
HAL Id: hal-01231498
https://hal.science/hal-01231498v1

Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Effect of Forgetting on the Performance of a
Synchronizer

Matthias Függer, Alexander Kössler, Thomas Nowak, Ulrich Schmid, Martin
Zeiner

To cite this version:
Matthias Függer, Alexander Kössler, Thomas Nowak, Ulrich Schmid, Martin Zeiner. The Effect
of Forgetting on the Performance of a Synchronizer. Performance Evaluation, 2015, 93, pp.1-16.
�10.1016/j.peva.2015.08.002�. �hal-01231498�

https://hal.science/hal-01231498v1
https://hal.archives-ouvertes.fr

The Effect of Forgetting on the Performance of a Synchronizer

Matthias Függera, Alexander Kößlera, Thomas Nowakb, Ulrich Schmida, Martin Zeinera

aTU Wien, Treitlstraße 3/II, 1040 Wien, Austria
bENS Paris, 45 rue d’Ulm, 75230 Paris Cedex 05, France

Abstract

We study variants of the α-synchronizer by Awerbuch (J. ACM, 1985) within a distributed mes-
sage passing system with probabilistic message loss. The purpose of a synchronizer is to maintain
a virtual (lock-step) round structure, which simplifies the design of higher-level distributed algo-
rithms. The underlying idea of an α-synchronizer is to let processes continuously exchange round
numbers and to allow a process to proceed to the next round only after it has witnessed that all
processes have already started the current round.

In this work, we study the performance of several synchronizers in an environment with
probabilistic message loss. In particular, we analyze how different strategies of forgetting affect
the round durations. The synchronizer variants considered differ in the times when processes
discard part of their accumulated knowledge during the execution. Possible applications can be
found, e.g., in sensor fusion, where sensor data become outdated and thus invalid after a certain
amount of time.

For all synchronizer variants considered, we develop corresponding Markov chain models and
quantify the performance degradation using both analytic approaches and Monte-Carlo simula-
tions. Our results allow to explicitly calculate the asymptotic behavior of the round durations:
While in systems with very reliable communication the effect of forgetting is negligible, the effect
is more profound in systems with less reliable communication. Our study thus provides compu-
tationally efficient bounds on the performance of the (non-forgetting) α-synchronizer and allows
to quantitatively assess the effect accumulated knowledge has on the performance.

Keywords: Distributed systems, synchronizer, performance analysis, probabilistic message loss.

1. Introduction

It is well-known that reliable communication can be simulated in asynchronous distributed
systems with unreliable links using retransmissions [1], even if a up to a minority of the nodes
may crash, provided links are fair-lossy, i.e., re-sending a message infinitely often causes it to
eventually be received. Once reliable links are available, a synchronizer like the α-synchronizer,
introduced by Awerbuch [2] as the first in a series of synchronizer algorithms for asynchronous
failure-free message-passing systems, can be used to simulate a synchronous system atop of it.
The computation of a synchronous system evolves in a sequence of rounds, conceptually executed
in lock-step, where all nodes (called processes in the sequel) exchange messages that are processed
at the end of the round. Obviously, the performance of the simulated synchronous distributed
system is entirely determined by the achieved round durations.

The α-synchronizer’s main idea is to let a process continuously broadcast its current round
number together with the corresponding application data. The next round is started when a
process has received the messages of its current round from all other processes; it also delivers
the data received in the current round to the application layer on that occasion. Note that the

Corresponding author: Martin Zeiner, email: mzeiner@ecs.tuwien.ac.at, phone: +4315880118266. This re-
search was partially supported by the Austrian Science Fund (FWF), grants NFN RiSE (S11405), PSRTS (P20529),
and SIC (P26436).

Preprint submitted to Elsevier November 20, 2015

original α-synchronizer by Awerbuch uses additional acknowledgment messages, which we omit.
Rather, a message with round number R is treated as an implicit acknowledge for messages with
round numbers less than R in our setting.

A crucial characteristics of a synchronizer algorithm is its precision, i.e., the maximum number
of rounds any two processes can be apart at the same time during any of its executions. The α-
synchronizer, and the variants considered in this paper, guarantee a precision equal to 1, provided
every process can communicate with every other process. Note that fault-tolerant synchronizers,
like the ones described in [3] (which can tolerate even Byzantine, i.e., arbitrarily, faulty processes),
usually guarantee a precision > 1 only. A synchronizer with precision 1 constructs rounds, which
have a duration equal to the (maximum) end-to-end delay of the messages exchanged over the
(simulated) reliable link during the round.

Unfortunately, just knowing that re-sending a message infinitely often causes it to be received
eventually over a fair-lossy link does not guarantee a bounded end-to-end delay of a simulated
reliable link. Stronger models for the underlying unreliable links are hence required in order to
assess the round durations and thus the performance of the simulated synchronous system.

In this paper1, we consider a system of N non-faulty processes that are pairwise connected
by unreliable links that may lose messages probabilistically. Time elapses in discrete steps,
simultaneously at all processes in the system. At every time step, every process sends a message
to every other process. With some fixed probability p, such a message is successfully delivered
before the next step; with probability 1− p, it is lost.2

3 t

round 1
2 t

round 1
1 t

round 1

0 1 2 3 4 5

round 2 round 2

Figure 1: Messages to process 2 and its resulting round switches without forgetting (black) and with forgetting
(gray).

Figure 1 shows the beginning of an execution of the α-synchronizer executed in a system with
three processes in our setting. For better clarity, only messages to process 2 are shown. Initially,
at time 0, all processes start round 1. By time 4, process 2 has received round 1 messages from
all processes and thus proceeds to round 2.

It is apparent, though, that the age of the round 1 data handed over to the application layer
when switching to round 2 differs significantly per process: while its own data and the data
from process 3 is of age 1 (discrete time units), data from process 1 is of age 3. If this data is
time-variant, e.g., the position of a moving object, this may cause problems: Different processes
may receive different data from the same sensor in the same round. For example, time-dependent
sensor data are often represented by an interval (i.e., a value ± some accuracy) that deteriorates
with time [5]. A proper deterioration accounts for the maximum change of the position since the
actual sampling of the data. When merging intervals representing the same data, from different
sources, e.g. using (fault-tolerant) interval-intersection functions like [6, 7], relying on old data
obviously yields less accurate results.

A strategy to counteract this problem is to let the synchronizer actively “forget” too old data,
by just discarding it. As an extreme, consider a variant of the synchronizer that discards data at

1A preliminary version of this paper appeared in [4].
2We thus assume the existence of an underlying mechanism that prevents the processes’ discrete time from

diverging, i.e., a synchronous system underneath.

2

each (discrete) time step, resulting in all the data to be of age 1 at each round switch. Clearly,
however, this results in a performance loss, i.e., longer round durations: The resulting execution
is depicted in gray in Figure 1, with the difference that process 2 then switches to round 2 only
at time 5. Possible applications of active forgetting could be found in sensor fusion [5], where
time-dependent sensor data that is sampled periodically may also be (detectably) erroneous, e.g.,
due to measurement or communication errors: If the probability 1− p of getting erroneous data
is large, it may be beneficial in terms of the accuracy of the fused data to discard data received
from some other sensor long ago.

Detailed contributions. In this paper, we consider four variants of the α-synchronizer that differ
in the conditions of when to forget memory content, that is, reset the variables representing the
knowledge to their initial values. While three of the variants, namely the variant I that never
forgets (= the original α-synchronizer), the variant II in which a process forgets when it makes
a round switch, and the variant IV that forgets at each time step, can be implemented in a
distributed manner, the variant III which forgets when the last process makes a round switch
serves as a theoretical bound of low computational complexity for variants I and II only.

