliding  particle  and  the  ejection  of  others.  Collision
experiments with a single particle show that there is a critical impact velocity, c, below which there is only
rebound and no ejection (Beladjine et al. 2007, Crassous et al. 2007, Oger et al. 2005). Hence, in order to
have steady saltation over erodible beds, no incoming particle velocity can exceed c, with the latter roughly
equal to 40 (Beladjine et al. 2007). In case of a uniform distribution of impacting velocities less than c, the
average value of the impacting velocities must be less than  c/2.  Jenkins & Valance (2014) were, indeed,
able to reproduce the experiments on Aeolian saltation over erodible beds using the additional constraint
that the impacting velocity of their periodic trajectory was always equal to  c/2. We will show how  the
assumption of a range of impact velocities less than c/2 permits the prediction of the qualitative different
relationships  between  the  horizontal  particle  flux  and  the  Shields  parameter  in  Aeolian  and  aquatic
transport over erodible beds.

Finally, we note that, the critical impact velocity depends on the amount of energy transferred and
dissipated in successive collisions between the particles in the bed that are initially at rest and in contact
with each other (Ho et al. 2012). When an interstitial fluid is present, we assume that it does not play a role
in determining the value of c.

3. Approximate analytical solution: periodic saltation over a rigid, bumpy bed

Periodic trajectories over a rigid, bumpy bed exist for a range of impact velocity. So, as already mentioned,
in order to determine the numerical solution to the periodic trajectory over a rigid, bumpy bed, we must
prescribe both the Shields parameter and another parameter that quantifies the flow of particles in the
system. Here, we take this to be the take-off velocity. This choice, although formally correct, might seem
unusual,  because  the  take-off  velocity  cannot  be  controlled  in  a  physical  experiment.  However,  the
parameterization of the problem in terms of the take-off velocity permits the significant insight that the
periodic  particle  trajectories  and the fluid  shear  stress  at  the bed are,  essentially,  independent  of  the
Shields parameter, which enters only in the determination of the particle shear stress and concentration.

3.1. Single particle trajectories

We first determine the steady periodic trajectories that are compatible with the rebound relations Eqs. 14
and 15. If we assume that the vertical velocity after the rebound is so small that the drag in the vertical
momentum balances can be neglected, the trajectory height is simply

( )2

0

1
,

2 yH x +=

(16)

and the downward vertical velocity before impacting the bed is

0 0.y yx x- += -
(17)
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Figure 2 shows the results of the numerical integration for the periodic trajectories at different values of the
Stokes number and density ratio obtained for different values of the Shields parameter. Equation 16 gives
the upper envelope of the numerical results – the height is maximum when the vertical drag is negligible.
We note that the vertical drag causes a significant reduction in the heights of the trajectories from that of
Eq. 16 for small density ratios, Stokes numbers less than 1000 and take-off velocities larger than five.

Figure 2. Trajectory height versus take-off velocity obtained from numerical solutions of the periodic trajectories:
St = 1000 (hollow symbols) and St = 100 (solid symbols), when  = 5 (circles),  = 10 (squares),  = 100 (diamonds) and

 = 1000 (triangles). The solid line is the approximate analytical solution of Eq. 16.

For Stokes numbers as large as several hundred, we can ignore the dependence of the coefficients

of restitution on the Stokes number, so that 
1ye =

, 
( )tan sin / 1y ya bq q +≃ ≃

 and

0 0 0

1
.y

x y y
y

b

a
x x x- + ++

= = A
(18)

For arbitrary values of the Stokes number, ey is determined from Eq. 15 as indicated in Appendix A. For large
Stokes numbers, the impact velocity is, from Eqs. 17 and 18,

1/22

0 0 0

1
1  .y

y y
y

b

a
x x x- + +

é ùæ ö+
ê ú= + ºç ÷ç ÷ê úè øë û

B

(19)

