
HAL Id: hal-01231784
https://hal.science/hal-01231784

Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Directed Louvain : maximizing modularity in directed
networks

Nicolas Dugué, Anthony Perez

To cite this version:
Nicolas Dugué, Anthony Perez. Directed Louvain : maximizing modularity in directed networks.
[Research Report] Université d’Orléans. 2015. �hal-01231784�

https://hal.science/hal-01231784
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Directed Louvain : maximizing modularity in directed networks

Nicolas Dugué Anthony Perez

November 20, 2015

Abstract

In this paper we consider the community detection problem from two different perspectives.
We first want to be able to compute communities for large directed networks, containing million
vertices and billion arcs. Moreover, in a large number of applications, the graphs modelizing
such networks are directed. Nevertheless, one is often forced to forget the direction between the
connections, either for the sake of simplicity or because no other options are available. This
is in particular the case on large networks, since there are only a few scalable algorithms at
the time. We thus turn our attention to one of the most famous scalable algorithms, namely
Louvain’s algorithm [3], based on modularity maximization. We modify Louvain’s algorithm
to handle directed networks based on the notion of directed modularity defined by Leicht and
Newman [13], and provide an empirical and theoretical study to show that one should prefer
directed modularity. To illustrate this fact, we use the LFR benchmarks by Lancichinetti and
Fortunato [8] to design an evaluation benchmark of directed graphs with community structure.
We also give some examples and insights on the situations where one should really consider
direction when maximizing modularity. Finally, for the sake of completeness, we compare the
results obtained with Oslom [12], one of the best algorithms to detect communities in directed
networks. While the results obtained with such an algorithm are by far better on the LFR
benchmarks, we emphasize that it is still not well-suited to deal with very large networks.

1 Introduction

In various domains such as social networks or bioinformatics, being able to detect communities
efficiently constitutes a very important research interest [6]. In most cases, the underlying graphs
representing data are directed. This happens for instance when considering some social network
graphs, where relations between two users u and v can be represented by stating that u has an
influence over v rather than simply saying that they both interact. It thus seems quite obvious
to consider direction when detecting communities, and several algorithms were proposed in this
sense, such as Oslom [12] or InfoMap [19, 20]. In this article, we are interested in detecting
communities in very large networks such as the Twitter graph [4], which contains more than 50
millions vertices and almost 2 billions arcs. As we shall see Section 5, Oslom [12] fail to efficiently
produce communities when considering such networks [4], especially if one wants to use only a few
computer ressources. Due to this fact, a common solution is to simply forget direction when de-
tecting communities in really large network and to run Louvain’s algorithm [3] (which is extremely
well-suited for large networks). To the best of our knowledge, there is no version of this algorithm
maximizing directed modularity [13]. This fact can also be seen in a survey comparing algorithms
for community detection, where Lancichinetti and Fortunato [10] did not even consider Louvain’s

1

algorithm for their directed networks analysis. Instead, they used simulated annealing for mod-
ularity optimization [6] even if they confirmed on undirected networks that Louvain’s algorithm
performs better and runs a lot faster.

Our results. In this work, we give some insights about the importance of direction while de-
tecting communities. To that aim, we consider Louvain’s algorithm [3], which is implemented for
non-directed graphs only. By modifying the existing source code [2], we manage to deal with di-
rected graphs, following the notion of directed modularity introduced by Leicht and Newman [13]
(Section 2). We then generated a benchmark of directed graphs using the framework provided by
Fortunato et al. [8], and computed communities on such graphs using both versions of the Lou-
vain’s algorithm1. Our results show strong evidence that direction is important when detecting
communities (Section 5). Finally, we also compare these results to communities obtained by a
recent community detection algorithm called Oslom [12], both from the semantic and complexity
viewpoints (Section 5). We emphasize that Oslom [12] cannot deal with large graphs such as
the Twitter graph [4] (billions of edges), while Louvain’s algorithm produces results in a couple of
hours.

