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Abstract

In this paper, we propose to localize and characterize coherently distributed (CD) sources in
near-field. Indeed, it appears that in some applications, the more the sources are close to the
array of sensors, the more they can seem scattered. It thus appears of the biggest importance to
take into account the angular distribution of the sources in the joint direction of arrival (DOA)
and range estimation methods. The methods of the literature which consider the problem of
distributed sources do not handle with the case of near field sources and require that the shape of
the dispersion is known. The main contribution of the proposed method is to estimate the shape
of the angular distribution using an additional shape parameter to address the case of unknown
distributions. We propose to jointly estimate the DOA, the range, the spread angle and the shape
of the spread distribution. Accurate estimation is then achieved even when the shape of the
angular spread distribution is unknown or imperfectly known. Moreover, the proposed estimator
improves angular resolution of the sources.

Keywords: Array signal processing, Source localization, Distributed sources, Near-field,
Angular spread shape estimation.

1. Introduction

In array signal processing, most of the algorithms that estimate the direction of arrival (DOA)
have been developed on the assumption of point emitting sources in far-field. This modeling
assumption is not suitable for several physical examples. Indeed in many applications such as
wireless communications, radar, sonar or localization of acoustic sources, the angular spread of
the spatial extension cannot be ignored. One can cite as a motivating subject for future study, the
localization of aero-acoustic sources on the body of a car [1]. The purpose of such an application
is to allow car manufacturers to improve passenger comfort by reducing aerodynamic noise.

Two models are classically used in the literature for spatial distributed sources. In telecom-
munications, the model considers independent local scatterers around the source [2]. A second
widely considered model [3] assumes that the source is continuously spatially extended around
a nominal DOA with an angular spread distribution. The present paper is based on the second
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model. In order to estimate both the DOA and the angular spread of the distributed sources in
the far-field case, Valaee proposed the Distributed Signal Parameter Estimator (DSPE) [3] which
is a MUSIC-like algorithm [4]. However, the assumption of knowing the distribution function
of the spatial extension is not realistic in practice. Besides, such a method suffers from robust-
ness issues with respect to the imperfect knowledge of the angular spread distribution. In other
words, an a priori information about the angular spread shape must be provided for good perfor-
mance. A solution based on decoupling the DOA θ from the angular spread ∆ estimation have
been proposed in [5] using the covariance matching method. This method is developed in the
case of Incoherently Distributed1(ID) sources but suffers from ambiguity problem. Zoubir and
Wang proposed in [6], a decoupled estimation of the DOA and the angular spread distribution
for far-field sources. This method provides a robust estimation only for DOA but it requires the
knowledge of the angular spread shape distribution to estimate the angular spread parameter.

Near-field sources localization has been an active field of research for many years [7, 8, 9, 10,
11]. As far as we know, the estimators proposed in the literature do not take into consideration
the aspect of spatial distributed sources in conjunction with the aspect of near-field propagation.
However, for a given physical extension of the source, the angular spread becomes more relevant
as the source gets closer to the array.

These reasons motivate us to propose an estimator of CD sources in near-field which is robust
to the imperfect knowledge of the angular spread distribution. First, we introduce the model
[3] in the near-field context with the aim of considering the angular spread when sources are
close to the array. Then, we discuss limits of DSPE algorithm with different angular distribution
shapes for the near-field. Finally, we propose a modification of the DSPE which consists in using
a generic function family to describe the angular spread distribution. The method called Joint
Angle, Distance, Spread, Shape Estimator (JADSSE) consists in the estimation of the distribution
shape parameter in addition to the three other parameters.

The contribution is organized as follows. In section 2, we extend the model for distributed
sources located in near-field. In section 3, we present the generalization of the DSPE and the
new JADSSE method. In section 4, the performance of the proposed algorithms are compared
by numerical simulations. Finally we present the conclusions.

2. Signal model

Let us assume q spatially distributed narrow-band near-field sources impinging on a Uniform
Linear Array (ULA) of M sensors. The distance between two adjacent sensors is d = λ/2,
where λ is the wavelength of the signals. We also suppose that the sources and the sensors
are in the same plane. The M×1 baseband signal vector measured by the M sensors is given
by x(t) = [x1(t), ..., xM(t)]T , where (.)T is the transpose operator. Authors in [3] proposed a
model for the distributed sources in far-field. We here extend this model in the near-field context,
considering an angular spread of DOA2:

x(t) =
q∑

i=1

∫ π
2

− π2
a(ϕ, ri)vi(ϕ, θi,∆i, t) dϕ + n(t). (1)

1Signals arriving from multiple directions are assumed to be uncorrelated
2Similarly a range spread can be also considered, however, in order to make the paper more readable we only consider

the angular spread
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vi(ϕ, θi,∆i, t) denotes the signal angular distribution for the i-th source. θi is the central DOA for
the source and ∆i is the angular spread. n(t) is the M×1 white additive noise vector. The M×1
vector a(ϕ, r) represents the near-field array response for a source located in direction ϕ and at
range r.

