
HAL Id: hal-01231513
https://hal.science/hal-01231513

Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diffusive clock synchronization in highly dynamic
networks

Matthias Függer, Thomas Nowak, Bernadette Charron-Bost

To cite this version:
Matthias Függer, Thomas Nowak, Bernadette Charron-Bost. Diffusive clock synchronization in highly
dynamic networks. 49th Annual Conference on Information Systems and Sciences (CISS 2015), Mar
2015, Baltimore, United States. �10.1109/CISS.2015.7086841�. �hal-01231513�

https://hal.science/hal-01231513
https://hal.archives-ouvertes.fr

Diffusive Clock Synchronization in Highly
Dynamic Networks

Matthias Függer
TU Wien

Vienna, Austria
fuegger@ecs.tuwien.ac.at

Thomas Nowak
École normale supérieure

Paris, France
thomas.nowak@ens.fr

Bernadette Charron-Bost
CNRS, École polytechnique

Palaiseau, France
charron@lix.polytechnique.fr

Abstract—This paper studies the clock synchronization prob-
lem in highly dynamic networks. We show that diffusive syn-
chronization algorithms are well adapted to environments in
which the network topology may change unpredictably. In a
diffusive algorithm, each node repeatedly (i) estimates the clock
difference to its neighbors via broadcast of zero-bit messages,
and (ii) updates its local clock according to a weighted average
of the estimated differences. The system model allows for drifting
local clocks, running at possibly different frequencies.

We show that having a rooted spanning tree in the network
at every time instance suffices to solve clock synchronization.
We do not require any stability of the spanning tree, nor
do we impose that the links of the spanning tree be known
to the nodes. Explicit bounds on the convergence speed are
obtained. In particular, our results settle an open question posed
by Simeone and Spagnolini to reach clock synchronization in
dynamic networks in the presence of nonzero clock drift. We
also identify certain reasonable assumptions that allow for a
significant higher convergence speed, e.g., bidirectional networks
or random graph models.

I. INTRODUCTION

Maintaining a common notion of time between distributed
network nodes is of great importance in distributed control and
monitoring. It allows to globally order events, e.g., sensor read-
ings, that locally occur at nodes, and relate their interarrival
times to physical real-time. Application domains are numerous
and reach from applications in sensor fusion [1] to setting up
efficient inter-node communication layers, e.g., between base-
stations [2] or moving vehicles [3]. Clock synchronization al-
gorithms that create a common notion of time in such systems
by synchronizing local hardware clocks face major challenges:
dynamicity of the underlying communication network, e.g.,
due to transient link or node failures and moving nodes, and
drift, i.e., frequencies of the nodes’ hardware clocks that differ
from each other and vary over time.

There is a large body of work on clock synchronization,
see e.g., [4], [5], [6], [7]. Generally, clock synchronization
algorithms can be partitioned into centralized approaches and
decentralized approaches. The idea for the first kind is to
determine a master node that distributes its clock over (a
spanning subgraph of) the network, making all other nodes
follow the master. Clearly, however, these approaches are
susceptible to network changes, e.g., failure of the master,
and at least require time to adapt to network changes. By

contrast, decentralized clock synchronization algorithms aim
to overcome these restrictions.

In this work we focus on clock synchronization in highly
dynamic networks, where no assumptions can be made on the
time between network changes. In particular, classical meth-
ods, such as electing a leader node, constructing a spanning
subgraph of the network etc. fail in such networks. Further,
highly dynamic networks typically comprise of resource lim-
ited nodes and communication infrastructure, e.g., wireless
battery-powered nodes attached to moving objects. Clearly,
low communication complexity and low complexity/overhead
of the clock synchronization algorithm itself are an issue in
these systems. We will next give an overview of the work
addressing such systems.

Related Work. Schneider [8] gave an overview on the work
on clock synchronization in distributed computing that deals
with fully connected communication networks in presence of
different kinds of node failures. The idea of the presented
algorithms is to periodically broadcast messages containing
the nodes’ current clock reading and to reach (approximate)
agreement on a value within the range of the proposed clock
readings. Each node then sets its clock on its local outcome
of the agreement procedure. Dolev et al. [9] presented an
algorithm that can cope with dynamic networks. However,
they require that each correct node can communicate with each
other correct node in bounded time; a property that is violated,
e.g., in leader-based topologies like a directed star-graph.