Thanks to the independence of the message loss at every link at every time step, the behavior
of our synchronizers is governed by relatively simple stochastic processes, namely, finite Markov
chains. Owing to the considerable amount of state information gathered during a round in some
variants (in particular, in variant I), however, the state space may be huge. For a system of N
processes and probability p of successful transmission, we define the expected round duration of
process i as λi(N, p) = E limt→∞ t/Ri(t), where Ri(t) is the round number of process i at time t.
Since the synchronization algorithm guarantees precision 1 regardless of the forgetting strategy,
it immediately follows that λi(N, p) = λj(N, p) for any two processes i and j. We will henceforth
refer to this common value as λ(N, p). To distinguish the four proposed conditions on forgetting, I
to IV, we write λI, λII, λIII, and λIV, respectively. We will see that indeed λI 6 λII 6 λIII 6 λIV.

By giving explicit formulas and simulation results for the performance as well as simulation
results for the average age of data when a process makes a round switch, our results can be used
to quantify the tradeoff between the different strategies.

For cases III and IV, we obtain two computationally feasible formulas where λIII and λIV can
be computed with O(N2) and O(N) arithmetic operations, respectively:

Theorem 1. The expected round duration when forgetting at every global round switch reads,

λIII(N, p) =

N(N−1)
∑

i=1

(

N(N − 1)

i

)

(−1)i

(1− p)i − 1
,

and when always forgetting,

λIV(N, p) =
N
∑

i=1

(

N

i

)

(−1)i
1

(1− pN−1)i − 1
.

For the remaining cases I and II, we state a finite Markov chain that captures the synchronizer
dynamics. Unfortunately, explicit calculation of λI and λII from the chain’s steady state is
prohibitively costly in terms of time and space complexity.

However, the Markovian representation allows us to derive two asymptotic results for syn-
chronizer systems with near to no message loss (p→ 1) and very high loss (p→ 0):

Theorem 2. For all four conditions on forgetting,
d

dp
λ(N, p)

∣

∣

p=1
= −N(N − 1).

Theorem 3. For p→ 0,

1. λI(N, p), λII(N, p) and λIII(N, p) are in Θ
(

p−1
)

, and

3

2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12
1.0

1.5

2.0

2.5

3.0

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12
1.0

1.2

1.4

1.6

1.8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(c) p = 0.99

Figure 2: Monte-Carlo simulation results for case I (represented as boxplots) compared against the calculated lower
bound (N) and the calculated expected round duration of case III serving as an upper bound (H).

2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12
1.0

1.5

2.0

2.5

3.0

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12
1.0

1.2

1.4

1.6

1.8

N

av
er

ag
e

ro
un

d
du

ra
tio

n
(c) p = 0.99

Figure 3: Monte-Carlo simulation results for case II (represented as boxplots) compared against the calculated
lower bound (N) and the calculated expected round duration of case III serving as an upper bound (H).

2 3 4 5 6 7 8 9 10 11 12
0

1000

2000

3000

4000

5000

6000

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12
1.0

1.2

1.4

1.6

1.8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(c) p = 0.99

Figure 4: Calculated expected round duration for case IV.

2 3 4 5 6 7 8 9 10 11 12
1.0

1.2

1.4

1.6

1.8

N

av
er

ag
e

ag
e

of
m

es
sa

ge
s

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12
1.00

1.02

1.04

1.06

1.08

N

av
er

ag
e

ag
e

of
m

es
sa

ge
s

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12
1.000

1.001

1.002

1.003

1.004

N

av
er

ag
e

ag
e

of
m

es
sa

ge
s

(c) p = 0.99

Figure 5: Boxplots of the average age Monte-Carlo simulation results for case I (blue, upper) and II (green, lower).

4

0.2 0.4 0.6 0.8 1.0
p

5

10

15

Λ

lower bound ΛI

Λ
IH3,pL

lower bound ΛII

Λ
IIH3,pL

Λ
IIIH3,pL

Λ
IVH3,pL

Figure 6: Expected round durations for N = 3 and lower bounds for cases I and II.

2. λIV(N, p) is in Θ
(

p−(N−1)
)

.

Fig. 6 shows, with probability p varying in the unit interval [0, 1], the calculated exact value of
the expected round duration for conditions on forgetting I–IV in a system with N = 3 processes.
The figure shows the gap between the cases I, II, and III, having an asymptotic growth in
Θ(1/p) when p approaches 0, and the case IV, which has an asymptotic growth in Θ(1/pN−1).
Furthermore, all the plots have the same slope in the point p = 1: the efficiently computable
cases III and IV thus provide good approximations for the hard to calculate cases I and II in a
system with reliable communication.

In settings with unreliable communication, for which the approximation result on the deriva-
tive of λ at p = 1 is not discriminating, cases I and II can be approximated by analytic lower
bounds (cf. Section 5.4), and bounded from above by the λ for case III (Theorem 1). A comparison
between the lower bounds and the actual results is also contained in Fig. 6.

As the calculations of the exact values for the expected round duration using the Markov chain
model are computationally very expensive, we used Monte-Carlo simulations to compare them
with our bounds. To this end, we simulated systems with 2 6 N 6 12 processes for 100 000 steps
and averaged over 30 runs. The simulations were done using three different values for p. Fig. 2
and 3 show box-and-whisker-plots of the simulated average round durations with the calculated
lower bound and with case III as upper bound. The average round durations for case I (where
processes never forget) is shown in Fig. 2(a) to 2(c) and the case II (where processes forget after a
local round switch) is shown in Fig. 3(a) to 3(c). Fig. 4(a) to 4(c) depict the calculated expected
round duration for case IV, i.e., the synchronizer variant that forgets at each time step. Note
that it is significantly higher than all the other variants when message loss is considerable.

Fig. 5 shows box-and-whisker-plots of the Monte-Carlo simulation results of the average age of
data when a process performs a round switch, for cases I and II, both of which can be implemented
in a distributed manner. Case IV, for which the same holds, by definition has an average age
of data of 1. One immediately observes that while the average age of both cases I and II is
significantly higher than in case IV, forgetting at each processes’ round switch only has a marginal
effect on the average age compared to not forgetting at all.

Related work. In distributed computing, notions of a process’ knowledge have been explicitly
introduced before, see e.g., Halpern [8] and Fagin et al. [9]: A process knows a fact if in all locally
indistinguishable scenarios the fact also holds. Studying the evolution of knowledge has been a
promising tool in analyzing agreement protocols, whose purpose is to establish common knowledge
on an agreed upon value. The approach was further generalized by Fagin and Halpern [10] to
include probabilistic facts by assigning probabilities to scenarios. Our notion of knowledge,

5

however, is different from these notions of knowledge, particularly since it is tailored to the
synchronizer problem statement we study in this paper, and we allow processes to actively forget.

Mahesh and Varghese [11] have used forgetting in a destructive way to model crashed pro-
cesses without permanent storage after rejoining the network. By contrast, we allow processes
to explicitly trigger forgetting themselves, using it in a constructive algorithmic manner. The
closest relation to our active forgetting strategies bears the work on self-stabilizing distributed
systems, see e.g. [12]. Since self-stabilizing protocols are required to recover from arbitrary initial
states, processes typically discard status flags and message in-buffers after certain time-outs to
prevent deadlocks. While these protocols also use forgetting in a constructive way, purpose and
policies differ: Self-stabilizing protocols clean up memory with periods depending on system pa-
rameters such as message delay bounds to prevent deadlocks. By contrast, we assume no external
corruption of a process i’s state, including its round counter Ri. Processes may thus rely on their
local states, and forgetting strategies only influence timing performance rather than correctness.

Synchronizer performance has been studied under different environmental assumptions in the
past. Bertsekas and Tsitsiklis [13] proved performance bounds for the case of constant processing
times and exponentially distributed message delays. In their work, the authors assumed reliable
links without message loss. Rajsbaum [14] presented bounds on the synchronizer performance
for the case of exponentially distributed processing times and transmission delays, still assuming
reliable messages. Rajsbaum and Sidi [15] calculated the exact synchronizer performance in the
case of exponentially distributed processing times and negligible transmission delays.