2 Detecting community in large (directed) networks

Modularity. A classic way of detecting communities is to find a partition of the vertex set
that maximizes an optimization function. One of the most famous optimization function is called
modularity [16]. This function provides a way to value the existence of an edge between two vertices
of an undirected network by comparing it with the probability of having such an edge in a random
model following the same degree distribution than the original network. For instance, an edge
between two vertices of large degree is not surprising, and thus does not contribute much to the
modularity of a given partition, whereas an edge between two vertices of small degree is more
surprising. Formally, the modularity Q of a partition C of an undirected graph G = (V,E) is
defined as follows :

Q =
1

2m

∑
i,j

[
Aij −

didj
2m

]
δ(ci, cj)

where m stands for the number of edges of G, Aij represents the weight of the edge between
i and j (set to 0 if such an edge does not exist), di is the degree of vertex i (i.e. the number of
neighbors of i), ci is the community to which vertex i belongs and the δ-function δ(u, v) is defined
as 1 if u = v, and 0 otherwise.

Leicht and Newman [13] adapted the notion of modularity for directed graphs, motivated by
the following observation: if two vertices u and v have small in-degree/large out-degree and small
out-degree/large in-degree, then having an arc from v to u should be considered more surprising
than having an arc from u to v. Taking this into account, the definition for directed modularity of
a partition of a directed network can be easily formulated:

1Louvain’s algorithm is usually non-deterministic, but in order to obtain consistent results, we always consider
the vertices in the same order.

2

Qd =
1

m

∑
i,j

[
Aij −

dini d
out
j

m

]
δ(ci, cj)

where Aij now represents the existence of an arc between i and j and dini (resp. doutj) stands
for the in-degree (resp. out-degree) of i.

Louvain’s algorithm. We now briefly describe the behavior of Louvain’s algorithm to maximize
modularity. The algorithm is the same for both the classic and directed versions of modularity.
It relies on a greedy procedure: starting from any partition of the vertices (usually the partition
into singletons), the algorithm tries to increase the value of modularity by moving vertices from
their community to any other neighbor one. In other words, the algorithm computes the gain of
modularity obtained by adding vertex i to community C as follows (for the undirected case):

∆Q =

[∑
in +dCi
2m

−
(∑

tot +di
2m

)2]
−
[∑

in

2m
−
(∑

tot

2m

)2

−
(
di
2m

)2]
=

dCi
2m
−
∑

tot ·di
2m2

where dCi denotes the degree of node i in community C,
∑

in the number of edges contained
in community C and

∑
tot the total number of edges incident to community C. Actually, the first

formula is the one as described in [3], but one can see that it reduces to the second one. The algo-
rithm does a similar calculation to compute the gain obtained by removing vertex i from its own
community Ci in a first place. The algorithm carries on as long as it exists a move that improves
the value of modularity.

The behavior of the algorithm is exactly the same in the directed case, the main difference lying
in the calculation for the gain of modularity obtained by adding vertex i to community C, which
can now be done using the following:

∆Qd
=
dCi
m
−
[
douti ·

∑in
tot +dini ·

∑out
tot

m2

]
where

∑in
tot (resp.

∑out
tot) denotes the number of in-going (resp. out-going) arcs incident to

community C.

3 Theoretical comparison between undirected and directed mod-
ularity

Our goal is to validate the observation made by Leicht and Newman [13] by showing what happens
if one uses the modularity Q [16] on a directed graph instead of using its directed version Qd [13].
To that aim, we use a straightforward case study where we consider two subgraphs C1 and C2

which both are communities of a directed network (see Figure 1). We are basically studying
when merging these communities lead to a value increase of both modularities. To calculate the
undirected modularity on a network which is usually directed, we have to ignore the links direction.

3

Figure 1: Figure extracted from the article of Lancichinetti and Fortunato [11].