Of specific interest in the context of low-resource networks
is the study of non packet-based synchronization algorithms.
By contrast, these algorithms communicate by broadcasting
a zero-bit pulse only, conveying only the time of occurence
to its current neighboring nodes. Li and Rus [10] proposed
to use diffusive clock synchronization algorithms where each
node repeatedly sets its clock value to a weighted average
of the neighboring clock values. Their algorithm can be
seen as an instance of an algorithm that communicates by
means of pulses only. However, Li and Rus analyzed the
algorithm’s behavior in case of fixed networks only. Simeone
and Spagnolini [11] presented a synchronization algorithm
subsuming several algorithms that communicate by means of
pulses, including those in [2], [3], [10]. Their algorithm round-
wise broadcasts pulses and adapts the time it generates a new

pulse according to a correction term equal to the weighted
average of the received pulse times. They proposed to view
and analyze this algorithm as coupled discrete-time oscillators
of phase locked loops (PLLs). This point of view also lends
itself to an efficient implementation in hardware. Simeone
and Spagnolini considered the case of (i) static networks with
potentially non-equal but constant node frequencies, and (ii)
dynamic networks with constant and homogeneous clock fre-
quencies. They further assumed bidirectional communication
links between nodes. The analysis of dynamic networks with
potentially non-equal constant node frequencies is stated as an
open problem in their work.

Contributions. In this work we present a clock synchroniza-
tion algorithm that communicates by means of pulses only.
We show that the algorithm makes the nodes generate pulses
within a bounded phase difference window, the skew, thus
solving the clock synchronization problem. We do not only
show solvability, but also derive precise analytic upper bounds
on the skew size and the rate at which an initially large phase
difference decreases. Our solution covers the case of dynamic
networks with not necessarily bidirectional links and drifting
hardware clocks, by that solving the open problem stated
in [11]. Note that the study of solutions for non-bidirectional
dynamic networks is especially interesting in the context of
leader-based networks, e.g., those containing dedicated nodes
with higher communication range. For the special case of
bidirectional networks, the proposed solution reduces to the
assumption that the network stay connected over time. We
further present a method to drastically reduce convergence
time of initially large phase differences. The analytic results
are supported by simulations.

II. DIFFUSIVE CLOCK SYNCHRONIZATION WITH PULSES

We consider a dynamic network with a fixed set of
nodes [n] = {1, . . . , n}. Computation evolves in rounds: In
each round k ≥ 0, every node i ∈ [n] broadcasts a zero-
bit pulse that is perceived by a subset of nodes. A node
always receives its own pulses. Let us denote the real-time
node i broadcasts its round k pulse by ti(k) ∈ R and by
t(k) the column vector t

(
t1(k), . . . , tn(k)

)
. We further assume

negligible communication delays in comparison to the times
between successive pulses sent by a node, i.e., if a node
receives the round k pulse sent by node i it does so at
time ti(k).

The evolution of the dynamic network over time is modeled
by a communication pattern, i.e., a sequence of directed graphs
with self-loops at every node, each one of which we call
a communication graph: The fact that the round k pulse
generated by i is received by node j is modeled by a link
from i to j in the kth communication graph.

We assume that each node has access to a local clock by
which it can measure progress of (real) time. Local clocks
may, however, be inexact due to a drift % ∈ [0, 1), i.e., we
only assume that a node’s local clock requires at least time
(1 − %)R and at most time (1 + %)R to advance by some

amount R > 0. Since the pulses do not carry any explicitly
encoded information, a node i’s algorithm only determines the
time i broadcasts its next pulse on the times of the received
pulses. Note, however, that nodes do not have access to real
time, but only to local clocks: i’s algorithm is not able to
trigger a broadcast after some real time R > 0 passed, but
only after i’s local clock advanced by some value R.

