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Enhancing sampling-based kinodynamic motion planning for quadrotors

Alexandre Boeuf, Juan Cortés, Rachid Alami and Thierry Siméon

Abstract— The overall performance of sampling-based mo-
tion planning algorithms strongly depends on the use of suitable
sampling and connection strategies, as well as on the accuracy
of the distance metric considered to select neighbor states.
Defining appropriate strategies and metrics is particularly hard
when considering robot dynamics, which is required to treat
constrained motion planning problems for quadrotors. This
paper presents an accurate but computationally fast quasi-
metric to determine the proximity of dynamic states of a
quadrotor, and an incremental state-space sampling technique
to avoid generating local trajectories that violate kinodynamic
constraints. Results show that the integration of the proposed
techniques in RRT-based and PRM-based algorithms can dras-
tically decrease computing time, up to two orders of magnitude.

I. INTRODUCTION

Sampling-based motion planning algorithms [1] explore
the connectivity of the configuration space (or C-space) by
sampling configurations and attempting to connect them to
build an underlying graph whose nodes and edges are feasi-
ble configurations and local paths, respectively. The sampling
method and the steering method (or interpolation method)
used to connect samples are therefore essential components
of this type of algorithms. Most of these algorithms also rely
on a notion of distance on the C-space to define a connection
policy, which is also determinant for the efficiency of the
exploration. In the Rapidly-exploring Random Tree (RRT)
algorithm [2] for instance, expansion bias towards the largest
Voronoi regions is a direct consequence of the nearest
node connection strategy. In Probabilistic Roadmap (PRM)
based algorithms [3], significant efficiency improvements are
obtained by prioritizing connections to nodes according to
their distance to a sampled configuration. Since the topology
of the space being explored is induced by the steering
method, a suitable distance metric in the connection policy
should be correlated to the actual length of the local paths,
rather than using a simple Euclidean distance. Note that
discussions on the importance of the distance metric have
been recurrent since early work on sampling-based motion
planning algorithms [4]. Indeed, this is an open problem that
still motivates the development of new approaches [5].

The motion planning problem becomes even harder when
dealing with under-actuated systems. The problem difficulty
if often circumvented by using a decoupled approach. For
instance, motion planning for quadrotors can be treated this
way: In a first stage, a collision-free path is planned for
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the robot’s bounding sphere. This path is then transformed
into a trajectory that meets both continuity requirements and
the differential constraints [6]. However, for very constrained
problems, this approach is insufficient since there is no solu-
tion path for the bounding sphere. Several approaches have
been proposed to generate local trajectories of quadrotors [7],
[8], but few works tackle the global kinodynamic motion
planning problem [9], which is mandatory in those cases.

Defining appropriate sampling and connection strategies is
indeed more difficult when considering the robot dynamics.
Treating the kinodynamic problem implies to explore the
state space (or X -space) rather than the C-space, which
means also considering derivatives of the degrees of freedom.
Finding the ideal metric in this case may be as hard as
solving an optimal control problem.

This paper builds on our recent work on quadrotor motion
planning [10], which presented a steering method to connect
kinodynamic states of this type of robots, together with first
results on its integration inside a simple RRT algorithm. The
principle of the steering method is recalled in Section II.
Here, we propose a (quasi-)distance metric and a state-space
sampling strategy aimed to significantly improve the perfor-
mance of motion planning algorithms making use of this type
of steering method. Sections III and IV present these two
contributions together with some results that validate their
relevance. Then, results showing the influence of both the
metric and the sampling strategy on the overall performance
of RRT-based and PRM-based planners are presented in
Section V.

II. STEERING METHOD

This section briefly recalls some notions about the state
space of a quadrotor and gives an overview of the steering
method presented in [10]1. The steering method uses fourth-
order splines to generate smooth trajectories between two
arbitrary states of a quadrotor, ensuring continuity up to
the jerk (and therefore, up to the angular velocity), which
is important to facilitate controllability along the planned
trajectories. These trajectories minimize flying time (with re-
spect to the proposed closed-form solution) while respecting
kinodynamic constraints.

