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Abstract 
In 1781, Immanuel Kant argued that cognitive agents ignored the underlying structure of their world 
“as such” (the noumenal reality), and could only know phenomenal reality (the world “as it appears” 
through their experience). We introduce design principles to implement these theoretical ideas. Our 
agent’s input data is not a direct function of the environment’s state as it is in most symbolic or 
reinforcement-learning models. The agent is designed to discover and learn regularities in its stream of 
experience and to construct knowledge about phenomena whose hypothetical presence in the 
environment explains these regularities. We report a proof-of-concept experiment in which the agent 
constructs categories of phenomena, and exploits this knowledge to satisfy innate preferences. This 
work suggests a new approach to cognitive modeling that focuses on the agent’s internal stream of 
experience. We argue that this approach complies with theories of embodied cognition and enaction.  

1 Introduction 
Most artificial intelligence and machine learning models represent artificial agents in a 
perception/cognition/action loop. For example, to Russell & Norvig [1, p. iv], “the problem of AI is to 
build agents that receive percepts from the environment and perform actions”. Many theoreticians of 
cognition, however, criticized this cognitive loop model [e.g., 2]. We reviewed some of these 
criticisms in a previous paper [3]. Here, we introduce an alternative modeling approach that addresses 
the design of cognitive agents from the other side. Rather than beginning with the agent/environment 
dualism, we begin with a monist perspective (inspired by Spinoza’s monist philosophy) in which the 
agent and its universe are considered a single system. Figure 1 represents a series of chunks of 
experience that this monist system experiences successively during its existence. These chunks of 
experience may have a positive, a negative, or a null valence, as we shall explain below.   

 

 

Figure 1: A monist system’s stream of experience. White/blue 
triangles/squares/circles represent chunks of experience that the system 
experiences one after another. We do not know what these chunks of 
experience mean, feel like, or are about. The system ignores the shapes 
and colors of experiences; they are only intended to the reader. Top: the 
valence of each chunk of experience displayed as a bar-graph: positive 
(green bars), negative (red bars), or null.  
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As an example, this paper presents a system that can experience six different chunks of experience 
represented by white/blue circles/squares/triangles. Square and circle experiences have a null valence; 
white triangles have a positive valence (+1); and blue triangles have a negative valence (-1). These 
valences are arbitrary and remain constant during the system’s existence. That is, we think of this 
system as if it liked experiencing white triangle experiences, disliked experiencing blue triangle 
experiences, and was indifferent to experiencing other experiences. For the sake of demonstration, we 
intentionally place the reader in the same situation as the system: initially ignorant of the meaning of 
experiences. The impatient reader may make a detour to Section 4 where this meaning is revealed. 

At any given moment, the system has partial choice about the experience that it will experience 
next. In general, the system wants to experience positive experiences, but it may experience negative 
experiences for two reasons: the reason of multiple motivations and the reason of bounded freedom.   

The reason of multiple motivations is that the system may have other motivational drives besides 
experiencing positive experiences. Section 3 proposes two of these other drives that may make the 
system choose null or negative experiences. 

The reason of bounded freedom is that the system does not have entire freedom to choose the 
experience that it is going to experience next. At any given step, the system may intend to experience a 
particular chunk of experience, but this intention may fail due to reasons external to the system’s 
decision, causing the system to actually experience a different chunk of experience. Figure 2 
represents the dual structure of such a bounded-freedom system: the system has an Intentional 
Subsystem (IS), which chooses the next intended chunk of experience is, and a reactive subsystem 
(RS), which generates the actually experienced chunk of experience es. Note that Figure 1 only 
displays the stream of actual experiences.  

Assume that the RS affords regularities in the way it generates the actual experience es. These 
regularities may depend both on the intended experience is and on previous history (the RS may not be 
Markov, i.e., we don’t know the extension of dependency a priori). To be in control of the system’s 
stream of experience, the IS must anticipate the actual experiences on the basis of the RS’s 
regularities. To anticipate actual experiences, the IS must construct knowledge that represents the 
regularities afforded to it by the RS.  
 

