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Fast Symbolic Computation of the Worst-Case Delay in Tandem Networks
and Applications

Anne Bouillard, Thomas Nowak

Département d’Informatique, École Normale Supérieure, Paris, France

Abstract

Computing deterministic performance guarantees is a defining issue for systems with hard real- time con-

straints, like reactive embedded systems. In this paper, we use burst-rate constrained arrivals and rate-

latency servers to deduce tight worst-case delay bounds in tandem networks under arbitrary multiplexing.

We present a constructive method for computing the exact worst-case delay, which we prove to be a linear

function of the burstiness and latencies; our bounds are hence symbolic in these parameters. Our algorithm

runs in quadratic time in the number of servers. We also present an application of our algorithm to the case

of stochastic arrivals and server capacities. For a generalization of the exponentially bounded burstiness

(EBB) model, we deduce a polynomial-time algorithm for stochastic delay bounds that strictly improve the

state-of-the-art separated flow analysis (SFA) type bounds.

Keywords: performance analysis, worst-case delay, network calculus, stochastic network calculus

1. Introduction

With the explosive growth of embedded systems, which often have hard real-time constraints, having

efficient tools for computing worst-case performance bounds for those systems has become a necessity. Sev-

eral methods for deriving network performance bounds have been subsumed under the network calculus

formalism: From local and simple description of the system elements, one derives deterministic performance

bounds for the network. Servers and the flows circulating in the network are described by service curves and

arrival curves. These functions provide guarantees on the minimal amount of service provided by the servers

and on the shape of incoming traffic. In the past, deterministic guarantees have provided the analytical

framework for Internet QoS (DiffServ/IntServ) [1, 2], switched networks [3, 4, 5], and Video-on-Demand [6].

More recently, deterministic bounds have become especially useful in the context of large embedded networks
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like AFDX (Avionics Full Duplex) [7]. Among other methods for computing worst-case performance bounds,

one can cite model-checking, which enables to compute accurate performance bounds but has a prohibitive

algorithmic cost [8], or the trajectorial method [9], where worst-case delay bounds are given by the solution

of a fixed-point equation. One main advantage of network calculus over these methods is its modularity and

its scalability that permits to analyze large and complex networks.

Recent years have seen several advances for deducing tight network performance bounds. On one hand,

there were several attempts to improve the computations of the end-to-end performances. Indeed, classically,

the performances are computed using (min,plus) operations, which introduce a certain pessimism to the

analysis. The methods used range from the exhaustive computations, which can be performed only for small

networks [10], approximate methods that are exact for subclasses of networks [11]. More recently, exact

methods [12, 13] using linear programming have been proposed. Unfortunately, the solution is given as the

solution of an optimization problem, which makes the use of this method difficult for solving more general

issues, such as optimizing on a parameter.

On the other hand, stochastic versions of network calculus have been defined. This stochastic network

calculus (SNC) started with the work of Chang [14], and several models have since been derived. The main

approach is to mix the basic results of network calculus with large deviation theory. Reviews of these results

can be found in [15, 16, 17]. Many studies focus on the case of a single server and multiple flows. Different

service policies are studied [18], and very sophisticated results show that SNC can be adapted to a variety

of service policies [19]. Network analysis has received less attention. End-to-end delay bounds are computed

in presence of disjoint cross-traffic in [20]. Also, the study of stochastic network calculus opens new fields of

application for network calculus, such as smart-grids [21] and soft real-time systems [22].

In the present paper, we present two main contributions. The first concerns deterministic networks. When

the arrival curves are burst-rate and the service curves are rate-latency, we present an explicit construction

for the optimal residual service curve and exact worst-case delay of an arbitrary flow crossing a tandem

network. In particular, we show that the residual service curve is rate-latency and that the latency (and

hence also the worst-case delay) is a polynomial of degree one in the latencies of the servers and the bursts

of the flows.

Secondly, we extend our analysis to the stochastic settings and compare it to results that can be obtained

from the literature. Our algorithm produces stochastic delay bounds in polynomial time for the case of

convex error probability functions, like the exponentially bounded burstiness (EBB) model. The bounds are

always better than those coming from a separated flow analysis (SFA) of the network. We also discuss how
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to adapt our results to more general stochastic frameworks and the difficulties that are involved.

