
HAL Id: hal-01231501
https://hal.science/hal-01231501v1

Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unfaithful Glitch Propagation in Existing Binary Circuit
Models

Matthias Függer, Thomas Nowak, Ulrich Schmid

To cite this version:
Matthias Függer, Thomas Nowak, Ulrich Schmid. Unfaithful Glitch Propagation in Exist-
ing Binary Circuit Models. IEEE Transactions on Computers, 2016, 65 (3), pp.964-978.
�10.1109/TC.2015.2435791�. �hal-01231501�

https://hal.science/hal-01231501v1
https://hal.archives-ouvertes.fr

1

Unfaithful Glitch Propagation in Existing Binary
Circuit Models

Matthias Függer, Thomas Nowak, and Ulrich Schmid

Abstract—We show that no existing continuous-time, binary value-domain model for digital circuits is able to correctly capture glitch
propagation. Prominent examples of such models are based on pure delay channels (P), inertial delay channels (I), or the elaborate
Delay Degradation Model (DDM) channels proposed by Bellido-Dı́az et al. We accomplish our goal by considering the border between
solvability and non-solvability of a simple problem called Short-Pulse Filtration (SPF), which is closely related to arbitration and
synchronization. On one hand, we prove that SPF is solvable in bounded time in any such model that provides channels with non
constant delay, like I and DDM. This is in opposition to the impossibility of solving bounded SPF in real (physical) circuit models. On the
other hand, for binary circuit models with constant-delay channels, we prove that SPF cannot be solved even in unbounded time; again
in opposition to physical circuit models. Consequently, indeed none of the binary value-domain models proposed so far (and that we
are aware of) faithfully captures glitch propagation of real circuits. We finally show that these modeling mismatches do not hold for the
weaker eventual SPF problem.

Index Terms—Circuit models, glitch propagation, binary models, modeling issues

F

1 INTRODUCTION

B INARY value-domain models that allow to model glitch
propagation have always been of interest, especially

in asynchronous design [22]: Pure delay channels and in-
ertial delay channels, which propagate input pulses with
some constant delay only when they exceed some minimal
duration, are still the basis of most digital timing analysis
approaches and tools. The tremendous advances in digital
circuit technology, in particular increased speeds and re-
duced voltage swings, raised concerns about the accuracy
of these models [3]. For example, neither pure nor inertial
delay models can express the well-known phenomenon of
propagating glitches that decay from stage to stage, which
is particularly important for analyzing high-frequency pulse
trains or oscillatory metastability [16].

At the same time, the steadily increasing complexity of
contemporary digital circuits fuels the need for fast digital
timing analysis techniques: Although accurate Spice mod-
els, which facilitate very precise analog-level simulations,
are usually available for those circuits, the achievable simu-
lation times are prohibitive. Refined digital timing analysis
models like the Delay Degradation Model (DDM) proposed
by Bellido-Dı́az et al. [3], which is fast and more accurate,
are hence very important from a practical perspective [4].

This research was partially funded by the Austrian Science Fund (FWF)
projects SIC (P26436) and RiSE (S11405).

• M. Függer is with the Max-Planck-Institut für Informatik, 66123
Saarbrücken, Germany. When this research was conducted, he was with
the Embedded Computing Systems Group, Vienna University of Technol-
ogy, 1040 Vienna, Austria. E-mail: mfuegger@mpi-inf.mpg.de

• T. Nowak is with the Département d’Informatique, École normale
supérieure, 75230 Paris, France. When this research was conducted,
he was with the Laboratoire d’Informatique, École polytechnique, 91128
Palaiseau, France. E-mail: thomas.nowak@ens.fr.

• U. Schmid is with the Embedded Computing Systems Group, Vienna Uni-
versity of Technology, 1040 Vienna, Austria. E-mail: s@ecs.tuwien.ac.at.

The interest in binary models that faithfully model glitch
propagation and even metastability has also recently been
stimulated by the increasing importance of incorporating
fault-tolerance in circuit design [7]: Reduced voltage swings
and smaller critical charges make circuits more suscepti-
ble to particle hits, crosstalk, and electromagnetic inter-
ference [13], [17]. Since single-event transients, caused by
an ionized particle hitting a reverse-biased transistor, just
manifest themselves as short glitches, accurate propagation
models are important for assessing soft error rates, in par-
ticular, for asynchronous circuits. After all, if system-level
fault-tolerance techniques like triple modular redundancy
are used for transparently masking value failures, the only
remaining issue are timing failures, among which glitches
are the most problematic ones.

For example, the Byzantine fault-tolerant distributed
clock generation approach DARTS [12] makes use of stan-
dard asynchronous circuit components, for example mi-
cropipelines [21], which store clock ticks received from other
nodes; a new clock tick is generated when sufficiently many
micropipelines are non-empty. Clearly, since any “wait-for-
all” mechanism may deadlock in the presence of faulty
components, handshaking had to be replaced by threshold
logic in conjunction with some bounded delay assumptions.
This way, DARTS can tolerate arbitrary behavior of Byzan-
tine faulty nodes, except for the generation of pulses with
a duration that drive the Muller C-elements of a pipeline
into metastability. Analyzing the propagation of such pulses
along a pipeline is thus important in order to assess the
achievable resilience against such threats [11]. The situation
is even worse in case of self-stabilizing algorithms [9], which
must be able to recover from an arbitrary initial/error state:
Neither handshaking nor any bounded delay condition can
be resorted to during stabilization in an algorithm like the
one presented by Dolev et al. [8]. Consequently, glitches and
the possibility of metastability cannot be avoided.

2

As a consequence, discrete-value circuit models, analysis
techniques and supporting tools for a fast but nevertheless
accurate glitch and metastability propagation analysis will
be a key issue in the design of future VLSI circuits. In this
paper, we rigorously prove that none of the existing binary-
value candidate models proposed in the past captures glitch
propagation adequately. Searching for alternative models
is hence an important challenge for future research on
asynchronous circuits.

Detailed contributions. In Section 2, we define the Short-
Pulse Filtration (SPF) problem. It is essentially the problem
of building a one-shot inertial channel, i.e., a channel that
does not produce arbitrarily short pulses at its output, and
is hence closely related to glitch propagation. We show that
(unbounded) SPF is solvable in the physical circuit model
of Marino [16] while bounded SPF is not. Our solvability
result a fortiori carries over to the solvability of the weaker
eventual SPF problem, which allows to produce arbitrarily
short pulses during bounded time. These (im)possibility
results are depicted in Fig. 1, in column “physical”.

In Section 3, we present a generic binary value-domain
model for digital clocked and clockless circuits, and intro-
duce the SPF problem. Our generic model comprises zero-
time logical gates interconnected by channels that encap-
sulate model-specific propagation delays and related decay
effects. Non-zero time logical gates can be expressed by
appending channels with delay at the gate’s inputs and
outputs. The simplest channel is a pure delay channel,
which propagates its input signal with a fixed delay and
without any decay, i.e., a pulse has the same duration at the
channel’s input and output.

In Section 4, we prove that even unbounded SPF is
unsolvable when only pure, i.e., constant-delay channels are
available (cf. Fig. 1, column “constant”). This contradicts
the solvability of unbounded SPF with physical circuits
established in Section 2.

In Section 5, we turn our attention to a generalization
of constant-delay channels, termed bounded single-history
channels, which are FIFO channels with a generalized delay
function that also takes into consideration the last output
transition. We distinguish between forgetful and non-forgetful
single-history channels, depending on their behavior when
a pulse disappears at the output due to decay effects. All
existing binary models we are aware of can be expressed
as single-history channels with specific delay functions: A
pure delay channel (P) as either a forgetful or non-forgetful
single-history channel, a classical inertial delay channel (I)
as a forgetful single-history channel, and the channel model
proposed by Bellido-Dı́az et al. [3] (DDM), which addi-
tionally has a decay component, as a non-forgetful single-
history channel.

In Section 6, we prove that bounded SPF is solvable if
just a single forgetful or non-forgetful single-history channel
with non-constant delay is available (cf. Fig. 1, columns
“(non-)forgetful”). However, this is again in contradiction
with the impossibility of implementing bounded SPF with
physical circuits established in Section 2.

In Section 7, we prove that weakening SPF to eventual
SPF fails to witness the above modeling mismatch: Eventual
SPF can by solved both with single-history and physical

bounded SPF

SPF

eventual SPF

constant forgetful non-
forgetful

physical

X

X

X

X

X

X

X

X

X

X

X

X

Fig. 1. Possibility (X) and impossibility (X) results for constant, non-
constant forgetful, non-const. non-forgetful, and physical circuit models.
Arrows mark implications.

channels (cf. last row in Fig. 1).
Related Work. Unger [22] proposed a general technique for
deriving asynchronous sequential switching circuits that can
cope with unrelated input signals. It assumes signals to be
binary valued, and requires the availability of combinational
circuit elements, as well as pure and inertial delay channels.

Bellido-Dı́az et al. [3] proposed the DDM model, and
justified its appropriateness both analytically and by com-
paring the model predictions against Spice simulation re-
sults. The results confirm very good accuracy even for
such challenging scenarios as long chains of gates and ring
oscillators.

Marino [15] showed that the problem of building a
synchronizer can be reduced to the problem of building
an inertial delay channel. The reduction circuit only makes
use of combinational gates and pure delay channels in
addition to inertial delay channels. Marino further shows, in
a continuous value signal model, that for a set of standard
designs of inertial delay channels, input pulses exist that
produce outputs violating the requirements of inertial delay
channels. Barros and Johnson [2] extended this work, by
showing the equivalence of arbiter, synchronizer, latch, and
inertial delay channels.

Marino [16] developed a general comprehensive theory
of metastable operation, and provided impossibility proofs
for metastability-free synchronizers and arbiter circuits for
several continuous valued circuit models. Branicky [5]
proved the impossibility to construct a time unbounded,
deterministic, and time-invariant arbiter in an ordinary dif-
ferential equations model. In a model based on continuous
automata, this was studied by Mendler and Stroup [18].

