
HAL Id: hal-01231511
https://hal.science/hal-01231511v1

Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructing Phenomenal Knowledge in an Unknown
Noumenal Reality

Olivier L. Georgeon, Florian J. Bernard, Amélie Cordier

To cite this version:
Olivier L. Georgeon, Florian J. Bernard, Amélie Cordier. Constructing Phenomenal Knowledge in an
Unknown Noumenal Reality. International Conference on Biologially Inspired Cognitive Architecture,
Nov 2015, Lyon, France. �10.1016/j.procs.2015.12.177�. �hal-01231511�

https://hal.science/hal-01231511v1
https://hal.archives-ouvertes.fr

Constructing Phenomenal Knowledge
in an Unknown Noumenal Reality

Olivier L. Georgeon, Florian J. Bernard, Amélie Cordier
Université Lyon 1, LIRIS, UMR5205, F-69622, France.

olivier.georgeon@liris.cnrs.fr, florian.bernard3@etu.univ-lyon1.fr, amelie.cordier@liris.cnrs.fr

Abstract
In 1781, Immanuel Kant argued that cognitive agents ignored the underlying structure of their world
“as such” (the noumenal reality), and could only know phenomenal reality (the world “as it appears”
through their experience). We introduce design principles to implement these theoretical ideas. Our
agent’s input data is not a direct function of the environment’s state as it is in most symbolic or
reinforcement-learning models. The agent is designed to discover and learn regularities in its stream of
experience and to construct knowledge about phenomena whose hypothetical presence in the
environment explains these regularities. We report a proof-of-concept experiment in which the agent
constructs categories of phenomena, and exploits this knowledge to satisfy innate preferences. This
work suggests a new approach to cognitive modeling that focuses on the agent’s internal stream of
experience. We argue that this approach complies with theories of embodied cognition and enaction.

1 Introduction
Most artificial intelligence and machine learning models represent artificial agents in a
perception/cognition/action loop. For example, to Russell & Norvig [1, p. iv], “the problem of AI is to
build agents that receive percepts from the environment and perform actions”. Many theoreticians of
cognition, however, criticized this cognitive loop model [e.g., 2]. We reviewed some of these
criticisms in a previous paper [3]. Here, we introduce an alternative modeling approach that addresses
the design of cognitive agents from the other side. Rather than beginning with the agent/environment
dualism, we begin with a monist perspective (inspired by Spinoza’s monist philosophy) in which the
agent and its universe are considered a single system. Figure 1 represents a series of chunks of
experience that this monist system experiences successively during its existence. These chunks of
experience may have a positive, a negative, or a null valence, as we shall explain below.

Figure 1: A monist system’s stream of experience. White/blue
triangles/squares/circles represent chunks of experience that the system
experiences one after another. We do not know what these chunks of
experience mean, feel like, or are about. The system ignores the shapes
and colors of experiences; they are only intended to the reader. Top: the
valence of each chunk of experience displayed as a bar-graph: positive
(green bars), negative (red bars), or null.

order%of%succession%

1%
0%
.1%

As an example, this paper presents a system that can experience six different chunks of experience
represented by white/blue circles/squares/triangles. Square and circle experiences have a null valence;
white triangles have a positive valence (+1); and blue triangles have a negative valence (-1). These
valences are arbitrary and remain constant during the system’s existence. That is, we think of this
system as if it liked experiencing white triangle experiences, disliked experiencing blue triangle
experiences, and was indifferent to experiencing other experiences. For the sake of demonstration, we
intentionally place the reader in the same situation as the system: initially ignorant of the meaning of
experiences. The impatient reader may make a detour to Section 4 where this meaning is revealed.

At any given moment, the system has partial choice about the experience that it will experience
next. In general, the system wants to experience positive experiences, but it may experience negative
experiences for two reasons: the reason of multiple motivations and the reason of bounded freedom.