 Figure 3 shows the comparison between the numerical solutions for the periodic trajectories for
different values of the Shields parameter and the impact velocity predicted by Eq.  19. The latter reproduces
the numerical results for Stokes number larger than several hundred, with no influence of the density ratio.
When the Stokes number is 100, there is a departure of the numerical results from the analytical prediction;
this is associated with the influence of the viscosity on the rebound. When this effect is included in the
approximate analytical solution (Appendix A) the agreement is also good when St = 100. For small Stokes
numbers, the dependence of the numerical results on the density ratio is due to the vertical drag (Fig.  2).
Finally,  when the effect  of the viscosity is  included in the rebound relations,  the impact velocity has a
minimum, and this minimum increases with the Stokes number.
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Figure 3. Absolute value of the impact velocity versus take-off velocity obtained from the numerical solutions for the
periodic trajectories. The symbols are the same as in Fig. 2. The solid line is the analytical approximation in the limit of

large Stokes number of Eq. 19; the dashed line is the analytical approximation with the dependence on the Stokes
number retained (Eq. A5).

From Eqs. 14 and 19, the absolute value of the velocity after the rebound 
0x +

 is, for large Stokes

numbers,

1/22

0 0 0

1
1  .

1
y y

y y
y y

a b
a b

b a
x x x+ + +

é ùæ ö æ ö+
ê ú= - + ºç ÷ ç ÷ç ÷ ç ÷+ ê úè ø è øë û

C

(20)

Hence, the horizontal particle velocity after the rebound is

1/2
2 2

0 0 0

1
1 1 .

1
y y

x y y
y y

a b
a b

b a
x x x+ + +

ì üé ùæ ö æ ö+ï ïê ú= - + - ºç ÷ ç ÷í ýç ÷ ç ÷+ ê úï ïè ø è øë ûî þ
D

(21)

 3.2. Fluid velocity

We next integrate the horizontal particle momentum balances, assuming that the fluid velocity is equal to

its depth-averaged over the trajectory height 
U

. Equation 4 may then be re-written as

( ) ( )2d 0.3 18
.

d St
x

x xU U
t

x
x x

s
= - + -

(22)

where t is time, and we have taken 
x yU x x- ≫

. Upon Integrating,
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( )
( )

0

0

0.3 / 18 / St 18
exp .

St0.3 / 18 / St
xx

x x

UU
t

U U

+

+

- +- æ ö= ç ÷- - + è ø

x sx
x x s

(23)

The uniform fluid velocity is determined from Eq. 23, using Eqs. 18 and 21, and the fact that the

time of flight in a ballistic trajectory is equal to 
02 yx +

. It is worth noting that large Stokes numbers do not

affect the collisions with the bed, but do influence the fluid velocity. For Stokes numbers as large as several
hundred, the approximate result is

0 .
2 yU Ex ++

= +
A D

(24)

where
( ) ( )1/2 1/2/ 0.6 18 / 0.6StE s sº é - ù -ë ûA D

and  we  have  neglected  a  term  proportional  to

( ) 2

0yx
+é ù-ë ûA D

.  In this approximation, the depth-averaged fluid velocity is linearly related to the particle

take-off velocity. The quantity  E can be interpreted as the excess in the depth-averaged horizontal fluid
velocity over the mean of the horizontal particle velocities before and after the impact, which is needed to
sustain  the  particle  motion.  Figure 4  shows  that  the  uniform  fluid  velocity  obtained  from  Eq. 24  is
proportional to the horizontal fluid velocity, depth-averaged through the trajectory height, measured in the
numerical solutions for the periodic trajectories. The latter have been obtained for different values of the
Shields parameter, given the Stokes number and the density ratio; hence, Fig.  4 also shows that the depth-
averaged fluid velocity is independent of the strength of the fluid flow, a rather counterintuitive result.

Figure 4. Horizontal fluid velocity, depth-averaged over the trajectory height, obtained from the numerical solutions for
the periodic trajectories at large Stokes numbers versus take-off velocity. The symbols are the same as in Fig. 2. The

lines are the analytical approximations (Eq. 24) when: St = 1000 and  = 5 (solid),  = 10 (dashed),  = 100 (dot-
dashed) and  = 1000 (dotted).