Brzozowski and Ebergen [6] formally proved that, in a
model that uses only binary values, it is impossible to imple-
ment Muller C-Elements (among other basic state-holding
components used in (quasi) delay-insensitive designs) using
only zero-time logical gates interconnected by wires without
timing restrictions.

2 SPF IN PHYSICAL CIRCUITS

In this section, we will introduce the SPF problem in the
model of Marino [16] and use the classic results obtained for
bistable elements to determine the solvability/impossibility
border of the SPF problem for real (physical) circuits. It turns
out that SPF is solvable with a physical circuit if it is allowed
to have an unboundedly large reaction time, but that SPF is
not solvable if bounded reaction time is demanded.

3

The model of Marino considers circuits which process
signals with both continuous value domain and continuous
time domain. Accordingly, we assume (normalized) signal
voltages to be within [0, 1], and denote by L0 = [0, l0] resp.
L1 = [l1, 1], with 0 < l0 < l1 < 1, the signal ranges that are
interpreted as logical 0 resp. logical 1 by a circuit.

A physical circuit with a single input and a single output
solves Short-Pulse Filtration (SPF), if it fulfills the following
requirements:

(i) If the input signal is constantly logical 0, then so is the
output signal.

(ii) There exists an input signal such that the output signal
attains logical 1 at some point in time.

(iii) There exists some fixed ε > 0 such that, if the output
signal is not interpreted as logical 1 at two points in
time t and t′ with t′ − t < ε, then it is not logical 1 at
any time in between t and t′. Informally, this condition
prohibits output signals that may be interpreted as
pulses (as defined in Section 3) with a duration less
than ε.

A physical circuit solves bounded SPF if additionally:
(iv) There exists a time T such that, if the input signal

switches to logical 1 by time t, then the output signal
value is either logical 0 or logical 1 at time t + T and
remains logical 0 respectively logical 1 thereafter.

We will next argue why there is no physical circuit that
solves bounded SPF, but that there are physical circuits
solving unbounded SPF.

2.1 Impossibility of Bounded SPF
The proof is by reduction to the non-existence of a physical
bistable storage element that stabilizes within bounded time
in the model of Marino [16]. A single-input bistable element is
a physical circuit with a single input and a single output
that fulfills properties (i) and (ii) of SPF as well as:

(iii’) If the output is logical 1 at some time t, it also remains
logical 1 at all times larger than t.

For a single-input bistable element stabilizing within bounded
time, additionally (iv) has to hold.

The following Corollary 1, which proves the non-
existence of a single-input bistable element that stabilizes
within bounded time, follows immediately from Theorem 3
in [16].

Corollary 1. There is no single-input bistable element stabilizing
within bounded time.

Now assume, for the sake of a contradiction, that there
existed a physical circuit solving bounded SPF and consider
the circuit shown in Fig. 2, with the NOR’s initial output
equal to 1 and the inverter’s initial output equal to 0 at time
t = 0.

It is not difficult to prove that this circuit implements
a single-input bistable element stabilizing within bounded
time: In case the input signal i is always logical 0, the SPF’s
output signal will always be logical 0 due to property (i) of
the SPF. Thus the circuit shown in Fig. 2 (left) will always
drive a logical 0 at its output, which confirms property (i)
for the bistable element.

Now let u be an input pulse that makes the SPF circuit
produce a logical 1 at its output. Letting t′ be the first time

NORSPFi

o

NORi o
x

lth

Fig. 2. Left: Building a bistable storage element from a circuit solving
SPF. Right: A circuit solving SPF with a low-threshold inverter.

0 0.5 1 1.5 2
0

0.5

1

B
−
M

B
+
M

V
−
M

V
+
M

Time [ns]

[V
]

Fig. 3. Input signals at i (dashed blue) and corresponding signals at x
(solid green) for the SPF implementation shown in Fig. 2 on the right.

the SPF circuit drives a logical 1 at its output, its output
must remain logical 1 within [t′, t′ + ε] for some ε > 0
due to property (iii) of the SPF. Assuming that the signal
propagation delay of the NOR gate and the inverter is short
enough for the inverter’s output to reach a logical 1 before
time t′+ ε, the NOR gate will subsequently drive a logical 0
on its output forever, irrespective of the output of the SPF
circuit. The circuit’s output signal o will hence continuously
remain logical 1 once it switched to logical 1, which also
confirms properties (ii) and (iii’) of the bistable element.

Due to the use of a circuit solving bounded SPF in the
compound circuit, we further obtain that there exists some
T > 0 such that, for any input pulse u′ that switches to
logical 1 by time t, the circuit shown in Fig. 2 (left) produces
a logical 1 by time t+T , a contradiction to the non-existence
of a single-input bistable element stabilizing in bounded
time. We hence obtain:

Theorem 1. No physical circuit solves bounded SPF.

2.2 Possibility of Unbounded SPF

To show the existence of a circuit solving unbounded SPF,
we make use of a circuit known as a metastability filter
(see, e.g., [14, p. 40]). We will show that the circuit in
Fig. 2 (right), comprising of a storage loop and a subsequent
low-threshold inverter as a metastability filter, solves SPF.
According to Marino [16], for every storage loop there exist
pulses that drive the internal state of the storage loop (x
in Fig. 2 on the right) into a metastable region for an
unbounded time. However, it is possible to determine safe
bounds V −M , and V +

M around this metastable region such that
whenever the storage loop output x leaves [V −M , V

+
M], it set-

tles to stable values 0 or 1 within bounded (and short) time.
Fig. 3 shows input signals i and corresponding signals x of
the SPF implementation in Fig. 2 (right). Note that, although
there exist input signals that drive x into a metastable state
arbitrarily long, whenever x leaves [V −M , V

+
M], it converges

quickly to a stable state. Specifically, signal x crosses the
marked region [B−M , B

+
M] below [V −M , V

+
M] at most once and

4

remains within only for bounded time. We may use this fact
and place a low-threshold inverter after x driving output o
as in Fig. 3 (right). The low-threshold inverter is designed in
a way such that input voltages within [0, B−M] are mapped
to logical 1 at its output, and input voltages within [B+

M , 1]
to logical 0. We thus obtain a physical circuit that solves
(unbounded) SPF. Hence:

Theorem 2. There is a physical circuit that solves SPF.

3 BINARY SYSTEM MODEL

We consider a binary-valued signal model with continuous
time, i.e., signal values are from B = {0, 1} that evolve over
time T = [0,∞).

A signal is a function T → B that does not change
an infinite number of times during a finite time interval
and that already has its new value at a time instant of a
value transition.1 A signal transition is modeled by an event.
Formally an event e = (t, x) is a pair in (T ∪ {−∞}) × B.
We call t the event’s time and x the event’s value. We
use “virtual events” at t = −∞ to allow for the simple
but rigorous handling of initial values of channels in our
framework. An event list is a (finite or infinite) sequence
of events. To every signal, there corresponds an event list
(en)n≥0 = ((tn, xn))n≥0 with the following properties:
S1) There is always an initial event at time −∞.
S2) The sequence (tn)n≥0 of event times is strictly increas-

ing and discrete.
S3) Values are alternating: xn 6= xn+1

Conversely, every such event list corresponds to a unique
signal.

A channel c is a function mapping an input signal s to
an output signal c(s). The simplest class of channels is the
class of (positive) constant-delay channels. A constant-delay
channel cwith delay parameter δ > 0 and initial value x ∈ B
produces at its output the input signal delayed by δ, i.e.,

c(s)(t) =

{
x if t < δ

s(t− δ) if t ≥ δ .
(1)

Note that a physical realization of a constant-delay
channel with initial value x requires a multiplexer, which
supplies the constant-delay channel’s input with the initial
value x during (−∞, 0) and switches to the actual input s
at the system initialization (reset) time 0.

Circuits are obtained by interconnecting a set of input
ports and a set of output ports, forming the external inter-
face of a circuit, and an arbitrary set of zero-time combi-
national gates via single-input single-output channels that
model circuit delays. We constrain the way components are
interconnected in a natural way, by requiring that input
ports are attached to one or more channel inputs only (C4),
and that both output ports and gate inputs are attached
to just one channel’s output (C5, C6); the latter prevents
channel outputs driving against each other.

Formally, a circuit is a tuple C = (G, I,O, c, n), where

1. The requirement that a signal already has its new value when
changing values is merely a convention. On the other hand, the re-
quirement that it only changes a finite number of times during a finite
time interval is fundamental to our model and, thus, our results.

C1) G is a directed graph whose vertex set can be parti-
tioned as I ∪O ∪B.

C2) Every vertex b inB ((Boolean) gate) is assigned a Boolean
function Bdb → B, where db is the in-degree, i.e., the
number of incoming neighbors, of b. By a slight abuse of
notation, b also denotes the Boolean function assigned
to b.

C3) c is a function that maps every edge (u, v) in G to its
corresponding channel cu,v .

C4) Every vertex v ∈ I (input ports) has in-degree dv = 0.
C5) Every v ∈ O (output ports) has in-degree dv = 1.
C6) n is a function that maps every vertex v in G to a

linearly ordered subset nv = {v1, . . . , vdv} of its in-
neighbor vertices in G, i.e., where edge (vi, v) for i = 1
up to v’s in-degree dv is in G.

Note that there are also zero-input Boolean gates 0 and 1
that represent constant signal values 0 and 1.

An execution of circuit C is an assignment of signals to
vertices that respects the channel functions and Boolean gate
functions. Formally, an execution of circuit C is a collection
of signals sv for all vertices v of C such that the following
properties hold: If i is an input port, then there are no restric-
tions on si. If o is an output port, then so = cv,o(sv) where v
is the unique incoming neighbor of o and cv,o the channel
representing edge (v, o). Let now b be a Boolean gate with d
incoming neighbors v1, v2, . . . , vd, ordered according to nb.
We then apply, for each incoming edge (vk, b), the chan-
nel cvk,b to signal svk and check that the signal value sb(t)
is the gate’s Boolean combination of these incoming signals
at time t. That is,

sb(t) = b
(
cv1,b(sv1)(t) , . . . , cvd,b(svd)(t)

)
for all t ∈ T .