In contrast to the above work, we assume bounded message delays. Varying delays between
sending and successfully receiving a message are due to message loss and repeated retransmission.
The performance of the α-synchronizer in certain lossy environments has already been considered
by Nowak et al. [16]. The authors calculated the expected round duration of a retransmission-
based synchronizer when a single transmission arrives with constant probability p, subject to the
constraint that a message that was retransmitted at least M times is guaranteed to arrive. [16]
did not investigate the impact of forgetting on the synchronizer’s performance, and assumed M
to be finite, which we do not.

For the computationally difficult forgetting variants I and II, we present finite Markov chains
that allow to determine average round durations λI and λII from the steady states. Hereby, the
dominant computational complexity is due to calculating the steady states. Instead of exactly
determining those, there exist also techniques that allow to just sample the steady state: However,
while standard simulation techniques allow to sample the Markov chain’s state at some time t = T ,
there is no guarantee that these samples resemble the distribution of the steady state for t→∞.
By contrast, Propp andWilson [17] proposed backward coupling techniques to obtain exact steady
state samples for Markov chains. In the case of monotonic Markov chains, these techniques are
computationally efficient. Unfortunately, while our infinite state Markov chains are monotonic,
our reduced finite chains are not. Their method thus requires to explore the complete finite state
space, rendering this method computationally infeasible.

2. System Model and Algorithm

We consider a fully-connected message passing system with processes 1, 2, . . . , N each of which
runs a synchronizer algorithm. Processes take steps simultaneously at all integral times t > 0,
but messages may be lost. Messages that do arrive have a transmission delay of 1, i.e., a message
sent at time t arrives at time t+ 1, or not at all. A step consists in (a) receiving messages from
other processes, (b) performing local computations, and (c) broadcasting a message to the other
processes.

The synchronizer variants have two local variables, specified for every process i at time t:
The local round number Ri(t) and the knowledge vector

(

Ki,1(t), Ki,2(t), . . . ,Ki,N (t)
)

. Processes
continuously broadcast their local round number. The knowledge vector contains information on
other processes’ local round numbers, accumulated via received messages. A process increments

6

its local round number, and thereby starts the next round, after it has gained knowledge that
all other processes have already started the current round. The round increment rule assures a
precision of 1, i.e., |Ri(t)−Rj(t)| 6 1 for all t. We write RG(t) = miniRi(t) and call it the global
round number at time t.

After updating its local round number, a process may forget, i.e., lose its knowledge about
other processes’ local round numbers. We are considering four different conditions COND, de-
scribing the times when process i forgets:

I. Never, i.e., COND := false.

II. At every local round switch, i.e., COND :=
[

Ri(t) = Ri(t− 1) + 1
]

.

III. At every global round switch, i.e., COND :=
[

RG(t) = RG(t− 1) + 1
]

.

IV. Always, i.e., COND := true.

Formally, we writeMi,j(t) = 0 if process j’s message to process i sent at time t was lost, and
Mi,j(t) = 1 if it arrives (at time t+ 1). Process i’s computation in its step at time t consists of
the following:

1. Update knowledge according to received messages: Ki,j(t) ← Rj(t − 1) if Mi,j(t − 1) = 1,
and Ki,j(t)← Ki,j(t− 1) otherwise.

2. Increment round number if possible: Ri(t) ← Ri(t − 1) + 1 if Ki,j(t) > Ri(t − 1) for all j,
and Ri(t)← Ri(t− 1) otherwise.

3. Conditional forget: Ki,j(t)← 0 if COND is true.

Initially, Ki,j(0) = 0, and no messages are received at time 0. In particular, Ri(0) = 1. In the
remainder of this paper, when we refer to Ki,j(t), we mean its value after step 3.

We assume that theMi,j(t) are pairwise independent random variables with

P
(

Mi,j(t) = 1
)

= p if i 6= j and P
(

Mi,i(t) = 1
)

= 1 . (1)

Call the parameter p the probability of successful transmission.
Figure 7 shows part of an execution for condition I on forgetting. Times are labeled t0 to t10.

Processes 1 and 3 start their local round R at time t4 while process 2 has already started its local
round R at time t3. The arrows in the figure indicate the time until the first successful reception

3 t

2 t

1 t

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

R1(t1) = R− 1

R2(t0) = R− 1

R3(t0) = R− 1

R1(t4) = R

R2(t3) = R

R3(t4) = R

R1(t9) = R+ 1

R2(t8) = R+ 1

R3(t7) = R+ 1

Figure 7: An execution of the synchronizer

of a message sent in round R: The tail of the arrow is located at time t a process i starts round R
and thus broadcasts R for the first time. The head of the arrow marks the smallest time after t
at which a process j receives a message from i. Messages from processes to themselves are always
received at the next time step and thus are not explicitly shown in the figure. For example,
processes 1 and 3 start round R at time t4 sending R for the first time. While process 2 receives
the message from 3 in the next step, it needs an overall amount of 4 time steps and consecutive
retransmissions to receive a message from process 1 at time t8.

7

3. Performance Measure

Clearly, the extent of forgetting influences the expected round duration λ. For case IV, where
processes always forget, and for case III, where processes forget on global round switches, λ can
be calculated efficiently with explicit formulas stated in Theorem 1. For the remaining cases, I
and II, we could compute λ(N, p) by means of a steady state analysis of a finite Markov chain,
with time complexity exponential in N . We show how to do this in Section 5.2. The Markov
chain model is also useful to study the behavior of λ, for all four conditions on forgetting, when
p → 1 and p → 0. We do this in Sections 5.6 and 5.7, respectively. We derive explicit lower
bounds on λI and λII in Section 5.4.

We will repeatedly use the dual of Ri(t), namely Ti(r), the time process i switches to round r.
Further set TG(r) = maxi Ti(r). The next proposition allows to calculate λ dually by:

Proposition 1. For all four conditions on forgetting, λ = E lim
t→∞

t/Ri(t) = E lim
r→∞

Ti(r)/r.

Proof. From the equality Ti(r) = inf{t | Ri(t) = r} we obtain Ri(Ti(r)) = r. It follows that
(Ti(r)/r)r>1 = (Ti(r)/Ri(Ti(r)))r>1. Since the latter is a subsequence of (t/Ri(t))t>0, both
converge to the same value, which is equal to λ by definition.

It is not hard to show, by comparing Ti(r) for every fixed choice of the sequence M =
(M(t))t>0, that

λI
6 λII

6 λIII
6 λIV . (2)

4. Explicit Formulas for λ
III and λ

IV

From the expected maximum of geometrically distributed random variables (Proposition 2),
we derive explicit formulas for λIII and λIV in Theorem 1. For that purpose, define

Λ(M,p) = E max
16i6M

Gi , (3)

where the Gi are pairwise independent geometrically distributed random variables with pa-
rameter p. We will make use of the following well-known proposition [18, 19], whose proof we
state for sake of completeness.

Proposition 2. Λ(M,p) =
M
∑

i=1

(

M

i

)

(−1)i
1

(1− p)i − 1
.

Proof. Let pk = P

(

max
16i6M

Gi 6 k
)

. Then pk = (1 − (1 − p)k)M . Thus, with q = 1 − p and the

binomial formula,

Λ(M,p) =
∑

k>1

k(pk − pk−1) =
∑

k>1

k

M
∑

i=1

(

M

i

)

(−1)iqi(k−1)
(

qi − 1
)

,

changing the order of summation and shifting the summation index yields

=
M
∑

i=1

(

M

i

)

(−1)i
(

qi − 1
)

∑

k>0

(k + 1)qik

=

M
∑

i=1

(

M

i

)

(−1)i
1

(qi − 1)
.

8

Consider case III, i.e., processes forget on global round switches. Initially, all processes i
are in round Ri(0) = 1, and their knowledge is Ki,j(0) = 0. Observe that processes switch to
round 2 as messages are received. At time t at which the last process switches to round 2, it
holds that (i) all processes i have Ri(t) = 2, (ii) all processes have knowledge Ki,j(t) > 1 for all j
before forgetting, and (iii) all processes forget, since a global round switch occurred, ultimately
resulting in Ki,j(t) = 0. The only difference between the initial state and the state at time t is the
constant round number offset Ri(t) = Ri(0)+1. By repeated application of the above arguments
we obtain that the system is reset to the initial state modulo a constant offset in round numbers
Ri, each time a global round switch occurs. This allows to determine the expected average round
duration by analyzing the expected time until the first round switch.