 

Figure 2: The dual coupling of a bounded-freedom system. At step 
s, the Intentional Subsystem (top) chooses the intended experience is 
from amongst the set E of experiences available to the system. In 
return, the reactive subsystem (bottom) generates the actually 
experienced experience es. If es = is, then the system succeeded in 
experiencing the intended experience, otherwise, it failed.  
 

2 Task 
We distinguish between two kinds of regularities: immediate regularities and sequential regularities. 
Immediate regularities determine how actual experiences correlate with intended experiences 
regardless of the RS’s history. In our example, immediate regularities are such that an intended 
experience always results in an actual experience of the same shape (but not necessarily of the same 
color). In fact, we chose the shapes (squares, circles, triangles) to reflect immediate regularities. For 
example, we expect the IS to learn that, when it intends a square experience, the system will indeed 
actually experience a square, perhaps of a different color, but not a circle or a triangle. 

Sequential regularities depend on previous history. A sequential regularity is in the form: in the 
context when a particular series of experiences has just been experienced (pre-experiences), a 
particular other series of experiences may probably be successfully experienced next (post-
experiences). Figure 3 lists 10 first-order (two-step) regularities afforded by our example RS. 
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Figure 3: 10 two-step regularities afforded by the RS, consisting of a pre-experience followed by a post-
experience. Regularity 1: in the context when white square has just been experienced (pre-experience), it is likely 
that white square can be experienced again (post-experience); i.e., if the IS intends to experience any of the 
square experiences again, then the system will more likely experience white square than blue square. Similar, 
Regularity 3 means that, in the white square context, if the IS intends a triangle experience then the system is 
likely to experience a white triangle experience (immediate regularities prevail over sequential regularities).  
 

We expect the IS to discover these regularities and exploit them to obtain positive experiences and 
avoid negative experiences (with the valence of experiences defined in Section 1). As a result, the 
system should develop the patterns of experience depicted in Figure 4.  

 

 
 

Figure 4: Patterns of experience that we expect the system to 
develop. The curly brackets represent a conditional scheme that 
results in sequence (a) or (b) depending on the current state of the RS. 
Once the IS has learned this scheme, it applies it indefinitely. 
 

As illustrated in Figure 4, we expect the IS to learn to use square experiences to inform subsequent 
behavior. If an intended square experience yields a white square, the system should subsequently 
experience white triangle because it has a positive valence (Figure 4-a, exploiting Regularity 3 of 
Figure 3). If the intended square experience yields a blue square, the system should subsequently 
experience white circle so that it can then experience white triangle (Figure 4-b, exploiting 
Regularities 8 and then 5). After this, we expect the IS to intend a square experience again and to 
repeat the same conditional choice again (Figure 4-a or 4-b again). In a previous study, we presented a 
hierarchical sequence-learning algorithm that learned this kind of behaviors [4, 5].  

In this paper, we introduce a new algorithm that allows the IS to explicitly interpret the patterns of 
behavior in Figure 4 as if this behavior was made possible by the existence of phenomena in the RS. 
Indeed, this behavior can be interpreted as if the IS used square experiences to observe the state of the 
RS. If this observation results in a white square, the IS can consider that a certain kind of 
phenomenon—which we call a white phenomenon—exists in the RS. A white phenomenon affords the 
white triangle experience. Since there is no sequential regularity based on white triangle, the IS can 
consider that a white triangle experience causes the disappearance of the white phenomenon, leaving 
the RS in a state unknown to the IS (as if the IS ate the white phenomenon, and enjoyed eating it, since 
white triangle has a positive valence). A blue square experience similarly denotes the presence of a 
blue phenomenon, which affords the blue triangle experience (eating the blue phenomenon, and 
disliking it, since blue triangle has a negative valence). Blue phenomena also afford the white circle 
experience, which appears to transform blue phenomena into delicious white phenomena. Overall, we 
expect the IS to construct the belief system represented in Figure 5. 