The reason of multiple motivations is that the system may have other motivational drives besides
experiencing positive experiences. Section 3 proposes two of these other drives that may make the
system choose null or negative experiences.

The reason of bounded freedom is that the system does not have entire freedom to choose the
experience that it is going to experience next. At any given step, the system may intend to experience a
particular chunk of experience, but this intention may fail due to reasons external to the system’s
decision, causing the system to actually experience a different chunk of experience. Figure 2
represents the dual structure of such a bounded-freedom system: the system has an Intentional
Subsystem (IS), which chooses the next intended chunk of experience is, and a reactive subsystem
(RS), which generates the actually experienced chunk of experience es. Note that Figure 1 only
displays the stream of actual experiences.

Assume that the RS affords regularities in the way it generates the actual experience es. These
regularities may depend both on the intended experience is and on previous history (the RS may not be
Markov, i.e., we don’t know the extension of dependency a priori). To be in control of the system’s
stream of experience, the IS must anticipate the actual experiences on the basis of the RS’s
regularities. To anticipate actual experiences, the IS must construct knowledge that represents the
regularities afforded to it by the RS.

Figure 2: The dual coupling of a bounded-freedom system. At step
s, the Intentional Subsystem (top) chooses the intended experience is
from amongst the set E of experiences available to the system. In
return, the reactive subsystem (bottom) generates the actually
experienced experience es. If es = is, then the system succeeded in
experiencing the intended experience, otherwise, it failed.

2 Task
We distinguish between two kinds of regularities: immediate regularities and sequential regularities.
Immediate regularities determine how actual experiences correlate with intended experiences
regardless of the RS’s history. In our example, immediate regularities are such that an intended
experience always results in an actual experience of the same shape (but not necessarily of the same
color). In fact, we chose the shapes (squares, circles, triangles) to reflect immediate regularities. For
example, we expect the IS to learn that, when it intends a square experience, the system will indeed
actually experience a square, perhaps of a different color, but not a circle or a triangle.

Sequential regularities depend on previous history. A sequential regularity is in the form: in the
context when a particular series of experiences has just been experienced (pre-experiences), a
particular other series of experiences may probably be successfully experienced next (post-
experiences). Figure 3 lists 10 first-order (two-step) regularities afforded by our example RS.

Inten%onal)
Subsystem)

Intended
experience

Actual
experience

es ∈ E is ∈ E

Reac%ve)
Subsystem)

E = {
 ,
 ,
 ,
 ,
 ,
 }

Figure 3: 10 two-step regularities afforded by the RS, consisting of a pre-experience followed by a post-
experience. Regularity 1: in the context when white square has just been experienced (pre-experience), it is likely
that white square can be experienced again (post-experience); i.e., if the IS intends to experience any of the
square experiences again, then the system will more likely experience white square than blue square. Similar,
Regularity 3 means that, in the white square context, if the IS intends a triangle experience then the system is
likely to experience a white triangle experience (immediate regularities prevail over sequential regularities).

We expect the IS to discover these regularities and exploit them to obtain positive experiences and
avoid negative experiences (with the valence of experiences defined in Section 1). As a result, the
system should develop the patterns of experience depicted in Figure 4.

Figure 4: Patterns of experience that we expect the system to
develop. The curly brackets represent a conditional scheme that
results in sequence (a) or (b) depending on the current state of the RS.
Once the IS has learned this scheme, it applies it indefinitely.

As illustrated in Figure 4, we expect the IS to learn to use square experiences to inform subsequent
behavior. If an intended square experience yields a white square, the system should subsequently
experience white triangle because it has a positive valence (Figure 4-a, exploiting Regularity 3 of
Figure 3). If the intended square experience yields a blue square, the system should subsequently
experience white circle so that it can then experience white triangle (Figure 4-b, exploiting
Regularities 8 and then 5). After this, we expect the IS to intend a square experience again and to
repeat the same conditional choice again (Figure 4-a or 4-b again). In a previous study, we presented a
hierarchical sequence-learning algorithm that learned this kind of behaviors [4, 5].