3.3. Trajectory length

Equation 23 then provides the particle horizontal velocity at every instant t. Upon integrating,
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( )
( )

( )
( )

0

0

0

0

0.3St18 18
ln exp

0.3 St 0.3 St 0.3St 18

0.3St
ln 1 .

0.3 0.3St 18

x

x

x

x

U
x Ut t t

U

U

U

xs s
x s

xs
x s

+

+

+

+

é ù-æ öê ú= + - -ç ÷ - +è øê úë û
é ù-
ê ú+ -

- +ê úë û

(25)

If  we employ Eq. 24 in this and take  
02 yt x +=

,  we can calculate the trajectory length. The result  is  well

approximated by

( ) 2
0 ,yL x ++≃ A D

(26)

as demonstrated in Fig. 5.

Figure 5. Trajectory length versus take-off velocity at large Stokes numbers. The symbols are the same as in Fig. 3. The
solid line is the analytical approximation (Eq. 26) to the trajectory length.

3.4. Fluid shear stress

If  the horizontal fluid velocity follows the turbulent logarithmic profile based on the roughness, we can
calculate the fluid shear stress at the bed, S0, as (Appendix B)

( )

2
2

0 2

0

,
ln /

S K U
H y

k

s
=

é ùë û

(27)

where K is a coefficient of order one, which we determine on the basis of comparisons with the full
numerical  solution of  the equations for the periodic  trajectories.  With  K = 1.5,  the agreement with the
results of the numerical solution is good (Fig. 6). Once again, the fluid shear stress depends only on the
take-off velocity and is independent of S*, so the numerical solution to the periodic trajectories for different
Shields parameters collapse onto a single curve.
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Figure 6. Fluid shear stress at the bed versus take-off velocity at large Stokes numbers. The symbols are the same as in
Fig. 2. The lines are the analytical approximations to the fluid shear stress at the bed (Eq. 27) with K = 1.5 and St = 1000

for  = 5 (solid),  = 10 (dashed line),  = 100 (dot-dashed line) and  = 1000 (dotted line).

For the fluid shear stress at the bed to be positive, the trajectory height must be greater than y0, so,

from Eq. 16,  
( )1/2

0 02y yx + ³
.  In fact, for continuing saltation to exist, the height of the periodic trajectory

should be greater than one diameter; so, in dimensionless terms, 

0 2yx + ³
.

 The minimum of the fluid shear stress in Fig. 6 corresponds to the smallest Shields parameter for
which  continuing  saltation  is  possible  over  a  rigid,  bumpy  bed.  The  difference  between  the  Shields
parameter and the fluid shear stress at the bed is, indeed, the particle shear stress, which must be positive.
Using Eqs. 16, 18, 21 and 24 in Eq. 27, and requiring that the derivative with respect to the take-off velocity
be zero, permits the determination of the take-off velocity at the minimum. Its approximate expression is

( ) ( )0
0

ln 21
max exp 1 , 2 ,

2 2
c
y

y

E
x + ì ü+é ùï ï= +í ýê ú+ +ï ïë ûî þ

A D
A D

(28)

where  we  have  assumed  that
0, 0,ln 1 1/y c y cx x+ +-≃

.  This  value,  used  in  Eq. 27,  gives  the  critical  Shields

parameter Sc
* at which continuing saltation ceases:

( )

22
*

02

0 0

.
22ln ln 2

c
c y

c
y

K
S E

y

k x
s x

+

+

+æ ö= +ç ÷
è øé ù-ë û

A D
(29)

 Equations 28 and 29 indicate that the product of this critical Shields number and the density ratio is
only a function of E. We anticipate that Eqs. 28 and 29 are valid also for continuing saltation over erodible
beds. There is only a small quantitative difference between the rigid and the erodible beds, due to the
different values of the numerical coefficients a, b, ay and by in the rebound relations, which determine the

values of 
A

 and 
D

. Figure 7 shows the comparison between values of this product obtained numerically
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      and analytically versus E. Also shown are the experimental values of the product for the initiation of particle
motion over erodible beds obtained in the experiments of Meyer-Peter & Müller ( 1948;   = 2.5 and St
between 1000 and 32000), Creyssels et al. (2009;  = 2500 and St = 3000) and Burr et al. (2015;  between
80 and 200 and St between 4000 and 8500). Only data for hydrodynamically rough beds have been taken
from the experiments. The predicted values of Sc