The remaining of the paper is organized as follows. In Section 2, we give our model definition for deter-

ministic networks. In Section 3 we present our algorithm to compute the worst-case delay in deterministic

tandem networks. In Section 4, we show how the result can be used in the stochastic setting to optimize

the error probability in tandem networks. The conclusion is in Section 5. The appendix contains serveral

supplementary proofs and discussions of our approach.

2. Framework and Model

We denote by N the set of non-negative integers {0, 1, . . .} and for all n ∈ N, we set [[n]] = {1, . . . , n}. For

x ∈ R, we set (x)+ = max(x, 0). We write R+ for the set of non-negative reals.

2.1. General Model

While our model is in line with the standard definitions of networks calculus, we present only the material

that is needed in this paper. A more complete presentation of the network calculus framework can be found

in the reference books [23, 17].

Flows of data are represented by non-decreasing and left-continuous functions that model the cumulative

processes. More precisely, if A represents a flow at a certain point in the network, A(t) is the amount of data

of that flow that crossed that point in the time interval [0, t), with the convention A(0) = 0. More formally,

let F = {f : R+ → R |f is non-decreasing, left-continuous, and satisfies f(0) = 0}.

A system S is a non-deterministic relation between input and output flows, where the number of inputs

is the same as the number of outputs: S ⊆ Fm ×Fm and there is a one-to-one relation between the inputs

and the outputs of the system, such that to each input flow corresponds one and only one output flow that

is causal—no data is created inside the system—meaning that for ((Ai)
m
i=1, (Bi)

m
i=1) ∈ S, ∀i ∈ [[m]], Ai ≥ Bi.

The vector ((Ai)
m
i=1, (Bi)

m
i=1) is an (admissible) trajectory of S if ((Ai)

m
i=1, (Bi)

m
i=1) ∈ S. If m = 1, i.e., the

system has exactly one incoming and one outgoing flow, then we will also refer to it as a server.

Arrival curves. The notion of arrival curve is quite simple: The amount of data that arrived during an

interval of time is a function of the length of this interval. More formally, let α ∈ F . A flow is constrained

by the arrival curve α, or is α-constrained if ∀s, t ∈ R+ with s ≤ t : A(t)−A(s) ≤ α(t− s).

A typical example of such arrival curve are the pseudo-affine burst-rate functions: αb,r : 0 7→ 0; t 7→ b+rt,

if t > 0. The burstiness parameter b can be interpreted as the maximal amount of data that can arrive

simultaneously and the rate r as a maximal long-term arrival rate.
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Service curves. The role of a service curve is to constrain the relation between the input of a server and

its output. Let A be an cumulative arrival process to a server and B be its cumulative departure process.

Several types of service curves have been defined in the literature, and the main types are the simple and

strict service curves, which we now define.

We say that β is a simple service curve for a server S if ∀(A,B) ∈ S : A ≥ B ≥ A ∗ β, with the

convolution A ∗ β(t) = inf0≤s≤tA(s) + β(t− s).

An interval I is a backlogged period for (A,B) ∈ F × F if ∀u ∈ I, A(u) > B(u). The start of the

backlogged period of an instant t ∈ R+ is start(t) = sup{u ≤ t | A(u) = B(u)}. As both A and B are

left-continuous, we have A
(

start(t)
)

= B
(

start(t)
)
, and

(
start(t), t

]
is always a backlogged period.

We say that β is a strict service curve for server S if ∀(A,B) ∈ S : A ≥ B and for all backlogged periods

(s, t]: B(t) − B(s) ≥ β(t − s). The name strict service curves implies a difference to simple service curves.

Works on the comparisons between the different types of service curves can be found in [23, 24]. In this

article, we will mainly deal with strict service curves, but will make use of the convolution A ∗ β used to

define simple service curves.

A typical example of a service curve are the rate-latency functions: βR,T : t 7→ R · (t − T )+, where T is

the latency until the server has to become active and R is its minimal service rate after this latency.

Note that a server S may not be deterministic, as the function β only corresponds to a guarantee on the

service offered. Among this non-determinism, we will focus on two modes of operation:

• Exact service mode: During a backlogged period (s, t], the service is exact if for all u ∈ (s, t] we

have B(u) = A
(

start(t)
)

+ β
(
u− start(t)

)
. (In this case, start(u) = start(t).)

• Infinite service mode: During an interval of time (s, t], the service is infinite if ∀u ∈ (s, t] : B(u) =

A(u), i.e., the server serves all data instantaneously.