In this paper, we introduce a new algorithm that allows the IS to explicitly interpret the patterns of
behavior in Figure 4 as if this behavior was made possible by the existence of phenomena in the RS.
Indeed, this behavior can be interpreted as if the IS used square experiences to observe the state of the
RS. If this observation results in a white square, the IS can consider that a certain kind of
phenomenon—which we call a white phenomenon—exists in the RS. A white phenomenon affords the
white triangle experience. Since there is no sequential regularity based on white triangle, the IS can
consider that a white triangle experience causes the disappearance of the white phenomenon, leaving
the RS in a state unknown to the IS (as if the IS ate the white phenomenon, and enjoyed eating it, since
white triangle has a positive valence). A blue square experience similarly denotes the presence of a
blue phenomenon, which affords the blue triangle experience (eating the blue phenomenon, and
disliking it, since blue triangle has a negative valence). Blue phenomena also afford the white circle
experience, which appears to transform blue phenomena into delicious white phenomena. Overall, we
expect the IS to construct the belief system represented in Figure 5.

Figure 5: Petri net representing the belief system that we expect
the IS to construct. Nodes represent beliefs that the IS may hold
about the RS’s state: white phenomenon (top-left), blue
phenomenon (top-right), or unknown (bottom). Phenomena are
represented by pointed rectangles split in two areas: upper area:
the persistent experience that allows observing this phenomenon;
lower area: the sporadic (not persistent) experiences afforded by
this phenomenon. Arcs show the sporadic experiences that cause
the IS to transition from one belief state to another.

1)#

2)#

3)#

4)#

5)#

6)#

7)#

8)#

9)#

10)#

or#
a)#

b)#

Repeat#when#learned#

White&&
phenomenon&

Blue&
phenomenon&

Unknown&

3 Algorithm
The problem of reconstructing causality from sequences of events has been studied in process

mining (PM). For example, Van der Aalst et al. [6] surveyed four PM algorithms used to construct
Petri nets from event logs. Such surveys show that PM algorithms generally exploit specific properties
of the flow of events and of the Petri net to be constructed. Typically, Van der Aalst’s [7] foundational
α-algorithm exploits the assumption that the Petri net has no internal loops. Our system, however, does
not satisfy this assumption.

Our algorithm was inspired by the α-algorithm but exploits two different assumptions: (a) the
system is actively generating the events, rather than learning from logs generated beforehand; and (b)
there exist “self-loops” (with same starting and ending node). In essence, our algorithm begins with
looking for experiences that can be repeated several times in a row (persistent experiences). When the
IS finds a candidate persistent experience, it creates a self-loop based on this experience, and a node
attached to this self-loop. This node thus represents a hypothetical phenomenon that can be
consistently observed through this experience. Next, the IS learns arcs between nodes. Table 1
summarizes this algorithm at the highest level.

Table 1: A proof-of-concept algorithm to infer phenomena from regularities of experience

01 belief ← "unknown", mood ← "curious"
02 Loop
03 if mood = "curious"
04 intention ← leastTriedExperience(Belief)
05 if mood = "hedonist"
06 intention ← intentionWithMaxExpectedOutcomeValence(belief)
07 if mood = "excited"
08 intention ← experience
09 experience ← ReactiveSubsystem(intention)
10 if mood = "excited"
11 if experience ≠ intention
12 intention is sporadic
13 else if excitement > excitementThreshold
14 experience is persistent
15 createNewBeliefState(experience)
16 else
17 excitement++
18 belief ← updateAndGetBelief(experience)
19 if mood ≠ "excited"
20 mood ← "hedonist"
21 if experience is unknown
22 mood ← "excited"
23 if all the experiences have not been tried yet in the context of this belief
24 mood ← "curious"

The IS has three possible motivational states (moods): curious, excited, and hedonist. On

initialization, it has only one predefined belief state: unknown, and it is in a curious mood. Lines 03
and 04: if it is in a curious mood, then it intends the experience that has been the least tried in the
context of the current belief. Lines 05 and 06: if it is in a hedonist mood, then it intends the experience
that has the maximum expected valence in the context of the current belief. Lines 07 and 08: if it is in
an excited mood, then it intends to repeat the same experience.