* for density ratios larger than 50 are close to the values of
the minimum Shields number for particle motion, indicating that there is a transition from no motion to
continuing saltation. In contrast, the aquatic data of Meyer-Peter & Müller  (1948), for which the Shields
parameter is less than  Sc

*, indicate that there the motion is not characterized by continuing saltation. In
other words, the mean motion of the fluid is not enough to sustain the particle transport. Indeed, in that
case, turbulence bursts are responsible for the particle motion, which is  characterized by intermittency
(Ancey et al. 2008, Lajeunesse et al. 2010, Radice et al. 2009, Singh et al. 2009).

Figure 7. Product of the critical Shields parameter and the density ratio for continuing saltation versus the quantity E,
as obtained from the analytical approximation Eq. 29 (line) and the numerical integrations for the periodic trajectories

at large Stokes numbers (hollow squares). Also shown are the experimental values (solid symbols) of the product of
the minimum Shields number and the density ratio for the initiation of steady particle motion obtained by Meyer-

Peter and Müller (1948, diamonds), Creyssels et al. (2009, triangles) and Burr et al. (2015, circles).

3.5. Horizontal particle flux

Given the Shields parameter S*, the particle shear stress at the bed is

( )

2
* 2

0 2

0

.
ln /

s S K U
H y

k

s
= -

é ùë û

(30)

Unlike the fluid shear stress, the particle shear stress at the bed is influenced by the Shields parameter.
Then, from Eqs. 9, 10 and 17,

( )
0

0

0 0 0

.
y x x

s
c

x x x
+

+ - +
=

-

(31)

Equations 30 and 31 relate the take-off velocity, the concentration, and the Shields parameter or,
alternatively,  the  depth-averaged  fluid  velocity,  the  concentration,  and  the  Shields  parameter.  The
horizontal particle flux per unit width of the bed can then be calculated as

0 0.yQ c Lx+ +=
(32)
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Figures 8a and 8b show the comparison between the horizontal particle flux evaluated from the full
numerical  integration  of  the  equations  for  the  periodic  trajectories  at  large  Stokes  numbers  and  that
obtained from the approximate analytical approach for two extreme values of the density ratio at different
Shields parameters, with the flux linearly increasing with the Shields parameter.

Figure 8. Horizontal particle flux versus take-off velocity for periodic saltation over rigid beds when St = 1000 and: (a)
 = 5 and S* = 0.3 (triangles and dotted line), 0.5 (diamonds and dot-dashed line), 0.8 (squares and dashed line), 1.1

(circles and solid line); and (b)  = 1000 and S* = 0.02 (diamonds and dot-dashed line), 0.04 (squares and dashed line)
and 0.08 (circles and solid line). The symbols are the numerical solutions for the periodic trajectories and the lines are

the analytical approximation to the particle flux (Eq. 32).

As already noticed in the experiments  (Ho et al. 2011) and in the analysis of  Jenkins & Valance
(2014) on Aeolian transport over rigid beds, there is a maximum horizontal particle flux Qmax that the fluid
can sustain at a given Shields parameter: the maximum transport capacity of the flow. Our analysis suggests
that this observation holds irrespective of the density ratio. We can determine the value of the take-off

velocity, 

0
ˆ
yx
+

, that corresponds to Qmax by requiring the derivative of Eq. 32 with respect to 
0yx

+
 to be zero,

using Eqs. 16, 18, 21, 24, 26, 30 and 31. This results in the condition
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(33)

With this and Eqs. 24, 26, 30, 31 and 32, the maximum transport capacity Qmax can then be calculated as

( )

22
*

max 0 02

0 0

ˆ ˆ .
2ˆ2ln ln 2

y y

y

Q S K E
y

ks s x x
x

+ +

+

é ù
+ +æ öê ú= - +ç ÷ê ú- è øé ù-ê úë ûë û

A D A D
A D

(34)