In the near-field context, the signal propagation time between sensor m and a reference sensor
(e.g the first one) can be approximated3 (see [12] for details). In this case, the (m+ 1)-th element
of the steering vector a(ϕ, r) is expressed as:

am+1(ϕ, r) = exp
(
− jπ sin(ϕ)m + j

πλ

4r
cos2(ϕ)m2

)
. (2)

Throughout the paper, we consider that the sources are coherently distributed (CD). A CD source
is described by a temporally invariant angular distribution and the components of the signal are
fully correlated for the whole angular spread (for more details see [3]). Thus, the signal angular
distribution for the i-th CD source can be expressed by:

vi(ϕ, θi,∆i, t) = si(t)hi(ϕ, θi,∆i), (3)

where si(t) is a random complex signal emitted by the i-th source and hi(ϕ, θi,∆i) represents a
deterministic angular spread distribution. For multiple CD sources, the model of the received
signal for q sources in near-field is given by:

x(t) =
q∑

i=1

si(t)c(θi,∆i, ri) + n(t), (4a)

c(θi,∆i, ri) =
∫ π

2

− π2
a(ϕ, ri)hi(ϕ, θi,∆i) dϕ, (4b)

c(θi,∆i, ri) is the vector obtained by integrating the steering vector a(ϕ, ri) with the angular dis-
tribution of the i-th source hi(ϕ, θi,∆i). The source signal and noise time samples are modeled
by random, complex, centered and independent processes. We assume that the noise and the
sources vi(ϕ, θi,∆i, t) are uncorrelated with each other. Considering the previous assumptions,
the correlation matrix of the array output is given by:

Rxx = E[x xH] = CSCH + σ2I, (5)

where E[.] is the statistical expectation operator, C is the M×q matrix containing the column
vectors c(θi,∆i, ri) for i = 1, ..., q, S is the sources correlation matrix with the i jth component
defined as si j = E[sis∗j], σ

2 is the noise variance and I is the M× M identity matrix. The sources
are assumed to be uncorrelated with each other, so that S is diagonal. The correlation matrix Rxx

can be estimated from the L snapshots by:

R̂xx =
1
L

L∑
l=1

x(tl)xH(tl). (6)

3Approximation of the propagation time is not necessary to extend the model [3] in the near-field and the propagation
time can be also used in its general form.
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3. Proposed estimators

In this section, we present two methods of joint angle, spread and range estimation for the
localization of CD sources in near-field. First, we introduce an extension of the MUSIC-like
DSPE algorithm [3], called Near Field-DSPE (NF-DSPE). This method is highly dependent on
the shape of h(ϕ, θ,∆). Next, we present the Joint Angle, Distance, Spread and Shape Estimator
(JADSSE). This algorithm consists of a robust estimation of all the above mentioned parameters
to localize the distributed sources in near field. Finally, for comparison we recall the Near Field
Estimator (NFE) to localize point sources [13].

3.1. Near Field-DSPE

After an eigen analysis, the observation space of R̂xx can be decomposed into a signal sub-
space and a noise subspace [4]. The estimated noise subspace basis Ên is constructed with the
M − q eigenvectors êi associated with the lowest M − q eigenvalues of R̂xx. Exploiting the
properties of the eigenvectors leads us to the following equality CHÊn = 0 [4].

The proposed estimator consists in minimizing the norm of the product between the estimated
noise subspace Ên and the analysis vector cH(θ,∆, r). To obtain the estimated parameters θ̂, r̂ and
∆̂ for the q sources, the estimator consists in searching the q peaks of the three dimensional cost
function S NF−DSPE(θ,∆, r):

(θ̂, ∆̂, r̂) = arg max
θ,∆,r

S NF−DSPE(θ,∆, r), (7)

where:
S NF−DSPE(θ,∆, r) =

1

cH(θ,∆, r) Ên ÊH
n c(θ,∆, r)

, (8)

and

c(θ,∆, r) =
∫ π

2

− π2
a(ϕ, r)h(ϕ, θ,∆) dϕ. (9)

The expression in (8) is a MUSIC criterion with the analysis vector c(θ,∆, r) which depends
on the angular distribution h(ϕ, θ,∆). In the literature, commonly used distributions are Gaussian
and Uniform. The main drawback of this approach is that the computation of c(θ,∆, r) in (9),
requires a priori information about the angular spread distribution h.