Line 09: The RS computes the actual experience from the intended experience (see Section 4).
Lines 10 to 17: if the IS is excited and the intention failed, the intended experience is marked

sporadic (not persistent). Otherwise, if the IS has reached a preset excitement threshold, the
experience is marked persistent, and a new belief state is created based on this experience, otherwise
the IS gets more excited. Line 18: learn regularities and update the current belief state. Lines 19 to 24:

if the mood is not excited then it is hedonist. If the experience has neither yet been marked persistent
or sporadic, the mood becomes excited. If the IS has not yet experimented much with the current
belief state, the mood is curious.

Figure 6 reports an empirical evaluation of this algorithm based upon the trace of its stream of
experience.

Figure 6: Our system’s first 70 experiences. Line 1: valence of the actual experience as in Figure 1. Line 2:

intended experience. Line 3: actual experience. Line 4: current belief: unknown / white phenomenon
/ blue phenomenon (little grey/white/blue pointed rectangles). Line 5: mood: curious (“?”), excited (black bar-
graph), or hedonist (blank). Line 6: progressive construction of phenomena. Step 1: the IS intends a blue square
and obtains a white square. Since the white square experience is neither yet marked sporadic or persistent, the IS
gets excited (black bar in Line 5). Step 2 to 5, the white square keeps succeeding and the IS gets increasingly
excited. Step 6: the IS reaches the excitement threshold; it marks the white square persistent, and creates the white
phenomenon; Line 4: the current belief becomes white phenomenon; Line 6: thus far, the white phenomenon
contains only the white square experience; Line 5: the IS becomes curious to play with the newly created white
phenomenon. Step 7: the IS tries blue square. Step 8: the IS tries blue triangle and obtains white triangle; Line 6:
the IS notes that the white phenomenon affords white triangle. Step 9: white triangle is learned to be sporadic
since it failed on the second attempt. Step 11: similar, blue triangle is sporadic. Step 17: blue square is persistent
and the IS creates the blue phenomenon. Step 21: the white phenomenon is complete. Step 25: the blue
phenomenon is complete; the IS continues learning the arcs of the Petri net (function updateAndGetBelief(), not
examined in this paper). From Step 41 on, the system exhibits the behavior described in Figure 4, demonstrating
that it has learned the belief system that we expected it to learn.

4 The agent/environment coupling
The environment is implemented as a subprogram of the ReactiveSubsystem() function (Table 1, Line
09). The rest of the main loop implements the agent. Unbeknownst to the agent, the environment is an
arbitrary string of 10 digits initialized with E0 =[1, 7, 3, 2, 9, 3, 5, 6, 7, 8], plus an integer p in the
interval [0, 9], initialized with p0 = 0, which represents the agent’s position in this string. This
environment is similar to Georgeon & Hassas’s [5] String Environment.

Triangle experiences consist of moving the agent to the next digit (if p < 9 then p ← p + 1 else p ←
0). If this takes the agent to a lower digit then it yields blue triangle, otherwise, white triangle. Note
that triangle experiences are uninformative of the resulting situation of the agent; the agent’s input
data is not necessarily a representation of the current state of the environment. Square experiences
consist of testing whether the next digit is lower than the current one, if yes it yields blue square,
otherwise, white square. Circle experiences consist of swapping the current digit with the next (only if
p < 9); if the resulting current digit is lower than the next, it yields blue circle, otherwise, white circle.