We do not make any assumptions on the stability of the
underlying dynamic network: Communication patterns may be
highly dynamic and change unpredictably. Let G be a set of
communication graphs. An algorithm solves clock synchro-
nization with skew σ ≥ 0 in G if, for all communication
patterns with communication graphs from G, the sequence
(t(k))k≥0 induced by the communication pattern and the
nodes’ algorithm fulfills ∀k ≥ 0 : maxi,j |ti(k)− tj(k)| ≤ σ.
To rule out useless solutions, we further require that sequences
(ti(k))k≥0 be increasing within some cone of real-time.

In this work, we study the ability of so-called diffusive
algorithms to solve clock synchronization: A diffusive algo-
rithm triggers the generation of the round k + 1 pulse of
node i depending on the received round k pulses only. More
specifically, after node i broadcast its round k pulse, it waits
until its local clock has increased by a constant R adjusted
by a correcting offset. This term ensures an offset between
successive pulses that determines a node’s pulse generation
frequency in case it is not influenced by other nodes. It must
be chosen large enough, in accordance with the propagation
delay and the resulting clock synchronization skew, to ensure
that round k and k+1 pulses are well-separated, i.e., all nodes
receive all round k pulses of their incoming neighbors before
they broadcasts their round k+1 pulses. The correcting term is
a weighted average of the time differences of received round k
pulses. We may thus write,

ti(k + 1) = ti(k) + Ti(k + 1) + corri(k + 1)

where (1− %)R ≤ Ti(k + 1) ≤ (1 + %)R, and

corri(k + 1) = [εk+1]i
∑

j∈Ini(k+1)

[Wk+1]i,j
(
tj(k)− ti(k)

)
(1)

Weight [εk+1]i ∈ [0, 1) and weights [Wk+1]i,j ∈ [0, 1] for
each j ∈ Ini(k + 1) are locally chosen by i’s algorithm,
such that

∑
j∈Ini(k+1)[Wk+1]i,j = 1. For ease of notation,

we set [Wk+1]i,j = 0 for j 6∈ Ini(k + 1). Note that without
loss of generality we may assume that i’s algorithm always
sets [Wk+1]i,i = 0 if i receives at least one round k pulse
from a remote node, and [Wk+1]i,i = 1 otherwise.

Fig. 1 shows an example system of three nodes generating
their round k + 1 pulses.

Example 1 (Switching communication graphs). Fig. 2 depicts
the two communication graphs of an example dynamic net-
work defined by the set of graphs G = {G1, G2}. Fig. 3
on page 4 shows the 10 round prefix of an execution of the
diffusive algorithm where each node i chooses [εk+1]i = 1/2
and [Wk+1]i,j = 1/(| Ini(k + 1)| − 1) if i received a round k
pulse from j 6= i. Nodes 1 and 2 are assumed to have fast

t3(k)

t2(k)

t1(k)

T2(k + 1)

corr2(k + 1)

t3(k + 1)

t2(k + 1)

t1(k + 1)

Fig. 1. Round k and k+1 pulses of a three node system. Node 2 adapts the
time of occurence of its round k+1 pulse by a negative offset corr2(k+1)
due to the early pulses received from nodes 1 and 3.

G1

1 2

3
G2

1 2

3

Fig. 2. Dynamic network with possible link loss between nodes 2 and 3.

local clocks, i.e., T1(k) = T2(k) = (1 − %)R, while node 3
has a slow clock with T2(k) = (1 + %)R, where R = 10
and % = 0.2. The execution in this example is induced by the
above algorithm and the communication pattern G(k) = G1

for 1 ≤ k ≤ 5, and G(k) = G2 for k > 5. Note that although
the nodes’ local clocks were assumed not to change frequency,
the pulse generation frequency of all nodes changes with the
loss of the link between nodes 2 and 3.

III. MATRIX FORMULATION

A. Linear Matrix Recurrence

Using basic algebraic manipulations, we may rewrite (1) in
terms of a non-homogeneous linear matrix recurrence

t(k + 1) = Ak+1t(k) + T (k + 1) , (2)

where

[Ak+1]i,j =

{
[εk+1]i[Wk+1]i,j if i 6= j

1 + [εk+1]i
(
[Wk+1]i,i − 1)

)
if i = j .

