
HAL Id: hal-01231765
https://hal.science/hal-01231765v1

Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Extending UPPAAL for the Modeling and Verification
of Dynamic Real-Time Systems

Abdeldjalil Boudjadar, Frits Vaandrager, Jean-Paul Bodeveix, M Filali

To cite this version:
Abdeldjalil Boudjadar, Frits Vaandrager, Jean-Paul Bodeveix, M Filali. Extending UPPAAL for the
Modeling and Verification of Dynamic Real-Time Systems. 5th International Conference on Funda-
mentals of Software Engineering (FSEN 2013), Apr 2013, Tehran, Iran. pp.111-132, �10.1007/978-3-
642-40213-5_8�. �hal-01231765�

https://hal.science/hal-01231765v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12579

The contribution was presented at FSEN 2013 :
http://fsen.ir/2013/

Official URL: http://dx.doi.org/10.1007/978-3-642-40213-5_8

To cite this version : Boudjadar, Abdeldjalil and Vaandrager, Frits and
Bodeveix, Jean-Paul and Filali, Mamoun Extending UPPAAL for the Modeling
and Verification of Dynamic Real-Time Systems. (2013) In: 5th International
Conference on Fundamentals of Software Engineering (FSEN 2013), 24 April
2013 - 26 April 2013 (Tehran, Iran, Islamic Republic Of).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Extending UPPAAL for the Modeling

and Verification of Dynamic Real-Time Systems

Abdeldjalil Boudjadar1, Frits Vaandrager2, Jean-Paul Bodeveix3,
and Mamoun Filali3

1 CISS, Aalborg University, Aalborg, Denmark
2 ICIS, Radboud University Nijmegen, Nijmegen, The Netherlands

3 IRIT, Université de Toulouse, Toulouse, France

Abstract. Dynamic real-time systems, where the number of processes
is not constant and new processes can be created on the fly like in object-
based systems and ad-hoc networks, are still lacking a formal framework
enabling their verification. Different toolboxes like Uppaal [21], Tina

[10], Red [28] and Kronos [29] have been designed to deal with the
modeling and analysis of real-time systems. Nevertheless, a shortcom-
ing of these tools is that they can only describe static topologies. Other
tools like Spin [18] allow the dynamic creation of processes, but do not
consider time aspects. This paper presents a formal framework for model-
ing and verifying dynamic real-time systems. We introduce callable timed

automata as a simple but powerful extension of standard timed automata
in which processes may call each other. We show that the semantics of
each call event can be interpreted either as an activation of the existing
instance of the corresponding automaton (static instantiation), or a cre-
ation of a new concurrent instance (dynamic instantiation). We explore
both semantical interpretations, static and dynamic, and give for each
one the motivation and benefits with illustrating examples. Finally, we
report on experiments with a prototype tool, which translates (a subset
of) callable timed automata to UPPAAL systems.

Keywords: Dynamic real-time systems, timed automata, callable timed
automata

1 Introduction

Timed automata (TA) [1] have been proposed as a powerful model for both timed
and concurrent systems modelling. However, a dynamic framework for timed
automata instantiation and applicability, to model dynamic system topologies
like object-based systems and ad-hoc networks in which processes are created and
triggered on the fly, is still lacking. Moreover, the modelling of timed automata as
functional values, whereby a timed automaton can be called and applied to given
parameters to generate outputs, instead of an independent component making
computations and updating the system control is not explored. UPPAAL [6]
is an integrated tool environment for editing, simulating and model checking

real-time systems modeled as networks of timed automata. The tool has been
used successfully and routinely for many industrial case studies. Nevertheless, a
shortcoming of UPPAAL is that it can only describe static network topologies,
and does not incorporate a notion of dynamic process creation.

Unlike UPPAAL’s C-function actions performing local sequential compu-
tations, this study consists of encoding the call mechanism into interacting
processes, whereby communication on shared variables and synchronization with
the external environment are enabled. The modelling of a timed automaton as
a callable function which performs communications and interactions with the
external environment enables it to be callable and triggerable by any other
automaton. We introduce callable timed automata (CTA) as a formal framework
for the modelling and analysis of dynamic timed systems, where the number
of components (processes) may vary. The concept of callable timed automata
enables, for a set of processes, to model a common behavior as an automaton
callable by any other process originally performing such a behavior.

Syntactically, a callable timed automaton is a finite timed automaton [4]
parameterized by a set of data, and triggered through the execution of a calling
transition from another automaton. Moreover, a callable automaton may return
results to its calling component. Semantically, we interpret this syntactical exten-
sion in different ways by considering different criteria like (1) concurrency : the
activation of a callable process may be blocking for the corresponding calling
process, wherein the former cannot progress while the callee one is running. Will
both calling and callee components progress concurrently? (2) instantiation: the
UPPAAL template’s instantiation is static. Will the instantiation of callable TA
be static (a constant number of instances initially created) or dynamic (for each
call, a new instance is created on the fly)?

The ultimate goal of this paper is to provide a new formal framework for
the modelling and verification of dynamic timed systems, where the number of
processes is not constant, in terms of timed automata. To this end, we introduce
an extension for structuring UPPAAL systems by integrating callable timed
automata.

The rest of the paper is organized as follows. In Section 2, we cite exist-
ing related work. Section 3 motivates our proposal through a set of examples.
In Section 4, we define callable timed automata and give their translation to
UPPAAL TA. In Section 5, we review timed transition systems as a semantic
basis. In Section 6, we define the semantics of both static and dynamic instantia-
tions of CTA. Section 7 shows the implementation of CTA in UPPAAL. Section 8
presents the conclusion.

2 Related Work

In the literature, several frameworks [5,12,15,22,23,25,26] have been proposed to
generalize the operational model of functions to a model of concurrent processes.
Most of these proposals work on the encoding of the functional computation
model λ-Calculus into the concurrent computation model π-Calculus. In [22],

Milner showed that λ-Calculus could be precisely encoded into π-Calculus. The
Spin tool [18] enables the verification of dynamic systems where concurrent
processes can be created on the fly. Both creating and created processes progress
together. The creation of a new process does not block the creating component
execution i.e., a return is not needed to unlock the creating component. Similarly,
the Ada language [13] enables the creation of tasks on the fly. After the cre-
ation of each task, the calling process waits until the new process is elaborated.
Each process may perform a return immediately to unlock its calling compo-
nent via action accept, or executes some actions then performs a return via
statement accept do (RPC-like protocol1). Recently, there has been an amount
of work focusing on recursive extensions of timed automata. Without consid-
ering synchronization, the authors of [27] define a restricted notion of recursive
timed automata where their decidability results impose strong limitations on the
number of clocks (at most 2 clocks). Moreover, either all clocks are passed by
reference or none is passed by reference.