For a system S ∈ Fm × Fm with m inputs and outputs, we say that S offers a strict service curve β if

the aggregate system is, that is, if

∀
(
(Ai)i∈[[m]], (Bi)i∈[[m]]

)
∈ S :

 ∑
i∈[[m]]

Ai,
∑
i∈[[m]]

Bi

 ∈ S(β).

We assume no knowledge about the service policy in this system (except that it is FIFO per flow).

Performance guarantees. In this article, we focus on the worst-case delay of a flow in a network. Let

(A,B) ∈ F2 be an admissible trajectory of a server. The delay of a bit that arrives at time t is d(t) =
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Figure 1: Tandem network with 3 servers and 3 flows.

sup{d ∈ R+ | A(t) > B(t + d)}. The worst-case delay is then dmax = supt≥0 d(t). Graphically this is the

maximal horizontal distance between A and B.

We are interested in the bit of data that suffers the maximal delay. This bit will be called in the following

the bit of interest. Due to the left-continuity assumption, its formal definition is not straightforward. A

bit of interest can be associated with a quantity of data x and for each process A having that bit of data,

there must exists tA,x such that ∀t > tA,x : A(t) ≥ x and ∀t < tA,x : A(t) < x. It coincides with the

infimum tA,x = inf{t ∈ R+ | A(t) ≥ x}. We call tA,x the time that data x leaves flow A. Denote by

rg(A) = {x ∈ R+ | ∃t ∈ R+ : A(t) ≥ x} the range of A. The worst-case delay of trajectory (A,B) is then

equal to dmax = sup
x∈rg(A)

(
tB,x − tA,x

)
.

2.2. Tandem Networks

Throughout the paper, we consider networks in tandem only: Assume a sequence of n servers numbered

from 1 to n and m flows, flow i crossing servers si to di in order, with si ≤ di. Figure 1 depicts a tandem

network with 3 servers and 3 flows. We have s1 = s2 = 1, d2 = s3 = 2 and d1 = d3 = 3. For a server j, we

set Fl(j) the set of flows that crosses that server. In the example network, Fl(1) = {1, 2}, Fl(2) = {1, 2, 3},

and Fl(3) = {1, 3}.

Concerning the arrival and service guarantees, we assume the following:

• Flow i ∈ [[m]] has a burst-rate arrival curve αi : 0 7→ 0; t 7→ bi + rit.

• Server j ∈ [[n]] offers the strict rate-latency service curve βj : t 7→ Rj(t− Tj)+.

We aim at finding the worst-case delay of a given flow of an admissible trajectory. Formally, we call

trajectory a collection of cumulative arrival and departure processes for each flow at each server it crosses.

We say that a trajectory is admissible if the processes satisfy the network calculus constraints given by the

arrival curves of the flows and the strict service curves of the servers. We denote by F
(j−1)
i (resp. F

(j)
i ) the

cumulative arrival (resp. departure) process of flow i at server j. The trajectory (F
(j)
i ) is admissible if

• ∀i : F (si−1)
i has arrival curve αi and

• ∀j : ((F
(j−1)
i ), (F

(j)
i )) has a strict service curve βj .
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We assume that we focus on the worst-case delay of a flow that crosses every server. Assume it is flow 1.

The goal is to compute sup
x∈rg(F (0)

1 )
t
F

(n)
1 ,x

− t
F

(0)
1 ,x

.

To this aim, let us introduce the dates we will focus on for given admissible trajectory and bit of interest x.

Set tn = tB,x, the departure date of the system of the bit of interest. Then, tj , j ≤ n are defined recursively

by setting tj−1 = startj(tj) where startj is the start of the backlogged period at server j.

3. Worst-Case Delay in Deterministic Tandem Networks

In this section we present the main contribution of this paper, that is, the construction of a worst-case

delay trajectory for tandem networks. We prove that we need to focus on limited number of trajectories

only. Then, the delay of the bit of interest can be explicitly computed for these trajectories. Moreover, it

is not necessary to compute the delays for all those trajectories, as a greedy algorithm enables to find one

with the largest delay. Interestingly, the worst-case delay turns out to be an affine function of the burstiness

of the arrivals and the latencies of the servers.

We first present several properties of a worst-case trajectory that can be assumed to hold, and then

present the construction of the worst-case trajectory that lead to the worst-case delay.