3.2. Joint Angle Distance Spread Shape Estimator (JADSSE)

In this subsection, we aim to localize and characterize CD sources in near-field with various
angular spread shapes. Therefore, by adding a shape parameter we propose to use a parame-
terized functions family h which can adapt to most of well known angular distributions. For
instance, we propose to represent h(ϕ, θ,∆) by a Raised Cosine (RC) function. This function
takes an additional positive parameter β into consideration to characterize the shape of the angu-
lar spread. The Raised Cosine is expressed by:

h(ϕ, θ,∆, β) =


1/∆ if |ϕ − θ| ≤ ∆2 (1 − β)
1/2∆

[
1 + cos

(
γ
)]

if ∆2 (1 − β) < |ϕ − θ| ≤ ∆2 (1 + β)

0 otherwise
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where γ = π
β∆

[|ϕ−θ| − ∆2 (1−β)]. This RC function can adapt to various shapes of angular spread
distributions: uniform distribution and bell shaped distribution.

It follows that the proposed JADSSE consists in minimizing the norm of the product of Ên

and the vector c(θ,∆, r, β). The estimator relies on the search for the q maxima of the four-
dimensional cost function:

(θ̂, ∆̂, r̂, β̂) = arg max
θ,∆,r,β

1

||cH(θ,∆, r, β) Ên||2
, (10)

where:

c(θ,∆, r, β) =
∫ ∆

2 (1+β)

− ∆2 (1+β)
a(ϕ, r)h(ϕ, θ,∆, β) dϕ. (11)

The vector c(θ,∆, r, β) is a function of h(ϕ, θ,∆, β). Choosing this parametric function family
ensures the ability to approximately fit functions like Gaussian for β ≥ 1 and Uniform for β = 0.

By introducing a general function family h(ϕ, θ,∆, β) and by estimating the shape parame-
ter β, the proposed JADSSE makes it possible to reconstruct the angular distribution without a
priori information about its shape. This blind approach allows to increase the robustness of the
estimation with respect to the shape of the angular spread distribution.

3.3. Near Field Estimator
Assuming point sources, the standard DOA MUSIC estimator [4] can be generalized for

Near-field and it consists in searching the q peaks of the two- dimensional cost function S NFE(θ, r):

(θ̂, r̂) = arg max
θ,r

1

aH(θ, r) Ên ÊH
n a(θ, r)

, (12)

where aH(θ, r) is defined by equation (2) and (θ̂, r̂) are the DOA and range estimates, respectively.

3.4. Computational complexity
The complexity of JADSSE concerns three points. As for the conventional MUSIC algo-

rithm, the eigen decomposition of the (M×M) covariance matrix of the received signals which
is necessary to obtain the noise eigenvectors appearing in equation (10). As for the DSPE, the
analysis vector c(θ,∆, r, β) must be computed through an numerical integral. The third point
concerns the search of the maxima of 4D criterion defined in equation (10). JADSSE is more
complex than DSPE because of the additional parameters r and β, which are due to the near-field
context and the estimation of the angular distribution shape.

To decrease the computational complexity, methods have been proposed in the literature to
decouple the parameter estimation either within the case of near-field sources or within the case
of distributed sources. For example, the approach proposed in [7, 8] to decouple the estimation
of the DOA and range can also be applied to JADSSE. This technique is based on the fact that
a(ϕ, r) in (11) is a periodic function of the DOA ϕ. It can be approximated by a(ϕ, r) ≈ D(r)b(ϕ)
(see [7] for details).

Another approach proposed in [6] to the decoupling of the estimation of the DOA and the
angular spread can be used to reduce the computational cost of JADSSE. It relies on a first order
approximation of the angular spread in the generalized steering vector c(θ,∆, r, β) of equation
(11). The analysis vector c(θ,∆, r, β) can be approximated by c(θ,∆, r, β) ≃ Φ(θi, ri)b(∆i, βi),
where Φ(θi, ri) = diag(a(θi, ri)) and b(∆i, βi) is a real valued vector that depends on the angular
distribution. Using the approximation, we can rewrite the cost function for JADSSE in equation
(10) into two 2D optimization problems for DOA estimation.
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4. Numerical Results

In this section, we compare the performance of the three methods (JADSSE, NF-DSPE and
NFE) presented in section 3. For JADSSE, Raised Cosine angular spread distribution with pa-
rameter β is used and the NF-DSPE performance is evaluated using three different angular spread
distributions : Gaussian, uniform and Butterworth. To investigate the performance of the pro-
posed estimators, the Root Mean Square Error (RMSE) of the estimates is evaluated with a
Monte-Carlo simulation of 100 independent runs. The simplex based method is used to find the
maximum of the cost function in equations (7), (10) and (12).

