Tim Van De Cruys
email: tim.vandecruys@irit.fr

Philippe Muller
email: philippe.muller@irit.fr

MELODI: Semantic Similarity of Words and Compositional Phrases using Latent Vector Weighting

In this paper we present our system for the SemEval 2013 Task 5a on semantic similarity of words and compositional phrases. Our system uses a dependency-based vector space model, in combination with a technique called latent vector weighting. The system computes the similarity between a particular noun instance and the head noun of a particular noun phrase, which was weighted according to the semantics of the modifier. The system is entirely unsupervised; one single parameter, the similarity threshold, was tuned using the training data.

Introduction

In the course of the last two decades, vector space models have gained considerable momentum for semantic processing. Initially, these models only dealt with individual words, ignoring the context in which these words appear. More recently, two different but related approaches emerged that take into account the interaction between different words within a particular context. The first approach aims at building a joint, compositional representation for larger units beyond the individual word level (e.g., the composed, semantic representation of the noun phrase crispy chips). The second approach, different but related to the first one, computes the specific meaning of a word within a particular context (e.g. the meaning of the noun bank in the context of the adjective bankrupt).

In this paper, we describe our system for the Sem-Eval 2013 Task 5a: semantic similarity of words and compositional phrases -which follows the latter approach. Our system uses a dependency-based vector space model, in combination with a technique called latent vector weighting [START_REF] Van De Cruys | Latent vector weighting for word meaning in context[END_REF]. The system computes the similarity between a particular noun instance and the head noun of a particular noun phrase, which was weighted according to the semantics of the modifier. The system is entirely unsupervised; one single parameter, the similarity threshold, was tuned using the training data.

Related work

In recent years, a number of methods have been developed that try to capture the compositional meaning of units beyond the individual word level within a distributional framework. One of the first approaches to tackle compositional phenomena in a systematic way is [START_REF] Mitchell | Vector-based models of semantic composition[END_REF] approach. They explore a number of different models for vector composition, of which vector addition (the sum of each feature) and vector multiplication (the elementwise multiplication of each feature) are the most important. [START_REF] Baroni | Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space[END_REF] present a method for the composition of adjectives and nouns. In their model, an adjective is a linear function of one vector (the noun vector) to another vector (the vector for the adjective-noun pair). The linear transformation for a particular adjective is represented by a matrix, and is learned automatically from a corpus, using partial least-squares regression. [START_REF] Coecke | Mathematical foundations for a compositional distributed model of meaning[END_REF] present an abstract theoretical framework in which a sentence vector is a function of the Kronecker product of its word vectors, which allows for greater interaction between the different word features. [START_REF] Socher | Semantic compositionality through recursive matrix-vector spaces[END_REF] present a model for compositionality based on recursive neural networks.

Closely related to the work compositionality is research on the computation of word meaning in context. Erk andPadó (2008, 2009) make use of selectional preferences to express the meaning of a word in context. And [START_REF] Dinu | Measuring distributional similarity in context[END_REF] propose a probabilistic framework that models the meaning of words as a probability distribution over latent factors. This allows them to model contextualized meaning as a change in the original sense distribution.

Our work takes the latter approach of computing word meaning in context, and is described in detail below.

Methodology

Our method uses latent vector weighting (Van de [START_REF] Van De Cruys | Latent vector weighting for word meaning in context[END_REF] in order to compute a semantic representation for the meaning of a word within a particular context. The method relies upon a factorization model in which words, together with their window-based context features and their dependency-based context features, are linked to latent dimensions. The factorization model allows us to determine which dimensions are important for a particular context, and adapt the dependency-based feature vector of the word accordingly. The modified feature vector is then compared to the target noun feature vector with the cosine similarity function.

This following sections describe our model in more detail. In section 3.1, we describe nonnegative matrix factorization -the factorization technique that our model uses. Section 3.2 describes our way of combining dependency-based context features and window-based context features within the same factorization model. Section 3.3, then, describes our method of computing the meaning of a word within a particular context.

Non-negative Matrix Factorization

Our latent model uses a factorization technique called non-negative matrix factorization [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF] in order to find latent dimensions. The key idea is that a non-negative matrix A is factorized into two other non-negative matrices, W and H

A i× j ≈ W i×k H k× j (1)
where k is much smaller than i, j so that both instances and features are expressed in terms of a few components. Non-negative matrix factorization enforces the constraint that all three matrices must be non-negative, so all elements must be greater than or equal to zero.

Using the minimization of the Kullback-Leibler divergence as an objective function, we want to find the matrices W and H for which the divergence between A and WH (the multiplication of W and H) is the smallest. This factorization is carried out through the iterative application of update rules. Matrices W and H are randomly initialized, and the rules in 2 and 3 are iteratively applied -alternating between them. In each iteration, each vector is adequately normalized, so that all dimension values sum to 1. The factorization that comes out of the NMF model can be interpreted probabilistically [START_REF] Gaussier | Relation between PLSA and NMF and implications[END_REF][START_REF] Ding | On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing[END_REF]. More specifically, we can transform the factorization into a standard latent variable model of the form

H aµ ← H aµ ∑ i W ia A iµ (WH) iµ ∑ k W ka (2) W ia ← W ia ∑ µ H aµ A iµ (WH) iµ
p(w i , d j) = K ∑ z=1 p(z)p(w i |z)p(d j |z) (4)
by introducing two K × K diagonal scaling matrices X and Y, such that X kk = ∑ i W ik and Y kk = ∑ j H k j . The factorization WH can then be rewritten as