A. State space of a quadrotor

A quadrotor is a free-flying object in R3. It has three
degrees of freedom in translation (position of the center
of mass: [x, y, z] ∈ R3) and three in rotation (roll, pitch
and yaw angles: [θ, φ, ψ]). Thus, its configuration space

1The code (C and MATLAB versions) is available upon request.



is C = SE(3). Considering a standard dynamic model,
the system is differentially flat for the outputs [x, y, z, ψ]
(see [8]). This implies that any trajectory in the state of
the flat outputs is flyable if their derivatives are correctly
bounded. We define a kynodynamic state as a vector x =
[x, y, z, ψ, ẋ, ẏ, ż, ψ̇, ẍ, ÿ, z̈, ψ̈] ∈ X . With X the state space:

X = P × V ×A

where P , V and A are intervals of R4. Note that although
there are no actual limits (if friction is neglected) on linear
velocity of the center of mass of a quadrotor, for safety
reasons, it might be interesting to take such limits into
consideration for trajectory planning.

B. Steering method

The steering method we consider provides a solution
(S, T ) to the problem:

[S(0) Ṡ(0) S̈(0)] = x0 ∈ X
[S(T ) Ṡ(T ) S̈(T )] = xT ∈ X

∀t ∈ [0, T ]


Ṡ(t) ∈ V
S̈(t) ∈ A...
S(t) ∈ J....
S (t) ∈ S

(1)

where S is the trajectory in the state of the flat outputs, T
is the total time of the motion and V , A, J and S are zero
centered intervals of R4. Obtaining the time-optimal trajec-
tory is difficult and computationally expensive. This is not
well suited for integration in sampling-based motion planners
since they make extensive use of the steering method (usually
thousands of calls to solve constrained planning problems).
Therefore, we propose a method to compute a trajectory that
approaches the optimal one with a simpler (imposed) shape
enabling a rapid, analytical solution. The method works in
two stages. First a solution is computed independently for
each output x, y, z and ψ. Each solution is a fourth order
spline s(t) with a bang-null snap profile (i.e. a trapezoidal
jerk profile) such that [s(0) ṡ(0) s̈(0)] = [x0i v0i a0i] and
[s(Ti) ṡ(Ti) s̈(Ti)] = [xTi vTi aTi] with Ti ∈ R+ (different
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Fig. 1. Illustration of the seven main temporal phases of the spline for
one output. Red circled dots are the values to be interpolated. Pink dashed
lines are the boundary values for acceleration and velocity.

for each output of index i). These splines are divided into
seven main temporal phases (see Fig. 1). Four of them
(noted A, C, E and H) correspond to acceleration variations.
Phases B and G are constant acceleration phases. The goal
is to maximize acceleration variations in order to reach full
speed as fast as possible and maintain it as long as possible.
Solutions are then synchronized to form the local trajectory
whose total duration is T = max

i=1..4
Ti. Note that this method

can be generalized to various types of systems. For a serial
manipulator, for instance, each degree of freedom would be
treated as a flat output.

III. QUASI-METRIC IN THE STATE-SPACE

A. Motivations

The efficiency of the state-space exploration using ran-
domized kinodynamic motion planning algorithms relies on
a good distance metric. However, as discussed in [9], com-
puting the actual distance between two states is as hard (and
thus as costly) as solving the corresponding optimal control
problem. Our steering method provides a deterministic sub-
optimal solution to such a control problem. Therefore, it
defines a quasi-metric2 M∗SM : (x0,xT ) 7→ T on the state
space. Because of the dynamics of the system, a trajectory in
the state space from x0 to xT is indeed necessarily different
from a trajectory from xT to x0, and thus M∗SM is not
symmetric. Although this steering method is computationally
fast, it is still too costly to be used for nearest neighbor
search inside a sampling-based planner. This section presents
a method to approximate the quasi-metric M∗SM at a very
low computational cost, and presents results that show its
relevance.

B. Approximate quasi-metric

The complexity of the problem (1) defined in Section II
is mainly due to its order (four) and to the inequality
constraints on the derivatives. We propose to solve a simpler
time optimal control problem for the third order (i.e. by
considering the jerk as the control input), in one dimension
and without constraints other than the bounds on the control
input. The problem is then to find for each output of index
i the couple (Si, Ti) such that:

minTi ∈ R+ s.t.
[Si(0) Ṡi(0) S̈i(0)] = [x0 v0 a0] ∈ R3

[Si(Ti) Ṡi(Ti) S̈i(Ti)] = [xTi
vTi

aTi
] ∈ R3

∀t ∈ [0, Ti], |
...
S i(t)| ≤ jmax ∈ R+

(2)