The ULA consists of M = 20 sensors inter-spaced by d = λ/2 and the number of samples is
1000 for estimating the covariance matrix in equation (6).

4.1. Performance versus SNR
In the first simulation, we consider the following multi-sources scenario: two CD sources and

one point source in near-field arrive from directions θ1 = 0◦, θ2 = 30◦, θ3 = 60◦ with an angular
spread ∆1 = 5◦, ∆2 = 8◦, ∆3 = 0◦ with distances of r1 = 30λ, r2 = 25λ, r3 = 30λ respectively
from the array.

The source at θ3 = 60◦ is punctual. The source at θ1 = 0◦ is Gaussian CD (GCD) with the
angular spread distribution :

h(ϕ, θ1,∆1) =
1

∆1
√

2π
exp
[
− 0.5

(ϕ − θ1
∆1

)2]
. (13)

The source at θ2 = 30◦ is Uniformly CD (UCD), that is

h(ϕ, θ2,∆2) =

 1
∆2

if |ϕ − θ2| ≤ ∆2
2

0 Otherwise
(14)

Note that the definition of parameter ∆ depends on the shape of the angular spread distribution.
For the Raised Cosine function, ∆ is the width of the function at half amplitude whereas for the
Gaussian function, it is the standard deviation. Finally, for the bell function with a Butterworth
correlation kernel (used in [3]) ∆ is the -3dB extension width.

The RMSE of the DOA θ and distance r estimates are plotted on Fig. 1a-2a for the GCD
source, on Fig. 1b-2b for the UCD source and on Fig. 1c-2c for the point source. Comparing
the different estimators, as expected the point source estimator (NFE) presents bad performance
for locating distributed sources. Four conclusions can be drawn from these results. Firstly,
NF-DSPE performance is highly sensitive to the angular spread distribution. NF-DSPE has the
best performance when the distribution used by the estimator is the same as the distribution of
the source, but when the distributions are different, performance degrades. Secondly, when the
distribution of the source belongs to the RC family, the JADSSE performance reaches these of
NF-DSPE using the true distribution (see UCD source on Fig. 1b and Fig. 2b). This means that
estimating the fourth parameter (the shape parameter β) does not penalize the proposed estimator.
Thirdly, JADSSE provides reliable estimation even when the distribution of the source does not
belong to the RC family (see GCD source on Fig. 1a and Fig. 2a). This result shows that
JADSSE using an RC family is quite robust to the shape of the angular spread distribution of
the source. Fourthly, NF-DSPE (except with Butterworth) and JADSSE performance perfectly
fit those of NFE when dealing with the point source (see Fig. 1c and Fig. 2c). It follows
that JADSSE becomes particularly more interesting in multi-source scenarios where point and
distributed sources with unknown shape distributions are mixed.
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4.2. Reconstruction of angular shape distribution

The same three sources scenario as in 4.1 is considered. The true angular spread distribution
h(ϕ) is plotted (dashed thick line) in Fig. 3 for both CD sources4. The estimated distributions
ĥ(ϕ) are also plotted where ĥ(ϕ) is constructed using the θ̂, ∆̂ (and β̂ for JADSSE) estimates
at SNR=10dB. Results show that NF-DSPE provides good reconstruction when the used dis-
tribution h(ϕ) is the same as the actual distribution of the source. In the other cases the esti-
mated distribution is poorly approximated due to the mismodeling error on h. On the contrary,
JADSSE provides an accurate estimation of the angular spread distribution even for the GCD
source (which is not included in the RC function family).

4.3. Performance versus the angular spread and shape parameters

In this simulation, one source with a Raised Cosine distribution is considered with θ1 = 10◦,
r1 = 25λ and SNR=20dB. Firstly, performances are plotted in Fig. 4a versus the shape parameter
β with an angular spread fixed at ∆ = 8◦. JADSSE keeps almost stable performance as a function
of β. Meanwhile NF-DSPE presents higher RMSE values when a mismatched h(ϕ) is used by the
estimator. For instance, NF-DSPE with Uniform distribution approaches JADSSE performance
for source with small β but when β increases (corresponding to a source with a bell shape) NF-
DSPE (Unif) performances decrease. Conversely, the behavior of the NF-DSPE with a Gaussian
distribution is better when β increases in the RC source.