Thus, if we are processing a directed network D = (V,A) where (u, v)∨ (v, u) ∈ A, then (u, v) ∈ E
in the undirected version G = (V,E). We use QC1\C2 (resp. Q

C1\C2

d) to refer to the undirected
(resp. directed) modularity value of the network with C1 and C2 distinct communities. In the same
way, we use QC1∪C2 (resp. QC1∪C2

d) to refer to the modularity value of the network where C1 and
C2 are part of the same community. We name A1,2 arcs between communities C1 and C2, and E1,2

the corresponding edges in the undirected network. Considering the undirected case, |E1,2| = |A1,2|
if ∀(u, v) ∈ A1,2 then (v, u) /∈ A1,2. We also have that |E1,2| = 1

2 · |A1,2| if ∀(u, v) ∈ A1,2 then
(v, u) ∈ A1,2. Thus, |E1,2| 6 |A1,2| 6 2 · |E1,2|.

3.1 Undirected case

When C1 and C2 are considered as part of the same community, E1,2 links contribute to increase
modularity value, as shown in bold in the following formula.

QC1∪C2 =

(
dintC1

m
+
dintC2

m
+
|E1,2|

m

)
−

 ∑
i,j∈C1

didj
4m2

+
∑

i,j∈C2

didj
4m2

+
∑

i∈C1,j∈C2

didj

2m2


When C1 and C2 are splitted in two different communities, both the terms in bold before disappear.

QC1\C2 =

(
dintC1

m
+
dintC2

m

)
−

 ∑
i,j∈C1

didj
4m2

+
∑

i,j∈C2

didj
4m2


Thus, if summing these bold terms results in a positive number, C1 and C2 are merged. At the
contrary, if the sum is negative, C1 and C2 are considered as two distinct communities. Therefore,
studying when these communities are merged or not consists in studying the sum of these terms as
follows.

δQ = QC1∪C2 −QC1\C2

=
|E1,2|
m
−

∑
i∈C1,j∈C2

didj
2m2

=
1

m

(
|E1,2| −

∑
i∈C1,j∈C2

didj
2m

)

4

Hence:

δQ > 0 ⇔ |E1,2| >
∑

i∈C1,j∈C2

didj
2m

(1)

3.2 Directed case

In the directed case, we obtain a quite similar result. Indeed, when C1 and C2 are considered as
being part of the same community, we obtain:

δQd
= QC1∪C2

d −QC1\C2

d

=
|A1,2|
2m

−
∑

i∈C1,j∈C2

dini d
out
j

4m2
−

∑
i∈C1,j∈C2

douti dinj
4m2

Hence:

δQd
> 0 <=> |A1,2| >

∑
i∈C1,j∈C2

(
dini d

out
j

2m
+
douti dinj

2m

)

3.3 Comparison

To compare the choices made by both modularities, we replace the vertex degree of Equation 1 by
its in- and out-going counterparts.

didj = (dini + douti)(dinj + doutj)

We thus obtain the following equivalence :

|E1,2| >
∑

i∈C1,j∈C2

(
dini d

out
j

2m
+
douti dinj

2m

)
+

∑
i∈C1,j∈C2

(
dini d

in
j

2m
+
douti doutj

2m

)
Let us define the following terms :

S =
∑

i∈C1,j∈C2

(
dini d

out
j

2m
+
douti dinj

2m

)

T =
∑

i∈C1,j∈C2

(
dini d

in
j

2m
+
douti doutj

2m

)
Thus, in the undirected case, C1 and C2 are merged when |E1,2| > S + T while in the directed

case, the fusion is done when |A1,2| > S, T being absent from the equation.

The term S confirms the observation made by Leicht and Newman [13]. Furthermore, we can
see that T is not relevant at all. Multiplying the incoming degrees in one side and the outgoing
degrees in the other side does not allow to estimate links probability to exist between communities
in a random network. This may explain the better results obtained with the Louvain algorithm
implementing the directed modularity.