3.1. Properties of a Worst-Case Scenario

Several scenarios can lead to the worst-case delay. In this subsection, we show that we can construct a

worst-case scenario with certain additional properties that facilitate its analysis. This permits to consider

only a limited number of scenarios to find the worst-case delay. Let us first state them and next comment

them.

(H1) Service policy is SDF (shortest-to-destination first): for two flows i and j, if di < dj , then flow i is

served with higher priority than flow j.

(H2) Server j has the unique backlogged period (tj−1, tj) and provides infinite service outside its backlogged

period.

(H3) Each server provides exact service in its backlogged period and tj − tj−1 ≥ Tj .

(H4) The new arrivals at server j are maximal from time tj−1 on and zero before that.

(H5) The bit of interest that suffers the longest delay is b1, the burstiness of flow 1.
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It is proved in [25, Theorem 8] that any admissible trajectory can be replaced by another satisfying

(H1) and (H2) and such that the delay of the bit of interest increases. The transformation does not modify

the arrival processes and the global service offered by a server during its backlogged period. The result is

quite intuitive: Firstly, the SDF policy is known for being among the ones that can make a cyclic network

unstable. Secondly, we focus on the delay suffered by one bit of interest. Its delay depends only on the

service provided in the backlogged periods it belongs to. So these backlogged periods should be charged

as much as possible for the worst-case delay. Hence, the upstream servers should transmit their backlogs

instantaneously and simultaneously to the newly backlogged server. A direct consequence is that the bit of

interest leaves server j at time tj .

Lemma 1. For any admissible trajectory T , there exists an admissible trajectory T̃ satisfying (H3) and that

does not modify the arrival processes and whose maximum delay is larger.

Proof. Let T = (F
(j)
i ) be a trajectory and B the bit with the worst-case delay. Suppose there exists a back-

logged period (tj−1, tj) where the service offered by server j is not exact. The quantity
∑
i∈Fl(j)(F

(j)
i (tj)−

F
(j−1)
i (tj−1)) = B is the quantity of data served during [tj−1, tj) by server j. There exists t′ such that

βj(t
′) = B and, because βj is a strict service curve for server j, we have t′ > tj − tj−1. Set d = t′− tj + tj−1.

As a consequence, one can replace F
(j)
i by F̃

(j)
i , which is modified only in its backlogged period (tj−1, tj).

The backlogged period becomes (tj−1, tj+d), the service is exact and for all i ∈ Fl(j), F̃
(j)
i (tj+d) = F

(j)
i (tj).

Replace every cumulative function F
(k)
i after tj by F̃

(k)
i (t) = F

(k)
i (t + d). The trajectory is still admissible

and the delay of bit B is increased by d. Note that if B = 0, then one can take t′ = Tj .

Lemma 2. For any admissible trajectory T , there exists an admissible trajectory T̂ satisfying (H4) and

whose maximum delay is larger.

Proof. From (H2), one can assume without loss of generality that (tj−1, tj) is the unique backlogged period

for server j, and then that if flow i starts at server j, then F
(si−1)
i (t) = 0 for all t ≤ tj−1. Let T = (F

(j)
i )

and consider the trajectory T̃ = (F̃
(j)
i ) where for all t ≥ 0: F̃

(si−1)
i (t) = αi((t− tsi−1)+) and the rest of the

trajectory is the same as T . Note that by doing so, the arrival time of the bit of interest decreases.

As the arrival processes increase, for server 1, (t0, t1) is still a backlogged period, and the backlog

transmitted to server 2 at time t1 is greater than for trajectory T . By induction, this is also true at each

server: (tj−1, tj) is still a backlogged period for server j and the backlog transmitted at time tj to server

j + 1 increases. Then tn is still in the backlogged period of server n, and if all the backlog is served at time

tn, then the departing time of the bit of interest is unchanged, hence the result.
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Figure 2: Trajectories satisfying (H1), . . . , (H5).

Lemma 3. Consider a trajectory satisfying (H1)–(H4). There exists a trajectory T̂ where bit b1 has the

maximum delay.

Proof. Let x the bit of flow 1 that suffers the largest delay. First, if x ≤ b1, then x and b1 arrive in the

system at the same time. So the policy is FIFO per flow, bit b1 leaves the network after x.

Now, suppose that x > b1. One can assume without loss of generality that t0 = 0 and F
(0)
1 (t) ≤ x for all

t ≥ 0: the arrival of flow 1 after The arrival of bit x has no influence on the delay of bit x.