We will now prove the explicit formulas for the expected round duration in cases III and IV.
We will use these formulas in particular in Section 5.7 when studying the behavior of λ for p→ 0.

Proof of Theorem 1, λIII(N, p). Recall that the events that i receives a message from j at time t
are pairwise independent for all i, j and times t. Thus the smallest time t, at which i receives a
message from j is geometrically distributed with parameter p. Noting that the first global round
switch occurs at time TG(2) = maxi(Ti(2)), we obtain

λ(N, p) = E lim
r→∞

TG(r)/r = ETG(2) = E max
16i6N(N−1)

Gi

where the Gi are geometrically distributed with parameter p. The theorem now follows from
Proposition 2.

Proof of Theorem 1, λIV(N, p). Observe that the first global round switch occurs at the minimum
time t by which each of the processes has received messages from all processes simultaneously;
and that Ri(t) = 2 as well as Ki,j(t) = 0 holds at this time. Again the state at time t is identical
to the initial state with all round numbers incremented by 1. Repeated application of the above
arguments allows to calculate the expected round duration by λ(N, p) = ETG(2). The first time i
receives a message from all processes simultaneously is geometrically distributed with parameter
pN−1. Since we have N nodes, we take the maximum over N such geometrically distributed
random variables. The theorem now follows from Proposition 2.

5. Markovian Analysis

Determining λI and λII, the expected round duration in the cases that processes never forget or
forget at local round switches, is more involved. In the following, we will calculate λ by modeling
the system as a finite Markov chain and analyzing its steady state distribution. Additionally, we
derive the asymptotic behaviors for p → 1 and for p → 0 from the Markov chain model. As the
computation of the chain’s steady state distribution is computationally very expensive, we will
give analytical lower bounds in Section 5.4.

Let A(t) be the sequence of matrices with Ai,i(t) = Ri(t) and Ai,j(t) = Ki,j(t) for i 6= j. It is
easy to see that A(t) is a Markov chain, i.e., the distribution of A(t + 1) depends only on A(t).
Since both Ri(t) and Ki,j(t) are unbounded, the state space of Markov chain A(t) is infinite.

We therefore introduce the sequence of normalized states a(t), defined by A(t)−mink Ak,k(t)
cropping negative entries to −1, i.e., ai,j(t) = max

{

Ai,j(t) − mink Ak,k(t) , −1
}

. Normalized
states belong to the finite set {−1, 0, 1}N×N .

The sequence of normalized states a(t) is a Markov chain: The probability that A(t+1) = Y ,
given that A(t) = X, is equal to the probability that A(t+ 1) = Y + c, given that A(t) = X + c
for any constant c. We may thus restrict ourselves without loss of generality to considering the
system being in state X −mini(Xi,i) at time t. Further, by the algorithm and the fact that the
precision is 1, cropping the entries of X −mini(Xi,i) at −1 does not lead to different transition
probabilities: the probability that A(t + 1) = Y given that A(t) = X − mini(Xi,i) is equal to

9

the probability that A(t + 1) = Y given that A(t) is X − mini(Xi,i) cropped at −1. It follows
that a(t) is a finite Markov chain, for the algorithm with any of the four conditions on forgetting.

We will repeatedly need to distinguish whether there is a global round switch at time t or
not. Let â(t) be the Markov chain obtained from a(t) by adding to each state a an additional
flag Step such that Step(â(t)) = 1 if there is a global round switch at time t, and 0 otherwise.

5.1. Markov Chains for Conditions I and II

In the following we characterize the normalized states of the Markov chain a(t), and their
transition probability for the case that processes never forgets (I) and the case that processes
forget at local round switches (II).

For any two states a and a′ with nonzero transition probability from a to a′, we introduce the
notation of relevant messages: Given that a(t) = a, the message from i to j is positively relevant
if it is required to be received for a(t + 1) = a′ to hold. It is negatively relevant if it is required
not to be received for a(t + 1) = a′ to hold. Denote by prel(a′ | a) resp. nrel(a′ | a) the number
of positively resp. negatively relevant messages for the transition from a to a′.

5.1.1. Condition I

In case the algorithm never forgets, the Markov chain a(t) can attain exactly those matrices
a ∈ {−1, 0, 1}N×N that fulfill either properties (M1)–(M4) or (N1)–(N3):

(M1) minj(aj,j) = 0.

(M2) For all i, if ai,i = 1, then minj(ai,j) > 0.

(M3) For all i, if ai,i = 0, then minj(ai,j) = −1.

(M4) For all i, j, ai,j 6 aj,j .

Hereby, (M1) is due to normalization. Letting r be the smallest local round number of a process
at time t, (M2) requires a process i that is ahead, i.e. has Ri(t) = r+1, having received round r
messages from all processes by time t. Property (M3) requires a process i not being ahead, i.e.
Ri(t) = r, not having received round r messages from all processes by time t. (M4) ensures that
no process i has received a message from a process j with round number larger than j’s local
round number.

(N1) For all j, aj,j = 0.

(N2) There is exactly one i with ai,j = 0 for all j. For this i, aj,i = −1 for all j 6= i.

(N3) is equivalent to (M4).

Properties (N1)–(N3) describe states that occur only at times at which a global round switch
was performed: Assume that, at time t, all processes j 6= i are ahead, and process i receives all
messages from all the other processes at time t+1. Then i performs a local round switch at time
t + 1, and thus a global round switch occurs at time t + 1. The resulting state a(t + 1) fulfills
(N1)–(N3) and is unstable as i can perform a local round switch at time t+ 2 without receiving
any messages from other processes.

Define TranI(a′ | a) to be 1 if a transition from state a to state a′ is possible in one time step
and 0 otherwise, i.e., TranI(a′ | a) equals 1 if and only if, for all i, a′i,i > ai,i and for all i 6= j,
a′i,j = ai,j ∨ a′i,j = aj,j . For the number of positively and negatively relevant messages it holds
that,

prel(a′ | a) = |{(i, j), i 6= j : a′i,j > ai,j}| and

nrel(a′ | a) = |{(i, j), i 6= j : a′i,j = ai,j ∧ ai,j < aj,j}| .

10

Further let P ′(a′ | a) = pprel(a
′|a) · (1− p)nrel(a

′|a) be the probability that every positively relevant
message arrives and every negatively relevant message is dropped. A transition from state a to
a′ occurs with probability P ′(a′ | a), specified as follows:

• If (M1)–(M4) holds for a′ and maxi,j(a
′
i,j) 6 0, then

P (a′ | a) = TranI(a′ | a) · P ′(a′ | a) + TranI(a′ + 1 | a) · P ′(a′ + 1 | a) ;

note that the first term is the probability of a transition from a to a′ without a global round
switch, the second term is the probability of a transition from a to a′ with a global round
switch: in the latter case we have to increment every entry of a′ by 1 and then to apply our
transition rules.

• If (M1)–(M4) holds for a′ and maxi,j(a
′
i,j) = 1, then P (a′ | a) = TranI(a′ | a) · P ′(a′ | a).

• If (N1)–(N3) holds for a′, then P (a′ | a) = TranI(a′ + 1 | a) · P ′(a′ + 1 | a).

5.1.2. Condition II

To analyze the case of the algorithm that forgets every local round switch we introduce a
variant of the algorithm with forgetting condition II: we merge the conditional forgetting in
step 3 of the algorithm with the update of the knowledge in step 1, into a step 1′. Process i’s
computation in its step at time t now consists of the following steps:

1’. Bounded knowledge update according to received messages: Ki,j(t)← min(Ri(t−1), Rj(t−1))
ifMi,j(t− 1) = 1, and Ki,j(t)← Ki,j(t− 1) otherwise.