5

4 Analysis of the differences

We now study the conditions that make differences arise between the two versions of Louvain’s
algorithms. We first give some intuition on the configurations that can lead to two different moves
in the algorithm, and then provide several examples where the difference is significant.

Sufficient conditions to have a difference. To complete the previous observations, we give
some conditions that will influence community detection between the two methods. Recall that the
gain of modularity can be easily computed (in both cases) using the following:

∆Q ∼ dCi −
∑

tot ·di
2m

∆Qd
= dCi −

[
douti ·

∑in
tot +dini ·

∑out
tot

m

]
We thus have to study the behavior of the terms

∑
tot ·di
m and

douti ·
∑in

tot +dini ·
∑out

tot
m for a given

vertex i and a given community C. In particular, we want to express the conditions when the first
one is positive and the second one negative, or vice-versa. Recall that, in the first case, the classic
Louvain’s algorithm will not consider adding vertex i to community C to increase modularity, while
the directed version will do so.

Cases that make a difference. We first provide some simple examples when the classic Lou-
vain’s algorithm fails at detecting communities, whereas the algorithm maximizing directed mod-
ularity finds a perfect match with the ground truth communities.

Figure 2: On the left, the three communities obtained by maximizing standard modularity are
represented. On the right, the ones obtained using directed modularity.

Consider the graph represented Figure 2, which contains 100 vertices and 2 communities.
When maximizing directed modularity, Louvain’s algorithm succeeds in retrieving the communities
whereas the classic modularity maximization fails to merge two communities. The explanation for
this situation follows from our previous arguments. Indeed, the graph contains vertices with un-
balanced in and out-degrees, who thus influence the greedy method of Louvain’s algorithms. Such
a situation can also be observed on larger graphs2 (see Figure 3).

2For the sake of visiblity we do not consider larger graphs, but mention that similar situations happen also.

6

Figure 3: On top, the groundtruth communities. On the bottom left, the communities found by
the directed version of the algorithm and on the bottom right the ones provided by the classic one.

5 Experimental results

We now present empirically the differences that arise between classic modularity maximization and
the directed one. To that aim, we evaluate the results of both the modulairies over the so-called
directed LFR benchmarks [10].We consider partitions (that is non-overlapping communities).

5.1 The LFR benchmarks

To validate the efficiency of Louvain algorithm adapted to directed graphs, we use benchmarks
introduced by Lancichinetti and Fortunato [9]. These benchmarks allow to test community detec-
tion algorithms on directed graphs, and are designed in order to be as realistic as possible with
respect to real networks. It is indeed possible to set important features such as the power-law
distribution of the degrees of the nodes or of the communities sizes, as well as the maximum and
average degrees of nodes in the graphs. Another major feaure introduced in these benchmarks is
the mixing parameter. The mixing parameter allows to create graphs with communities more or
less well-defined. A low mixing parameter indicates communities well-defined, and hence easy to
detect. Reciprocally, a high mixing parameter allows to create graphs with communities which will
be hard to detect.

5.2 Measures

To compare the results obtained by the community detection methods, we use three evaluation
measures. The results of the community detection algorithms are thus compared with the com-
munities defined by the benchmarks we use. In the following, we use clustering to denote the
community sets obtained by the algorithms used. The term cluster is thus one community of these
sets. We use community to talk about the groundtruth communities established by the benchmark.

7

The first measure, called V-Measure [18] is made of two criteria: homogeneity and complete-
ness. This may be compared to the F-measure based on precision and recall measures. A clustering
maximizes the homogeneity if for each cluster, we find only elements of a same community. Symet-
rically, completeness is maximized when for each community, all elements of a same community are
in a single cluster. By computing the harmonic mean of these two values, we obtain the so-called
V-measure. The second one is the NMI [21] for Normalized Mutual Information. Built upon con-
cepts from information theory, this measure is commonly used to compare clusterings. Roughly
speaking, this measure defines how much knowing one of two clusterings reduces uncertainty about
the other. Thus, the higher the NMI, the more information the two clusterings share. We use the
normalization introduced by Strehl and Gosh [21] defined as follows.