In our proposal, we introduce callable timed automata whereby we extend
UPPAAL timed automata transition actions to concurrent process creation.
Callable timed automata are referenced like functions and may interact with
their environment. The semantics of each call event can be interpreted either as
the activation of an existing instance of the corresponding template, or by the
creation of a new concurrent instance of the callee automaton.

3 Callable Timed Automata

In this section, we introduce an extension of timed automata named callable
automata where automata call each other. Unlike functions which are local com-
putations getting their inputs as parameters before being triggered, a callable
timed automaton is an open process which can interact with its external envi-
ronment at anytime by accepting inputs, producing outputs and updating the
system state. Syntactically, callable timed automata (CTA) are an extension of
finite automata where transitions can be equipped by either a particular event
call, to trigger the execution of another automaton, or again a return event
to yield results. The call of a callable timed automaton can be parameterized
by a set of expressions. Both call and return actions are used as a synchroniza-
tion event instead of an update action. The execution of call T corresponds
to the activation of an instance of template T. Obviously, the activation of an
instance is preceded by its creation which can be performed either when the
system starts or on the fly, i.e. when an automaton calls another one, it induces
both instantiation and activation of the corresponding template.

In the semantical interpretations of call events, we may distinguish static and
dynamic instantiations of callable timed automata. In fact, the interpretation of
each call event depends on the nature of the callee template. To distinguish

1 RPC is an acronym for Remote Procedure Call. It states the activation of a process
(server) by another (client) such that the client process cannot progress while the
server process does not perform a return.

between static and dynamic interpretations, we associate to each CTA signature
either a finite number n or an infinite one ∞. Namely, if the template signature
states a finite number n of instances, then each call event for that template
is considered to be static. Otherwise, in the case of ∞, the call event will be
considered to be dynamic.

3.1 Static Instantiation

In this subsection, we consider the situation that each callable timed automaton
is instantiable through a constant number of instances, that may be initially
created when the system starts. The execution of each call event corresponds
to the activation of an instance of the callee template, which may delay and
interleave with the execution of other components. That is the same case as for
UPPAAL-Port [17] where components trigger each others. Each of the instances
will be reinitialized for each activation (call) with the corresponding parameters.
In fact, the callable automaton instances are considered as any other instance
associated to a normal UPPAAL template. Moreover, with such an interpre-
tation, a callable automaton T can be called concurrently in the limits of its
number of instances I(T).

Formally, the call event is blocking where the calling component cannot run
any other transition while its callee automaton has not performed a return.
Likewise, a CTA may block call events from components other than the current
callers if free instances are not available. The calling component gets the control
back when the execution of the callee instance emits a return event. The return
event of a callee instance does not state its termination. The execution of a callee
instance can be atomic, which agrees with the UPPAAL action semantics.

The static instantiation applicability of callable timed automata covers a
large spectrum of the RPC-based systems. An example of such an instantiation
can be found in UPPAAL-Port, where a system is structured as a set of hierar-
chical components executed in a sequence. When the execution of a component
has completed, it triggers the (non-atomic) execution of another component by
activating its trigger-ports. Without considering hierarchy, one can distinguish
that an UPPAAL-port system can be translated to a set of callable automata
in a systematic way. Such a translation consists of replacing the activation of
trigger-ports of each component by a call made by the last transition of its
triggering component.

3.2 Example 1 (Static Instantiation)

We reuse the UPPAAL expression of the well known Train-Gate example [6],
depicted in Figure 1. In fact, such an example models the train crossing con-
currency, where a set of trains request concurrently access to a unique crossing
point, the critical section, in order to continue on their respective routes. The
crossing point is governed by a gate which each train must signal to gain crossing
authorization.

Fig. 1. The Train-Gate Example

In order to distinguish between
train instances, each one has a unique
identifier Id. As the access request is
the same for all trains, we model this
common behavior (access request) by
a new parameterized callable timed
automaton named Register, and by
that trains get rid of requesting
their own access authorization. The
automaton Register can be called by
any train intending to cross the gate.

When a train Id approaches the
crossing point, it calls the automa-
ton Register with its own identifier
Id. The automaton Register noti-
fies the Gate, which the train Id is
approaching, through a synchroniza-
tion on channel appr, and inserts Id

into the waiting list list. Whenever
the execution of automaton Register

is over for a given call by reaching the return action, the corresponding calling
train can resume. Depending on the availability of the Gate, such a train (Id)
crosses immediately or stops for a delay specified by a constraint on clock x,
waiting to be on the front of list then crosses the gate. Accordingly, the automa-
ton Register becomes available for accepting other calls by any train intending
to cross the gate.

3.3 Dynamic Instantiation

In this interpretation, a varying number of instances can be dynamically associ-
ated to each callable automaton: each call event corresponds to the creation of a
new instance of the callee automaton. Template instances are created on the fly
through the execution of the corresponding calls. Each newly created instance
will be simultaneously triggered. Hence, the call event is not blocking for other
calling components. Moreover, both calling and callee instances may progress
concurrently, after performing a return. In fact, in the dynamic instantiation
the return event of an instance enables to yield its results but does not state
its termination. i.e. an instance may run other transitions after performing a
return. The termination of an instance execution is stated by reaching a final
location. The dynamic instantiation of callable timed automata leads to build-
ing the structure of the system on the fly: the system has different numbers of
instances on different executions and at different dates.

The dynamic feature of such an instantiation is suitable to model object-
based systems, ad-hoc networks, fault tolerant and DataBase Management sys-
tems (DBMS) where components (objects, hosts, processes) are created on the

fly. For example, in the case of DataBase Management systems, when the exe-
cution of a process requires to read data from a database, it calls the Reader
module of DBMS by creating an instance of the former to fetch data.

3.4 Example 2 (Dynamic Instantiation)

The sieve of Eratosthenes is a simple algorithm for finding all prime numbers up
to a given integer M . Given a list of numbers, the algorithm iteratively marks
as a non-prime the multiples of each prime, starting with the multiples of 2. It
runs across the table until the only numbers left are prime.

Fig. 2. The sieve of Eratosthenes

As depicted in Figure 2, we have imple-
mented this algorithm by the parallel com-
position of 2 automata: main and element.
In fact, we model the table elements by
the automaton so-called element. Each
instance of template element is parame-
terized by a natural number (1 of tem-
plate main) which states its identifier, and
another integer number (2 of template
main) to retrieve its prime number. More-
over, each instance has 2 local variables:
self to store its identifier (parameter), and
myprime to store the value of the corre-
sponding prime number (parameter). To
allow the communication of instances, we
declare a vector next of M channels.

The system is managed by another
automaton so-called main, which creates
the first instance of automaton element.
Such an instance gets as effective parame-
ters the identifier of the first instance (1),
and the corresponding prime number (2).
After that, automaton main increments
iteratively the number n to be checked and
sends it to that instance (of template element) through channel next[1] 2.