Not all circuits necessarily do have executions. For ex-
ample, the circuit comprising a single inverter gate whose
output is fed back to its input via the “mirror channel” c
with c(s) = s for all signals s does not have an execution.
Whenever we introduce a circuit for a possibility result, we
will thus make sure that it allows for a unique execution
once the input signals are fixed. In case of constant-delay
channels, this is always the case. (We will prove this in
Lemma 2.)

Short-Pulse Filtration. A pulse p of length ∆ > 0 at time T
is a signal of the form

p(t) =

{
0 if t < T or t ≥ T + ∆

1 if T ≤ t < T + ∆ .
(2)

A signal contains a pulse of length ∆ > 0 at time T if its
event list contains the two consecutive events (T, 1) and
(T + ∆, 0).

A circuit solves Short-Pulse Filtration (SPF) if it fulfills the
following conditions:
F1) It has exactly one input port i and exactly one output

port o.
F2) For every pulse p, there exists an execution that has p as

the input signal (i.e., si = p). (Well-formedness)
F3) In all executions, if the input signal is constant zero,

then so is the output signal. (No generation)

5

F4) There exist a pulse p such that, in all executions with p
as the input signal, the output signal is not the constant
zero signal. (Nontriviality)

F5) There exists an ε > 0 such that, in all executions, the
output signal does not contain a pulse of length less
than ε. (No short pulses)

A circuit solves bounded SPF if additionally the following
condition holds:
F6) There exists a K > 0 such that, in all executions

with a pulse as the input signal whose last event is
at time T , the output signal does not change anymore
after time T +K . (Bounded stabilization time)

A circuit solves eventual SPF if conditions (F1)–(F4) and
the following condition hold:

F5e) There exists an ε > 0 and a K > 0 such that, in all
executions with a pulse at time T as the input signal,
the output signal does not contain a pulse of length less
than ε after time T +K . (Eventually no short pulses)

Note that we do not require that the signal is eventually
1 forever to solve SPF, but only for longer than the minimal
pulse duration ε. However, starting from a circuit solving
SPF according to our definition, one can easily construct a
circuit solving the stronger version with strict stabilization
by adding a storage loop at the end.

4 UNSOLVABILITY OF SPF WITH CONSTANT DE-
LAY CHANNELS

In this section, we show that no circuit whose channels are
all positive constant-delay channels solves SPF. The idea of
the proof is to exploit the fact that the value of the output
signal of the circuit at each time t only depends on a finite
number of values of the input signal at times t′ between 0
and t.

Calling each such time t′ a measure point for time t,
we show that indeed only a finite number of measure
points exists for time t, i.e., the circuit cannot distinguish
two different input signals that do not differ in the input
signal values at the measure points for time t: For both
such input signals, the output signal must have the same
value at time t. Combining that indistinguishability result
with a shifting argument of the input signal allows us to
construct an arbitrary short pulse at the output of the circuit,
a contradiction to property (F5) of SPF.

4.1 Dependency Graphs
For each constant-delay circuit with a single input port
and a single output port, we introduce its dependency graph,
which describes the way the output signals may depend on
the input signals. Its nodes are either the constant Boolean
values 0 and 1 or of the form 〈v, τ〉, signifying that the signal
value at gate v at time t− τ may influence the output signal
at time t.

Let C = (G, I,O, c,m) be a circuit with constant-delay
channels, a single input port i, and a single output port o.
For every channel cu,v of C , denote by δ(u, v) its delay
parameter δ and by x(u, v) its initial value. The dependency
graph DG(t) of C at time t is a directed graph with ver-
tices 〈v, τ〉, where v is a vertex in G and τ a time, or from B.
It is defined as follows:

OR
δ = 1

x = 0
i

δ = 2

x = 0

δ = 1

x = 0
o

Fig. 4. Example circuit

〈o, 0〉

〈OR, 1〉

〈OR, 3〉

〈i, 2〉

〈OR, 5〉

〈i, 4〉

0

〈i, 6〉

Fig. 5. Example dependency graph DG(6)

• The pair 〈o, 0〉 is a vertex of DG(t).
• If 〈v, τ〉 is a vertex of DG(t) and (u, v) is an edge

in G such that τ + δ(u, v) ≤ t, then the pair
〈
u, τ +

δ(u, v)
〉

is also a vertex of DG(t) and there is an edge
in DG(t) from

〈
u, τ + δ(u, v)

〉
to 〈v, τ〉.

• If 〈v, τ〉 is a vertex of DG(t) and (u, v) is an edge
in G such that τ + δ(u, v) > t, then cu,v’s initial
value x(u, v) is a vertex of DG(t) and there is an
edge in DG(t) from x(u, v) to 〈v, τ〉.

Because all δ(u, v) are strictly positive, the dependency
graphs are finite and acyclic. A vertex of DG(t) without
incoming neighbors is a leaf, all others intermediate vertices.
A vertex of the form 〈i, τ〉, with i ∈ I , is an input leaf and
we call the time t − τ the corresponding measure point for
time t. If DG(t) = DG(t̃), then the measure points for t
are exactly the measure points for t̃ shifted by the difference
t− t̃. All leaves of DG(t) are either input leaves or elements
of B (initial values of channels).

As an example, consider the circuit shown in Fig. 4.
The dependency graph DG(6) is shown in Fig. 5. Leaves
are depicted as filled nodes, while intermediate nodes are
empty. From the construction of the graph, we immediately
see that in each execution the output signal value so(6) only
depends on the (input) signal values si(4), si(2), and si(0).
Thus, in particular, so(6) is the same for signals si = in1

and si = in2 depicted in Fig. 6: Indeed, the signal values
agree for all three measure points 〈i, 6〉, 〈i, 4〉, and 〈i, 2〉, i.e.,
in1(6 − 6) = in1(0) = in2(0) = 0, in1(6 − 4) = in1(2) =
in2(2) = 1, and in1(6− 2) = in1(4) = in2(4) = 0.

Generalizing the observations from the example, by fol-
lowing paths in the dependency graph, we thus observe:

Lemma 1. The value of the output signal at time t only depends
on the values of the input signal at the measure points for time t,

in1(t)

t

0 1 2 3 4 5

〈i, 6〉

〈i, 4〉

〈i, 2〉

in2(t)

t

0 1 2 3 4 5

〈i, 6〉

〈i, 4〉

〈i, 2〉

Fig. 6. Two input signals with measure points (×), labeled with corre-
sponding input leaf names, leading to the same output value at time 6

6

according to DG(t).
Furthermore, if DG(t) = DG(t̃) and the values of input

signals si and s̃i coincide at the respective measure points for t
and t̃, then the respective output signals fulfill so(t) = s̃o(t̃).

Proof: For a path π in G, denote by δ(π) the sum of
delays δ(u, v) over all edges (u, v) of π. For every vertex v
of G and every time t ∈ T , let P(→ v, t) be the set of
maximum length paths π ending in v such that δ(π) ≤ t.

It is clear, by iterating Eq. (1), that the value of sv(t) is
uniquely determined by the collection of values su

(
t−δ(π)

)
where u is the start vertex of π ∈ P(→ v, t). Moreover, by
maximality of π, if u 6= i, then su

(
t − δ(π)

)
only depends

on the initial values of channels of incoming edges to u.
Hence sv(t) is uniquely determined by the collection of
values si

(
t − δ(π)

)
where π ∈ P(→ v, t) starts at i. This

holds in particular for v = o.
This lemma has as an immediate consequence:

Lemma 2. If C is a circuit with only constant-delay channels,
then for all assignments of input signals (si)i∈I there exists a
unique execution of C extending this assignment.

Due to the fact that there are only finitely many measure
points for a given time t, they are discrete and hence there is
always a small margin until a new measure point appears:

Lemma 3. For every t ∈ T , there exists an ε > 0 such that
DG(t) = DG(t+ ε′) for all 0 ≤ ε′ ≤ ε.

Proof: Let ε > 0 be strictly smaller than all positive
values of the form δ(u, v) + τ − t where (v, τ) is an interme-
diate vertex of DG(t) and (u, v) is an edge in G. If no such
intermediate vertex or edge exists, choose ε > 0 arbitrarily.

Let 〈v, τ〉 be an intermediate vertex of DG(t) and (u, v)
be an edge in G. If t+ ε− τ < δ(u, v), then clearly t− τ <
δ(u, v), because ε > 0. On the other hand, if t− τ < δ(u, v),
then δ(u, v) + τ − t is positive and hence δ(u, v) > t +
ε − τ by choice of ε. Thus, the conditions t − τ < δ(u, v)
and t + ε − τ < δ(u, v) are equivalent. This shows that the
two dependency graphs DG(t) and DG(t+ε) and hence all
dependency graphs in between are equal.

4.2 Unsolvability Proof
Assume by contradiction that C solves SPF. By the nontriv-
iality property (F4), there exists an input pulse such that the
corresponding output signal is non-zero, i.e., there exists an
input pulse p of some length and a time t such that the
corresponding output signal’s value at time t is 1.

By Lemma 3, there exists an ε > 0 such that DG(t) =
DG(t + ε). We may choose ε arbitrarily small, in particu-
lar strictly smaller than all differences of distinct measure
points for time t.