definition 1 (NMI [21]) Let U and V be two clusterings. Then the Normalized Mmutual Infor-
mation is defined as a function of the mutual information I and the conditional entropy H:

NMI(U ,V) =
I(U ,V)√

H(U) ·H(V)

Finally, to compute the Purity [24], we assign each cluster to the community which nodes are
more frequent in the cluster. Then, by summing all well-classified nodes for each of these clusters
and dividing it by the number of vertices, we obtain the accuracy of our clustering.

5.3 Classic LFR benchmarks

We begin this section by giving some results obtained by generating LFR benchmarks using pa-
rameters described by Lancichinetti and Fortunato [10]. Those parameters consider two different
cases, namely graphs having small and big community sizes. In the first case, the communities
are set to contain between 10 and 50 vertices, while they are required to contain between 20 and
100 vertices in the latter one. In such graphs, the average degree is set to 20 and the maximum
degree is set to 50. We consider graphs having respectively 1000 and 5000 nodes, and make the
mixing parameter go from 0.1 (i.e. well-defined communities) to 0.6. Finally, we set the power law
distribution to 2 in all cases. We first give a general picture of the results we obtained w.r.t. to the
number of vertices and the size of the communities (Table 1).

n minc maxc # graphs > >+0.05 >+0.1 >+0.2

1000 10 50 900 839 83 54 5

1000 20 100 900 776 70 27 3

5000 10 50 900 804 0 0 0

5000 20 100 900 785 54 31 3

Table 1: Proportion of graphs where the NMI of the classic modularity (nmio) is greater than the
one of the directed modularity (nmid) by a given percentage.

Louvain’s algorithm maximizing directed modularity is better in almost 75% of the cases. More-
over, we would like to mention that if the improvement is rather low on average, there are some
interesting cases where the improvement is drastic.

8

We then compare the outputs of both version of Louvain’s algorithms according to the aforemen-
tioned quality measures. We conducted such an experimentation by considering different networks
sizes, and also by modifying the mixing parameter. As one can observe Table 2, the directed version
(which corresponds to the bottom table) is better in most cases.

n mu NMI V-measure Homogeneity Completeness Purity

1000 0.1 0.987 0.987 1.000 0.975 1.000
1000 0.6 0.965 0.964 0.999 0.932 0.999
5000 0.1 0.966 0.965 1.000 0.934 1.000
5000 0.6 0.909 0.905 0.999 0.828 0.999

n mu NMI V-measure Homogeneity Completeness Purity

1000 0.1 0.995 0.995 1.000 0.990 1.000
1000 0.6 0.978 0.978 1.000 0.958 1.000
5000 0.1 0.978 0.978 1.000 0.957 1.000
5000 0.6 0.920 0.917 0.999 0.848 0.999

Table 2: Results obtained on the classic LFR benchmarks with the classic and the directed versions
of Louvain algorithm. Each mesure indicates the average taken over 100 graphs with the indicated
parameters.

5.4 Generated LFR benchmarks

In this Section, we present similar observations on a new set of benchmarks that we generated for
this purpose. Recall that the average and maximum degree are respectively fixed to 20 and 50 in
the classic LFR benchmarks. This seems quite unrealistic when trying to simulate social networks:
on Table 3 we observe in several well-known complex networks that the average degree is in general
much lower, while the maximum degree is much higher. Hence, it seems quite restrictive to impose
a maximum degree of 50, when it is really common for vertices of such networks to have a degree
close to n

3 .