2. Increment round number if possible: Ri(t)← Ri(t− 1)+ 1 if Ki,j(t) > Ri(t− 1) for all j, and
Ri(t)← Ri(t− 1) otherwise.

Hereby, a process interprets any round number it receives as at most its own round number, i.e.,
forgets whether it was strictly larger. For example, a process i with Ri = 0 only interprets all
received messages as 0 messages, whereas a process with Ri = 1 updates its knowledge according
to the content of the message. Observe that both, the original algorithm and its variant, are
equivalent in the sense that they perform local round switches at the same times, given that the
received messages are the same: For both algorithms it holds that, after a process performed a
local round switch, the elements of its knowledge vector are strictly less than its round number. To
perform a local round switch a process has to receive the same set of messages in both algorithms.

Considering the variant of the algorithm, the resulting Markov chain a(t) can attain exactly
those states a ∈ {−1, 0, 1}N×N with (M1)–(M3) and (M4’), where

(M4’) ai,j 6 min(ai,i, aj,j).

Define TranII(a′ | a) to be 1 if, for all i, a′i,i > ai,i and for all i 6= j, a′i,j = ai,j ∨ a′i,j =
min(ai,i, aj,j); and 0 otherwise. The number of positively relevant messages is the same as in the
case where processes never forget, and for the negatively relevant messages we obtain

nrel(a′ | a) = |{(i, j), i 6= j : a′i,j = ai,j ∧ ai,j < min(ai,i, aj,j)}| .

Letting P ′ be as in Section 5.1.1, a transition from state a to a′ occurs with the following
probability P (a′ | a):

• If maxi,j(a
′
i,j) 6 0, then

P (a′ | a) = TranII(a′ | a) · P ′(a′ | a) + TranII(a′ + 1 | a) · P ′(a′ + 1 | a) ;

• If maxi,j(a
′
i,j) = 1, then P (a′ | a) = TranII(a′ | a) · P ′(a′ | a).

11

5.2. Using the Steady State to Calculate λ

Call a Markov chain good if it is aperiodic, irreducible, Harris recurrent, and has a unique
steady state distribution. It is not difficult to see that â(t) is good for all four conditions on
forgetting.

A standard method, given the chain’s transition matrix P , to compute the steady state
distribution π is by matrix inversion:

π = e ·
(

P (n→1) − I(n→0)
)−1

(4)

where M (k→x) denotes matrix M with its kth column set to x, I is the identity matrix, and
e = (1, 1, . . . , 1).

We will next show how to compute λ from the steady state distribution π.

Theorem 4. Let X(r) be good Markov chain with state space X and steady state distribu-
tion π. Further, let g : X → R be a function such that

∑

X∈X |g(X)| · π(X) < ∞. Then,
limr→∞

1
r

∑r
k=1 g

(

X(k)
)

=
∑

X∈X g(X) · π(X) with probability 1 for every initial distribution.

Proof. [20, Theorem 17.0.1(i)]

We call a processes i a 1-process in state â if âi,i = 1. Likewise, we call i a 0-process in â
if âi,i = 0. Denote by #−1(â) the number of −1 entries in rows of matrix â that correspond to
0-processes in â (note that a row for a 1-process cannot contain −1).

Theorem 5. For all conditions of forgetting, Ri(t)/t → 1/λ with probability 1 as t → ∞.
Furthermore,

λ = 1/

(

∑

â

p#−1(â) · π(â)

)

= 1/

(

∑

a

p#−1(a) · π(a)

)

. (5)

Proof. It holds that RG(t) =
∑t

k=1 Step
(

â(k)
)

. By Theorem 4, with probability 1 it holds that:

lim
t→∞

Ri(t)/t = lim
t→∞

RG(t)/t = lim
t→∞

1

t

t
∑

k=1

Step(â(k)) =
∑

â

Step(â) · π(â) .

Since â(t) is a finite Markov chain, the last sum is finite. It follows that Ri(t)/t converges to
a constant, say c, with probability 1. Thus t/Ri(t) converges to 1/c with probability 1. By
definition of λ, it follows that λ = 1/c. This shows the first part of the theorem.

The second part of the theorem is proved by the following calculation:

1/λ = E lim
t→∞

Ri(t)/t = E lim
t→∞

RG(t)/t = E lim
t→∞

1

t

t
∑

k=1

Step
(

â(k)
)

=
∑

â

lim
t→∞

1

t

t
∑

k=1

P
(

â(k − 1) = â
)

· E
(

Step(â(k)) | â(k − 1) = â
)

=
∑

â

p#−1(â) lim
t→∞

1

t

t
∑

k=1

P
(

â(k − 1) = â
)

=
∑

â

p#−1(â) · π(â) .

From π(â) = π((a, 0)) + π((a, 1)) = π(a) the theorem follows.

5.3. Computational Complexity of the Markov Approach

Space and time complexity of calculating λ for cases I and II depend on the number of states
a(t) of the respective finite Markov chain. A simple strategy to reduce the number of states is to
consider only those with sorted diagonal, i.e., processes 1 to some k are 1-processes, and processes
k + 1 to n are 0-processes. We, however, show that asymptotically this reduction does not lead
to improved computational complexities.

12

Proposition 3. For the variant of the case II synchronizer introduced in Section 5.1.2, the
number of states a(t) is

A :=
N−1
∑

i=0

(

N

i

)

2i(i−1)
(

2N−1 − 1
)N−i

.

Using the equivalence of states with the same sorted diagonal, the number of states a(t) reduces
to

B :=

N−1
∑

i=0

2i(i−1)
(

2N−1 − 1
)N−i

,

where

A ∼ B ∼ 2N(N−1) .

Calculating λII thus is in O(23N(N−1)).

Proof. We first show that the number of states is A. For a fixed number i of 1s in the diagonal
we have

(

N
i

)

possibilities to place them there. The knowledge one process has of another one,
i.e., i(i − 1) entries, can be 1 or 0. For each 0-process each entry can be 0 and −1 but not all
channels can be set to 0.

For proving the asymptotics note that, by only taking the summand for i = 0,

A >
(

2N−1 − 1
)N
∼ 2N(N−1) .

Moreover,

A 6

N−1
∑

i=0

(

N

i

)

2i(i−1)2(N−1)N = 2N(N−1)

(

1 +
N−1
∑

i=1

(

N

i

)

2−i(N−i)

)

.

The sum on the right-hand side converges to 0, which completes the proof for A.
If we use states with sorted diagonal, clearly we obtain B from A be just omitting the binomial

coefficient. The asymptotics can be shown analogous to A.

Proposition 4. For the non-forgetting case I synchronizer, the number of states a(t) is

C :=
N−1
∑

i=0

(

N

i

)

2i(i−1)
(

3i · 2N−1−i − 2i
)N−i

+N2(N−2)(N−1) .

Using the equivalence of states with the same sorted diagonal, the number of states a(t) reduces
to

D :=

N−1
∑

i=0

2i(i−1)
(

3i · 2N−1−i − 2i
)N−i

+ 2(N−2)(N−1) ,

where

C ∼ D ∼ 2N(N−1) .

Calculating λI thus is in O(23N(N−1)).

Proof. We start with determining C. The sum counts those matrices that fulfill properties (M1)–
(M4) (see Section 5.1.1): For placing i ones in the diagonal we have

(

N
i

)

possibilities. The entries
corresponding to the i(i − 1) channels between 1-processes can be 0 or 1. For a 0-process there
are 3 possible values: 0, 1, and −1 for the channels incoming from a 1-process, and 2 possible
values, 0 and −1, for the channels incoming from a 0-process. Since there must be at least one
entry equal to −1 we have to subtract all combinations without a −1, i.e., 2i many.

13

On the other hand, the remaining term N2(N−2)(N−1) counts those matrices that fulfill prop-
erties (N1)–(N3): We have N possibilities to choose the process i from condition (N2). The
entries in the corresponding row and column are fixed, and all the other entries equals −1 or 0.