Note that each matrix Ak is stochastic, i.e.,
∑
j [Ak]i,j = 1 for

all nodes i. Diffusive algorithms can equally be defined via the
matrices Ak instead of εk and Wk. Note that [Ak]i,j > 0 if
and only if there is a link from j to i in the communication
graph G(k). We denote by γ the minimal positive entry of all
matrices Ak during the execution. For the algorithm described
in Example 1, we always have γ ≥ 1/2n.

B. Dobrushin Semi-Norm

To assess the maximum phase differences of nodes in a
given round, we use the Dobrushin semi-norm defined on real
vectors x by δ(x) = maxi,j |xi−xj | and apply it to x = t(k).

An important tool is the matrix semi-norm associated to δ,
mimicking the definition of the operator norm, i.e., setting

δ(A) = sup
x∈Rn

δ(x)6=0

δ(Ax)

δ(x)
.

Indeed, both for vectors and for matrices, this defines a semi-
norm. We recall several of its properties:

Lemma 2 ([12], [13]). Let A,B ∈ Rn×n.
1) If A is stochastic, then we have the formula δ(A) =

1−mini1,i2
∑
j min{Ai1,j , Ai2,j}.

2) δ(AB) ≤ δ(A)δ(B)

We thus have δ(A) ≤ 1 whenever A is stochastic. Those
stochastic matrices for which the strict inequality holds are
called scrambling matrices. They are equivalently defined
via the scrambling property, which demands that for all
pairs (i1, i2) of indices there exist an index j such that both
Ai1,j > 0 and Ai2,j > 0. The next lemma follows immediately
from the definition of the scrambling property and Lemma 2(1)
and is a central ingredient in our proofs.

Lemma 3. Let A be a stochastic matrix with the scrambling
property and minimal positive entry γ. Then, δ(A) ≤ 1− γ.

IV. RESULTS

A. Performance in Rooted Networks

For a fixed execution, denote the maximum phase difference
of pulses in round k by δ(k) = δ

(
t(k)

)
. The skew of a specific

execution is hence σ = supk δ(k).
We will next analyze the behavior of the maximum phase

differences δ(k) evolving over rounds k and valid conditions
on the skew in presence of two kinds of networks: (i) those
where all communication graphs are non-split, and (ii) those
where they are rooted. Hereby a communication graph is
called non-split if all pairs of nodes have a common incoming
neighbor, and it is rooted if there exists a node i such that
there is a directed path from i to all nodes. A stochastic matrix
has the scrambling property if and only if the corresponding
communication graph is non-split. While being non-split is
a strong property, which is typically not fulfilled in dynamic
networks, it plays an important role in the analysis for rooted
networks.

Given two graphs G and H on the same node set, we define
their composition graph G◦H by including a link (i, j) if there
is a node k such that the link (i, k) is in G and the link (k, j)
is in H . The following lemma shows that a sufficiently large
number of rooted communication graphs always compose to
a non-split graph and explicitly bounds this number.

Lemma 4 ([14, Proposition 8]). The composition of any n−1
rooted communication graphs on n nodes is non-split.

We will thus start with the non-split case and then reduce
arbitrary rooted networks to the non-split case. It is important
to note that while the set of roots in Fig. 2 is the same for
G1 and G2, we do not require this in our analysis: roots may

0 2 4 6 8 10
0

20

40

60

80

100

round number

pu
ls

e
ge

ne
ra

tio
n

tim
es

0 2 4 6 8 10

5

5.5

6

6.5

7

7.5

8

round number

ph
as

e
di

ffe
re

nc
e

0 2 4 6 8 10
9

9.2

9.4

9.6

9.8

10

10.2

10.4

round number

ro
un

d
du

ra
tio

n
fo

r
no

de
 1

Fig. 3. Prefix of an execution of the example dynamic network for rounds 0 ≤ k ≤ 10. The communication graph changes from G1 (solid lines)
to G2 (dotted lines) at round 5. The figure shows (i) pulse generation times ti(k), (ii) maximum phase differences maxi,j |ti(k) − tj(k)|, and (iii) round
durations t1(k + 1)− t1(k).

change arbitrarily and without any stability assumption during
an execution.