Once the system is triggered, the automaton main moves from location start
to location gen (generate) by executing the call action call element(1, 2), and
updating n to 3. Such a call creates the first instance of template element, which
is identifiable by self = 1 and myprime = 2. This instance performs a return to
unlock its caller and moves to its location own. The automaton main sends the
first value n to be checked to the newly created instance, of template element,
on channel next[1]. Through the reception of the first message next[self]?m, the

2 In fact, channels next are parameterized by the number to be checked. We may
consider shared variables to implement the data communication over channels.

current element instance checks whether or not the received value of m is a
multiple of its own prime number myprime.

If m is a multiple of myprime then the received value of m will be ignored,
and the current instance of element moves back from location check1 to location
own. Otherwise, the current instance of template element requests the creation
of another instance, through the statement call element(self + 1,m), and moves
to location succ (successor). At this level, the first instance of element is waiting
for the reception of another number to be checked, sent by main. On a reception
next[self]?m of a new value which is not a multiple of myprime, the instance
of element sends that value to its successor instance via channel next[self + 1],
which corresponds in this case to next[2]. Similarly, each new instance of element
behaves in the same way as the first one. Herein, one can distinguish that each
new number, sent by automaton main, crosses a sequence of element instances
until it is dropped, the case of a multiple of a discovered myprime, or registered
as a new prime number with the creation of a new instance of template element.

4 Timed Automata Extension

The modeling and verification of real-time systems, via timed automata, are
mature topics to which a large amount of work has been devoted during the
last two decades. However, the modeling and verification of dynamic real-time
systems, where the topology (global architecture and number of components)
may change during the execution of systems, constitute a perspective and an
active field of research.

Fig. 3. Semantics and translation of CTA

In this section, we give the for-
mal basis of callable timed automata
(CTA) where transition actions can
be internal, external, a call of
another callable timed automaton, or
again a return. Then, we show how
callable timed automata can be trans-
lated to UPPAAL ones, and estab-
lish an important result stating that
the semantics of CTA and that of
their translation to UPPAAL timed
automata are bisimilar (Figure 3). In
fact, the translation enables us to reuse
the UPPAAL toolbox for the verifica-
tion of dynamic timed systems mod-
eled with CTA. Let us introduce the
following notation.

Notation. We assume a universe V of variables. To each variable v ∈ V we
associate a nonempty set of values, referred to as the type of v and denoted
type(v). Moreover, we associate to each variable v ∈ V a default initial value

d0
v ∈ type(v). A variable v whose type equals the set R≥0 of non-negative real-

numbers is called a clock. We assume that the default initial value of all clocks
equals 0. Let V ⊆ V be a set of variables.

– A valuation of V is a function that maps each variable to an element of its
type. We use V al(V) to denote the set of valuations of V .

– E(V) defines the set of expressions built over V . To each expression e ∈ E(V)
we assign a type type(e). Each expression induces a state transformer, that
is, [[e]] : V al(V) → V al(V). We call an expression side effect free if [[e]] is the
identity function. Each expression also denotes a value for any valuation:
〈〈e〉〉 : V al(V) → type(e).

– P(V) defines the set of predicates built over V . If φ is a predicate over V

then [[φ]] : V al(V) → Bool gives the truth value of φ for any given valuation
of V .

– For a function f defined on a domain dom(f), we write f⌈X the restriction
[8] of f to X, that is the function g with dom(g) = dom(f) ∩ X such that
g(z) = f(z) for each z ∈ dom(g).

– Two functions f and g are compatible [8], denoted f♥g, if they agree on
the intersection of their domains, that is, f(z) = g(z) for all z ∈ dom(f) ∩
dom(g).

– We denote by f ⊲ g the left overriding function defined on dom(f ⊲ g) =
dom(f) ∪ dom(g) where f overrides g for all elements in the intersection of
their domains. For all z ∈ dom(f ⊲ g),

(f ⊲ g)(z) ,

{

f(z) if z ∈ dom(f)
g(z) if z ∈ dom(g) − dom(f)

Similarly, we define the dual right overriding operator by f ⊳ g , g ⊲ f .
– We define f ‖ g , f ⊲ g when f and g are compatible.

4.1 UPPAAL Timed Automata

UPPAAL is an integrated tool environment for editing, simulating and model
checking real-time systems modeled as networks of timed automata. The tool
has been used successfully and routinely for many industrial case studies. Nev-
ertheless, a shortcoming of UPPAAL is that it can only describe static network
topologies, and does not incorporate a notion of dynamic process creation. More-
over, UPPAAL does not incorporate a notion of one automaton calling another,
like a function, even though this last concept can be encoded within UPPAAL
using a pair of handshakes.

In fact, UPPAAL timed automata [6] are extensions of the classical ones [1]
where one level hierarchy of local/global variables, committed locations, commu-
nication and priorities have been introduced. Besides, in the UPPAAL language
timed automata are defined within a global common context.

Definition 1. (Global context) A global context C = 〈Σ,V g, Initg, C〉 con-
sists of a finite set of automata names Σ ⊆ T , a finite set of global variables

V g ⊆ V, the initial valuation Initg of global variables V g and a finite set of
channels C.

Throughout this paper we do not distinguish between clock and normal variables.
Each variable of V is either a clock or a normal variable. By now, we give the
structure of a timed automaton defined on a global context.

Definition 2. (Timed automaton) Given a global context C, a timed automa-
ton (TA) is a tuple 〈Q, q0,K, V l, Initl, Inv,→〉 where Q is the set of locations,
q0 ∈ Q is the initial location, V l is the set of local variables, Initl is the ini-
tial valuation of local variables, Inv : Q → P(V) associates an invariant to each
location, K ⊆ Q is a set of committed locations, and →⊆ Q×P(V)×Λ×E(V)×Q

is the transition relation, where V = V l ∪ V g and Λ = C? ∪ C! ∪ {τ}.

For the sake of simplicity, we write q
G/λ/a
−−−−→ q′ for (q,G, λ, a, q′) ∈→. The

composition of timed automata, so-called networks of timed automata (NTA),
enables to model a system as a flat set of interconnected components. Each
component (TA) interacts with its external environment through communication
on shared variables and synchronization of actions.

In a variant of UPPAAL called UPPAAL-Port [17], hierarchical compositions
are enabled whereby the system can be modeled as a set of components. Each
component may encapsulate other components. Several proposals [6,8,11,14]
studying the composition of UPPAAL timed automata have analyzed their prop-
erties. The authors of [6] define a non compositional semantics of UPPAAL NTA.
In [8,11], the authors define a compositional semantics of NTA and establish some
properties like the preservation of system invariants. In [14,20], the semantics of
TA composition is not compositional because the product of TA semantics is
not associative. Counter-examples are given in [7,9].

4.2 Callable Timed Automata

Callable timed automata provide a formal framework for the modelling and
analysis of dynamic timed systems. In fact, the concept of callable timed
automata enables, for a set of processes, to model a common behavior as an
automaton callable by any other process originally performing such a behavior.