Equation 34 provides a relation between Qmax,  S*, and , once 
0

ˆ
yx
+

 is determined as a function of  S* from

Eq. 33.  With
0

ˆ
yx
+

,  all  the quantities that characterize  the periodic  trajectory at  the maximum transport

capacity can easily be obtained from the equations introduced in this section.
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4. Approximate analytical solution: periodic saltation over an erodible bed

In continuing, steady saltation over erodible beds, there is, in principle, an unlimited supply of material that
can be incorporated in the flow. The horizontal particle flux may be calculated for all impact velocities. If the
flux corresponding to half the critical impact velocity resides to the right of the maximum, an increment of
impact velocity to its left results in an increase in flux, and erosion from the bed. With continued migration
of the impact velocity to the left, the increase in horizontal particle flux and erosion continues until the
maximum horizontal flux is achieved. The horizontal particle flux Q is always equal to Qmax of Eq. 34, with

0
ˆ
yx
+

 calculated from Eq. 33, when it is less than 
( )/ 2cx B

, and equal to 
( )/ 2cx B

 otherwise. We refer to

these cases as unlimited and splash-limited saltation,  respectively.  The condition
( )0

ˆ / 2y cx x+ = B
is  the

constraint assumed by  Jenkins & Valance (2014) in their analysis of Aeolian transport over erodible beds.
Aeolian transport over an erodible bed is splash limited, while aquatic transport is not.

The boundary between unlimited and splash-limited saltation is, from Eq. 33 with 
( )0

ˆ / 2y cx x+ = B
,

at the Shields parameter

( )
22* 2

2 2
0

32 2

2
0

ln
2 2 2 2 2 8

4 ln .
2 2 8

s c c c c

c c

S
E E

K y

E
y

s x x x x
k

x x

-

-

é ù é ùæ ö+ +æ ö æ ö= + + + +ê ú ê úç ÷ç ÷ ç ÷
è ø è øê ú è øë ûë û
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(35)

Unlimited saltation takes place for Shields parameters in the range from 
*
cS

 to  
*
sS

; splash-limited

saltation occurs for Shields parameters larger than 
*
sS

. As demonstrated in  Jenkins & Valance (2014), the

two regimes are characterized by different scaling of the various quantities with the Shields parameter. In
particular,  the horizontal  particle flux scales with the 3/2 power of  the difference between the Shields

parameter and  
*
cS

 in unlimited saltation (it  is the scaling of the maximum transport capacity over rigid

beds);  while it  scales linearly with the Shields parameter in the splash-limited case. Figure 9 shows the
comparison  between the  analytical  horizontal  particle  flux  as  a  function  of  the  Shields  parameter  for
periodic saltation over erodible beds and the results of the numerical solutions for the periodic trajectories
for large Stokes numbers. To determine the latter, we use the same criterion of the analytical solution: the
particle flux at  a  given Shields parameter is  the maximum in the curves of  Fig.  8  – calculated through

interpolation – unless the corresponding impact velocity exceeds 
/ 2cx

; in that case, we take the horizontal

particle flux to be the value to the left of the maximum at which the impact velocity is exactly 
/ 2cx

. 
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 Also shown in Fig. 9 are the experimental values obtained by Creyssels et al. (2009) and Ho et al.
(2011) for  sand  in  air.  The  analytical  solution  for   = 2500  and  St = 3000,  as  in  the  experiments,  is
indistinguishable from that for   = 1000 and St = 1000.  As in the numerical  simulations of  Durán et  al.
(2012), the horizontal particle flux scales linearly with the Shields parameter in the Aeolian case ( = 1000)
– splash-limited saltation – and is roughly proportional to the Shields parameter to the power of 3/2 in the
nearly aquatic  case ( = 5)  – unlimited saltation.  Intermediate values of  the density ratio  ( = 100) are
characterized by a mixed behaviour: the flux follows the unlimited saltation scaling close to the threshold,
and the splash-limited saltation scaling for larger values of the Shields parameter. Our interpretation for the
linear relationship between the horizontal particle flux and the Shields parameter in Aeolian saltation over
erodible  beds  is  based  on  the  same  argument  as  Durán  et  al.  (2012):  the  splash  process  is  the  key
mechanism that controls the saltation. The only difference is that we take the particle horizontal velocity
proportional  to  the  critical  impact  velocity,  whereas  Durán  et  al.  suggest  that  it  scales  with  the  fluid
horizontal velocity at the transport threshold.