Theorem 5. If every communication graph has the non-
split property, then every diffusive algorithm solves clock
synchronization with skew σ = max{δ(0), 2%R/γ}. Moreover

δ(k) ≤ (1− γ)kδ(0) + 2%R/γ

for all k ≥ 0. In particular, the maximum phase difference is
arbitrarily close to 2%R/γ for large round numbers k.

Assuming communication graphs to be non-split is quite
restrictive, and typically not the case if nodes are physically
distributed within a larger area. The following result shows
that even in the general case of rooted communication graphs
with unpredictable root changes, clock synchronization can
be solved. The main point is to show that those systems can
implicitly simulate non-split communication graphs and then
apply Theorem 5.

Theorem 6. If every communication graph is rooted, then
every diffusive algorithm solves clock synchronization with
skew σ = max

{
δ(0) + 2%Rn , 2%Rn/γn

}
. Moreover

δ(k) ≤ (1− γn)bk/ncδ(0) + 2%Rn/γn

for all k ≥ 0. In particular, the maximum phase difference is
arbitrarily close to 2%Rn/γn for large round numbers k.

B. Stable Common Frequency and Improved Convergence in
Bidirectional Networks

Certain diffusive algorithms executed in networks with
bidirectional communication graphs cannot only be shown to
converge faster (Theorem 7), but also not to lead to different
round durations due to network changes (Theorem 8). We
study the class of fixed weight algorithms, that is, diffusive
algorithms where i weighs all incoming pulses from j 6= i
with a constant weight c > 0.

Theorem 7. If every communication graph is bidirectional
and connected, then the fixed weight averaging algorithm
with parameter c solves clock synchronization with σ =
max

{
n1/2δ(0) , 4%Rn5/2/c

}
Moreover

δ(k) ≤ n1/2
(
1− c/2n2

)k
δ(0) + 4%Rn5/2/c

for all k ≥ 0. In particular, the maximum phase difference is
arbitrarily close to 4%Rn5/2/c for large round numbers k.

We next show that unless the nodes’ local clocks change
their frequency, running a fixed weight averaging algorithm in
bidirectional networks leads to no round duration alternations
due to network changes.

Theorem 8. If every communication graph is bidirectional
and connected, local clocks do not change frequency, i.e.,
T (k) = T for all k ≥ 1, and all nodes execute the fixed weight
averaging algorithm with parameter c, then each node i’s
average round duration ti(k)/k converges to

∑n
j=1 Tj/n.

Example 9 (Stable common frequency). Fig. 4 on page 5
shows the 10 round prefix of an execution of the fixed weight
diffusive algorithm presented at the beginning of the section.
Local clock speeds and the communication pattern were
chosen as in Fig. 3. Observe that although the communication
graph changes from round 5 to 6, node 1’s round duration does
not stabilize to a different value, unlike it is the case in Fig. 3.

C. Fast Stabilization in Stable Environments

In this section we will show that under the assumption
of small local drift and stable networks, the nodes’ phase
differences converge fast to a slowly varying offset, whose
maximum value can be bounded by Theorems 5 and 6.

While Theorem 6 shows that clock synchronization is
solvable in network models whose only constraint is that
communication graphs are rooted, without any restrictions on
(i) the stability of the network or (ii) the nodes’ frequencies,
in the context of many applications assumptions on (i) or (ii)
can be made. Concerning (ii) it is often the case that the
amount by which the frequencies of distinct nodes differ is
significantly larger than the amount by which a single node
changes frequency from one round to the next; both effects
are currently subsumed under the notion of drift, yielding
0 ≤ |Ti(k + 1) − Ti(k)| ≤ 2%R. To allow for a finer
analysis, we strengthen this assumption by requiring 0 ≤
|Ti(k + 1)− Ti(k)| ≤ 2%′R for some non-negative local drift
%′ < %.