Pontryagin maximum principle (see for example [11]) says
that the optimal control is necessarily saturated, i.e.:

∀t ∈ [0, Ti],
...
S i(t) ∈ {−jmax, jmax}

with at most two control commutations. Solving (2) im-
plies to find Ti and these (at most) two commuta-
tion times, which requires to solve polynomial equations
of maximum degree four. Further details can be found

2A quasi-metric has all the properties of a metric, symmetry excepted.



at http://homepages.laas.fr/aboeuf/iros15annex.pdf. The pro-
posed quasi-metric is then defined as:

MSM : (x0,xT ) 7→ max
i=1..4

Ti

C. Results

Here we present results of an experimental test to validate
the proposed approximate quasi-metric. 104 pairs of kinody-
namic states were randomly sampled in X = [−5, 5]3 ×
[−5, 5]3 × [−10, 10]3, considering J = [−20, 20]3 and
S = [−50, 50]3. Note that, without loss of generality and
for simplification purposes, we consider here a constant yaw.
For each pair (x1,x2), we computed the value M∗SM (x1,x2)
of the quasi-metric induced by our steering method, the
value MSM (x1,x2) given by the proposed approximation,
and the value ED(x1,x2) of the euclidean distance in R3

considering only the position of the center of mass. We
study the distribution of the relative error between M∗SM

and MSM , i.e. the quantity:

REMSM
(x1,x2) = 1− MSM (x1,x2)

M∗SM (x1,x2)

For comparison, we also provide the relative error REED

between M∗SM and ED. Fig. 2 shows histograms of the
distributions of these errors, Tab. I shows key statistical
values of these distributions and Tab. II gives mean CPU
times in milliseconds for a single core of an Intel Xeon
W3520 processor at 2.67GHz.

The low standard deviation of the distribution of the
relative error for the proposed quasi-metric is a measure of
the quality of the approximation. These results also provide
empirical evidence that MSM and M∗SM are equivalent since
for all pairs (x1,x2),

0.16396 ≤ REMSM
(x1,x2) ≤ 0.85540

which implies

1

10
.M∗SM (x1,x2) < MSM (x1,x2) < 10.M∗SM (x1,x2)

This means that MSM and M∗SM are inducing the same
topology on X which means that the cost-to-go defined by
our steering method is correctly evaluated by MSM . This is
clearly not the case for ED.

IV. SAMPLING STRATEGY

This section presents an incremental state-space sampling
technique that increases the probability of generating con-
nectible states. The definition of such states is first presented

TABLE I
DISTRIBUTIONS OF THE RELATIVE ERRORS

Metric MSM ED
Minimum 0.16396 −4.67050
Maximum 0.85540 0.94781

Mean 0.35918 −0.59440
Median 0.32806 −0.52272

Standard deviation 0.10308 0.69674

TABLE II
MEAN CPU TIMES IN MILLISECONDS

M∗
SM MSM ED

1.23× 10−1 5.81× 10−3 1.10× 10−4

together with our motivations. Then the different steps of the
method are presented. Finally some results are provided.

A. Connectible states and motivations

Trajectories generated by the steering method presented in
Section II do not guarantee to respect bounds on the position
of the robot. Such a constraint is typically violated when
samples are close to the boundary of the workspace and the
velocity is high, so that it is not possible to decelerate to
avoid crossing this positional limit. In a similar way, bounds
on velocity can also be violated. If acceleration is too high
and velocity is close to the limit, produced trajectories will be
invalid because velocity can not be reduced in time to meet
the constraints. Note however that the imposed shape for the
trajectories produced by our steering method guarantees that
bounds on acceleration are respected.

We say that a kinodynamic state x̄ ∈ X is forward-
connectible (respectively backward-connectible) if and only
if there is a state x ∈ X such that the local path (x̄,x)
(respectively (x, x̄)) produced by the steering method lies
entirely in X (i.e. respects bounds on position, veloc-
ity and acceleration). A state that is forward-connectible
and backward-connectible is said to be connectible (non-
connectible otherwise). This is illustrated on Fig. 3.

In case of uniform sampling of the state space, non-
connectible states can be generated, and thus, local paths
computed to connect those states have to be discarded a
posteriori by the planner. This is rather inefficient since
generating and testing a local path for validity is a costly
operation. The goal of the sampling technique proposed
below is to notably reduce the probability of generating non-
connectible states, and hence to improve the performance of
planning algorithms.