The term for i = 0 equals
(

2N−1 − 1
)N

thus

C >
(

2N−1 − 1
)N
∼ 2N(N−1) .

Moreover,

C 6

N−1
∑

i=0

(

N

i

)

2i(i−1)
(

3i · 2N−1−i
)N−i

+N2(N−2)(N−1)

= 2N(N−1)

(

N−1
∑

i=0

(

N

i

)

2−2i(N−i)3i(N−i) +N2−2(N−1)

)

= 2N(N−1)

(

1 +

N−1
∑

i=1

(

N

i

)(

3

4

)i(N−i)

+N2−2(N−1)

)

.

The sum on the right-hand side converges to 0, which completes the proof for C. If we use states
with sorted diagonal, clearly we obtain D from C be just omitting the binomial coefficient in the
sum and the factor N in the remaining term. The asymptotics can be shown analogous to C.

5.4. Lower Bounds on λI and λII

As has been shown, determining the expected round duration for cases I and II by means
of the Markov chain a(t) is computationally expensive, even for small system sizes N . We can,
however, efficiently compute lower and upper bounds on λ(N, p): For both, case I and II, λIII(N, p)
is an upper bound. We will next derive computationally feasible lower bounds for λI(N, p) and
λII(N, p). Bear in mind that in case II we will always refer to the simplified variant of our
algorithm introduced in Section 5.1.2.

From Proposition 1 and Theorem 4 follows, by considering the conditional expectation of TG:

λ =
1

∑

â Step(â) · π(â)

∑

â

Step(â) · π(â) · E(TG(2) | â(0) = â) ,

where E(TG(2) | â(0) = â) is the expected time until the first global round switch, given that the
system initially is in state â. It holds that E(TG(2) | â(0) = â) = Λ(#−1(â), p), where Λ is the
expectation of the maximum of geometrically distributed random variables as defined in (3).

Denote by #0(â) the number of non-diagonal entries in â equal to 0. Let [n] denote the
set of states â with #−1(â) = n and Step(â) = 1, and denote by

⋃

[n] the union of all [n] for
0 6 n 6 N(N − 1). Further let α :=

∑

â Step(â) · π(â) be the steady-state-probability that the
system is in one of the states in which a global round switch was performed, and denote with
π̂(n) = α−1

∑

â∈[n] π(â) the conditioned steady-state-probability that we are in one of the states
with exactly n entries equal to −1.

Our first observation is that π̂(n) = 0 for n < 2N − 2 in case II and π̂(n) = 0 for n < N − 1
in case I: If a global round switch occurs at time t, then there exists one process – say j – which
does a local round switch at time t (in fact, all 0-processes after time (t− 1) do so). This process
must have sent 0-messages to all the other processes. In terms of the matrices this means that
âi,j = 0 for all i 6= j. Due to the global round switch, the entries of the matrix are reduced by
−1, resulting in âi,j = −1 in â for all i 6= j. Consequently, after a global round switch we have at
least (N −1) entries equal to −1 and π̂(n) = 0 for 0 6 n < N −1. Moreover, in case II, condition
(M4’) implies that also the messages received by process j are treated as 0-messages, i.e., aj,i = 0
for all i 6= j when processes j makes a step. After reducing the matrix by 1 we obtain aj,i = −1
for all i 6= j and so there are at least 2(N − 1) entries equal to −1.

14

The basic idea of the bounds on λ is to bound π̂(n). Let P(â ❀ [n]) be the probability that,
given the system is in state â at some time t, for the minimum time t′ > t at which a global
round switch occurs, â(t′) ∈ [n]. Starting from the steady-state equation for π̂(n), we obtain:

π̂(n) =
1

α

∑

â

Step(â) · π(â) · P(â ❀ [n]) =
1

α

∑

â∈
⋃
[n]

π(â) · P(â ❀ [n])

=
1

α

∑

â∈[n]

π(â) · P(â ❀ [n]) +
1

α

∑

â∈
⋃
[n]\[n]

π(â) · P(â ❀ [n])

> π̂(n) min
â∈[n]

P(â ❀ [n]) + (1− π̂(n)) min
â∈

⋃
[n]\[n]

P(â ❀ [n])

> π̂(n)cn + (1− π̂(n))dn

for cn, dn suitably chosen. Hence,

π̂(n) >
dn

1 + dn − cn
=: πn .

So, our goal is to find cn and dn, and by that obtain the lower bound πn on π̂(n). Since we
will choose different cn and dn for different conditions on forgetting, we will write dIn and cIn
in case processes never forget, and dIIn and cIIn if we consider the case where processes forget on
local round switches. The resulting bounds are denoted by πI

n and πII
n respectively. Since Λ is

nondecreasing in its first argument, we can bound λ(N, p) by

1−

N(N−1)
∑

n=N

πI
n

Λ(N − 1, p) +

N(N−1)
∑

n=N

πI
nΛ(n, p) 6 λI(N, p) (6)

in case I. For case II we obtain

1−

N(N−1)
∑

n=2N−1

πII
n

Λ(2N − 2, p) +

N(N−1)
∑

n=2N−1

πII
nΛ(n, p) 6 λII(N, p) . (7)

5.4.1. Lower Bound on λII

We start our analysis for case II with determining πN(N−1). Since P(â ❀ [N(N−1)]) is greater
than the probability that â(t + 1) ∈ [N(N − 1)], given that â(t) = â, for arbitrary t, we have
P(â ❀ [N(N − 1)]) > p#−1(â). Thus we may choose cII

N(N−1) = pN(N−1), dII
N(N−1) = pN(N−1)−1

and obtain

πN(N−1) =
pN(N−1)−1

1 + pN(N−1)−1(1− p)
.

Next we turn to the analysis of πN(N−1)−1. Note that it is not possible to make a direct
transition from a state â ∈

⋃

[n] to a state in [N(N − 1) − 1], since we need a 0-entry in the
matrix after the global round switch. So we need at least two time steps: We have to generate at
least two 1-processes first, and afterwards exactly one 1-message between 1-processes must arrive
(note that due to (M4’) messages from 1-processes to 0-processes are treated as 0-messages). Our
lower bounds are based on the probability that the system is in a state within [N(N − 1)− 1] at
time t+2, given that â(t) = â. In fact, we restrict ourselves not only to the two-step-probability,
but consider only specific transitions for our lower bound.

So fix in â one column j whose all non-diagonal entries equal −1; clearly such a column
exists, since Step(â) = 1. For our bound, we consider the following specific scenario: Given
that â(t) = â, assume that at time t + 1, all messages from processes i 6= j to all processes i′

with Ki′,i(t) = −1, and exactly one message from process j to some fixed j′ 6= j, are received.
Moreover, we allow k more (up to (N − 3)) of the remaining (N − 2) messages sent by j to be

15

received. That is, N(N − 2)+2−#0(â)+ k messages are received. Moreover, we have that k+2
of the processes are 1-processes at time t+1 (i.e., processes j, j′, and those k processes receiving
the additional messages from j). For â(t + 1) ∈ [N(N − 1) − 1] to hold, it is sufficient that all
0-processes i with âi,j(t+ 1) = −1 receive a message from j at time t+ 2, and exactly one of the
messages from a 1-process to a 1-process is received. Note that we need not rule out the messages
from 1-processes to 0-processes here, as (M4’) implies that they result in −1-entries (after the
global round switch). Since at time t + 1 there are (k + 2)(k + 1) messages from 1-processes to
1-processes, we obtain: For all â ∈

⋃

[n],

P(â ❀ [N(N − 1)− 1]) >

>

N−3
∑

k=0

(

N − 2

k

)

pN(N−2)+2−#0(â)+k(1− p)N−2−k·

· pN−2−k · p · (1− p)(k+2)(k+1)−1 · ((k + 2)(k + 1))

= pN(N−1)−#0(â)+1 ·
N−3
∑

k=0

(

N − 2

k

)

((k + 2)(k + 1))(1− p)N+k2+2k−1

=: β(#0(â)) .