0 2 4 6 8 10
0

20

40

60

80

100

120

round number

pu
ls

e
ge

ne
ra

tio
n

tim
es

0 2 4 6 8 10
4

6

8

10

round number

ph
as

e
di

ffe
re

nc
e

0 2 4 6 8 10
9

9.5

10

10.5

11

round number

ro
un

d
du

ra
tio

n
fo

r
no

de
 1

Fig. 4. Prefix of an execution of a diffusive algorithm with fixed weights run in the example dynamic network of Fig. 3. Solid lines represent rounds k at
which G(k) = G1, and dotted lines those where G(k) = G2.

k

ti(k)− t1(k)

i = 1

i = 2

i = 3

Fig. 5. Phase differences of three nodes to node 1 over rounds k in stable
environments. The outer solid hull follows from Theorem 5. The inner dotted
hulls follow from Theorem 10, showing that phase differences cannot vary
arbitrarily within the outer hull.

For every stochastic vector π and every vector X , we write
EπX =

∑
i πiXi. For a matrix M , we denote by M† its

pseudo-inverse. In particular, it satisfies MM†M = M . Set
∆T (k) = T (k)−Eπk

T (k) · 1, τ(k) = t(k)−
∑k
`=1 Eπ`

T (`),
and τ ′(k) = τ(k)− L†k+1∆T (k + 1).

Theorem 10. Assume that every communication graph is non-
split and strongly connected, and local drift is bounded by %′.
Further assume that Ak does not change during rounds 1 ≤
k ≤ K, i.e., neither the network nor the algorithm’s weights
change during those rounds. Then

δ(τ ′(k)) ≤ (1− γ)kδ(τ ′(0)) + 2%′Rn/γn+1

for all k < K.

We can use Theorem 10 to effectively assess the speed
of convergence of its phase differences after k rounds and
Theorem 5 to bound its maximum phase differences δ(k)
after k rounds. Fig. 5 visualizes the effect of both bounds.

The reduction arguments given in the proof of Theorem 6
can be applied to Theorem 10 as well, yielding analogous
results on the convergence speed in the general strongly
connected case.

D. Expander Networks

If, in addition to be bidirectional, the communication graphs
are expanders, we can achieve an even better skew of the syn-
chronized clocks. In random networks models, communication

graphs are typically expanders; in particular in the Erdős-Rényi
model.

The Cheeger constant of a bidirectional directed graph G =
(V,E) is equal to

h(G) = min
S⊆V

0<|S|≤|V |/2

|E(S, Sc)|
|S|

where E(A,B) denotes the set of links between the sets of
nodes A and B and Sc denotes the complement of S in V . A
bidirectional directed graph G is a λ-expander if h(G) ≥ λ.

Theorem 11. If every communication graph is bidirectional,
connected and a λ-expander, then the fixed weight averaging
algorithm with parameter c solves clock synchronization with
σ = max

{
n1/2δ(0) , 4%R/λ2c2

}
. Moreover

δ(k) ≤ n1/2
(
1− λ2c2/2

)k
δ(0) + 4%R/λ2c2

for all k ≥ 0. In particular, the maximum phase difference is
arbitrarily close to 4%R/λ2c2 for large round numbers k.

V. SIMULATIONS

To back up our analytical results, we performed simulations
in Matlab. For that purpose we generated sequences of random
communication graphs G(k) that are not necessarily bidirec-
tional, and where each link (i, j), with i 6= j, appears in G(k)
with probability 0.6. Fig. 6 on page 6 shows the prefix of an
example execution for a system of n = 5 nodes running the
fixed weight diffusive algorithm with parameter c = 1/10;
and Fig. 6 for a larger network of n = 20 nodes and
parameter c = 1/20. In both scenarios, R = 10, % = 0.2,
and Ti(k) were uniformly chosen within [(1−%)R, (1+%)R].

From our experiments we observed that despite the rela-
tively large drift the convergence rates of the phase differences
and the actual skew obtained in all performed experiments
were significantly better than the derived worst case bounds.
We hope to be able to close this gap in future work.