 

 

Figure 5: Petri net representing the belief system that we expect 
the IS to construct. Nodes represent beliefs that the IS may hold 
about the RS’s state: white phenomenon (top-left), blue 
phenomenon (top-right), or unknown (bottom). Phenomena are 
represented by pointed rectangles split in two areas: upper area: 
the persistent experience that allows observing this phenomenon; 
lower area: the sporadic (not persistent) experiences afforded by 
this phenomenon. Arcs show the sporadic experiences that cause 
the IS to transition from one belief state to another.  
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3 Algorithm 
The problem of reconstructing causality from sequences of events has been studied in process 

mining (PM). For example, Van der Aalst et al. [6] surveyed four PM algorithms used to construct 
Petri nets from event logs. Such surveys show that PM algorithms generally exploit specific properties 
of the flow of events and of the Petri net to be constructed. Typically, Van der Aalst’s [7] foundational 
α-algorithm exploits the assumption that the Petri net has no internal loops. Our system, however, does 
not satisfy this assumption. 

Our algorithm was inspired by the α-algorithm but exploits two different assumptions: (a) the 
system is actively generating the events, rather than learning from logs generated beforehand; and (b) 
there exist “self-loops” (with same starting and ending node). In essence, our algorithm begins with 
looking for experiences that can be repeated several times in a row (persistent experiences). When the 
IS finds a candidate persistent experience, it creates a self-loop based on this experience, and a node 
attached to this self-loop. This node thus represents a hypothetical phenomenon that can be 
consistently observed through this experience. Next, the IS learns arcs between nodes. Table 1 
summarizes this algorithm at the highest level. 

 
Table 1: A proof-of-concept algorithm to infer phenomena from regularities of experience 

 
01   belief ← "unknown", mood ← "curious"  
02   Loop 
03      if mood = "curious" 
04         intention ← leastTriedExperience(Belief) 
05      if mood = "hedonist" 
06         intention ← intentionWithMaxExpectedOutcomeValence(belief) 
07      if mood = "excited" 
08         intention ← experience 
09      experience ← ReactiveSubsystem(intention) 
10      if mood = "excited" 
11         if experience ≠ intention 
12            intention is sporadic 
13         else if excitement > excitementThreshold 
14            experience is persistent 
15            createNewBeliefState(experience) 
16         else 
17            excitement++ 
18      belief ← updateAndGetBelief(experience)  
19      if mood ≠ "excited" 
20         mood ← "hedonist"          
21      if experience is unknown 
22         mood ← "excited" 
23      if all the experiences have not been tried yet in the context of this belief 
24         mood ← "curious"      

 
The IS has three possible motivational states (moods): curious, excited, and hedonist. On 

initialization, it has only one predefined belief state: unknown, and it is in a curious mood. Lines 03 
and 04: if it is in a curious mood, then it intends the experience that has been the least tried in the 
context of the current belief. Lines 05 and 06: if it is in a hedonist mood, then it intends the experience 
that has the maximum expected valence in the context of the current belief. Lines 07 and 08: if it is in 
an excited mood, then it intends to repeat the same experience.  

Line 09: The RS computes the actual experience from the intended experience (see Section 4). 
Lines 10 to 17: if the IS is excited and the intention failed, the intended experience is marked 

sporadic (not persistent). Otherwise, if the IS has reached a preset excitement threshold, the 
experience is marked persistent, and a new belief state is created based on this experience, otherwise 
the IS gets more excited. Line 18: learn regularities and update the current belief state. Lines 19 to 24: 



 

 

if the mood is not excited then it is hedonist. If the experience has neither yet been marked persistent 
or sporadic, the mood becomes excited. If the IS has not yet experimented much with the current 
belief state, the mood is curious.  

Figure 6 reports an empirical evaluation of this algorithm based upon the trace of its stream of 
experience. 
 

 
Figure 6: Our system’s first 70 experiences. Line 1: valence of the actual experience as in Figure 1. Line 2: 