Unlike UPPAAL callable C-functions, a callable timed automaton can inter-
act with the other components and call other callable automata. However, in the
case of static instantiation, in order to avoid deadlock due to mutually dependent
executions, a callable timed automaton cannot call its own hierarchical calling
components. In fact, for the static interpretation, the calling component cannot
progress while its current callee component is running. Once the callee TA exe-
cution is over, the corresponding calling component may resume the control and
continue its execution. However, for the dynamic instantiation, after perform-
ing a return to unlock its calling component, a callee component may progress
together with the execution of its calling component. Thus, in the static instan-
tiation, the return action represents the end of the call execution of callable TA

whereas, in the dynamic instantiation, it is considered as an ordinary action.
Obviously, a system of CTA must contain at least one triggering TA (root) to
activate CTA.

We assume a universe T of automata names, and associate to each automaton
name T ∈ T a return type R(T), the number of instances to be created I : T →
N>0 ∪ {∞} and a formal parameter pT ∈ V. In fact, the maximal number of
instances to be created for each template is either a strictly positive number
(> 0) if the template is statically instantiable, or an infinity (∞) in the case of
dynamic instantiation.

In this paper, we only consider automata with a single formal parameter.
Automata with multiple parameters may be encoded using variables of type
vector, record or union in the same way as simple types and without affecting
our framework.

We introduce expressions of type automaton and write E(T ,V) for the set of
expressions {T (e) | T (pT) ∈ Σ ∧ e ∈ E(V) ∧ type(e) = type(pT) ∧ e is side effect
free}. Formally, a callable timed automaton is given by:

Definition 3. (Callable timed automaton) Let C = 〈Σ,V g, Initg, C〉 be a
global context. A callable timed automaton (CTA) for C is a tuple 〈T,Q, q0, F, V l,

Init, Inv,→〉 where Q, q0, Initl and Inv are the same as for TAs:

– T ∈ Σ is the automaton name,
– F ⊆ Q a set of final locations,
– V l ⊆ V is a set of local variables; we require V g ∩ V l = ∅, pT ∈ V l, and

write V = V g ∪ V l,
– →⊆ Q × P(V) × Λ × E(V) × Q is the transition relation which, for each

transition, consists of a source location, a guard, a label, an action and a
target location. Here Λ = C? ∪ C! ∪ {τ} ∪ (V × Σ × E(V)) ∪ E(V) is the
set of transition labels. Each transition label can be a synchronization on a
channel, an internal event, a call of another automaton, or a return action.

We write q
G/λ/a
−−−−→ q′ for (q,G, λ, a, q′) ∈→. Moreover, if λ = (x, T ′, e) ∈

V × Σ × E(V) then we refer to the transition as a call transition and write

q
G/x:=call T ′(e)/a
−−−−−−−−−−−−→ q′. In this case, we require that type(e) = type(pT ′) and

type(x) = R(T ′). Similarly, if λ = e ∈ E(V) then we refer to the transition

as a return transition and use the notation q
G/return(e)/a
−−−−−−−−−→ q′. In this case we

require that type(e) = R(T). Intuitively, via a call T ′(e)-transition automaton
T calls automaton T ′ with a parameter value that can be obtained by evaluat-
ing expression e. A return(e)-transition is used to return the value of expres-
sion e. If the return type of an automaton T is void, we use return() and just
keep call T (E) to call the automaton T , omitting the assignment “x :=”. Fur-
thermore, callable timed automata should satisfy the following wellformedness
conditions: final locations do not have outgoing transitions, and return actions
are side effect free. We call subprogram a CTA of which each return transition
leads to a final location. Moreover, we associate to each automaton name a CTA
template (record): D : T → CTA.

4.3 Translation of Callable TA to UPPAAL TA

In order to reuse the UPPAAL toolbox, we translate callable timed automata to
UPPAAL TA. Hence, as stated in the previous section, to make the translation
and implementation of CTA easier the user provides the nature of each template
instantiation. In fact, through I(T) the user states whether the template T is
instantiable statically or dynamically. Moreover, the user specifies the number
of instances to be created, for each template, in the case of static instantiation.
Since calling and callee components may not access each others local variables,
we consider the UPPAAL communication through shared variables.

As shown in Figure 4, for translating the calling transition q
x<=0/y:=call T (e)/
−−−−−−−−−−−−−→

q′, the expression e is assigned to a new shared variable param 3. Thereafter,
the value of such a shared variable will be copied into the local variable pT ∈ V l

of the callee automaton (T (pT) ∈ Σ), as depicted in the bottom of Figure 5.

Fig. 4. The translation
of calls

Mainly, the translation consists of splitting each
calling transition of CTA into two synchronizing tran-
sitions, as shown in Figure 4. The first transition is an
output on a particular channel cal, to activate the cor-
responding callee CTA, which engages with the assign-
ment of expression e to shared variable param, whereas
the second transition is an input on a particular chan-
nel ret, with the assignment of value result to variable
y requesting the call. The execution of the former tran-
sition states the termination of the call execution. Both
transitions, resulting from the translation of a call, are
linked through a new intermediate location qint rela-
tive to each pair (y, t), where t is the original calling
transition and y is the variable requesting the call. In

fact, we use the notation t : q
G/λ/a
−−−−→ q′ to state that t is the current transition

name, which will be used to reference this transition.
In Figure 5, we show how the structure of a callable automaton (top) can

be translated to that of an UPPAAL one (bottom). The translation consists
of adding a new initial location qinit as the triggering point (activation) of the
corresponding UPPAAL TA. This location will be linked to the original ini-
tial location q0 of CTA through an input synchronizing transition on channel
cal[T], engaging with the assignment of shared variable param to the CTA local
variable p, dedicated to receive the parameter value.

When it meets a return event, the callee CTA yields its result to its calling
through a synchronizing transition on channel ret[T], which assigns the result r

to shared variable result and unlocks the calling component. Moreover, all CTA
final locations are linked to newly inserted location qinit via an empty committed
transition in order to make CTA available for other calls.

3 In fact, the type type(param), resp type(result), is the union of all of the parameter,
resp return, types used in the model.

Remark. We have associated to each callable timed automaton T a pair of chan-
nels (cal[T], ret[T]). Such channels can be used by any other automaton T ′

intending to call automaton T . Moreover, the set of parameters {param}, respec-
tively {result}, depends on the number and types of call, respectively return,
parameters. Such variables are re-used for the whole model because the synchro-
nizations on cal and ret channels are atomic transitions.