Secondly, performance is also plotted on Fig. 4b versus dispersion (∆) of the source for a
fixed shape parameter (β = 0.5). JADSSE exhibits good performance with only a slight increase
in RMSE versus the angular spread. Meanwhile, above ∆ > 5◦, ignoring the shape of the angular
spread distribution dramatically degrades the performance of NFE and NF-DSPE (with mismatch
in distribution shapes). More generally, above a given dispersion, the knowledge or an accurate
estimation of the distribution shape is essential to obtain good DOA and range estimates. This
motivate the use of JADSSE.

4.4. Performance versus DOA separation

For this simulation, two uniform coherently distributed sources are considered at r1 = r2 =

25λ with ∆1 = 5◦, ∆2 = 8◦; θ1 = 0◦ and θ2 = θ1 + δθ where δθ is the DOA source separation. The
SNR is fixed at 20dB. The RMSE of the DOA θ is plotted as a function of the DOA separation
δθ in Fig. 5a for the first source and in Fig. 5b for the second source.

The results show that even for a large overlap of both sources for δθ < 10◦, the DOAs are
accurately estimated by JADSSE, while the NF-DSPE with mismodeling error suffers from low
resolution.

On one hand, for the first source (∆1 = 5◦) in Fig. 5a and for small DOA separation, only
JADSSE provides accurate estimates. Referring to the mono-source case (Fig. 4b), one can
notice that for this dispersion (∆1 = 5◦), NF-DSPE performances were roughly the same as those
of JADSSE. On another hand, for the second source (∆1 = 8◦), NF-DSPE fails to accurately
estimate the DOA, even for large separation of the DOA’s due to the large dispersion of the
source (as seen in the previous mono-source experiment (Fig. 4b)).

4The third punctual source at θ3 = 60◦ is not plotted since the true angular distribution is a Dirac with infinite value,
and estimated distributions have too high amplitude to be plotted on the same figure
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5. Conclusion

In this paper, we propose the JADSSE algorithm for the localization of coherently distributed
(CD) sources in near-field. It jointly estimates the angle, the distance and the angular spread
with an additional shape parameter. Simulation results have shown that NF-DSPE is limited
to the case where the angular spread distribution is known. Meanwhile, JADSSE accurately
localizes sources even when h imperfectly fits the Raised Cosine family. The proposed estimator
JADSSE also shows good asymptotic performance when the angular function h belongs to the
Raised Cosine family. The practical interest of JADSSE can be summarized by: i) its ability
to deal with an unknown angular spread distribution ; ii) its robustness to various shapes of the
angular distribution (RC, Gaussian, uniform and punctual) and iii) its improved characterization
of the source by providing an estimate of the angular spread distribution (and the shape of the
source). Further studies will focus on the investigation of the JADSSE approach for the real data
application presented in the introduction. Indeed, in the aero-acoustic source localization context,
the near-field sources present a spatial extension without information regarding its shape.
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Figure 1: Root Mean Square Error of the DOA parameter θ̂ versus SNR for the 3 sources. True DOAs θ1 = 0◦, θ2 = 30◦

and θ3 = 60◦.
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Figure 2: Root Mean Square Error of the distance parameter r̂ versus SNR for the 3 sources. True distances r1 = 30λ,
r2 = 25λ and r3 = 30λ.

10



−20 0 20 40
0

2

4

6

8

10

φ [degree]

ĥ
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ĥ(φ)RC
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(a) RMSE versus β for a fixed ∆ = 8◦.
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(b) RMSE versus ∆ for a fixed β = 0.5.

Figure 4: Root Mean Square Error of DOA θ̂ for Raised Cosine source at SNR=20dB. True parameters θ = 10◦ and
r = 25λ.

12



5 10 15 20 25 30 35 40

10
−2

10
−1

10
0

δ θ [degr ee]

R
M

S
E

θ̂
[d

e
g
r
e
e
]

 

 

JADSSE
NF−DSPE(Gauss)
NF−DSPE(Unif)
NF−DSPE(Butt)
NFE

(a) RMSE for UCD source with ∆1 = 5◦.

5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

10
1

δ θ [degr ee]

R
M

S
E

θ̂
[d

e
g
r
e
e
]

 

 

JADSSE
NF−DSPE(Gauss)
NF−DSPE(Unif)
NF−DSPE(Butt)
NFE

(b) RMSE for UCD source with ∆2 = 8◦.

Figure 5: Root Mean Square Error of DOA θ̂ versus δθ for both UCD sources at SNR=20dB. True parameters θ1 = 0◦

θ2 = θ1 + δθ, ∆1 = 5◦, ∆2 = 8◦ and r1 = r2 = 25λ.
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