Clearly, DG(t̃) = DG(t) for all times t̃ between t and t+
ε, in particular, for t̃ = t + ε/2. Denote by ∆ the infimum
of input pulse lengths (where all pulses start at the same
time) such that the corresponding output signal’s value at
time t̃ is 1. This infimum is finite by the choice of t and t̃.
By definition of the infimum ∆, there exists an input pulse p
with the above property of length at most ∆+ε/4. We show
that its corresponding output signal sp contains a pulse of
length strictly less than ε, in contradiction to the no short
pulses property (F5).

p(t)

t

S T

p
p+

p̃+

p−
p̃−

(i, 6)

ε ε

Fig. 7. Input pulse p, together with its derived pulses and measure points
for time t̃

Denote by S the time of p’s upwards and by T the time
of p’s downwards transition. Now let p+ be the pulse whose
upwards transition is at time S and whose downwards
transition is at time T − ε/2. If S ≥ T − ε/2, then let p+

be the zero signal instead. The length of p+ is either strictly
less than ∆ or it is the zero signal. Hence, by the definition
of ∆ and the no-generation property (F3), its corresponding
output signal’s value at time t̃ is 0. This implies that there ex-
ists a measure point for time t̃ within [T −ε/2, T), because p
and p+ coincide everywhere else (see marked measure point
on the right in Fig. 7).

Because we chose ε to be smaller than all differences of
distinct measure points for time t (and hence also for time t̃),
we see that there is no measure point for t̃ in the interval
[T, T + ε/2).

Likewise, by defining p− as the pulse with upwards
transition at time S + ε/2 and downwards transition at
time T , we infer that there is one measure point for time t̃ in
the interval [S, S + ε/2) and there is no measure point for t̃
in the interval [S − ε/2, S) (see Fig. 7).

Now consider the pulse p̃+ generated by shifting pulse p
into the past by ε/2, i.e., p̃+’s upwards transition is at
time S − ε/2 and its downwards transition is at T − ε/2.
Because p̃+ coincides with p+ at all measure points for t̃,
the output signal sp̃+ corresponding to p̃+ has value 0 at
time t̃. Because DG(t̃) = DG(t̃ + ε/2), the second part of
Lemma 1 shows that sp̃+(t̃+ ε/2) = 0.

Likewise, by considering p shifted into the future by ε/2,
we see that also sp̃+(t̃−ε/2) = 0. But because sp(t̃) = 1, this
shows that the output signal sp contains a pulse of length
strictly less than ε. Since ε can be chosen arbitrarily small,
this concludes the proof.

5 BOUNDED SINGLE-HISTORY CHANNELS

This section formally introduces the notion of bounded
single-history channels in the binary circuit model. They
are a generalization of constant-delay channels that cover
all existing channel models for binary circuit models we are
aware of.

Intuitively, a bounded single-history channel propagates
each event, occurring at time t, of the input signal to an
event at the output happening after some bounded output-
to-input delay δ(T), which depends on the input-to-previous-
output delay T = t − t′ where t′ is the most recent output
event. Note that T is positive if the channel delay is short
compared to the input signal transition times, and negative
otherwise. In case FIFO order would be invalidated, i.e., t+
δ(T) ≤ t′, such that the next output event would not occur
after the previous one, both events annihilate.

7

i(t)
t

o(t)
t

δ0δ1

u(t)

t

Vth

Fig. 8. Annihilating events and analog interpretation: the binary input
signal triggers a switching curve. When the switching curve crosses a
threshold level, a binary output event is generated.

Viewed from the perspective of an analog circuit model,
annihilating events represent a signal change that ultimately
does not reach the switching threshold, and hence do not
result in a new (digital) event, see the example shown in
Fig. 8: Let us assume that the event list of a channel input
signal i is ((−∞, 0), (1, 1), (2, 0)), i.e., represents a pulse
of length 1 starting at time 1. For the rising transition at
time 1, the most recent output transition occurred at −∞.
Thus T = 1 − (−∞) = ∞, and the transition is mapped to
the (potential) output transition at time 1+δ0 = 1+δ(∞). In
the analog model, this corresponds to the channel reaching
the threshold voltage at time 1 + δ0. The next (falling) tran-
sition at time 2 is mapped to a (potential) output transition
at time 2 + δ1 = 2 + δ(2− (1 + δ0)) = 2 + δ(1− δ0). In our
example, 2+δ1 < 1+δ0, so both potential output transitions
annihilate. In the analog model, this is reflected by the fact
that the output voltage did not reach the threshold voltage.

There are two natural variants of bounded single-history
channels that differ in the definition of the time of the
previous output when determining the input-to-previous-
output delay: one may either take the time of the last non-
annihilated output event, or of the last output event even if
it was annihilated. We dub these two variants forgetful and
non-forgetful bounded single-history channels. In terms of
the example in Fig. 8, a positive input transition occurring
at time t > 2, i.e., after the shown input pulse, would have
parameter T = t − (−∞) in the forgetful and parameter
T = t − (2 + δ1) in the non-forgetful case. We give formal
definitions of both variants below.

At the end of this section, we give a list of channel
models that are special cases of our definition of bounded
single-history channels. It reveals that all the binary-value
channel models proposed in literature are instances of either
forgetful or non-forgetful bounded single-history channels.

Formally, a bounded single-history channel c is charac-
terized by an initial value x ∈ B, a nondecreasing delay
function δ : R→ R such that δ(∞) = limT→∞ δ(T) is finite
and positive, and the fact whether it is forgetful or not. In the
rest of the paper, we will drop the qualifier “bounded” when
referring to bounded single-history channels. We detail the
channel behavior in the next two subsections.

5.1 Forgetful Single-History Channels
This class of channels includes the classical inertial delay
channels as used, for example, in VHDL simulators [1].

Their behavior is defined by the following algorithm:
Let s be a signal. In case the channel’s initial value xinit

is equal to the initial value of s, or if there is an event
at time 0 in the event list of s, let the channel’s input
list

(
(tn, xn)

)
n≥0

=
(
(t0, x0), (t1, x1), . . .

)
be the event list

of s. Otherwise, let the channel’s input list be the event list
of s with an additional event at time 0 and value equal
to the initial value of s. Algorithm 1 iterates the input list
and updates the output list, which will define the channel’s
output signal c(s). Note that T = ∞ is possible. In this
case, δ(T) = δ(∞) = limT→∞ δ(T), which is finite by
assumption.

Algorithm 1 Forgetful channel algorithm

1: output←
(
(−∞, xinit)

)
2: for n = 1 to length(input) do
3: (t, x)← (tn, xn)
4: (t′, x′)← last event of output
5: if x 6= x′ then
6: T ← t− t′
7: if t+ δ(T) > t′ then
8: add (t+ δ(T), x) to output
9: else

10: remove (t′, x′) from output
11: end if
12: end if
13: end for

Note that the output sequence’s first event is always the
initial event (−∞, x), all other events have positive times
(since δ(∞) > 0), its sequence of event times is strictly
increasing, and its sequence of values is alternating.

If the input list is finite, the algorithm halts. If not, the
output sequence nonetheless stabilizes in the sense that, for
every time t, there exists some N such that all iterations
with n ≥ N make no changes to the output sequence at
times ≤ t. The next lemma (Lemma 4) proves this property
and makes the limit output list as n tends to infinity well-
defined. So, even if the input list is infinite, there exists a
well-defined (infinite) output list S that is the result of the
described algorithm. The channel’s output signal c(s) is then
defined by the event list S:

Definition 1. For input signal s, the output signal c(s) of the
forgetful single-history channel c is the signal whose event
list is the list S as defined by the Algorithm 1.

The following lemma shows that the output list eventu-
ally stabilizes, by proving that events that are too far back
in time cannot interfere with the currently considered input
event.

Lemma 4. Denote by Sn the output list after the nth iteration
of the forgetful channel algorithm, and by Sn|t its restriction to
the events at times at most t. For all t there exists an N such
that Sn|t is constant for all n ≥ N .

Proof: The lemma is trivial if the input list is finite, so
we assume it to be infinite.

Because the sequence of input event times (tn)n≥0 tends
to infinity, there exists an N such that

tN ≥ max
(
t , t− δ(−δ(∞))

)
. (3)

The choice of the constant −δ(−δ(∞)) can be explained by
the fact that the current output event is removed if and only

8

if δ(T) ≤ −T and that we always have T > −δ(∞). We
show by induction that Sn|t = SN |t for all n ≥ N . This is
trivial for n = N , so let n > N , which implies tn > tN .

Let (t′, x′) be the last element in Sn−1, and T = tn − t′.
The case xn = x′ is trivial, so let xn 6= x′. We distinguish
two cases, depending on whether δ(T) > −T or not:

Case 1: δ(T) > −T . Because δ is nondecreasing, we have
δ(T) ≤ δ(∞), and hence T > −δ(∞) and also δ(T) ≥
δ(−δ(∞)). This implies tn + δ(T) > tN + δ(−δ(∞)) ≥ t
by using (3). Hence Sn|t = Sn−1|t = SN |t by the induction
hypothesis.

Case 2: δ(T) ≤ −T . We show that t′ > t by contra-
diction: Let t′ ≤ t. Then T = tn − t′ > tN − t ≥ 0,
by (3). From δ(∞) > 0, we thus obtain T > −δ(∞).
Hence δ(T) ≥ δ(−δ(∞)) by monotonicity of δ. By assump-
tion, δ(−δ(∞)) ≤ δ(T) ≤ −T = t′ − tn, which implies
tn ≤ t′ − δ(−δ(∞)), i.e., tN < t − δ(−δ(∞)). This is
a contradiction to (3), which shows that t′ > t. Hence
Sn|t = Sn−1|t = SN |t by the induction hypothesis.

5.2 Non-Forgetful Single-History Channels
The DDM channels introduced by Bellido-Dı́az et al. [3] are
not covered by the above forgetful single-history channels,
since they have been designed to reasonably match analog
RC waveforms: Analog signals like exponential functions do
not “forget” sub-threshold pulses: If an input pulse (train)
takes the output voltage very close to the switching thresh-
old (but not above), then even a very short subsequent pulse
can cause a threshold crossing. Moreover, the output voltage
does not drop to zero immediately (cf. the falling waveform
in the bottom part of Fig. 8) in the absence of a subsequent
pulse. Hence, DDM channels cannot be modeled via delay
functions δ(T) that depend on the input-to-previous non-
annihilated output delay T . To also cover such models, we
hence introduce non-forgetful single-history channels, the
delay function of which may depend on the last annihilated
output event.