Definition 4. (TA corresponding to a CTA) Given a CTA 〈T,Q, q0, F, V l,

Initl, Inv,→T 〉 for a global context C = 〈Σ,V g, Initg, C〉 with T (pT) ∈ Σ, its
translation to a TA is defined by 〈Q ∪ Qint ∪ {qinit}, qinit, F, V l, Initl, Inv′,→〉
over the global context 〈Σ,V g ∪ {param, result}, Initg, C ∪ {cal, ret}〉 where
Inv′(q) = Inv(q) if q ∈ Q else true and → is the smallest relation such that:

q
G/λ/a
−−−−→T q′ λ ∈ C! ∪ C? ∪ {τ}

q
G/λ/a
−−−−→ q′

Action
q ∈ F

q
⊤/τ/skip
−−−−−−→ qinit

Restart

qinit
⊤/cal[T]?/pT :=param
−−−−−−−−−−−−−−→ q0

Activate
q

G/return(e)/a
−−−−−−−−−→T q′

q
G/ret[T]!/result:=e,a
−−−−−−−−−−−−−−→ q′

Return

t : q
G/x:=call T ′(e)/a
−−−−−−−−−−−−→T q′

q
G/cal[T ′]!/param:=e
−−−−−−−−−−−−−−→ qt

⊤/ret[T ′]?/x:=result,a
−−−−−−−−−−−−−−−→ q′

Call

where skip is an empty action (identity), Qint = {qt | t : q
G/x:=call T ′(e)/a
−−−−−−−−−−−−→ q′}

is a set of intermediate locations introduced when splitting the calling transitions
as shown in Figure 4, and qinit is the new initial location of the resulting TA,
again illustrated in Figure 5.

Fig. 5. TA of a CTA

In fact, this definition translates a CTA and its global
context to a timed automaton, where the final locations
are marked committed in order to get instances immedi-
ately available after the end of each call. Each instance of
the template T is processed in the same way. Therefore,
the translation of a CTA is a network of timed automata
defined on the translation of the global context C where
to each instance of the CTA T corresponds a TA.

Transition rule Action states that non calling transi-
tions of the CTA are held without any change in the cor-
responding translation. Rule Restart enables the result-
ing TA to join its new initial location qinit from each final
location. Via rule Activate, the execution of a callable
TA translation is activated through an enabled (guard =
⊤) synchronizing transition. The former leads to reach
the old initial location q0 of the CTA, and updates the
value of parameter pT according to value of variable

param. Rule Return states that whenever a callable automaton emits a return

event, its translation yields the results to its calling (parent) TA through a syn-
chronization on channel ret, with the assignment of result e to shared variable
result. Finally, rule Call is explained via Figure 4.

In the same way, the translation of a network of CTA, defined by a root CTA,
a set of template definitions D and the maximal number of instances associated
to each template I which is supposed to be bounded, is a NTA containing the
translation of each CTA replicated according to their number of instances.

In the case of dynamic-instantiable CTA (infinite number of instances), for
each CTA T we choose a finite number nT of instances for each infinite number
I(T), then we translate the new CTA model to UPPAAL. Thus, if the number
of simultaneously active instances of each T is lower than the corresponding
chosen number, the properties of the checked TA model are those of the original
CTA model. In order to check that the chosen numbers are sufficient, we use the
UPPAAL model-checker to prove that for each T there always exists an instance
in its initial state.

Otherwise, we retry with higher values nT , for each T whose the number
of instances has been reached, and redo the checking process. However, such a
process may not terminate. A perspective of this section is to provide a tool
for inferring automatically the sufficient number of instances for each dynamic-
instantiable CTA. Such a tool could be based on the decision procedure for the
boundedness of Petri nets.

5 Semantical Model: TTSs

In order to ensure the translation correctness, we define the semantics of both
UPPAAL timed automata and callable TA in terms of timed transition systems
(TTS). We study then the bisimilarity between the CTA direct semantics and the
translation-based one. In fact, we study the bisimilarity between the semantics
of CTA composition and that of their translation, defined in a compositional
way. To this end, we extend timed transition systems with local and global
variables, and review their timed bisimulation relation and associative product,
according to [8]. Moreover, we consider the static priority Committedness, which
is useful to specify that certain behaviors need to be executed atomically, without
interleaving of lower priority behaviors from other components. In general, the
states of a TTS constitute a proper subset of the set of all valuations of the
state variables. This feature is used to model the concept of location invariants
in timed automata.

Definition 5. (TTS) A Timed Transition System over a set of channels C is
a tuple 〈G,L, S, s0,→〉 where G and L are respectively the sets of global and local
variables, S ⊆ V al(V) is the set of states with V = G∪L, s0 ∈ S the initial state
and →∈ S × (C!∪C?∪{τ}∪∆)×B×S is the transition relation. ∆ is the time
domain and B states whether or not a transition is committed. A state s of a
TTS is called committed, denoted Comm(s), if it enables an outgoing committed
transition (s, l,⊤, s′).

Furthermore, a TTS must satisfy a wellformedness condition : in a commit-
ted state neither time-passage steps nor uncommitted τ may occur. Thus, time
transitions (with labels in ∆) are non committed.

In fact, the state space S will be used to encode the location invariants of timed

automata. Here and elsewhere, we write s
λ,b
−−→ s′ for a transition 〈s, λ, b, s′〉 ∈→

linking the state s to another state s′ through an event λ and having the commit-
tedness priority b. This former is considered to be false (⊥) if absent. Formally,
the predicate Comm is defined by:

Comm(s) =

{

⊤ If ∃ λ s′ | s
λ,⊤
−−→ s′

⊥ Otherwise

Through location committedness, certain (lower-priority) behavior are ruled out
which may lead to serious reductions in the state space of a model. By now, we
define the simulation relation of TTSs [8]. In fact, such a relation is used to show
whether a TTS implements another. The simulation relation can be established
through the inclusion of traces where, from a common state, we check that each
transition of the simulated system can be triggered in the simulating one.

Definition 6. (Timed step simulation) Given two TTSs T1 and T2 having
the same set of global variables, we say that a relation R ⊆ S1 × S2 is a timed
step simulation from T1 to T2, provided that s0

1Rs0
2 and if s R r then

– s⌈G1 = r⌈G2,
– ∀u ∈ V al(G1) : s[u]R r[u],
– if Comm(r) then Comm(s),

– If s
λ,b
−−→ s′ then either there exists an r′ such that r

λ,b
−−→ r′ and s′Rr′, or

λ = τ and s′Rr.

where s[u] states the update of state s according to valuation u. We write T1 � T2

when there exists a timed step simulation from T1 to T2. In fact, such a definition
maps each transition of T1 to a transition of T2 given that global variables have
the same valuations. Accordingly, T1 and T2 are bisimilar if there exists a timed
step simulation R from T1 to T2 such that R−1 is a timed step simulation from
T2 to T1. In order to study the semantics of timed automata composition, we
define the product of TTSs, according to [8], which is a partial operation that is
only defined when TTSs initial states are compatible, i.e. s0

1♥s0
2.