Figure 9. Horizontal particle flux versus Shields parameter for saltation over erodible beds for St = 1000, when  = 5
(circles and solid line),  = 10 (squares and dashed line),  = 100 (diamonds and dot-dashed line) and  = 1000

(triangles and dotted line). The hollow symbols are the numerical solutions for the periodic trajectories and the lines
are the analytical approximation to the particle flux (Eq. 34). Also shown are the experimental results of Creyssels et al.

(2009) and Ho et al. (2011) (solid triangles) with the relative error bars.

Saltation alone takes place when inter-particle collisions above the bed are not likely. This is no longer true

when twice the height of the trajectory  H is greater than the mean free path of kinetic theory,  
02 12c

(Chapman & Cowling 1970, Pasini & Jenkins 2005), where 
0 0 0c c c+ -= +

. The height of the trajectory and the

concentration at the bed can be calculated from the relations derived in the previous section, with the take-

off velocity equal to the minimum between  
0

ˆ
yx
+

, calculated from Eq. 33 and  
( )/ 2cx B

. This provides an

upper limit for the existence of a pure saltation regime in terms of the Shields parameter as a function of
the density ratio at a given Stokes number. Above this limit, collisional suspension begins to take place
(Berzi 2013, Jenkins & Hanes 1998, Pasini & Jenkins 2005).

Figure 10 shows a regime map in  terms of  Shields  parameter  versus  density ratio  for a  Stokes
number of 1000. At large density ratios (Aeolian transport), there is a rather abrupt transition from no
motion to continuing saltation, and the latter is essentially limited by the splash. 
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 Also the range of Shields parameter in which continuing saltation exists is significant. This confirms
that saltation is the main mode of transport for sand in air.  On the other hand, at small density ratios
(aquatic transport), the intermittent motion is dominant up to large Shields parameters, at which there is a
rather  abrupt  transition  to  collisional  suspension.  In  this  case,  continuing  saltation,  not  limited by  the
splash, is only marginally relevant. Intermediate values of the density ratio, typical of many extra-terrestrial
environments,  are  more  complicated:  intermittent  motion,  unlimited  and  splash-limited  saltation  and
collisional suspension seem to play equally significant roles in the transport of sediment.

Figure 10. Regime map for St = 1000. The boundary between the regimes of intermittent motion and no motion is
qualitatively determined (Durán et al. 2012).

5. Conclusion

We have presented an approximate analytical analysis of particle periodic motion over hydrodynamically
rough  beds.  The  analysis  was  based  on  the  calculation  of  approximate  solutions  for  average,  periodic
trajectories of particles that are accelerated by the turbulent shearing of a fluid, between collisions with the
bed. We have focused on the case in which the mean fluid motion is strong enough to sustain the saltation
of the particles, as continuing rather than intermittent, as often seen in weak bed-load transport of particles
in water.

From these solutions, we have determined the relations between the horizontal particle flux, the
strength of  the shearing flow and the particle take-off  velocity over a range of  the grain-to-fluid mass
density ratios that vary between those for sand in air and sand in water, in saltation over rigid, bumpy and
erodible beds. We have focused on large values of the Stokes number, where collisions with the bed are not
influenced by the fluid. We have also shown how to extend the analysis to smaller values of the Stokes
number.

For saltation over rigid, bumpy beds, we have predicted that there is range of particle flux that the
fluid can sustain at a given Shields parameter, irrespective of the density ratio and the Stokes number. That
range presents a maximum, which corresponds to the maximum transport  capacity of  the flow, before
particles begin to be deposited and an erodible bed develops. To our knowledge, these findings have been
previously  demonstrated  in  the  case  of  Aeolian  transport  only.  We  have  also  found  that  the  particle
trajectory and the fluid shear stress at the bed are essentially independent of the Shields parameter, unlike
the particle shear stress and concentration.