The output event list generation algorithm for non-
forgetful channels thus maintains an additional variable r,
which, in each iteration, contains the time of the potential
output event considered in the last iteration. Intuitively, the
variable r retains some memory of the analog signal voltage,
translated into the time domain; note that this approach
was already employed in the DDM event generation algo-
rithm [3, Fig. 13]. Similar to the forgetful case, our Algo-
rithm 2 determines the output signal c(s) of a non-forgetful
single-history channel c, given input signal s with input
event list

(
(tn, xn)

)
n≥0

.

Lemma 5. If an event (t′, x′) is deleted in line 11 of Algorithm 2,
then r = t′.

Proof: Assume by contradiction that this is not the
case, and let n be the first iteration where the statement is
violated. Denote by, t′k, Tk and rk the values of t′, T and r
at the end of the kth iteration, respectively. Our assumption
is tn + δ(Tn) < rn−1.

Then it must hold that n ≥ 2, as in iteration n− 2 some
event (τ, xn−2) must have been added to the output list that
was deleted in iteration n−1, due to τ ′ = tn−1 +δ(Tn−1) ≤
rn−2 = τ . Furthermore, in iteration n, our assumption of

Algorithm 2 Non-forgetful channel algorithm

1: output←
(
(−∞, xinit)

)
2: r ← −∞
3: for n = 1 to length(input) do
4: (t, x)← (tn, xn)
5: (t′, x′)← last event of output
6: if x 6= x′ then
7: T ← t− r
8: if t+ δ(T) > r then
9: add (t+ δ(T), x) to output

10: else
11: remove (t′, x′) from output
12: end if
13: r ← t+ δ(T)
14: end if
15: end for

deleting some event with a time different from rn−1 = τ ′

implies τ ′′ = tn+δ(Tn) ≤ τ ′. However, from tn−1 < tn, τ ≥
τ ′ and monotonicity of δ, tn−1+δ(tn−1−τ) < tn+δ(tn−τ ′),
i.e., τ ′ < τ ′′, which provides the required contradiction.

Thus, an event is either deleted in the next iteration, or
never deleted. The output sequence’s first event (−∞, x) is
obviously never deleted.

By analogous arguments, one can show that the se-
quence of event times is strictly increasing, with an alter-
nating sequence of values. Unlike in the case of forgetful
channels, however, the event list generation algorithm may
produce events that occur at finite negative times, which
will be removed from the final output. If the input list is
finite, the algorithm clearly halts. If not, we again have the
same stabilization property as for forgetful single-history
channels, which we will provide in Lemma 6 below. Thus
the algorithm’s final output list S is again well-defined and
we can define:

Definition 2. For input signal s, the output signal c(s)
of the non-forgetful single-history channel c is the signal
whose event list is the list S as defined by Algorithm 2 after
deleting all events with finite negative times, and the first
non-negative-time event if its value is equal to the channel’s
initial value x.

The next lemma shows that the output list eventually
stabilizes for non-forgetful channels. Surprisingly, its proof
is more direct than of the analogous statement for forgetful
channels.

Lemma 6. Denote by Sn the output list after the n-th iteration
of the non-forgetful channel algorithm, and by Sn|t its restriction
to the events at times at most t. For all t, there exists an N such
that Sn|t is constant for all n ≥ N .

Proof: The lemma follows from the fact that an event
can only be deleted one iteration after it was added to the
output list, and the fact that in each iteration n, we have
T > −δ(∞) and thus tn + δ(T) is lower bounded by tn +
lim
τ→0+

δ(−δ(∞) + τ).

5.3 Examples of Single-History Channels

Below, we summarize how the existing binary-value models
are mapped to our single-history channels:

9

1) A classic pure-delay channel is a single-history channel
whose delay function δ is constant and positive. The
behavior of a pure-delay channel does not depend on
whether it is forgetful or not.

2) An inertial channel is a forgetful single-history channel
whose delay function δ is of the form

δ(T) =

{
δ0 if T > T0

−T0 if T ≤ T0

for parameters δ0 > 0 and T0 > −δ0. An inertial channel
filters an incoming pulse if and only if its pulse length is
less or equal to T0 + δ0; otherwise, it is forwarded with
delay δ0.

3) The DDM-channels of Bellido-Dı́az et al. [3] are non-
forgetful with delay function

δ(T) = tp0 ·
(

1− e−(T−T0)/τ
)

(4)

for certain (empirically determined) positive parame-
ters tp0, τ , and T0. Note that we have δ(T0) = 0,
limt→∞ δ(T) = tp0, and dδ(T)

dT |T=0 = tp0/τ here.

6 BOUNDED SPF WITH ONE NON-CONSTANT DE-
LAY CHANNEL

In this section we prove that bounded SPF is solvable
as soon as there is a single non-constant-delay bounded
single-history channel available. More specifically, we show
that, given a single-history channel with non-constant delay,
there exists a circuit that uses only constant-delay chan-
nels apart from the given non-constant channel that solves
bounded SPF. Different circuits, and hence proofs, are used
for different types of channels.

For a single-history channel with delay function δ, let
δ∞ = δ(∞) = limt→∞ δ(t) with 0 < δ∞ < ∞. The right
limit of δ at −δ∞ is denoted by δinf = limt→0+ δ(−δ∞ + t);
note that δinf = −∞ is allowed here.

In the rest of this section, let c∗ be a single-history
channel that is not a constant-delay channel. This is equiv-
alent to saying that its delay function δ is non-constant for
T > −δ∞, because Tn > −δ∞ in every step of the channel
algorithm. This argument proves the following lemma:

Lemma 7. A single-history channel with delay function δ is a
constant-delay channel if and only if δ is constant in the open
interval (−δ∞,∞).

Note that δinf < δ∞ in case of a non-constant delay
channel. From the fact that −δ∞ < Tn ≤ ∞ in every step of
the channel algorithm, we also obtain:

Lemma 8. All events in the event list of a single-history channel’s
input signal are delayed by times within [δinf , δ∞].

6.1 Forgetful Channels

In this subsection, assume that c∗ is forgetful. Consider
circuit Cff depicted in Fig. 9, which contains channel c∗

as well as two constant-delay channels. For the moment
assume that the initial value of c∗ is 0. We will show at
the end of this subsection that bounded SPF is also solvable
with c∗ if its initial value is 1.

OR
δ = 1

x = 0
i

δ = ε

x = 0

c∗
o

Fig. 9. Circuit Cff

It remains to describe how to choose delay parame-
ter ε > 0. We will show in the following that for each non-
constant-delay forgetful single-history channel c there exists
a γ(c) > 0 such that c(s) is the zero signal whenever s is a
pulse of length less than γ(c). More generally we will show
that, if signal s does not contain pulses of length greater or
equal to γ(c), then c(s) is the zero signal. We then choose
0 < ε < γ(c∗) for the delay parameter ε in circuit Cff .

If the input signal of circuit Cff is a pulse of length at
least ε, then the signal sOR at the OR gate is eventually
stable 1 because of the ε-delay feedback loop, and hence the
circuit’s output signal is eventually stable 1. If the circuit’s
input signal is a pulse of length ∆ < ε, then sOR only
contains pulses of length ∆ < γ(c∗), from which it follows
that the circuit’s output signal is zero.

Let δ be the delay function of a single-history channel c.
We define:

γ(c) = inf
{

∆ > 0 | ∆− δ∞ + δ
(
∆− δ∞

)
> 0

}
(5)

We will prove γ(c∗) > 0 in Lemma 10. Before characterizing
the non-constant-delay channels as those c with γ(c) > 0,
we need a preliminary lemma on pulse-filtration properties
of non-constant-delay channels. It shows that very short
pulses are suppressed by explicitly running the channel
algorithm for one pulse.

Lemma 9. Let c be a non-constant-delay bounded single-history
channel with initial value 0. If s is a pulse of length less than γ(c),
then c(s) is zero.

Proof: The event list of signal s consists of two
events (R, 1) and (S, 0), possibly preceded by an additional
event (0, 0), depending on whetherR = 0 orR > 0. Because
the initial value of c is 0, we may assume without loss
of generality that the sequence consists of only these two
events.

After the first iteration of Algorithm 1, the output list is
equal to

(
(−∞, 0), (R+δ∞, 1)

)
. Hence, in the next iteration,

T = S −R− δ∞ < γ(c)− δ∞ ,

i.e., T + δ∞ < γ(c). By definition of γ(c), this implies

(T + δ∞)− δ∞ + δ((T + δ∞)− δ∞) ≤ 0 ,

and thus T + δ(T) ≤ 0. Thus, the event (R + δ∞, 1) gets
removed from the output list and the output signal is the
constant-zero signal.

We are now ready to prove the characterization of
constant single-history channels in terms of its ability to
suppress some pulse and the value of γ(c). The starting
point in the proof is to note that the pulse’s rising transition
is delayed by δ∞ and that t′ = δ∞ and T = ∆ − δ∞ in
the following iteration of the algorithm if ∆ denotes the
pulse length. The falling transition annihilates the rising

10

transition if and only if δ(T) ≤ t′. In other words, if
∆ + δ(∆ − δ∞) ≤ δ∞. It then suffices to compare this with
the definition of γ(c).

Lemma 10. Let c be a single-history channel with initial value 0.
The following statements are equivalent:

1) c is not a constant-delay channel.
2) There exist a pulse s such that c(s) is the zero signal.
3) γ(c) > 0

Proof: Let δ be the delay function of c. If s is a pulse
of length ∆, then c(s) is zero if and only if

∆− δ∞ + δ
(
∆− δ∞

)
≤ 0 .