If there is no server j (including server n) for which the backlog transmitted to the next server is 0 at

time tj , then bit x does not suffers the largest delay: There exists a bit y < x of flow 1 that exits at the

same time, but arrives strictly before. Bit y is transmitted at the same time as x.

Now suppose that there is a server j that transmits no backlog at time tj . This means that there is an

ε > 0 such that during the interval of time [tj − ε, tj ], flow 1 is served at rate

ρ = Rj −
∑

i∈Fl(j)\{1}

ri > r1, (1)

since (H1), . . . , (H4) are satisfied. The delay of bit x can be decomposed in d = d1 + d2, where d2 = tn − tj

and d1 = tj − t′, where t′ is the arrival time of bit x at server 1.

Replace tk by tk−ε for all k > j and replace the arrival processes accordingly (if si > j, then F̃
(si−1)
i (t) =

F
(si−1)
i (t + ε)). By (1), the delay of bit y = x − ρε is d′1 + d2, where d′1 < d1. As a consequence, x does

not suffer the largest delay. This is true for all x > b1, and, hence, b1 suffers the largest delay for some

trajectory.

As the bit of interest is b1, we can and will set the rate of the flow of interest to r1 = 0.

Figure 2 illustrates the properties (H1), . . . , (H5) a scenario should have for the analysis in the next

section. The only non-determinism now are the start times tj of the backlogged periods, which also define

the bursts that are transmitted from a server to the next one. In server 1, the dashed line is F
(0)
2 , the plain
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line above is F
(0)
1 + F

(0)
2 , and the bottom is F

(1)
1 + F

(1)
2 . When F

(0)
2 ≤ F (1)

1 + F
(1)
2 , flow 2 is not backlogged

in server 1 (because of the SDF service policy). Then at time t1, the burst of size x1 transmitted belongs to

flow 1 only. The same hold for server 2 (from bottom to top, according to the SDF policy, F
(1)
2 , F

(1)
2 +F

(1)
3 ,

F
(1)
2 + F

(1)
3 + F

(1)
1 are drawn). At time t2, the burst of size x2 is sent to server 3, which is shared between

flows 1 and 3.

3.2. Computation of the Worst-Case Scenario

Using the properties above, we can build a worst-case trajectory with the following properties: Each

server j has only two modes: infinite server or exact server (during the backlogged period (tj−1, tj)). This

means that at time tj−1, server j − 1 transmits all its backlog to server j. Furthermore, the flows i entering

the network at server j send their burst bi at time tj−1. Afterward, the arrival rate of data at server j is

exactly
∑
i∈Fl(j) ri.

The service policy is SDF, but it should be clear that flows crossing server j and having the same

destination do not need to be distinguished. We will introduce notation that distinguishes flows only by

their destination.

To compute the worst-case trajectory, we only need to decide when the servers are exact. For example,

if from time tj−1 server j−1 serves as an infinite server, it will transmit data to server j, and the delay from

time tj−1 depends only on the quantity of these data for any destination and on the parameters of servers

j, . . . , n. We denote this delay by ∆j(xj , . . . , xn). It is the delay from server j of the bit of interest, that is

tn− tj−1 if xk is the burst transmitted at tj−1 to server j by the flows ending at server k, for k ≥ j. Finally,

the worst-case delay is D = ∆(0, . . . , 0). We will show by induction that:

(A) ∆j is affine in the xk, Tk, and bi. More precisely we can write ∆j(xj , . . . , xn) = Dj+

n∑
k=j

xk
Rkj

, where Rkj

only depends on the Rk and ri, and Dj is a polynomial of degree 1 in the Tk and bi (with coefficients

depending on the Rk and ri only).

(B) Rkj ≥ R
k+1
j .

This inequality (B) is quite intuitive: the coefficient Rkj roughly corresponds to the service rate of flows

ending at server k in the servers j, . . . , k. It means that a flow that has higher priority received a larger

service rate than a flow with lower priority.
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Algorithm 1 outputs the worst-case delay of the tandem network as an affine function

D =
∑
j∈[[n]]

λjTj +
∑
i∈[[m]]

µibi.