VI. CONCLUSION

This paper dealt with clock synchronization in networks
whose topology may change unexpectedly at every communi-
cation round. We showed that diffusive algorithms are able to
solve clock synchronization if, at every instant, the network is

0 2 4 6 8 10
0

20

40

60

80

100

120

round number

pu
ls

e
ge

ne
ra

tio
n

tim
es

0 2 4 6 8 10
0

2

4

6

8

10

12

round number

ph
as

e
di

ffe
re

nc
e

0 2 4 6 8 10
0

2

4

6

8

10

12

14

round number

ro
un

d
du

ra
tio

n
fo

r
no

de
 1

Fig. 6. Prefix of an execution of the example dynamic network of size n = 5 for rounds 0 ≤ k ≤ 10. Communication graph G(k) are directed random
graphs, with probability 0.6 of a link to be in G(k). We run the fixed weight algorithm with parameter c = 1/10.

rooted, i.e., contains a directed spanning tree. The root of this
tree does not need to be known to processes, nor does it need
to be unique or stable. Our model also allows for clock drift.
We provided analytic upper bounds on the clock skew and
the stabilization time. Moreover, we identified special cases in
which we were able to bound them more tightly and showed
that, in simulations, convergence is very fast.

For future work, we plan to study the discrepancy between
the obtained analytic bounds and the simulation results, as well
as perform real-world experiments with sensor motes.

REFERENCES

[1] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery, “Information fusion
for wireless sensor networks: Methods, models, and classifications,”
ACM Comput. Surv., vol. 39, no. 3, 2007.

[2] F. Tong and Y. Akaiwa, “Theoretical analysis of interbase-station syn-
chronization systems,” Communications, IEEE Transactions on, vol. 46,
no. 5, pp. 590–594, May 1998.

[3] E. Sourour and M. Nakagawa, “Mutual decentralized synchronization for
intervehicle communications,” Vehicular Technology, IEEE Transactions
on, vol. 48, no. 6, pp. 2015–2027, Nov 1999.

[4] D. Mills, “Internet time synchronization: the network time protocol,”
Communications, IEEE Transactions on, vol. 39, no. 10, pp. 1482–1493,
Oct 1991.

[5] F. Cristian, “Probabilistic clock synchronization,” Distributed Comput-
ing, vol. 3, no. 3, pp. 146–158, 1989.

[6] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed
real-time systems,” Computers, IEEE Transactions on, vol. C-36, no. 8,
pp. 933–940, Aug 1987.

[7] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization for wireless sensor networks: a survey,” Ad Hoc Networks,
vol. 3, no. 3, pp. 281–323, 2005.

[8] F. B. Schneider, “Understanding protocols for byzantine clock synchro-
nization,” Ithaca, NY, USA, Tech. Rep., 1987.

[9] D. Dolev, J. Y. Halpern, B. Simons, and R. Strong, “Dynamic fault-
tolerant clock synchronization,” J. ACM, vol. 42, no. 1, pp. 143–185,
Jan. 1995.

[10] Q. Li and D. Rus, “Global clock synchronization in sensor networks,”
IEEE Trans. Comput., vol. 55, no. 2, pp. 214–226, Feb. 2006.

[11] O. Simeone and U. Spagnolini, “Distributed time synchronization
in wireless sensor networks with coupled discrete-time oscillators,”
EURASIP Journal on Wireless Communications and Networking, vol.
2007, no. 1, p. 057054, 2007.

[12] R. L. Dobrushin, “Central limit theorem for non-stationary Markov
chains I,” in Theory of Probability and its Applications. American
Mathematical Society, 1956, vol. 1, no. 1, pp. 65–80.

[13] B. Charron-Bost, “Orientation and connectivity based criteria for asymp-
totic consensus,” 2013, http://arxiv.org/abs/1303.2043.

[14] M. Cao, A. S. Morse, and B. D. O. Anderson, “Reaching a consensus
in a dynamically changing environment: A graphical approach,” SIAM
Journal on Control and Optimization, vol. 47, no. 2, pp. 575–600, 2008.