The trace in Figure 6 shows that, over time, the agent learns to use square experiences as active
perception to test whether the current digit is lower than the next, and, if yes, to use a circle experience
to swap the digits, in order to always move to a greater or equal next digit (because the agent has an
innate preference for moving towards greater or equal digits implemented through the positive valence
of the white triangle experience).

1
23
4
5
6

1

? ?

10

? ? ? ?

20

? ? ? ? ? ? ?

30

?

40 50 60 70

5 Conclusion
This proof-of-concept algorithm illustrates how an agent can construct knowledge from regularities
observed in its stream of experience—a question which theoreticians and philosophers of mind
consider crucial to cognition. All along, the agent ignores the underlying reality in which it exists
(noumenal reality: the string of digits); it only constructs its own interpretation of this reality in the
form of phenomenal knowledge (white and blue phenomena).

We proposed a design paradigm that focuses on the system’s stream of experience rather than
separating perception from action. This design paradigm does not contradict the traditional
perception/action paradigm; the relation between the two is examined in Section 4. Yet, we found that
it facilitated the conception and the explanation of the algorithm. Additionally, it complies with
theories of embodied cognition and enaction [e.g., 8] in that the agent is an active observer of its
environment, and constructs knowledge from sensorimotor schemes of experience. We develop these
arguments further in previous papers [e.g., 3, 9].

Our agent has three motivational drives: curiosity, excitement, and hedonism. These drives
implement inborn preferences analogous to natural organisms’ preferences that presumably evolved
through natural selection (e.g., playing, liking ingesting nutritive food and disliking ingesting toxic
food). Such inborn preferences relate to Jonas’s [10] notion of needful freedom; they drive the agent’s
behavior without imposing predefined goal states.

This preliminary study led us to formulate crucial questions that remain to be answered if we want
to design agents that can construct higher-level knowledge from their experience interacting with a
more complex reality (e.g., the real world): how to revise erroneous hypothetical phenomena; how to
learn to interact with an environment in which several phenomena can exist simultaneously at different
locations (i.e., spatial environment); how to distinguish between phenomena that afford some
experiences in common but differ by some others; how to learn complex spatio-sequential patterns of
interactions afforded by phenomena; and how to handle noise in the agent’s input data.

References
[1] Russell, S., & Norvig, P. (2003), Artificial Intelligence, A Modern Approach. Prentice Hall.
[2] Hurley, S. (1998). Consciousness in action. Cambridge, MA: Harvard University Press.
[3] Georgeon, O., Marshall, J. & Manzotti, R. (2013). ECA: An enactivist cognitive architecture based
on sensorimotor modeling. Biologically Inspired Cognitive Architectures 6: 46-57.
[4] Georgeon, O. & Ritter, F. (2012). An intrinsically-motivated schema mechanism to model and
simulate emergent cognition. Cognitive Systems Research 15-16: 73-92.
[5] Georgeon, O. & Hassas, S. (2013). Single Agents Can Be Constructivist too. Constructivist
Foundations 9(1): 40-42.
[6] Van der Aalst, W., Van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Wei- jters, A. (2003).
Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering 47(2), 237–
267.
[7] Van der Aalst, W. & Weijters, A. & Maruster, L (2003). Workflow Mining: Discovering process
models from event logs, IEEE Transactions on Knowledge and Data Engineering, vol 16.
[8] Froese, T. & Ziemke, T. (2009). Enactive artificial intelligence: Investigating the systemic
organization of life and mind. Journal of Artificial Intelligence, 173(3-4), pp 466–500.
[9] Georgeon, O. & Cordier, A. (2014). Inverting the interaction cycle to model embodied agents.
Procedia Computer Science, 41, pp 243-248. The Fifth international conference on Biologically
Inspired Cognitive Architectures. Boston, MA.
[10] Jonas, H. (1966), The Phenomenon of Life: Toward a Philosophical Biology, Evanston, Illinois:
Northwestern University Press, 2001.