This implies γ(c) ≥ ∆ and hence establishes the equivalence
of (2) and (3). If we can show that c is not a constant-delay
channel if and only if

∃ε > 0 : δ(−δ∞ + ε) ≤ δ∞ − ε , (6)

then we can choose ∆ = ε, concluding the proof.
The sufficiency of Eq. (6) for c not being a constant-delay

channel is immediate. To prove the necessity of Eq. (6),
assume that c is not a constant-delay channel. Then there
exist β, β′ > 0 such that δ(β − δ∞) < δ(β′ − δ∞) and since
δ is nondecreasing, δ(β − δ∞) < δ∞. Thus, there exists a
z > 0, such that,

δ(β − δ∞) ≤ δ∞ − z . (7)

There are two cases for z: If β ≤ z, we obtain from Eq. (7)
that δ(β−δ∞) ≤ δ∞−β. Choosing ε = β shows that Eq. (6)
holds. Otherwise, i.e., if β > z, we obtain from Eq. (7) and
the fact that δ is nondecreasing

δ(z − δ∞) ≤ δ(β − δ∞) ≤ δ∞ − z .

Choosing ε = z shows that Eq. (6) holds.
Note that, while Lemmas 9 and 10 hold for both forget-

ful and non-forgetful single-history channels, the following
lemma does fundamentally not hold for arbitrary non-
forgetful channels. It is the generalization of Lemma 9 to
pulse trains, which is obvious due to the forgetting nature
of forgetful channels.

Lemma 11. Let c be a non-constant-delay bounded forgetful
single-history channel with initial value 0. Let s be a signal that
does not contain pulses of length greater or equal to γ(c) and that
is not eventually equal to 1. Then c(s) is the zero signal.

Proof: The lemma is proved by inductively repeating
the proof of Lemma 9 for all pulses contained in s.

Using Lemma 11, we can now prove that circuit Cff

solves bounded SPF by checking off the requirements.

Lemma 12. Circuit Cff solves bounded SPF.

Proof: We first note that, given an input signal, there
is a unique execution for circuit Cff according to Lemma 2,
because the sole non-constant bounded channel c∗ is not
part of a feedback loop. The well-formedness properties
(F1) and (F2) of SPF are hence fulfilled. The non-generation
property (F3) is also obvious.

If the input signal is a pulse of length at least ε,
then sOR(t) = 1 for all t ≥ S + 1, and hence so(t) = 1

for all t ≥ S + 1 + δ∗(∞). In particular, this shows the
nontriviality property (F4).

If the input signal is a pulse of length less than ε,
then sOR(t) only contains pulses of lengths less than ε,
hence less than γ(c∗) by the choice of ε. By Lemma 11, the
output signal is zero in this case. This, together with the
above, shows (F5) and (F6).

It remains to show that assuming c∗ to have initial
value 0 is is not restricting: If its initial value is 1 we modify
circuit Cff by adding an inverter before and after channel c∗.
A proof analogous to Lemma 12’s yields:

Theorem 3. Let c∗ be a non-constant-delay forgetful bounded
single-history channel. Then there exists a circuit solving bounded
SPF whose channels are either constant-delay channels or c∗.

6.2 Non-Forgetful Channels

Theorem 4 reveals that a single non-constant-delay non-
forgetful single-history channel c∗ (with initial value 0) also
allows to solve bounded SPF:

Theorem 4. Let c∗ be a non-constant-delay non-forgetful
bounded single history channel with initial value 0. Then there
exists a circuit solving SPF whose channels are all either constant-
delay channels or c∗.

6.2.1 Proof of Theorem 4: Case Distinction
Let δ be the delay function of c∗. Recall from Lemma 7
that δinf < δ∞, since δ is non-decreasing and not constant.
We distinguish three cases for function δ with respect to its
behavior at −δinf .

1. There exists a t > −δinf such that δ(t) < δ∞.
2. δ(t) = δ∞ for all t > −δinf , and

2.1 δ is continuous at −δinf , i.e., at −δinf its
left limit limt→0− δ(−δinf + t) equals its right
limit δ∞.

2.2 δ is not continuous at −δinf , that is, we have
δ− = limt→0− δ(−δinf + t) < δ∞.

Note that this covers all possible cases since δ(t) ≤ δ∞ for
all t ∈ R by monotonicity.

6.2.2 Cases 1 and 2.1
For Cases 1 and 2.1, we show that circuit CNF depicted
in Fig. 12 solves bounded SPF. All its clocks CLKA/C/F

produce a signal with period A + B + C + D, where
parameters A to D are chosen later on in accordance with δ.
Let τk = k(A+B+C+D) denote the beginning of the k-th
round, for k ≥ 0. Clock CLKC is designed such that its out-
put signal is 0 during [τk, τk+A+B)∪[τk+A+B+C, τk+1)
and 1 during [τk +A+B, τk +A+B+C). Such a clock can
easily be built from constant-delay channels and inverters
only. Clock CLKA’s output signal is 1 during [τk, τk + A)
and 0 during [τk + A, τk+1). The output signal of CLKF

is 0 during [τk, τk + E) ∪ [τk + E + F, τk+1) and 1 during
[τk +E, τk +E +F). Again, E and F are chosen later on in
accordance with δ.

Abbreviating tk = τk + 2, we observe that circuit CNF

generates a signal sOR at the input of channel c∗, which
is the OR of two sub-signals that consist of four phases

11

within time [tk, tk+1), k ≥ 0 (i.e., per round): Phase A
(of round k) denotes the interval of times [tk, tk + A),
phase B the interval [tk + A, tk + A + B), phase C the
interval [tk + A + B, tk + A + B + C) and phase D the
interval [tk+A+B+C, tk+A+B+C+D). The value of sOR
is 1 during phase A, and 0 during phases B and D. During
phase C it is either 0 or contains a pulse, depending on
signal i. Analogously, we define output phase F (of round k)
as the interval of times [tk+E, tk+E+F). Note that phase E
and F of round k follow phase D of round k, and overlap
with phase A of round k + 1.

Informally, for Cases 1 and 2.1, circuit CNF solves
bounded SPF according to the following reasoning: Proper-
ties (F1) and (F2) trivially hold for circuit CNF. Clearly, if the
circuit’s input signal is 0, then the channel’s input signal sOR
is 0 during phase C of all rounds k ≥ 0. Subsequently, we
will prove that if this is the case, then the channel’s output
signal c∗(sOR) during phase F is 0 for all rounds k ≥ 0.
Since phase F is the only phase where o could possibly
produce a non-0 output due to the AND gate, both (F3)
and (F5) follow. Property (F4) is implied by the fact that
there exists an input signal i such that sOR contains a pulse
during phase C of some round k ≥ 0. We will prove below
that if this is the case, then the channel’s output signal is 1
during phase F of round k + 1. Essentially, this follows
from a reduced delay of the rising transition at the end of
phase D, caused by not forgetting the (canceled) pulse in
phase C. From this and the fact that all delays are bounded,
(F6) follows.

Case 1. In this case, we will show that it is sufficient to
choose

(i) C > 0, D > 0 and 0 < ∆ < δ∞ such that δ(C + D −
δinf) ≤ δ∞ − ∆. Such values for C , D and ∆ exist,
because of the assumption of Case 1.

(ii) ε > 0, ε′ > 0 and C > 0 small enough such that δ∞ −
ε′ ≥ δinf + ε+ C and ε′ < ∆/4.

(iii) C > 0 and ε′ > 0 small enough such that δ(C + ε′ −
δ∞) ≤ δinf + ε.

(iv) A = B > max(ε′,∆, δ∞ − δinf) and large enough such
that δ(A− δ∞) ≥ δ∞ − ε′.

(v) E = δ∞ −∆ and F = ∆/2.

It is not too hard to check that Assumptions (i)–(v) are
compatible with each other.

Figures 10 and 11 depict signal sOR in absence and
presence of a pulse. The next three lemmas prove formally
the behavior of channel c∗ shown in these two figures.
Lemmas 13 and 14 verify Figure 10, i.e., that there is no
output pulse in phase F if there is no input pulse in phase C.
Lemma 15 then shows the accuracy of Figure 11, i.e., that
the output is 1 during the whole duration of phase F if there
is an input pulse in phase C. The proofs essentially are an
explicit execution of the channel algorithm and making sure
that the parameters were chosen correctly.

Lemma 13. The channel’s output signal c∗(sOR) has value 0
during output phase F of round 0.

Proof: The signal is depicted in Fig. 10: Signal sOR’s
transition to value 1 at time t0 is delayed by c∗ by δ0 =
δ∞ > 0. Its next transition back to value 0 at time t0 + A

sOR(t)

t

tk A B C D A

c∗(sOR)(t)

t

tk A+B + C +D + E F

δ0 δ1 δ2

Fig. 10. Case 1: Input and output of channel c∗ in circuit CNF if phase C
does not contain a pulse

is delayed by, say, δ1. Because of Lemma 8, δ1 ≥ δinf . From
this and Assumption (iv) on A,

A+ δ1 > (δ∞ − δinf) + δinf = δ0 .

It follows that output c∗(sOR)’s transition to 0 does not
cancel c∗(sOR)’s transition to 1 from before. All of sOR’s
following transitions occur at times at least t0 +A+B, and
by (iv), at times greater than t0 + δ∞ − δinf . Since all these
transitions are delayed by at least δinf time, none of them
can cancel c∗(sOR)’s transition to 1 at time t0 + δ∞ either.
Since channel c∗ has initial value 0, it follows that its output
has value 0 during [0, t0 + δ∞). Since

t0 + δ∞ > t0 + δ∞ −∆/2 = t0 + E + F ,

the channel’s output indeed has value 0 during output
phase F of round 0.

Lemma 14. If signal sOR does not contain a pulse within
phase C of round k, signal c∗(sOR) has value 0 during output
phase F of round k + 1.

Proof: Assume the input signal sOR of channel c∗ does
not contain a pulse within phase C of round k. The signal is
depicted in Fig. 10.

Signal sOR’s transition to value 1 at time tk is delayed
by c∗ by δ0 ≤ δ∞.

There is no transition of sOR before sOR’s transition back
to value 0 at time tk +A. Let δ1 be its delay. Because of (iv),
and δ being non-decreasing,A+δ1 > (δ∞−δinf)+δinf . Thus,
and because transitions are delayed by at least δinf , none of
the transitions from time tk + A on may cancel c∗(sOR)’s
transition to 1 at time tk + δ0.