Network Nodes Edges Avg degree Max degree Power-law

Zachary karate club [22] 34 78 4.59 17 2.16
Openflight [17] 2, 939 30, 501 20.76 473 1.79
Arxiv Astro-ph [14] 18, 771 198, 050 21.10 504 2.60
Internet AS [23] 34, 761 171, 403 9.86 5, 305 1.86
SlashDot [5] 51, 083 140, 778 5.51 3, 357 1.91
Flickr [15] 2, 302, 925 33, 140, 018 28.78 34, 174 2.02
DBPedia [1] 2, 152, 642 7, 494, 124 6.96 329, 714 2.15

Table 3: Basic properties of several physical, social or reference based network from literature.

To complete our analysis, we generated about 40000 graphs with different parameters closely
related to those observed in real networks. In particular, we infered the average and maximum

9

Figure 4: The values of the normalized mutual information are represented on the Y axis, while
the mixing parameter is on the X axis.

degrees w.r.t. the power law and mixing parameter. For every combination of such parameters, we
generated 100 different graphs and ran a statistical analysis. We first give a general picture of our
observations.

n #
graphs

> >+0.05 >+0.1 >+0.25

100 9900 6648 2331 966 209

500 9900 6833 1193 356 33

1000 9900 6789 926 263 22

5000 9900 6674 770 211 31

Table 4: Proportion of graphs where nmio is greater than nmid by a given percentage.

It arises from Table 4 that in 70% of the cases, directed modularity provides better results than
the classic Louvain’s algorithm. We would like to mention that very similar results can be observed
when considering other similarity measures such as F-measure, V-measure, purity, completeness,
homogeneity. To be consistent with the results presented in [10], we have a closer look on the
measures for 1000 and 5000 nodes, respectively. The results presented Figure 4 were obtained by
taking the average of the measures over 100 different graphs with the same parameters.

We would like to mention that Louvain’s algorithm seems to be particularly well-suited to maxi-
mize directed modularity, since the results obtained seem to be really better than the ones presented

10

by Fortunato et al. LF09a, obtained using simulated annealing for modularity optimization [6].

5.5 A comparative analysis with Oslom [12]

To conclude this part of our work, we would like to compare Louvain’s algorithm optimizing di-
rected modularity with another algorithm used to detect communities in directed networks, namely
Oslom [12]. We are particularly interested in the time complexity needed to run such algorithms.
We want to emphasize that such an algorithm is really not well-suited for handling large (directed)
networks.

Results. We now present the results obtained by running Oslom [12] on the classic LFR bench-
marks. We focus on both the accurency and the time complexity needed to obtain such results.

n mu NMI V-measure Homogeneity Completeness Purity

1000 0.1 0.999 0.999 0.999 0.999 0.999
1000 0.6 0.999 0.999 0.999 0.999 0.999
5000 0.1 0.994 0.999 0.999 0.999 0.999
5000 0.6 0.999 0.999 0.999 0.999 0.999

Table 5: Results obtained on the classic LFR benchmarks. Each mesure indicates the average taken
over 100 graphs with the indicated parameters.

As one can see on Table 5, Oslom [12] is drastically better than Louvain’s algorithm on the
classic LFR benchmarks. This is not a surprising result, since Oslom [12] seems to provide really
good results [10]. However, as we shall see in the remaining of the paper, Oslom [12] cannot
provide results in a reasonnable amount of time for networks with relatively small size.

Time complexity. We now focus on the time complexity needed to obtain results when using
OSLOM or Louvain’s algorithm with directed modularity. We conduct our analysis on a set of real
networks extracted from Konect Database [7] (see Table 6).

11

Name Vertices Arcs Louvain Oslom

E-Coli 99 212 ∼ 0 seconds 1.8 seconds
Bio-Yeast 688 1079 ∼ 0 seconds ∼ 35 seconds
Spanish-Book 12643 57772 ∼ 0.2 seconds ∼ 27 minutes
Word-Association 10617 72168 ∼ 0.26 seconds ∼ 30 minutes
Edinburg 23219 325624 ∼ 1 seconds > 10 hours

Table 6: Directed networks used for time complexity analysis.