So we choose cII
N(N−1)−1 = β(1) and dII

N(N−1)−1 = β(0).

Finally, we turn to the analysis of πn for n = 2(N −1)+x, where 0 6 x 6 (N −2)(N −1)−2.
Again we bound P(â ❀ [2(N − 1) + x]), for â ∈

⋃

[n], by determining the probability that
â(t + 2) ∈ [2(N − 1) + x], given that â(t) = â, under specific transitions. For our purpose, fix
a row j of â with T non-diagonal entries equal to 0. Assume that at time t + 1, all messages
to processes i 6= j from all processes i′ with Ki,i′(t) 6= 0 are received. Additionally, k more (up
to N − T − 2) of the remaining N − T − 1 messages to j are allowed to be received. That is,
(N − 1)(N − 1)−#0(â) + T + k messages are received. Hence, all processes except process j are
1-processes at time t + 1. Afterwards, at time (t + 2), all the remaining messages to process j
must arrive. Moreover, from the (N − 2)(N − 1) messages sent by 1-processes to 1-processes
exactly x are not allowed to be received for â(t+2) ∈ [2(N − 1)+ x] to hold. Thus, for fixed row
j and â ∈

⋃

[n],

P(â ❀ [2(N − 1) + x] | row j has T 0-entries) >

>

N−2−T
∑

k=0

(

N − T − 1

k

)

pk+(N−1)2−#0(â)+T

· (1− p)N−1−k−T pN−1−k−T p(N−2)(N−1)−x(1− p)x ·

(

(N − 1)(N − 2)

x

)

=

(

(N − 1)(N − 2)

x

)

(1− p)xpN(N−1)−#0(â)+(N−2)(N−1)−x ·
(

(2− p)N−1−T − 1
)

=: γ(#0(â), T, x) .

Note that γ is nonincreasing in its second argument. Every state â has at least one row with
T = 0 non-diagonal entries equal to 0. All other rows must have T 6 N − 2 non-diagonal entries
equal to 0, since a row must have at least one entry equal to −1. Thus, we have

P(â ❀ [2(N − 1) + x]) >

γ(#0(â), 0, x) + (N − 1) · γ(#0(â), N − 2, x) =: γ̃(#0(â), x).

We may thus choose cII2(N−1)+x
= γ̃((N − 1)(N − 2)− x, x) and dII2(N−1)+x

= γ̃(0, x).

The lower bound on λII follows from (7).

16

5.4.2. Lower Bound on λI

For πN(N−1) we may choose dI
N(N−1) = dII

N(N−1) and cI
N(N−1) = cII

N(N−1), by the same argu-
ments as in Section 5.4.1.

To determine πN(N−1)−1, we use the same construction as in Section 5.4.1, with the modifica-
tion that at time t+2, exactly one of the (k+2)(N −1) messages sent by 1-processes is received.
We thus obtain for all â ∈

⋃

[n],

P(â ❀ [N(N − 1)− 1]) >

>

N−3
∑

k=0

(

N − 2

k

)

pN(N−2)+2−#0(â)+k(1− p)N−2−kpN−2−kp(1− p)(k+2)(N−1)−1(k + 2)(N − 1)

= pN(N−1)−#0(â)+1
N−3
∑

k=0

(

N − 2

k

)

(k + 2)(N − 1) · (1− p)N−2−k+(k+2)(N−1)−1

=: β′(#0(â)) .

So we choose cI
N(N−1)−1 = β′(1) and dI

N(N−1)−1 = β′(0).

Next consider πn with n = (N −1)+x, and 0 6 x 6 (N −2)(N −1)+1. Choose an arbitrary
â ∈ [n]. It holds that â has at least N − 1 non-diagonal entries equal to 0. Now fix a row j with
T 6 N − 2 non-diagonal entries equal to 0. We use the same construction as in case II, but note
that at time t+ 2, the messages received by j lead to 0-entries. Thus,

P(â ❀ (N − 1) + x | row j contains T 0-entries) >

>

N−2−T
∑

k=0

(

N − T − 1

k

)

pk+(N−1)2−#0(â)+T · (1− p)N−1−k−T pN−1−k−T ·

· pN(N−1)−(N−1)−x−(N−1−k−T) · (1− p)(N−1)2−(N(N−1)−(N−1)−x)·

·

(

(N − 1)2 − (N − 1− k − T)

x

)

> p2N
2−4N+T−x+2−#0(â)(1− p)x

(

(N − 1)(N − 2)

x

)

·
N−2−T
∑

k=0

(

N − T − 1

k

)

pk(1− p)N−1−k−T

= p2N
2−4N+T−x+2−#0(â)(1− p)x

(

(N − 1)(N − 2)

x

)

· (1− pN−1−T)

=: γ(#0(â), T, x) .

Note that γ is nonincreasing in its second argument. Every state â ∈ [n] has at least one row with
⌈n/N⌉ non-diagonal entries equal to −1. Such a row must have T 6 N −1−⌈n/N⌉ non-diagonal
entries equal to 0. Thus, we have

P(â ❀ [(N − 1) + x]) > γ(#0(â), N − 1− ⌈n/N⌉, x) .

We may thus choose cIn = γ((N − 1)2 − x,N − 1− ⌈n/N⌉, x) and dIn = γ(0, N − 1− ⌈n/N⌉, x).
Note that this construction fails in case πn for N(N − 1)−N +2 6 n 6 N(N − 1)− 2: Since

we don’t restrict the number of successfully transmitted message to process j at time (t + 1) it
may happen that we generate up to (N − 1) 1-entries at time (t + 2) (and thus up to (N − 1)
0-entries after the global round switch) and this could violate the condition N(N − 1)−N +2 6

n 6 N(N − 1) − 2. To complete our lower bound we just define πn = 0 in this case. Now the
lower bound follows from (6).

5.5. Computational Complexity of the Lower Bounds

The following proposition shows that the computational complexity of the lower bounds is
polynomial.

17

Proposition 5. Both the lower bound for λII and for λI can be computed by O(N4) multiplica-
tions/additions.

Proof. We start our analysis by determining the computational complexity for πII
x , with 2N−1 6

x 6 N(N − 1). Since computing powers pn is in O(logn), πII
N(N−1) and πII

N(N−1)−1 can be

computed in O(logN) and O(N logN), respectively. To compute πII
2(N−1)+x

for 0 6 x 6 (N −

2)(N − 1)− 2 we need to compute γ((N − 1)(N − 2)− x, 0, x), γ((N − 1)(N − 2)− x,N − 2, x),
γ(0, 0, x), and γ(0, N − 2, x). For x = 0 each of these four evaluations of γ can be done in
O(logN). Having stored the values for x we can obtain the values for (x + 1) in constant time.
Hence, computing all ((N − 2)(N − 1)− 2) values πII

x is in O(N2).
Moreover, due to (7), we need N2 evaluations of Λ (given in Proposition 2), each of which

can be done in O(N2): Note that we have at most N(N − 1) summands, each of which can be
computed in constant time from the previous one. Thus we can compute the lower bound for
case II in O(N4). Analogous arguments hold for the lower bound for case I.

5.6. Behavior of λ for p→ 1

Theorem 2 provides means to approximate the expected round duration for all conditions on
forgetting when messages are successfully received with high probability. Since this is typically
the case for real-world systems, it allows to characterize their expected round duration very
efficiently.

Proof of Theorem 2. Let p ∈ (0, 1). Let πN,p(â) be the steady state probability of state â of
Markov chain â(t). From Theorem 5, 1/λ(N, p) =

∑

â p
#−1(â) · πN,p(â). Then

d

dp
1/λ(N, p) =

∑

â

#−1(â) · p
#−1(â)−1 · πN,p(â) +

∑

â

p#−1(â) ·
d

dp
πN,p(â) .

Evaluation of the derivative at p = 1 leads to

d

dp
1/λ(N, p)

∣

∣

∣

p=1
=
∑

â

#−1(â) · πN,1(â) +
∑

â

d

dp
πN,p(â)

∣

∣

∣

p=1
.