The sampling technique proceeds in a decoupled and
incremental way. First, acceleration is uniformly sampled.
The idea is then to compute a set of velocity values for
which the state is known to be non-connectible. Velocity is
then uniformly sampled outside this set. Finally, given this
couple (velocity, acceleration) a set of position values for
which the state is known to be non-connectible is computed,
and the position is then uniformly sampled outside this set.

Fig. 3. Examples of non-connectible states in two dimensions. Red squares
are positions and red arrows are velocity vectors. Blue curves are examples
of trajectories. Bounds on position are represented in black. The state on
the left is not backward-connectible. The state on the right is not forward-
connectible.
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B. Sampling velocity

This subsection explains how to compute the set of
velocity values for which the state is known to be non-
connectible, given a uniformly sampled acceleration value
as. Explanations are given for one output. Fig. 4 illustrates
this explanation. Let us denote vmax and amax as the
bounds on the absolute value of velocity and acceleration
respectively. We study acceleration a(t) and velocity v0(t) on
a neighborhood around t = 0 for a(0) = as and v0(0) = 0.
The idea is to apply a saturated acceleration variation and
determine the extrema of v0(t) in this neighborhood. Using
them, we can compute the limits on velocity vs such that
v(t) = v0(t) + vs lies in [−vmax, vmax]. We use notations
defined in section II. For t > 0, phase A of our steering
method is applied. Phase H is applied for t < 0. The
sampled value as locally imposes a direction of variation
of v0(t) on phases A and H . We want to reverse this
direction of variation in minimum time. This is equivalent
to driving a(t) to zero in minimum time. For that, we
set aB = aG = −sign(as).amax. This corresponds to
the highest acceleration variation achievable by our steering
method. Note that, by construction, acceleration is symmetric
during phases A and H (i.e a(−t) = a(t)) and v0(t)
is anti-symmetric (i.e v0(−t) = −v0(t)). Since a(t) is a
second order spline strictly monotonic on phase A, it is
straightforward to compute the unique t0 > 0 such that
a(t0) = 0. The value vbound = vmax − |v0(t0)| is then
the upper bound on the absolute value of vs. This means
that if |vs| > vbound then v(t) = v0(t) + vs will violate the

constraints on velocity. A velocity value vs is then uniformly
sampled in [−vbound, vbound].

C. Sampling position

Given a couple (vs, as) for one output, this subsection
explains how to compute the set of position values for which
the state is known to be non-connectible. Fig. 5 illustrates
this explanation. The principle is similar to the one in the
previous subsection. Velocity v(t) and position x0(t) are
studied around t = 0 for a(0) = as, v(0) = vs and x0(t) =
0. We apply a saturated velocity variation and determine the
extrema of x0(t) in this neighborhood. Using them, we can
compute the limits on position xs such that x(t) = x0(t)+xs
lies in [−xmax, xmax] (bounds on position). For t > 0,
phases A to C of our steering method are applied. Phases
E to H are applied for t < 0. We want to reverse the
direction of variation of the position imposed by vs as fast
as possible. This is equivalent to driving v(t) to zero in
minimum time. For that, we set vD = −sign(vs).vmax

for both phases A to C and E to H . This corresponds
to the highest velocity variation achievable by our steering
method. The only difference here is that neither v(t) nor
x0(t) have symmetry proprieties. We compute t+ > 0 such
that v(t+) = 0 and t− < 0 such that v(t−) = 0. If vs ≥ 0
then x+ = xmax − x0(t+) and x− = −xmax − x0(t−) else
x+ = xmax−x0(t−) and x− = −xmax−x0(t+). A position
value xs is then uniformly sampled in [x−, x+].
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D. Results

We provide here some results concerning the sampling
strategy. The conducted experiment consisted in testing the
validity of local paths computed between uniformly sampled
pairs of states in X = [−5, 5]3× [−5, 5]3× [−10, 10]3, with
J = [−20, 20]3 and S = [−50, 50]3. Yaw was kept constant.
We measured the percentage of valid paths (i.e. which lies
entirely in X ) over 104 calls. We then repeated this operation
using our sampling technique. With uniform sampling only
11.53% of the produced paths were valid. With our sampling
technique 95.58% of the paths were valid. Moreover, we
can test for a given state if each output is respecting the
constraints defined by our sampling technique, i.e. if velocity
lies in [−vbound, vbound] and if position lies in [x−, x+].
When this is not the case we consider that the state is not
connectible. Our sampling technique is obviously generating
connectible states every time whereas with uniform sampling
about 90% of the generated states are not connectible (with
respect to this criteria).