It uses the following additional notations:

• bkj =
∑
i, si=j,di=k

bi size of the burst arriving at server j at time tj−1 belonging to flows starting at

server j and ending at server k;

• rkj =
∑
i, si≤j,di=k ri arrival rate at server j for all flows ending at server k and crossing j (remember

that we fixed r1 = 0);

Algorithm 1: Worst-case delay algorithm

begin
Rnn ← Rn − rnn;
for j from n− 1 to 1 do

k ← n;

while Rkj+1 < (Rj −
∑k
`=j r

`
j)

(
1 +

∑n
`=k+1

r`j
R`

j+1

)−1
do

Rkj ← Rkj+1;

k ← k − 1;

for ` from j to k do R`j+1 ← (Rj −
∑k
`′=j r

`′

j )

(
1 +

∑n
`′=k+1

r`
′

j

R`′
j+1

)−1
; ;

for j from 1 to n do λj ← 1 +
∑n
`=j r

`
j/R`j ;

;

for i from 1 to m do µi ← (Rdisi )
−1 ;

Theorem 1. Consider a tandem network of n servers offering rate-latency service curves βj : t 7→ Rj(t −

Tj)+, j ∈ [[n]] and crossed by m flows with pseudo-affine arrival curves αi : t 7→ bi + rit, i ∈ [[m]]. The

expression D =
∑
j∈[[n]] λjTj +

∑
i∈[[m]] µibi where the λj and µi are the outputs of Algorithm 1 is the worst-

case delay of a tandem network. The coefficients λj and µi depend only on (ri)i∈[[m]] and (Rj)j∈[[n]]. D can

be effectively computed in time O(n2 +m).

Due to space limitations, the proof of this theorem is postponed to Appendix A.

From this theorem, a (simple) service curve can be derived for flow 1. Intuitively, it is the inverse of the

function ∆(0, 0, . . . , 0) = D(b1) seen as a function of b1. It is then a rate-latency function. The next theorem

proves this and states that this is the best service curve that can be found for flow 1 crossing this system.

Note that the rate of this function is easyly computed by minj∈[[n]]Rj −
∑
i∈Fl(j) ri, the latency is D(0).
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Ser. 2 1
R2−r1−r2 ≥

1
R3−r2

1
R2−r1−r2 <

1
R3−r2

Ser. 1 1
R1−r1 ≥

1
R2−r1−r2

1
R1−r1 >

1
R2−r1−r2

1
R1−r1 ≥

1
R3−r2

R3
(R2−r1)(R3−r2)

≤ 1
R1−r1

< 1
R3−r2

otherwise

a b2 + b1 + r2T1 0 b1 + b2 + r2T1 0 0
b b3 + (r2 + r3)T2 b1 + b2 + b3 0 0 0

+r2T1 + (r2 + r3)T2
c 0 0 r3T2 r2T2 b2 + r2(T1 + T2)
d 0 0 b3 + r3T2 b3 + b1 + r3T2 b3 + b1 + r3T2

Table 1: Worst-case delay for the tandem network in Figure 1.

Theorem 2. The curve βR,T with R = minj∈[[n]]Rj −
∑
i∈Fl(j) ri and T = D(0) is a service curve for flow

1 and there is no function β ∈ F greater than βR,T that is a service curve for flow 1.

Proof. Let us first prove that there exists no β > βR,T that is a service curve for the system. Suppose that

β(s) > βR,T (s). Then there exists u > s such that β(s) = βR,T (u) = b. By Theorem 1, the worst-case delay

for the arrival process A : t 7→ b1t>0 is u. But A ∗ β(s) = b, so the delay obtained using β is less than u. So

β cannot be a service curve.

We now show that βR,T is a service curve. Let A be a cumulative arrival process for flow 1 and B its

output process. Let tn > 0, and define t0 as in the notations, that is, t0 =
(

start1 ◦ start2 ◦ · · · ◦ startn
)
(tn).

Set b = B(tn) − A(t0). Then from Theorem 1, tn − t0 ≤ ∆(0, . . . , 0) = D(b1), so b1 ≥ βR,T (tn − t0). As a

consequence, B(tn) = A(t0) + b1 ≥ A(t0) + βR,T (tn − t0) ≥ A ∗ βR,T (tn).

3.3. Example

Consider the example of Figure 1 and assume we want to compute the delay of flow 3.

We compute ∆3, ∆2 and then ∆1.