Definition 7. (Parallel composition of TTSs) Given two TTSs T1 and T2

with s0
1♥s0

2, their parallel composition T1 ‖ T2 is defined by the tuple 〈G,L, S,

s0
i ,→〉 where G = G1 ∪ G2, L = L1 ∪ L2, S = {r ‖ s | r ∈ S1 ∧ s ∈ S2 ∧ r♥s},

s0 = s0
1 ‖ s0

2 and → is the smallest relation such that:

r
λ,b
−−→i r′

r ‖ s
λ,b
−−→ r′ ⊲ s

Ext
r

τ,b
−−→i r′ Comm(s) ⇒ b

r ‖ s
τ,b
−−→ r′ ⊲ s

Tau

r
c!,b
−−→i r′ s[r′]

c?,b′

−−−→j s′ i 6= j

Comm(r) ∨ Comm(s) ⇒ b ∨ b′

r ‖ s
τ,b∨b′

−−−−→ r′ ⊳ s′
Sync

r
δ
−→i r′ s

δ
−→j s′ i 6= j

r ‖ s
δ
−→ r′ ‖ s′

Time

i, j range over {1, 2} and b, b′ range over B. The set of variables of the product is
simply obtained by the union of both component variables. Moreover, the states,
respectively initial states, of the product are obtained by merging the states,
respectively initial states, of individual TTSs. The notation Comm(q) ⇒ b with

t : s
λ,b
−−→i s′ states that t must be committed if there exists another outgoing

committed transition from s. Otherwise stated: a transition cannot be hidden
by a lower-priority transition.

Rule Ext represents potential synchronizations that the TTS Ti may be
willing to engage in with its environment. The committedness of such transitions
is not checked because it may be that a compatible committed transition will
synchronize with the current transition of Ti making then the resulting transition
committed. Rule Tau induces an internal transition of the composition from an
internal transition of a component Ti. Rule Sync describes the synchronization
of components Ti and Tj on channels c ∈ C if their labels are compatible, and
the input transition is still triggerable according to the valuation associated to
the output transition target state r′. The resulting transition, labelled by the
internal event τ , is committed if at least one of the involved transitions (output,
input) is committed. Hence, a non-committed synchronization may only occur if
both components are in uncommitted states. Finally, rule TIME states that a
delay δ of the composition may occur when both components perform a delay δ.

Theorem 1. (Associativity) Let T1, T2 and T3 be TTSs with their initial
states pairwise compatible, then (T1 ‖ T2) ‖ T3 = T1 ‖ (T2 ‖ T3).

In the following, we define the semantics of UPPAAL timed automata
through TTS where committed transitions of TTS are those outgoing from TA
committed locations.

Definition 8. (TTS semantics of a TA) Given a global context C = 〈Σ,V g,

Initg, C〉, the TTS associated to a timed automaton 〈Q, q0,K, V l, Initl, Inv,→ta〉
is defined by 〈V g, V l ∪ {loc}, S, s0,→〉 where loc is a fresh variable with type
Q, W = V g ∪ V l ∪ {loc}, S = {v ∈ V al(W) | v |= Inv(v(loc))}, s0 =
Initg ∪ Initl ∪ {loc 7→ q0} and the transition relation is defined by:

q
G/λ/a
−−−−→ta q′ s(loc) = q s |= G b ⇔ (q ∈ K)

s
λ,b
−−→ a(s ⊳ {loc 7→ q′})

Act
s(loc) 6∈ K

s
δ,⊥
−−→ s ⊕ δ

Time

We have introduced a new local variable loc to state the TA current location.
Each state of the TTS corresponds to a valuation of TA variables where the
invariant of the corresponding location holds. Moreover, the TTS transitions are
inferred from the transitions and locations of TA. In fact, rule Act states that
to each TA transition, we associate a TTS transition if the current location loc

corresponds to the source location q of TA transition, and the TTS current state
s satisfies the guard G of the TA transition. Through rule Time, we associate
to each non-committed location of TA a TTS non-committed transition. The
former adds an amount δ to all clock variables. One may distinguish that Time

transitions do not update local states and non-clock variables.

6 Semantical Interpretations

By now, we define the semantics of callable timed automata instantiation in
terms of TTS. In fact, such a semantics considers a callable automaton (tem-
plate) together with its instances. Mainly, we distinguish two different instan-
tiations: static and dynamic. In fact, the static instantiation corresponds to
implement each callable template through a finite (constant) number of instances,
may be initially created, whereas the dynamic instantiation of a callable automa-
ton consists of creating a (possibly infinite) set of instances on the fly when
executing the system. Each instantiation mechanism is suitable for a given kind
of applications, whereby the modelling of systems becomes much more natural.
Let us introduce the following elements:

– We extend the set of locations by introducing, for each calling transition t a
new location t. Such a location will be used to wait for a return of the call
made over transition t.

– In order to distinguish between different instances of the same template, a
fresh identifier Id is assigned to each instance.

– We introduce a new local variable templ such that, an instance Id is an
instantiation of the template T if Id.templ = T .

– We have also introduced a new local variable ParId in order to identify for
whom (parent identifier) an instance (Id) performs a return. In fact, the
variable Id.ParId stores the identifier of the current caller of Id.

– The local variables of instance Id are renamed by prefixing each one by the
identifier Id.

– The notation [[e]]Id
s states the valuation of expression e according to state s,

where the template local variables occurring in e are replaced by the corre-
sponding local variables of instance Id.

Definition 9. (CTA instantiation semantics) Given a global context C =
〈Σ,V g, Initg, C〉, the instantiation semantics of the callable timed automaton
〈T (pT), Q, q0, F, V l, Initl, Inv,→T 〉 is defined by the TTS 〈V g, Id.V l ∪ Id.

{loc, templ,ParId}, S, s0,→〉 4 over the set of channels C where Id = fresh(∅)
is the identifier of the initial instance, S = {s ∈ V al(W) | s |= Inv(s(locT))},
s0 = Initg ∪ Initl ∪ {Id.loc 7→ q0}, W = V g ∪

⋃

i∈I(T){Idi.V
l ∪ {Idi.loc, Idi.

templ, Idi.ParId} and → is the smallest relation such that:

q
G/λ/a
−−−−−→T q′ s(Id.templ) = T s(Id.loc) = q s |= G

s
λ,⊥
−−−→ aId(s ⊳ {Id.loc 7→ q′})

Act
s(Id.loc)

return
9

s
δ,⊥
−−→ s ⊕ δ

Time

t : q
G/v:=call T ′(e)/a
−−−−−−−−−−−−−→T q′ s(Id.templ) = T s(Id.loc) = q

s |= G Card{Id | Id.loc ∈ dom(s)} < I(T ′) Id′ := fresh(s)

s
τ,⊥
−−→ s ⊳ {Id.loc 7→ t } ‖ Init Id′ ‖ fInitl(Id′, T ′)

Call

s(Id.loc) ∈ D(s(Id.templ)).F

s
τ/⊥

−−−→ s/Id

Destroy

s(Id.loc) = t s(Id′.loc) = q s(Id′.templ) = T

q
G/return e/a
−−−−−−−−−−→T q′ s |= G s(Id′.ParId) = Id

s
τ,⊤
−−→ t.aId(aId′ (s ⊳ {Id.loc 7→ t.q′, Id′.loc 7→ q′, t.v 7→ [[e]]Id′

s }))
Return

where Init Id′ = {Id′.pT ′ 7→ [[e]]Id
s , Id′.ParId 7→ Id, Id′.templ 7→ T ′, Id′.loc

7→ D(T ′).q0} is the initialization of parameters and newly created variables of
instance Id′ (rule Call), and the function fInitl(Id′, T ′) =‖v∈D(T ′).V l {Id′.v 7→

D(T ′).Initl(v)} is the initialization of the instance original local variables accord-
ing to the initial valuation Initl of its template D(T ′) identified by T ′.