V. INFLUENCE ON PLANNING ALGORITHMS

This section describes variants of RRT and PRM algo-
rithms, and provides some results on the influence of both
the proposed quasi-metric and the sampling strategy on them.
These algorithms are well known, but had to be adapted to
the non-symmetry of the steering method and the associated
quasi-metric. Because of this non-symmetry, the underlying
graph is directed.

A. Directed bi-RRT

In the well known undirected version of the bi-RRT
algorithm [2], two trees TS and TG are constructed in
parallel. TS grows from the start configuration and TG from
the goal configuration. Each iteration for one of the trees
consists of sampling a configuration qrand, finding its nearest
neighbor qnear in the tree (according to a defined metric),
and extending it toward qrand (using a steering method) to
create a new configuration qnew. Each time an expansion
is successful for one of the trees, a direct connection is
attempted between qnew and its nearest neighbor in the
other tree. The algorithm ends if this local path is valid
(i.e. when the trees are connected). In our directed version,
both the steering method and the quasi-metric MSM are non-
symmetric, and thus have to be called taking care of the order
of the two states. The nearest neighbors NS(x̄) and NG(x̄)
of a state x̄ in TS and TG respectively are defined as such:

NS(x̄) = argmin
x∈TS

MSM (x, x̄)

NG(x̄) = argmin
x∈TG

MSM (x̄,x)

For an expansion of TS , we test the local path(
NS(xrand),xnew

)
for validity. In case of success, the

algorithm ends if the local path
(
xnew, NG(xnew)

)
is valid.

For an expansion of TG, the local path
(
xnew, NG(xrand)

)
is

tested for validity, and the algorithm ends in case of validity
of the local path

(
NS(xnew),xnew

)
.

B. Directed PRM

At each iteration of the undirected version of the PRM
algorithm [3], a collision free configuration q is sampled and
added to the graph G. For every connected component Gi

of G, connections are attempted between q and each node
of Gi in increasing order of distance from q until one is
successful. A threshold on this distance can be considered
with the aim to reduce computational cost. In our directed
version, we consider the strongly connected components
Gi of G. Moreover, we maintain during the execution the
adjacency matrix AG of the transitive closure of the graph
of the strongly connected components of G. This square
matrix, whose dimension is the number of strongly connected
components, is defined by AG [i][j] = 1 if a path in G exists
from every node of Gi to every node of Gj and AG [i][j] = 0
otherwise. If AG [i][j] = 1 we say that Gi is connected to
Gj . Note that AG [i][j] = AG [j][i] = 1 if and only if i = j.
At each iteration, a valid state x is sampled and added to G
(which has n strongly connected components). Its strongly
connected component Gn+1 = {x} is added to the matrix
AG . For every connected component Gi of G (i = 1..n),
if Gi is not connected to Gn+1, connections from every
node xj of Gi to x are attempted in increasing order of
MSM (xj ,x) until one is valid. As for the undirected version,
a threshold on the value of MSM can be considered here. AG
is updated if neecessary. Then, if Gn+1 is not connected to
Gi, connections from x to every node xj of Gi are attempted
in increasing order of MSM (x,xj) until one is valid. If used
in single query mode, the algorithm ends when the strongly
connected component of the initial state is connected to the
strongly connected component of the goal state.

C. Results

Results presented below show the influence of the quasi-
metric and the sampling technique on the two previously pre-
sented motion planners. Experiments have been conducted
on two different environments shown in Fig. 6 and for the
same quadrotor whose diameter is equal to 0.54 meters. We
consider V = [−5, 5]3, A = [−10, 10]3, J = [−20, 20]3,
S = [−50, 50]3 (using SI base units). Yaw is kept constant.
The first environment, referred to as boxes, is a cube with
side length of 10 meters filled with box shaped-obstacles of
different sizes. The second environment, referred to as slots,
is also a cube with side length of 10 meters but divided in