intended experience. Line 3: actual experience. Line 4: current belief: unknown / white phenomenon 
/ blue phenomenon (little grey/white/blue pointed rectangles). Line 5: mood: curious (“?”), excited (black bar-
graph), or hedonist (blank). Line 6: progressive construction of phenomena. Step 1: the IS intends a blue square 
and obtains a white square. Since the white square experience is neither yet marked sporadic or persistent, the IS 
gets excited (black bar in Line 5). Step 2 to 5, the white square keeps succeeding and the IS gets increasingly 
excited. Step 6: the IS reaches the excitement threshold; it marks the white square persistent, and creates the white 
phenomenon; Line 4: the current belief becomes white phenomenon; Line 6: thus far, the white phenomenon 
contains only the white square experience; Line 5: the IS becomes curious to play with the newly created white 
phenomenon. Step 7: the IS tries blue square. Step 8: the IS tries blue triangle and obtains white triangle; Line 6: 
the IS notes that the white phenomenon affords white triangle. Step 9: white triangle is learned to be sporadic 
since it failed on the second attempt. Step 11: similar, blue triangle is sporadic. Step 17: blue square is persistent 
and the IS creates the blue phenomenon. Step 21: the white phenomenon is complete. Step 25: the blue 
phenomenon is complete; the IS continues learning the arcs of the Petri net (function updateAndGetBelief(), not 
examined in this paper). From Step 41 on, the system exhibits the behavior described in Figure 4, demonstrating 
that it has learned the belief system that we expected it to learn. 

4 The agent/environment coupling 
The environment is implemented as a subprogram of the ReactiveSubsystem() function (Table 1, Line 
09). The rest of the main loop implements the agent. Unbeknownst to the agent, the environment is an 
arbitrary string of 10 digits initialized with E0 =[1, 7, 3, 2, 9, 3, 5, 6, 7, 8], plus an integer p in the 
interval [0, 9], initialized with p0 = 0, which represents the agent’s position in this string. This 
environment is similar to Georgeon & Hassas’s [5] String Environment. 

Triangle experiences consist of moving the agent to the next digit (if p < 9 then p ← p + 1 else p ← 
0). If this takes the agent to a lower digit then it yields blue triangle, otherwise, white triangle. Note 
that triangle experiences are uninformative of the resulting situation of the agent; the agent’s input 
data is not necessarily a representation of the current state of the environment. Square experiences 
consist of testing whether the next digit is lower than the current one, if yes it yields blue square, 
otherwise, white square. Circle experiences consist of swapping the current digit with the next (only if 
p < 9); if the resulting current digit is lower than the next, it yields blue circle, otherwise, white circle.  

The trace in Figure 6 shows that, over time, the agent learns to use square experiences as active 
perception to test whether the current digit is lower than the next, and, if yes, to use a circle experience 
to swap the digits, in order to always move to a greater or equal next digit (because the agent has an 
innate preference for moving towards greater or equal digits implemented through the positive valence 
of the white triangle experience). 
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5 Conclusion 
This proof-of-concept algorithm illustrates how an agent can construct knowledge from regularities 
observed in its stream of experience—a question which theoreticians and philosophers of mind 
consider crucial to cognition. All along, the agent ignores the underlying reality in which it exists 
(noumenal reality: the string of digits); it only constructs its own interpretation of this reality in the 
form of phenomenal knowledge (white and blue phenomena). 

We proposed a design paradigm that focuses on the system’s stream of experience rather than 
separating perception from action. This design paradigm does not contradict the traditional 
perception/action paradigm; the relation between the two is examined in Section 4. Yet, we found that 
it facilitated the conception and the explanation of the algorithm. Additionally, it complies with 
theories of embodied cognition and enaction [e.g., 8] in that the agent is an active observer of its 
environment, and constructs knowledge from sensorimotor schemes of experience. We develop these 
arguments further in previous papers [e.g., 3, 9]. 

Our agent has three motivational drives: curiosity, excitement, and hedonism. These drives 
implement inborn preferences analogous to natural organisms’ preferences that presumably evolved 
through natural selection (e.g., playing, liking ingesting nutritive food and disliking ingesting toxic 
food). Such inborn preferences relate to Jonas’s [10] notion of needful freedom; they drive the agent’s 
behavior without imposing predefined goal states.  

This preliminary study led us to formulate crucial questions that remain to be answered if we want 
to design agents that can construct higher-level knowledge from their experience interacting with a 
more complex reality (e.g., the real world): how to revise erroneous hypothetical phenomena; how to 
learn to interact with an environment in which several phenomena can exist simultaneously at different 
locations (i.e., spatial environment); how to distinguish between phenomena that afford some 
experiences in common but differ by some others; how to learn complex spatio-sequential patterns of 
interactions afforded by phenomena; and how to handle noise in the agent’s input data.  
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