The transition of sOR to value 1 at time tk+1 = tk +A+
B + C +D is delayed by δ2, where

δ2 = δ(B + C +D − δ1) ≥ δ(B − δ∞) ≥ δ∞ − ε′ , (8)

because of Assumption (iv). Together with (ii) this yields

δ2 > δ∞ −∆/4 . (9)

It will thus not occur at output c∗(sOR) before time tk+1 +
δ∞ − ∆/4, and thus, by (v), not before the end of output
phase F of round k + 1 at time tk+1 + δ∞ −∆/2.

Furthermore, from (8) and (iv),

B + C +D + δ2 > δ∞ ≥ δ1 ,

because (iv) in particular implies B > ε′. It follows that
output c∗(sOR)’s transition to 1 does not cancel c∗(sOR)’s
transition to 0 at time tk + A + δ1. All sOR’s subsequent
transitions occur at earliest at time tk+1 +A > tk+1 + δ∞ −

12

sOR(t)
t

tk A B C D A

u x y

c∗(sOR)(t)

t

tk A+B + C +D + E F

δ0 δ1 δ2 δ3 δ4

Fig. 11. Case 1: Input and output of channel c∗ in circuit CNF if phase C
contains a pulse

CLKA OR

AND AND

CLKC CLKF

c∗

δ = 1

x = 0
o

δ = 2

x = 0

δ = 2

x = 0

δ = 1

x = 0
i

δ = 1

x = 0

δ = 1

x = 0

Fig. 12. Circuit CNF used in Cases 1 and 2.1

δinf , by (iv) and the fact that they are delayed by at least δinf ,
hence cannot cancel c∗(sOR)’s transition to 1 at time tk+1 +
δ2. Thus, c∗(sOR) has value 0 during [tk + A + δ1, tk+1 +
δ2). Together with (9), this implies that c∗(sOR)’s value is 0
during phase F of round k + 1.

By analogous means we derive the following lemma,
whose proof can be found in the supplementary material.

Lemma 15. If signal sOR contains a pulse within phase C of
round k, signal c∗(sOR) has value 1 during output phase F of
round k + 1.

The combination of Lemmas 13, 14, and 15 now proves
Theorem 4 in Case 1.

Case 2.1. In this case, we may choose
(i) A = D > max(0, δ∞− δinf) and large enough such that

δ(A − δ∞) = δ∞. Such an A must exist, because of the
assumption of Case 2.1.

(ii) B,C, ε > 0 small enough such that B + C + ε+ δinf ≤
δ∞.

(iii) 0 < ε′ < B + C
(iv) ε > 0 small enough such that δ(−δinf − ε) ≥ δ∞ − ε′.

Such a value exists, since δ is continuous at−δinf by the
assumption of Case 2.1.

(v) B + C > 0 small enough such that δ(B + C − δ∞) ≤
δinf + ε.

(vi) E = A+ δ∞ and F = B + C − ε′.
Again, it is not hard to verify that Assumptions (i)–(vi) are
compatible with each other.

Figures 13 and 14 depict signal sOR in the absence and
presence of a pulse. The next lemma does the same job
in Case 2.1 as Lemmas 13, 14, and 15 did in Case 1: It
proves that the output signal of channel c∗ is either all 0
or all 1 during phase F, depending on whether there is
an input pulse in phase C. The proof is again an explicit
execution of the channel algorithm, and is provided in the
supplementary material.

Lemma 16. Signal sOR’s transition at time tk is delayed by δ∞,
and the channel’s output c∗(sOR) has value 0 during phase F of
round k in the absence of a pulse within phase C of round k, and
value 1 in the presence of a pulse.

sOR(t)
t

tk A B C D A

c∗(sOR)(t)

t

tk E F

δ0 = δ∞ δ1 = δ∞ δ2 = δ∞

Fig. 13. Case 2.1: Input and output of channel c∗ in circuit CNF if
phase C does not contain a pulse

sOR(t)
t

tk A B C D A

u x y

c∗(sOR)(t)

t

tk E F

δ0 = δ∞ = δ1 δ2 δ3 δ4 = δ∞

Fig. 14. Case 2.1: Input and output of channel c∗ in circuit CNF if
phase C contains a pulse

6.2.3 Case 2.2

For this case, circuit CNC depicted in Fig. 15 solves bounded
SPF. The algorithm and its proof rest on the following idea:
We first show in Lemma 17 that every channel c∗ whose δ
is in accordance with Case 2.2 does not produce pulses of
length within the non-zero interval [max(0, δ−− δinf), δ∞−
δinf). The remaining part of circuit CNC thus just has to
filter out all pulses with duration less than max(0, δ−−δinf)
(AND gate) and continuously hold all pulses of length δ∞−
δinf (OR gate). We thus obtain the following key lemma:

Lemma 17. Let c∗ be a non-constant-delay non-forgetful channel
chosen in accordance to Case 2.2. If the channel’s input signal is a
pulse, then its output signal is either 0 or a pulse whose length is
not within the non-zero interval [max(0, δ− − δinf), δ∞ − δinf].

Its proof can be found in the supplementary material.
If we choose the circuit parameters in Fig. 15 according

to ε′ = max(0, δ− − δinf) and 0 < ε < δ∞ − δinf − ε′, it
is not difficult to show that the resulting circuit CNC solves
bounded SPF in Case 2.2: Properties (F1) to (F3) trivially
hold for circuit CNC. To prove (F4), consider that if the input
signal i is a pulse of length 2δ∞, the output signal sc∗(i) of
c∗ is a pulse of length at least δ∞. Thus, the output of the
AND gate sAND is a pulse of length at least δ∞ − ε′ > ε,
resulting in the circuit’s output o making a transition to 1
and remaining 1 from there on.

Property (F5) directly follows from Lemma 17: If sc∗(i) is
a pulse of length smaller than max(0, δ− − δinf) = ε′, then

AND
ORδ = 1

x = 0 δ = ε

x = 0

δ = 1

x = 0
o

δ = 1

x = 0

δ=1+ε′

x = 0

c∗
i

ε′ = max(0, δ− − δinf) 0 < ε < δ∞ − δinf − ε′

Fig. 15. Circuit CNC used in Case 2.2

13

i OR
δ = 1

x = 0 δ = 1

x = 0

δ = α

x = 0 δ = 1

x = 0
o

Fig. 16. Circuit Cev solving eventual SPF

it is completely filtered out; sAND and hence o are hence
permanently 0. Otherwise, by Lemma 17, sc∗(i) must be a
pulse of length at least δ∞ − δinf . Thus, sAND is a pulse of
length at least δ∞ − δinf − ε′ > ε, which is sufficiently long
to be permanently captured in the storage looped formed by
the OR gate. The circuit’s output o hence makes a transition
to 1 and remains 1 from there on.

Finally, (F6) is due to bounded channel delays.

7 EVENTUAL SPF WITH CONSTANT DELAYS

We proved that SPF is not solvable with constant-delay
channels. In this section, we consider the weaker eventual
SPF problem, which drops the “no short pulses” require-
ment (F5) and replaces it with its eventual analog (F5e).
We show that eventual SPF is solvable using only constant-
delay channels. More specifically, we prove that circuit Cev

in Fig. 16 solves eventual SPF. The circuit contains a delay
parameter α, which we will choose to be a positive irrational
like α =

√
2.

We will show that the circuit’s output is eventually stable
at 1 whenever the input is a pulse of positive length. We
derive a bound on this stabilization time in terms of the
input pulse length ∆. The bound is almost linear in 1/∆: It
is in the order of O(∆−1−ε) for all ε > 0.

The measure points of circuit Cev for time t are of the
form t−(αk+`)−2, where k and ` are nonnegative integers.
This is easy to see by considering the dependency graph for
circuit Cev. Indeed, summing the δ’s of the possible paths
from the input i to output o of length L gives the values
2 + (αk+ `) where k+ ` = L−2. We can hence characterize
the circuit’s behavior with the following lemma.

Lemma 18. In every execution (sv) of circuit Cev, the following
are equivalent: (i) so(t) = 1, and (ii) there exist nonnegative
integers k and ` such that si

(
t− (αk + `)− 2

)
= 1.

We may restrict our considerations to input pulses start-
ing at time 0. In the following, let the input signal si be a
pulse of length ∆ > 0. We are looking for the stabilization
time, which is the minimal time T = T (∆) such that, for all
t ≥ T , we have so(t) = 1.

To prove finiteness and effective bounds on the stabi-
lization time, we relate it to the number-theoretic concept
of discrepancy of the sequence (αn) modulo 1 (see, e.g.,
[10]). The discrepancy compares the number of sequence
elements in a given interval with their expected number if
the elements were uniformly distributed.

For a given nonempty sub-interval (x, y] of (0, 1] and a
given positive integer N , let A(x, y;N) denote the number
of αn’s with n ≤ N that lie in the interval modulo 1: αn ∈
(x, y] + Z. The expected number of such αn’s is (y − x)N .
The discrepancy DN (α) is then defined as the maximum

difference between A(x, y;N) and (y − x)N , formed over
all nonempty sub-intervals (x, y] of (0, 1].

It is well-known that DN (α)/N → 0 if and only if α
is irrational. Also, if α has a bounded continued fraction
expansion, then DN (α) = O(logN) and the constant can be
computed [20]. This is, in particular, true for α =

√
2.

The next lemma makes the link between the circuit’s
stabilization time for an input pulse of length ∆ and a
number-theoretic parameter K(∆). Its proof is an elemen-
tary reformulation using Lemma 18.

Lemma 19. Let K = K(∆) be the least integer K such that
for all real t there exists an integer k, 0 ≤ k ≤ K , with αk ∈
(t−∆, t] +Z. Then, T (∆) ≤ α ·K(∆) + ∆ + 2.

Proof: The lemma is trivial if K = ∞, so assume the
contrary.

