ParkMaster: Leveraging Edge Computing in Visual Analytics - Archive ouverte HAL
Poster De Conférence Année : 2015

ParkMaster: Leveraging Edge Computing in Visual Analytics

Giulio Grassi
Matteo Sammarco
  • Fonction : Auteur
  • PersonId : 943156
Paramvir Bahl
  • Fonction : Auteur
  • PersonId : 973097
Giovanni Pau

Résumé

In this work we propose ParkMaster, a low-cost crowdsourc-ing architecture which exploits machine learning techniques and vision algorithms to evaluate parking availability in cities. While the user is normally driving ParkMaster enables off the shelf smartphones to collect information about the presence of parked vehicles by running image recognition techniques on the phones camera video streaming. The paper describes the design of ParkMaster's architecture and shows the feasibility of deploying such mobile sensor system in nowadays smartphones, in particular focusing on the practicability of running vision algorithms on phones.
Fichier non déposé

Dates et versions

hal-01231828 , version 1 (20-11-2015)

Identifiants

Citer

Giulio Grassi, Matteo Sammarco, Paramvir Bahl, Kyle Jamieson, Giovanni Pau. ParkMaster: Leveraging Edge Computing in Visual Analytics. MobiCom'15 - 21st Annual International Conference on Mobile Computing and Networking, Sep 2015, Paris, France. ACM, MobiCom '15 Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. Pages 257-259, pp.257-259, 2015, ⟨10.1145/2789168.2795174⟩. ⟨hal-01231828⟩
225 Consultations
0 Téléchargements

Altmetric

Partager

More