Server 3: ∆3(x3) = T3 + x3+r3T3

R3−r3 (we do not take r1 into account as the worst-case delay is obtained at the

burst);

Server 2: if 1
R2−r2−r3 ≥

1
R3−r3 , then ∆2(x2, x3) = T2 + T3 +

x2 + r2T2 + b2 + x3 + r3T2
R2 − r2 − r3

. Otherwise

∆2(x2, x3) = T2 + T3 +
R3(x2 + r2T2)

(R2 − r2)(R3 − r3)
+
b3 + x3 + r3T2

R3 − r3
.

Server 1: According to our construction, there are be 5 cases to consider. The delay has a general form

D = T1 +T2 +T3 + r3T3

R3−r3 + a
R1−r2 + b

R2−r2−r3 + cR3

(R2−r2)(R3−r3) + d
R3−r3 , where a, b, c, d are shown in Table 1.

3.4. Comparison with the State of the Art

The problem of computing exact worst-case delays is a long-standing problem in the literature. As far as

arbitrary multiplexing is concerned, this problem has been extensively studied in [10], where the authors first

present the difficulties of obtaining closed formulas, even for the trivial case of two flows crossing two servers.
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Then they completely study the case of the tandem network depicted in Figure 1. Their analysis exhibits 5

cases leading to 4 different formulas. The worst-case scenario the author construct is slightly different than

the one constructed in Section 3.3 as they do not assume that the backlogged periods are disjoint, leading

to a case distinction that is more intricate than the one we presented. However, we checked that the cases

we found for this network are exactly the same as theirs, and so we compute exactly the same delays. Note

that we have 5 different cases instead of 4 because we take into account the service time of the burst of the

flow of interest. Apart from this service time, the third and fourth cases are similar.

Secondly, some work has been done to compute worst-case delays in feed-forward network using linear

programs in [12]. In the case of tandem network the authors show that it can be done by solving a single

linear program making the procedure polynomial in time. They can handle more general arrival and service

curves. We believe that our approach can easily be generalized to obtain good approximations in general

feed-forward network, which is, due to space limitation, beyond the scope of this article. The generalization

to general concave or convex arrival and service curves would be more demanding, as delay would not

be an affine function anymore. One drawback of the method in [12] is that no intuition is provided for the

construction of the worst-case trajectory and then a slight modification of the parameters cannot be handled,

which is a major issue with this method. In particular, computing the residual service curve of the flow of

interest is intractable with the method of [12], as is explained in [26]. Theorem 2 states that it can be done

in polynomial time with our algorithm.

Moreover it is not possible to use the method of [12] directly to optimize on a parameters bi or Tj . We will

provide a more explicit application in the next section, where we give an application to Stochastic Network

Calculus, that requests to optimize on the parameters. We explain in Appendix B why we cannot apply

[12] to solve this problem.

4. Application to Stochastic Arrivals and Servers

In this section, we apply our results to a stochastic extension of network calculus. The results of this

section provide an upper bound on the probability that a given stochastic system fails to satisfy a given

delay bound. Along the way, we introduce a new definition for stochastic service curves, which is based on

the notion of variable capacity nodes (VCNs), that plays the role of strict service curves. Indeed, until now,

strict service curves have not received a lot of attention, with the notable exception of guaranteed rate curves

(curves of type t 7→ Rt).

In Section 4.1, we give the definitions of stochastic network calculus, including the new stochastic VCN
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service curves. In Section 4.2, we present the state-of-the-art method for deriving delay bounds in stochastic

network calculus, and discuss a new result on the composability of stochastic curves. Section 4.3 introduces

our new method for deriving delay bounds and proves its correctness. We provide numerical examples,

including quantitative comparison to the state-of-the-art method, in Section 4.4. We discuss the stochastic

model assumptions in Appendix C.

4.1. Stochastic Arrivals and Servers

Stochastic network calculus is a generalization of deterministic network calculus, in which the arrival

processes and departures processes are stochastic processes. We now give the definition of the stochastic

model we use in this paper.