The semantics of the CTA instantiation is given through the former defini-
tion together with the TTS product. It consists of compiling dynamically CTA
instances to TTSs and computing simultaneously the parallel product of these
TTSs. In fact, the semantics of a CTA T creates the first instance of T . Such
an instance is recognizable by a fresh identifier Id = fresh(∅). The set of local
variables of the underlying TTS corresponds to the union of the local variables
of all instances of T that can be created according to the maximal number of
instances I(T) i.e., (

⋃

i∈I(T){Idi.V
l), together with the newly introduced vari-

ables (Idi.loc, Idi.templ, Idi.ParId). Moreover, TTS states are partial func-
tions where only variables of created instances are valued.

About transitions, rule Act states a non-calling transition of an instance Id

of template T (Id.templ = T) if the current location of Id corresponds to q.
Such a transition is enabled if the current source state s satisfies the guard G,
and consists of updating local and global variables according to action aId, with
a jump to location q′. The update action aId is a rewriting of action a where the
local variables of template T , occurring in a are replaced by that of instance Id.

4 Id.E = {Id.e | e ∈ E} consists of prefixing each variables e ∈ E by the identifier
Id of a CTA instance. Such a renaming is used to distinguish between variables
of different instances, in particular between instances of the same template where
variables have the same original names.

Rule Time corresponds to a delay of an instance Id from state s. The notation

q
return

9 states the absence of outgoing transitions labelled with a return event,
from location q. Implicitly, return events have priority over others. Thus, we do
not allow delays from locations having outgoing transitions labelled by a return.
Such a restriction is useful to enable instances unlocking their callers once they
reach a state having an outgoing return.

After checking that the current location loc of an instance Id of template
T corresponds to location q, the current state s satisfies the guard G, and the
cardinality of the current set of the callee template (T ′) instances does not
cross up the maximal number allowed for this template i.e., Card{Id | Id.loc ∈
dom(s)} < I(T ′), rule Call creates a new instance Id′ of the callee template T ′.
Such a newly created instance is concurrently run with its calling instance Id of
template T , and has the parent (calling) instance identifier ParId = Id. Without
executing the update action a, the calling instance Id moves to an intermediate
location t waiting for a return. The update action a is stored in location t, and
will be applied after assigning the result returned by Id′ to variable v. On its
creation, the instance Id′ initializes its parameter and its new local variables
(loc, templ,ParId) according to Init Id′, and also initializes its original local
variables V l according to fInitl.

Rule Destroy states that an instance Id will be destroyed when it reaches a
final location. Such a destruction consists of removing the variables and locations
of Id from the system state.

Rule Return specifies how an instance Id′ of template T performs a return,
for its calling instance Id waiting on an intermediate location t. In fact, after
ensuring for whom (Id′.ParId = Id) the return action should be made, the
instance Id′ yields the result expression e, evaluated to [[e]]Id′

s according to the
valuation of state s, to its calling (parent) instance Id. The former joins the
target location q′, stored in t.q′, of its calling transition t after the reception
of the returned value t.v = [[e]]Id′

s . Through such a transition, from location t

to t.q′, the update action t.a 5 of the transition t, originally performing the call
of Id′, is applied after the execution of the local action aId′ of the returning
transition and the assignment of [[e]]Id′

s to local variable v of Id.

Remark. One may remark that we have unified both static and dynamic instan-
tiations in one semantics. The difference between both instantiation semantics
can be clearly distinguished over the following condition Card{Id | Id.loc ∈
dom(s)} < I(T ′) of rule Call. In fact, in the dynamic instantiation we can cre-
ate an infinite set of instances because the above condition is always satisfied,
i.e., the maximal number (I(T ′) = ∞) of instances to be created cannot be
reached. Whereas in the static instantiation semantics, we are allowed to create
a new instance if the number of the current active instances does not cross up
the maximal (finite) bound I(T ′).

5 The notation t.v refers to variable v occurring in the left side of the calling transition
t label. Similarly, t.a is the update action of transition t.

Theorem 2. (Subprogram call safety) An instance of a subprogram CTA T

is either in its own initial location q0 or there exists a unique component which
is in a waiting location t associated to a call to T . Formally, the property P

such that P (s) ≡ ∀Id s(Id.loc) 6= D(s(Id.templ)).q0 ⇒ ∃!Id′ ∃!t s(Id′.loc) =
t ∧ s(Id.ParId) = Id′ is an invariant of the system.

Theorem 3. (Instantiation semantics and translation) The semantics of
a system of CTA and TA, defined by the product of TTS associated to its indi-
vidual components and that based on the translation of CTA to TA are bisimilar.

Theorem 4. (Liveness) For an instance Id, a location q with a call as unique
outgoing transition which is locally enabled and such that time elapse is bounded 6,
then the call is eventually accepted. Formally, for each calling location q, we
have: (s(Id.loc) = q) ∧ G ∃Id′ ∃s, (Id′. ParId = Id) ∧ (s(Id′.loc) =
D(s(Id′.templ)).q0), where is the UPPAAL Leads to operator.

Theorem 5. If the NTA translation of a CTA system has always a free instance
for each template i.e., ∀s ∀T

∨

i(s(Idi.loc) = D(T).q0 | Idi.templ = T),
then the TTS associated to the NTA translation and the TTS associated to the
dynamic instantiation semantics of the CTA system are bisimilar.

7 Implementation and Experiments

In order to make our extension profitable, we have designed a Python script

program converting callable timed automata systems to UPPAAL NTA. In fact,
our converter uploads an XML file designed using UPPAAL graphical editor, as
an input where the interface of each CTA states a finite number of instances.
After performing a deeper analysis of callable automata syntax, in particular
template interfaces, call and return transitions, the converter generates the cor-
responding UPPAAL NTA format, written in a new XML file that will be then
reloaded in the UPPAAL tool, as an ordinary system to be analyzed and checked.