Fig. 6. Testing environments (a) boxes (b) slots



TABLE III
B: BOXES, S: SLOTS, P: PRM, R: RRT, M: PROPOSED METRIC, E: EUCLIDEAN METRIC, I: INCREMENTAL SAMPLING, U: UNIFORM SAMPLING

Experiment B.P.M.I. B.P.E.I. B.P.M.U. B.P.E.U. S.P.M.I. S.P.E.I. S.P.M.U. S.P.E.U.
CPU time (s) 0.05648 0.07884 3.284 4.409 1.505 1.220 578.5 444.2

Flying time (s) 8.180 8.772 8.000 8.126 9.074 8.979 8.615 8.387
Number of nodes 12.11 13.77 78.64 88.33 71.93 61.59 767.9 725.8

% of not connectible nodes 0 0 82.53 84.38 0 0 89.11 89.19
Experiment B.R.M.I. B.R.E.I. B.R.M.U. B.R.E.U. S.R.M.I. S.R.E.I. S.R.M.U. S.R.E.U.

CPU time (s) 0.02780 0.04088 0.04144 0.05612 2.165 2.466 558.8 512.9
Flying time (s) 9.674 10.84 9.365 10.09 25.42 34.72 33.96 55.98

Number of nodes 8.79 8.84 9.18 10.77 334.5 565.6 4429.4 8813.0
Number of iterations 26.45 45.04 45.58 65.02 982.9 2502.9 30253.7 196233.3

% of not connectible nodes 50.34 54.94 51.51 59.85 25.60 34.86 79.41 82.48

two halves by a series of aligned obstacles separated by 0.40
meters (hence smaller than the robot diameter). This problem
is particularly challenging since going across these obstacles
requires to find a path in a very narrow passage in the state-
space. Every combination of environment, algorithm, metric
and sampling strategy has been tested. Results are provided
in Tab. III for CPU and flying times in seconds, number of
nodes (and iterations for the RRT) and percentage of not
connectible nodes (with respect to the criteria defined in
section IV.D.). Each experiment is designated by an acronym
whose meaning is explained in the caption. Results are
averaged over 100 runs and are for an implementation in
C, integrated in our motion planning software Move3D [12],
and run on a single core of an Intel Xeon W3520 processor
at 2.67GHz.

Results show a significant improvement of the perfor-
mance of both algorithms thanks to the integrations of the
proposed techniques. However, one can clearly see that the
metric and the sampling technique have a more notable effect
on one or the other planner. Results for the PRM algorithm
shows that the sampling method has a great influence on
its performance. Its integration indeed improves CPU time
by two orders of magnitude for both environments. On
the other hand, one can see that for the slots environment
CPU times are slighlty worse with the use of the metric.
This can be explained by the difference of computing time
between our quasi-metric and the euclidean distance. This
is also observed in one case for the RRT algorithm (SRMU
vs. SREU). For the RRT algorithm, results show that the
influence of the metric is more important. This was to be
expected since RRT-based algorithms are known to be very
sensitive to the metric. One can see that the number of
iterations is significantly reduced, meaning that the search is
better guided. The improvement produced by the sampling
technique is also very significant for the slots environment
but less noticeable for the boxes environment. This can be
explained by the fact that, in RRT-based algorithms, the
sampled states are not tested for connections but used to
define a direction for extension. A new state is then generated
according to that direction. One can see that, for the boxes
environment, about half of these states are not connectible
regardless of the sampling method. Finally note that flying
times are given for the raw, non-smoothed trajectories, which
explains the rather large difference of path quality between
PRM and RRT results.

VI. CONCLUSION
We have presented two techniques to enhance the perfor-

mance of kinodynamic motion planning algorithms applied
to quadrotors: 1) a quasi-metric in the state space that
accurately estimates the actual quasi-distance induced by a
steering method, but which is two orders of magnitude less
computationally expensive; 2) An incremental state-space
sampling technique that notably increases the probability
of generating connectible states. Results have show that
the integration of these techniques can drastically change
the performances of PRM-based and RRT-based planners,
particularly when solving very constrained problems.

We are currently working on the comparison of the trajec-
tories generated by the proposed steering method and those
obtained by a numerical optimal control method. First results
tend to show the good quality of our approximate solution,
which is orders of magnitude faster to compute. We are also
working on the integration of the planning methods in an
indoor testbed for experimental validation.
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