Observe that as p goes to 1, πN,p(â) goes to 0 for all states â, except for â0, the state with 0 in
the diagonal, −1 everywhere else, and Step(â) = 1. It is #−1(â0) = N(N − 1). Moreover, as p
goes to 1, πN,p(â0) approaches 1. Hence,

= N(N − 1) +
d

dp

(

∑

â

πN,p(â)

)∣

∣

∣

∣

∣

p=1

= N(N − 1) + 0 ,

as the sum of the steady state probabilities over all states a equals 1. The theorem follows from
d
dp
λ(N, p)

∣

∣

p=1
= − d

dp
1/λ(N, p)

∣

∣

p=1
· λ2(N, 1) and λ(N, 1) = 1.

5.7. Behavior of λ for p→ 0

In systems with unreliable communication, in which Theorem 2 is not applicable, Theorem 3
characterizes the asymptotic behavior of the expected round duration for all our conditions on
forgetting. It turns out that λI, λII, and λIII have the same order of growth for p → 0, namely
p−1, while λIV has a higher order of growth.

18

Proof of Theorem 3. It is (1− p)i − 1 =
∑i

j=1

(

i
j

)

(−p)j = Ω(p) for p→ 0. Hence by Theorem 1,

λIII(N, p) = O(p−1) for p→ 0.
For all conditions on forgetting, all transition probabilities of the Markov chain â(t) are

polynomials in p. Hence by Equation (4), all steady state probabilities π(â) are rational functions
in p. Theorem 5 then in particular implies that λI(N, p) is also rational in p. Clearly, λI(N, p)→
∞ as p→ 0. Hence λI(N, p) has a pole at p = 0 of order at least 1. This implies λI(N, p) = Ω(p−1).
From the inequalities λI 6 λII 6 λIII, the first part of the theorem follows.

To show the second part of the theorem, we prove the more general statement

Λ(M,p) ∼ p−1HM for p→ 0 , (8)

where HM denotes the M th harmonic number.
It is (1− p)i − 1 = −p

∑i
j=1

(

i
j

)

(−p)j−1 ∼ −p · i for p→ 0. Thus, Proposition 2 shows that

p · Λ(M,p) ∼
M
∑

i=1

(

M

i

)

(−1)i+1 1

i
.

Denoting by SM this last sum, we show SM = HM . This identity is well-known; a proof can be
found in the textbook by Graham et al. [21, (6.72) and (6.73)]. We give a proof, by induction
on M , for the sake of completeness. The case M = 1 is trivial. If M > 2, then

SM =
M
∑

i=1

(

M − 1

i

)

(−1)i+1 1

i
+

M
∑

i=1

(

M − 1

i− 1

)

(−1)i+1 1

i

= HM−1 −
1

M

M
∑

i=1

(

M

i

)

(−1)i = HM−1 +
1

M
= HM

by the induction hypothesis. This shows (8) and concludes the proof.

6. Conclusion

We studied the effect of actively discarding memory content on variants of the α-synchronizer
with active forgetting. We obtained asymptotic formulas for the behavior of the expected round
duration λ(N, p) as the probability of successful transmission p→ 0 and p→ 1, as well as means
to calculate λ(N, p) for arbitrary N and p, which allow to assess whether the resulting loss of
performance is acceptable for a specific application. In a nutshell (see Section 1 for details), there
is not much difference between variants I (the original α-synchronizer) and II (forgetting at local
round switches), neither for the expected round duration nor for the average age of the messages.
By contrast, variant IV (forget at every time step) results in always fresh messages, albeit at the
price of a considerably larger average round duration (in particular, for small values of p). More
aggressive forms of forgetting may hence be a viable alternative for increasing the accuracy in
certain sensor fusion applications.

Our results for variants III and IV also provide computationally feasible and accurate bounds
on the performance of the original non-forgetting α-synchronizer. In fact, due to its huge state
space, the explicit calculation of λ for variant I is in O(23N(N−1)), which is prohibitively expensive
even for small system sizes. Thanks to our formulas, accurate predictions of its performance can
be obtained also for large N .

[1] A. Basu, B. Charron-Bost, S. Toueg, Crash failures vs. crash + link failures, in: Pro-
ceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Comput-
ing, ACM Press, Philadelphia, Pennsylvania, United States, ISBN 0-89791-800-2, 246, doi:
10.1145/248052.248102, 1996.

19

[2] B. Awerbuch, Complexity of Network Synchronization, J. ACM 32 (4) (1985) 804–823.

[3] J. Widder, U. Schmid, The Theta-Model: Achieving Synchrony without Clocks,
Distributed Computing 22 (1) (2009) 29–47, doi:10.1007/s00446-009-0080-x, URL
http://www.vmars.tuwien.ac.at/documents/extern/1724/paper.pdf.

[4] M. Függer, A. Kößler, T. Nowak, U. Schmid, M. Zeiner, The Effect of Forgetting on the
Performance of a Synchronizer, in: P. Flocchini, J. Gao, E. Kranakis, F. Meyer auf der Heide
(Eds.), Algorithms for Sensor Systems, Lecture Notes in Computer Science, Springer Berlin
Heidelberg, ISBN 978-3-642-45345-8, 185–200, 2014.

[5] E. F. Nakamura, A. A. F. Loureiro, A. C. Frery, Information fusion for wireless sensor
networks: Methods, models, and classifications, ACM Comput. Surv. 39 (3).

[6] K. Marzullo, Tolerating Failures of Continuous-Valued Sensors, ACM Trans. Comput. Syst.
8 (4) (1990) 284–304.

[7] U. Schmid, K. Schossmaier, How to reconcile fault-tolerant interval intersection with the
Lipschitz condition, Distributed Computing 14 (2) (2001) 101–111.

[8] J. Y. Halpern, Using reasoning about knowledge to analyze distributed systems, Annual
Review of Computer Science 2 (1) (1987) 37–68.

[9] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning about Knowledge, MIT Press,
Cambridge, MA, 1995.

[10] R. Fagin, J. Y. Halpern, Reasoning About Knowledge and Probability, J. ACM 41 (2) (1994)
340–367, ISSN 0004-5411, doi:10.1145/174652.174658.

[11] M. Jayaram, G. Varghese, Crash Failures can Drive Protocols to Arbitrary States, in: J. E.
Burns, Y. Moses (Eds.), PODC, ACM, 247–256, 1996.

[12] S. Dolev, Self-stabilization, MIT press, 2000.

[13] D. P. Bertsekas, J. N. Tsitsiklis, Parallel and distributed computation, Prentice Hall, Engle-
wood Cliffs, 1989.

[14] S. Rajsbaum, Upper and Lower Bounds for Stochastic Marked Graphs, Inf. Process. Lett.
49 (6) (1994) 291–295.

[15] S. Rajsbaum, M. Sidi, On the Performance of Synchronized Programs in Distributed Net-
works with Random Processing Times and Transmission Delays, IEEE Trans. Parallel Dis-
trib. Syst. 5 (9) (1994) 939–950.

[16] T. Nowak, M. Függer, A. Kößler, On the performance of a retransmission-based synchronizer,
Theor. Comput. Sci. 509 (2013) 25–39.

[17] J. G. Propp, D. B. Wilson, Exact sampling with coupled Markov chains and applications to
statistical mechanics, Random Structures & Algorithms 9 (1-2) (1996) 223–252.

[18] P. Kirschenhofer, H. Prodinger, A result in order statistics related to probabilistic counting,
Computing 51 (1) (1993) 15–27.

[19] W. Szpankowski, V. Rego, Yet another application of a binomial recurrence. Order statistics,
Computing 43 (4) (1990) 401–410.

[20] S. Meyn, R. L. Tweedie, Markov chains and stochastic stability, Cambridge University Press,
Cambridge, second edn., with a prologue by Peter W. Glynn, 2009.

[21] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics - a foundation for com-
puter science, Addison-Wesley, Reading, MA, 1989.

20