Let t ≥ αK + ∆ + 2. By the definition of K, there exists
a k with 0 ≤ k ≤ K and an ` such that t−∆− `−2 < αk ≤
t− `− 2, which is equivalent to 0 ≤ t− (αk + `)− 2 < ∆.

By Lemma 18, it remains to prove that ` is nonnegative.
The inequality t − (αk + `) − 2 < ∆ is equivalent to ` >
t−∆− αk − 2. Noting −αk ≥ −αK and t ≥ αK + ∆ + 2
shows ` > 0 and concludes the proof.

We now make the connection to the notion of discrep-
ancy with the following lemma, which is proved by just
using the definitions in a straightforward way.

Lemma 20. Let 0 < ∆ ≤ 1. If DN (α)/N < ∆/2, then
K(∆) ≤ N .

Proof: Suppose the contrary, i.e., that there exists a
real t such that, for all n ≤ N , we have αn 6∈ (t−∆, t] +Z.
Let 0 < x < y ≤ z < u ≤ 1 such that we can decompose the
interval (t−∆, t]+Z =

(
(x, y]+Z

)
∪
(
(z, u]+Z

)
modulo 1.

None of the two intervals (x, y] and (z, u] contains an αn
modulo 1 with n ≤ N . Hence A(x, y;N) = A(u, z;N) = 0,
which implies 2DN (α) ≥ (y − x)N + (u − z)N = ∆N , a
contradiction.

Finally, we prove that eventual SPF is solvable with
constant delay channels by using a the fact that DN (α)/N
tends to zero as N →∞ whenever α is irrational.

Theorem 5. Circuit Cev solves eventual SPF if α is irrational.
If α =

√
2, the stabilization time satisfies T (∆) = O(∆−1−ε)

as ∆→ 0 for all ε > 0.

Proof: (F1) and (F2) are obviously fulfilled. Because
all initial values of channels are 0, also (F3) holds. Because
DN (α)/N → 0 whenever α is irrational, for all ∆ > 0,
there exists some N such that DN (α)/N < ∆/2. Hence
Lemma 20 and Lemma 19 show that T (∆) is finite, which
shows (F4) and (F5e).

We now prove the bound on the stabilization time. Let
γ = −1 − ε < −1. There exists a C1 > 0 such that
DN (α) ≤ C1 logN . Because 1+1/γ > 0, there exists a C2 >

0 such that logN < C2N
1+1/γ . Thus if N ≥

(
∆

2C1C2

)γ
then DN (α)/N ≤ C1 logN/N < C1C2N

1/γ ≤ ∆/2,
which, by Lemma 20, implies K(∆) ≤ (∆/2C1C2)

γ
+ 1

for all 0 < ∆ ≤ 1. That is, K(∆) = O(∆γ) as ∆→ 0.
It is easy to see that K(∆) → ∞ as ∆ → 0. Hence

Lemma 19 implies T (∆) = O(K(∆)) as ∆→ 0.

14

8 CONCLUSION

We showed that binary circuit models using bounded
single-history channels, hence all binary models known
to date, fail to faithfully model glitch propagation: In the
case of constant-delay channels, SPF turned out to be un-
solvable, which is in contradiction to physical reality. In
case of non-constant-delay channels, even bounded SPF is
solvable, again in contradiction to physical reality. Binary
models aiming at faithful glitch propagation hence cannot
be bounded single-history. The difficulty in the search for
appropriate models is that they must not only faithfully
capture glitch propagation but should also accurately cover
(analog) pulse deformation effects; at the same time, it
should have low computational complexity and also fa-
cilitate manual or even automated verification of circuits
(which rules out non-analytic, e.g., table-based, approaches).

We hope that our results provide a signpost for future
research on adequate binary circuit models: As confirmed
by the fact that the weaker eventual SPF problem is already
solvable with constant-delay channels, SPF is well suited for
capturing the peculiarities of glitch propagation while not
being overly restrictive. Moreover, in the proofs of our core
results, we actually used weaker properties than guaranteed
by single-history channels. It may hence be possible to re-
use part of those for weaker channel models.

Since any candidate for a faithful delay function must
invalidate our impossibility proofs for bounded SPF, part of
our current research on this topic is devoted to and in-depth
analysis of the properties of the delay functions required by
these proofs. We are convinced that suitable delay functions
can be identified by invalidating these required properties.

REFERENCES

[1] P.J. Ashenden, The Designer’s Guide to VHDL, 3rd ed., Morgan
Kaufmann, 2008.

[2] J.C. Barros and B.W. Johnson, “Equivalence of the Arbiter, the
Synchronizer, the Latch, and the Inertial Delay,” IEEE Trans. Com-
puters, vol. 32, no. 7, pp. 603–614, July 1983.

[3] M.J. Bellido-Dı́az et al., “Logical Modelling of Delay Degradation
Effect in Static CMOS Gates,” IEE Proc. Circuits, Devices, and
Systems, vol. 147, no. 2, pp. 107–117, Apr. 2000.

[4] M.J. Bellido-Dı́az, J. Juan-Chico, and M. Valencia, Logic-Timing
Simulation and the Degradation Delay Model. London: Imperial Col-
lege Press, 2006.

[5] M.S. Branicky, “Universal Computation and Other Capabilities of
Hybrid and Continuous Dynamical Systems,” Theoretical Computer
Science, vol. 138, no. 1, pp. 67–100, Feb. 1995.

[6] J.A. Brzozowski and J.C. Ebergen, “On the Delay-Sensitivity of
Gate Networks,” IEEE Trans. Computers, vol. 41, no. 11, pp. 1349–
1360, Nov. 1992.

[7] C. Constantinescu, “Trends and Challenges in VLSI Circuit Relia-
bility,” IEEE Micro, vol. 23, no. 4, pp. 14–19, July 2003.

[8] D. Dolev et al., “Fault-Tolerant Algorithms for Tick-Generation
in Asynchronous Logic: Robust Pulse Generation (Extended Ab-
stract),” Proc. 13th Int’l Symp. Stabilization, Safety, and Security of
Distributed Systems (SSS’11), LNCS 6976, Springer, pp. 163–177,
Oct. 2011.

[9] S. Dolev, Self-Stabilization, MIT Press, 2000.
[10] M. Drmota and R.F. Tichy, Sequences, Discrepancies, and Applica-

tions, Springer, 1997.
[11] G. Fuchs, M. Függer, and A. Steininger, “On the Threat of

Metastability in an Asynchronous Fault-Tolerant Clock Generation
Scheme,” Proc. 15th IEEE Int’l Symp. Asynchronous Circuits and
Systems (ASYNC’09), pp. 127–136, May 2009.

[12] M. Függer and U. Schmid, “Reconciling Fault-Tolerant Distributed
Computing and Systems-on-Chip”, Distributed Computing 24(6),
2012, pp. 323–355.

[13] M.J. Gadlage et al., “Digital Device Error Rate Trends in Advanced
CMOS Technologies,” IEEE Trans. Nuclear Science, vol. 53, no. 6,
pp. 3466–3471, Dec. 2006.

[14] D.J. Kinniment, Synchronization and Arbitration in Digital Systems,
Wiley, 2007.

[15] L.R. Marino, “The Effect of Asynchronous Inputs on Sequen-
tial Network Reliability,” IEEE Trans. Computers, vol. 26, no. 11,
pp. 1082–1090, Nov. 1977.

[16] L.R. Marino, “General Theory of Metastable Operation,” IEEE
Trans. Computers, vol. 30, no. 2, pp. 107–115, Feb. 1981.

[17] M.S. Maza and M.L. Aranda, “Analysis of Clock Distribution
Networks in the Presence of Crosstalk and Groundbounce,” Proc.
8th Int’l IEEE Conf. Electronics, Circuits, and Systems (ICECS’01),
pp. 773–776, Sep. 2001.

[18] M. Mendler and T. Stroup, “Newtonian Arbiters Cannot Be Proven
Correct,” Formal Methods in System Design, vol. 3, no. 3, pp. 233–
257, Dec. 1993.

[19] F.U. Rosenberger et al., “Q-Modules: Internally Clocked Delay-
Insensitive Modules,” IEEE Trans. Computers, vol. 37, no. 9,
pp. 1005–1018, Sep. 1988.

[20] J. Schoissengeier, “The Discrepancy of (nα)n≥1,” Mathematische
Annalen, vol. 296, no. 1, pp. 529–545, Dec. 1993.

[21] I.E. Sutherland, “Micropipelines,” Comm. ACM, vol. 32, no. 6,
pp. 720–738, June 1989.

[22] S.H. Unger, “Asynchronous Sequential Switching Circuits with
Unrestricted Input Changes,” IEEE Trans. Computers, vol. 20,
no. 12, pp. 1437–1444, Dec. 1971.

Matthias Függer received his M.Sc. (2006) and
PhD (2010) in computer engineering from TU
Wien. He worked as an assistant professor at
TU Wien, as a post-doctoral researcher at LIX,
Ecole polytechnique, and currently as a post-
doctoral researcher at the Max-Planck-Institut
für Informatik. His main research interest is the
formal study of the fundamentals of compu-
tationally highly restricted distributed devices;
such as (fault-tolerant) distributed algorithms in
hardware and biology.

Thomas Nowak received an MSc degree in
computer engineering from Vienna UT in 2010
and a PhD degree in computer science from
École polytechnique in 2014. He is currently a
post-doctoral teaching and research assistant at
École normale supérieure in Paris, France. His
research focuses on discrete event systems and
distributed algorithms in dynamic fault-tolerant
networks.

Ulrich Schmid is full professor and head of the
Embedded Computing Systems Group at the In-
stitut für Technische Informatik at TU Vienna. He
studied computer science and mathematics and
also spent several years in industrial electronics
and embedded systems design. Ulrich Schmid
authored and co-authored numerous papers in
the field of theoretical and technical computer
science and received several awards and prices,
like the Austrian START-price 1996. His current
research interests focus on the mathematical

analysis of fault-tolerant distributed algorithms and real-time systems,
with special emphasis on their application in systems-on-chips and
networked embedded systems.