For saltation over erodible beds, there is only one horizontal particle flux associated with a given
Shields parameter. The analytical solution indicates that this flux scales linearly with the Shields parameter
in Aeolian transport, while it is roughly proportional to the Shields number to the power of 3/2 near aquatic
transport. These predictions are in agreement with the scaling laws drawn from sand transport experiments
in air and water. 
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 We have also highlighted that saltation regimes in air and water are different in nature: Aeolian
saltation is limited by the splash, while the aquatic saltation is not. In the latter case, the impact velocity of
the saltating particles is actually too weak to trigger the splash and, as a consequence, the particle flux is
limited by the maximum transport  capacity of  the system. Interestingly,  for intermediate values of  the
density ratio (typically between 30 and a few hundred), we have found a crossover regime: the particle flux
is proportional to  S*3/2 close to the threshold and linear in  S* at larger values of the Shields parameter. In
other words, for these intermediate values of  , we observe a transition between an unlimited saltation
regime at small Shields parameters to a splash-limited saltation regime at larger Shields parameters. This
crossover regime is expected to be relevant for sediment transport in extra-terrestrial atmospheres such as
on Venus and Titan, where the density ratios are about 40 and 200, respectively (Burr et al. 2015, Iversen &
Greeley 1987, Iversen & White 1982).

We have determined the domain of existence of the continuing saltation regime in terms of the
Shields parameter as a function of the density ratio at a given Stokes number. The lower limit (i.e., the
critical Shields parameter below which continuing saltation ceases) is found to decrease with the density
ratio.  In  Aeolian  transport,  the  critical  Shields  number  provides  a  good  estimate  of  the  threshold  for
incipient transport; while, in aquatic transport, it overestimates the transport threshold by a large amount.
We have explained this discrepancy by noting that in the aquatic case, intermittent turbulence bursts play
an important role, and can transport particles even when the mean motion is not strong enough to sustain
continuing saltation. We have also provided an upper limit for the saltation regime, above which collisional
suspension takes place.

In summary, we have shown that the description of particle transport in terms of periodic saltation
is relevant for a wide range of physical systems. In addition, the simplicity of this description permits the
derivation of approximate analytical expressions for key features of the sediment transport, including the
height and length of the particle trajectories, the fluid shear stress, and the horizontal particle flux. This
study  could  be  continued  in  different  directions:  it  would  be  interesting  to  look  at  the  case  of
hydrodynamically smooth beds, and further work should be done to describe the motion in the intermittent
regime.

This  research  was  supported  in  part  by  the  National  Science  Foundation  under  grant  no.  NSF
PHY11-25915 to the Kavli Institute of Theoretical Physics.
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Appendix A. Stokes dependency in the rebound relations and non-linear drag in the horizontal 
momentum balance

For arbitrary values of the Stokes number, when the vertical drag is neglected, Eqs. 15 and 17 give

0
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St 62
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St 62
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y

e
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+

+
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x
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(A1)

When 
0 1240 / Sty

+ >x
,  ey is very close to one, indicating that the presence of the interstitial viscous fluid

does not substantially affect the collisions with the bed. Equation A1 shows that
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62
.

Sty
+ ³x

(A2)

Then, the angle of impact is

sin .y
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a
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+

(A3)

The horizontal particle velocity at the end of the trajectory is, upon taking 
sin tanq q»

,

0 0 .y y
x y

y

e b

a
x x- + +

=

(A4)

In this event, the impact velocity is
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From Eq. 14, we calculate the absolute value of the velocity after the rebound, 
0x +

,

0 0

62
1 .

St
y y

y y y y

a a
a b a b

e b e b
+ -

æ ö æ ö
= - - + -ç ÷ ç ÷ç ÷ ç ÷+ +è ø è ø

x x

(A6)

Given that e is now known, the angle of impact has been determined; hence, the horizontal velocity after
the rebound is
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Appendix B. Relation between the fluid shear stress at the bed and the depth-averaged fluid horizontal 
velocity

If we take the horizontal fluid velocity to obey the logarithmic law,
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with 
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, the shear velocity. Integrating,
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Finally,
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