The interface of each callable TA is given by the number of instances, the type
of return, the name of template and the set of parameters. That is an example
of a template signature with 3 instances, a void return type, the template name
Use Case and a set of parameters.

3;void Use Case(int ind, int arrival time, int memory usb)

After replicating template instances in the system declaration, according to
the template signatures, the source XML file will be explored template by tem-
plate and transition by transition. For each callable template occurring in a
calling transition, both that transition and the callee template will be translated
as stated in Section 4.3.

6 In UPPAAL, such a property can be enforced by assigning clock ≤ B as an invariant
to this location.

The converter translates each callable TA, occurring in a calling transition,
to a UPPAAL TA by adding an extra synchronizing transition (from qinit to
q0) to activate the automaton, another transition (from a final location to qinit)
to get the instances available for other calls after reaching final locations, a
shared variable to hold the name of the current calling template, and splitting
each calling transition to a sequence of call and return transitions as shown in
Figure 5.

In the case of dynamic interpretation where templates have an infinite num-
ber of instances, we infer a finite (sufficient) number simulating the infinite bound
of each CTA instantiation as stated in Section 4.3. Then, for each call, we reuse
an existing instance instead of creating a new one.

As an application, we have remodeled the Océ printer system using callable
timed automata, where each job (use-case) is modeled by a callable automa-
ton. We consider 6 templates where only 3 are callable (3 CTA). We have
also introduced another template USER to manage the system. The USER
triggers dynamically different jobs at different respective dates. We have suc-
cessfully translated the new model of the Océ system to an UPPAAL NTA,
and also proceeded on the verification of the property stating that all jobs
reach their final locations DONE. Such a property is satisfied by both orig-
inal model [19] and the translation. The Oce protocol with CTA is available
on http://www.irit.fr/ Abdeldjalil.Boudjadar/EXEMPLES/Oce/oce-model.
xml. The corresponding translation is also available on http://www.irit.fr/
∼Abdeldjalil.Boudjadar/EXEMPLES/Oce/oce-translation.xml.

8 Conclusion and Perspectives

Throughout this paper, we have introduced and formalized the concept of
callable timed automata for the modelling and structuring of real-time and
interactive systems. Such a syntactical extension can be interpreted in different
semantical ways: static and dynamic. In the dynamic case, we propose to reuse
UPPAAL by giving bounds to the numbers of simultaneously active instances
of templates. Such a technique can be interesting for the study of population
protocols [3] when the population happens to be bounded.

Thanks to the UPPAAL translation, we have validated our proposal through
an UPPAAL “plugin”.

As a challenging continuation of our work, we envision to consider existing
work related to Petri nets as well as to logics that take into account call and
return like CaRet [2] and Spade [24]. Moreover, we have in mind model
checking support for architecture description languages, where subprograms with
their own resources are considered [16]. Another point worth studying is related
to compositionality. It would be interesting to study how the results of [8] and
[11] could be extended to the context of CTA.

References

1. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

2. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

3. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science 93, 98–117 (2007)

4. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata deter-
minizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 43–54. Springer,
Heidelberg (2009)

5. Beffara, E.: Functions as proofs as processes. CoRR, abs/1107.4160 (2011)
6. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal 4.0. Department of

computer science, Aalborg university (2006)
7. Berendsen, J., Vaandrager, F.: Parallel composition in a paper of Jensen,

Larsen and Skou is not associative (2007), Technical note available at
http://www.ita.cs.ru.nl/publications/papers/fvaan/BV07.html

8. Berendsen, J., Vaandrager, F.: Compositional Abstraction in Real-Time Model
Checking. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp.
233–249. Springer, Heidelberg (2008)

9. Berendsen, J., Vaandrager, F.: Parallel composition in a paper by
de Alfaro e.a. is not associative (2008), Technical note available at
http://www.ita.cs.ru.nl/publications/papers/fvaan/BV07.html

10. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool tina-construction of abstract
state spaces for petri nets and time petri nets. Intl Journal of Production Research
42 (2004)

11. Bodeveix, J.-P., Boudjadar, A., Filali, M.: An alternative definition for timed
automata composition. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 105–119. Springer, Heidelberg (2011)

12. Boudol, G.: Towards a lambda-calculus for concurrent and communicating sys-
tems. In: Dı́az, J., Orejas, F. (eds.) TAPSOFT 1989. LNCS, vol. 351, pp. 149–161.
Springer, Heidelberg (1989)

13. Burns, A., Wellings, A.: Concurrency in Ada, 2nd edn. Cambridge University Press
(1998)

14. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable
interfaces. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 81–
105. Springer, Heidelberg (2005)

15. Engberg, U., Nielsen, M.: A calculus of communicating systems with label passing.
Technical report, Computer Science Department, University of Aarhus (1986)

16. Feiler, P.H., Lewis, B., Vestal, S.: The Sae architecture analysis and design language
(AADL) standard: A basis for model-based architecture-driven embedded systems
engineering. In: RTAS, Workshop, pp. 1–10 (2003)

17. H̊akansson, J., Pettersson, P.: Partial order reduction for verification of real-time
components. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS,
vol. 4763, pp. 211–226. Springer, Heidelberg (2007)

18. Holzmann, G.: Spin model checker, the: primer and reference manual, 1st edn.
Addison-Wesley Professional (2003)

19. Igna, G., et al.: Formal modeling and scheduling of datapaths of digital document
printers. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp.
170–187. Springer, Heidelberg (2008)

20. Jensen, H.E., Guldstr, K., Skou, A.: Scaling up Uppaal:Automatic Verification of
Real-Time Systems using Compositionality and Abstraction. In: Joseph, M. (ed.)
FTRTFT 2000. LNCS, vol. 1926, pp. 19–30. Springer, Heidelberg (2000)

21. Larsen, K.G., Pettersson, P., Wang, Y.: Uppaal in a nutshell. Journal on Software
Tools for Technology Transfert (1997)

22. Milner, R.: Functions as processes. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol.
443, pp. 167–180. Springer, Heidelberg (1990)

23. Nielson, F.: The typed λ-calculus with first-class processes. In: Odijk, E., Rem, M.,
Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366, pp. 357–373. Springer, Heidelberg
(1989)

24. Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of multithreaded dynamic
and recursive programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 254–257. Springer, Heidelberg (2007)

25. Thomsen, B.: A calculus of higher order communicating systems. In: Proceedings
of the 16th ACM Conference POPL 1989, pp. 143–154. ACM (1989)

26. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. CoRR
(2011), Paper available on http://ctp.di.fct.unl.pt/∼lcaires/papers/

27. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin,
W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg
(2010)

28. Warn, F.: Red: Model-checker for timed automata with clock-restriction diagram.
In: Workshop on Real-time Tools (2001)

29. Yovine, S.: Kronos: A verification tool for real-time systems. Journal of Software
Tools for Technology Transfer, 123–133 (1997)