As mentioned previously, we do not consider here the quality of the output (OSLOM performs
better than Louvain’s algorithm), but we only focus on the time needed to obtain such an output.
For networks with 10000 vertices, Oslom [12] already takes a significant amount of time3 to com-
pute the results. On the largest graph we consider, the classic configuration of Oslom [12] fails at
producing any output even after hours of computation.

Thus, if one should clearly prefer using Oslom [12] on small networks, its use is absolutely
impossible for networks as large as the ones that really often arise in the literature. We hope that
our study will enlight that the version of Louvain’s algorithm that maximizes directed modularity
should be considered as more reliable to deal with such networks.

References

[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. Dbpedia: a nucleus for a web of open data. In Proceedings of the 6th international The se-
mantic web and 2nd Asian conference on Asian semantic web conference, ISWC’07/ASWC’07,
pages 722–735, 2007.

[2] Vincent Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre. Louvain method: Finding communities in large networks.
https://sites.google.com/site/findcommunities/.

[3] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. J. of Stat. Mech.: Theory and Experiment,
2008(10):P10008, 2008.

[4] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P. Gummadi. Measuring
User Influence in Twitter: The Million Follower Fallacy. In ICWSM ’10: Proc. of int. AAAI
Conference on Weblogs and Social, 2010.

[5] Vicenç Gómez, Andreas Kaltenbrunner, and Vicente López. Statistical analysis of the social
network and discussion threads in slashdot. In Proceedings of the 17th international conference
on World Wide Web, WWW ’08, pages 645–654, 2008.

3We would like to mention that our results differ significantly from the ones presented in [12]. This comes from
the fact that a new version of Oslom [12] has been released. While such a version provides better results than the
previous ones, it seems that the time needed to obtain the results is more important.

12

[6] Roger Guimera and Luis A Nunes Amaral. Functional cartography of complex metabolic
networks. Nature, 433(7028):895–900, 2005.

[7] Konect. KONECT datasets, June 2014.

[8] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E,
80(1), 2009.

[9] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E,
80(1):016118, 2009.

[10] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: a comparative
analysis. Physical Review E, 80(5), 2009.

[11] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in community
detection. Physical Review E, 84(6):066122, 2011.

[12] Andrea Lancichinetti, Filippo Radicchi, José J. Ramasco, and Santo Fortunato. Finding Sta-
tistically Significant Communities in Networks. PLoS ONE, 6(5), 2011.

[13] E. A. Leicht and M. E. J. Newman. Community structure in directed networks. Phys. Rev.
Lett., 100, 2008.

[14] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data, 1(1), 2007.

[15] Alan Mislove, Hema Swetha Koppula, Krishna P. Gummadi, Peter Druschel, and Bobby Bhat-
tacharjee. Growth of the flickr social network. In Proceedings of the first workshop on Online
social networks, WOSN ’08, pages 25–30, 2008.

[16] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM Review, 45(2):167–
256, 2003.

[17] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality in weighted networks:
Generalizing degree and shortest paths. Social Networks, 32(3):245 – 251, 2010.

[18] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external
cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning(EMNLP-
CoNLL), pages 410–420, 2007.

[19] M. Rosvall, D. Axelsson, and C. T. Bergstrom. The map equation. The European Physical
Journal Special Topics, 178(1):13–23, 2009.

[20] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123,
2008.

13

[21] Alexander Strehl and Joydeep Ghosh. Cluster ensembles — a knowledge reuse framework for
combining multiple partitions. J. Mach. Learn. Res., 3:583–617, 2002.

[22] W. W. Zachary. An information flow model for conflict and fission in small groups. Journal
of Anthropological Research, 33:452–473, 1977.

[23] Beichuan Zhang, Raymond Liu, Daniel Massey, and Lixia Zhang. Collecting the internet
as-level topology. SIGCOMM Comput. Commun. Rev., 35(1):53–61, 2005.

[24] Ying Zhao and George Karypis. Criterion functions for document clustering: Experiments and
analysis. Technical report, 2002.

14