WH = (WX -1 X)(YY -1 H) = (WX -1)(XY)(Y -1 H) (5)
such that WX -1 represents p(w i |z), (Y -1 H) T represents p(d j |z), and XY represents p(z). Using Bayes' theorem, it is now straightforward to determine p(z|d j).

p(z|d j) = p(d j |z)p(z) p(d j) (6)

Meaning in Context

Overview

Using the results of the factorization model described above, we can now adapt a word's feature vector according to the context in which it appears. Intuitively, the context of the word (in our case, the dependency-based context feature that acts as an adjectival modifier to the head noun) pinpoint the important semantic dimensions of the particular instance, creating a probability distribution over latent factors. The required probability vector, p(z|d j), is yielded by our factorization model. This probability distribution over latent factors can be interpreted as a semantic fingerprint of the passage in which the target word appears. Using this fingerprint, we can now determine a new probability distribution over dependency features given the context.

p(d|d j) = p(z|d j)p(d|z) (7)
The last step is to weight the original probability vector of the word according to the probability vector of the dependency features given the word's context, by taking the pointwise multiplication of probability vectors p(d|w i) and p(d|d j).

p(d|w i , d j) = p(d|w i) • p(d|d j) (8)
Note that this final step is a crucial one in our approach. We do not just build a model based on latent factors, but we use the latent factors to determine which of the features in the original word vector are the salient ones given a particular context. This allows us to compute an accurate adaptation of the original word vector in context.

Example

Let us exemplify the procedure with an example. Say we want to compute the distributionally similar words to the noun instrument within the phrases (1) and (2), taken from the task's test set:

(1) musical instrument

(2) optical instrument First, we extract the context feature for both instances, in this case C 1 = {musical ad j } for phrase (1), and C 2 = {optical ad j } for phrase (2). Next, we look up p(z|C 1) and p(z|C 2) -the probability distributions over latent factors given the context -which are yielded by our factorization model. Using these probability distributions over latent factors, we can now determine the probability of each dependency feature given the different contextsp(d|C 1) and p(d|C 2) (equation 7).

The former step yields a general probability distribution over dependency features that tells us how likely a particular dependency feature is given the context that our target word appears in. Our last step is now to weight the original probability vector of the target word (the aggregate of dependency-based context features over all contexts of the target word) according to the new distribution given the context in which the target word appears (equation 8).

We can now return to our original matrix A and compute the top similar words for the two adapted vectors of instrument given the different contexts, which yields the results presented below.

1. instrument N , C 1 : percussion, flute, violin, melody, harp 2. instrument N , C 2 : sensor, detector, amplifier, device, microscope

Implementational details

Our model has been trained on the UKWaC corpus [START_REF] Baroni | The wacky wide web: A collection of very large linguistically processed webcrawled corpora[END_REF]. The corpus has been part of speech tagged and lemmatized with Stanford Part-Of-Speech Tagger [START_REF] Toutanova | Enriching the knowledge sources used in a maximum entropy part-of-speech tagger[END_REF][START_REF] Toutanova | Feature-rich part-of-speech tagging with a cyclic dependency network[END_REF], and parsed with MaltParser [START_REF] Nivre | Maltparser: A data-driven parser-generator for dependency parsing[END_REF] The interleaved NMF model was carried out using K = 600 (the number of factorized dimensions in the model), and applying 100 iterations. The interleaved NMF algorithm was implemented in Matlab; the preprocessing scripts and scripts for vector computation in context were written in Python.

The model is entirely unsupervised. The only parameter to set, the cosine similarity threshold φ , is induced from the training set. We set φ = .049.

Results

Table 1 shows the evaluation results of the simple distributional model (which only takes into account the head noun) and our model that uses latent vector weighting. The results indicate that our model based on latent vector weighting performs quite a bit better than a standard dependency-based distributional model. The lvw model attains an accuracy of .75a 6% improvement over the distributional modeland an F-measure of .71 -a 10% improvement over the distributional model.

Conclusion

In this paper we presented an entirely unsupervised system for the assessment of the similarity of words and compositional phrases. Our system uses a dependency-based vector space model, in combination with latent vector weighting. The system computes the similarity between a particular noun instance and the head noun of a particular noun phrase, which was weighted according to the semantics of the modifier. Using our system yields a substantial improvement over a simple dependency-based distributional model, which only takes the head noun into account.

Figure 1 :

 1 Figure 1: A graphical representation of the interleaved NMF

Table 1 :

 1 Results of the distributional model (dist) and latent vector weighting model (lvw) on the SemEval task 5a

	trained on sections
	2-21 of the Wall Street Journal section of the Penn
	Treebank extended with about 4000 questions from
	the QuestionBank 1 , so that dependency triples could
	be extracted.
	The matrices needed for our interleaved NMF fac-
	torization are extracted from the corpus. Our model
	was built using 5K nouns, 80K dependency relations,
	and 2K context words 2 (excluding stop words) with
	highest frequency in the training set, which yields
	matrices of 5K nouns × 80K dependency relations,
	and 5K nouns × 2K context words.

http://maltparser.org/mco/english_parser/ engmalt.html

We used a fairly large, paragraph-like window of four sentences.