4.1.1. Stochastic Arrival Curves

Let α ∈ F and εt : R+ → R+ for every t ≥ 0. We say that the arrival process A is 〈εt, α〉-constrained

if we have: ∀t∀σ : P
(
∃u ≤ s ≤ t : A(s) − A(u) > α(s − u) + σ

)
≤ εt(σ), where “∃u ≤ s ≤ t” signifies the

existence of u and s with u ≤ s ≤ t. We call εt the error probability function. This definition is called the

maximum virtual backlog centric (m.b.c.) model by Jiang and Liu [15]. An important example process are

families of burst-rate curves with a common arrival rate. In this case, we can choose the failure probability

function to directly depend on the burst parameter b:

∀t∀b : P
(
u ≤ s ≤ t and A(s)−A(u) > b+ r(s− u)

)
≤ εt(b). (2)

An important family of typical choices for the error probability function, originating from an exponentially

bounded burstiness (EBB) assumption, is of the form

εt(b) = Kect−ab, (3)

with positive real constants a, c, and K. We call it the time-dependent EBB (tEBB) model. The EBB

assumption was originally introduced by Yaron and Sidi [27] in the form ∀s, t : P
(
A(t)−A(s) > r1 · (t−s) +

b
)
≤ Me−ab to compute stochastic backlog bounds. They also showed [27, Theorem 1] that it is possible

to translate this form of EBB constraint of t.a.c.-type (traffic amount centric) into a constraint of v.b.c.-

type (virtual backlog centric [28]): For all r2 > r1 there exists an N such that ∀t : P
(
∃s : A(t) − A(s) >

r2 · (t − s) + b
)
≤ Ne−ab. It is further possible [15, Theorem 3.24(ii)] to translate this into a constraint of

type (3) for burst-rate arrivals with rate r > r2. It is hence possible to translate an EBB constraint in its
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weakest form into a stronger form, described in (2) and (3), by sacrificing an epsilon of its rate bound. On

the other hand, in a heavy load scenario, this translation cannot be done, as there is no epsilon rate to spare.

4.1.2. Stochastic VCN Service Curves

We now go on to define a similar stochastic definition for strict service curves. A desirable property of a

service curve process would be to be independent of the arrival process. To come up with such a definition

is not obvious from the definition of a strict service curve, which depends on the start times of backlogged

periods, which clearly depend on the input. Fortunately, there exists an almost equivalent definition for

strict service curves, the variable capacity node (VCN) service curve. For the classes of service curves we are

interested in, these notions coincide (see [24] for mode details).

In deterministic network calculus, variable capacity nodes are defined as follows: A server offers a VCN

service curve β if there is some C ∈ F such that ∀s < t : B(t) = inf0≤u≤tA(u) + C(t) − C(u) and

C(t)−C(s) ≥ β(t− s). Intuitively, C(t) represents the amount of service offered by the server up to time t,

and the relation between A, B, and C is a direct consequence of the Lindley equation, that is widely used in

the context of queueing theory. For rate-latency curves, the notions of strict service and VCN service coincide

(see next theorem). However, the extension to the stochastic setting is more natural to define with VCN

service curves as it is not necessary to distinguish backlogged and non-backlogged periods of a stochastic

process.

Theorem 3 ([24, Theorem 3]). Let β be a rate-latency curve. Then a deterministic server S offers β as a

strict service curve if and only if it offers β as a VCN service curve.

Starting from this formulation, it is now easy to adapt the notion of service curve to the stochastic case:

Definition 1. Let β ∈ F and ηt : R+ → R+ for every t ≥ 0. The service C offers a stochastic variable

capacity node β with failure probability η if ∀t∀θ : P
(
∃u ≤ s ≤ t : C(s)− C(u) < β(s− u)− θ

)
≤ ηt(θ). In

this case, we will say that C offers 〈ηt, β〉.

The equality B(t) = inf0≤u≤tA(u) +C(t)−C(u) does not appear in the definition, as we assume that B

is a stochastic process that deterministically depends on A and C.

Similarly to arrival curves, if the service curve is rate-latency, one can make ηt depend on the latency T ,

i.e., ∀t∀T : P
(
∃u ≤ s ≤ t : C(s)− C(u) < R(s− u− T )+

)
≤ ηt(RT ).

In analogy to the tEBB constraint for arrival curves, we are led to consider a time-dependent exponentially
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Figure 3: Tandem network with crossing high-priority flows.

bounded latency (tEBL) constraint, i.e., an error probability function for VCN service curves of the form

ηt(RT ) = Left−gRT , (4)

with positive real constants f , g, and L.

An example where this kind of stochastic service guarantees naturally occur is the case of crossing high-

priority flows that, themselves, have stochastically constrained arrivals; see Figure 3. Take, e.g., a single

server with deterministic VCN service β(t) = Rt and a crossing stochastic tEBB arrival with α(t) = rht and

error probability function εt(b) = Mect−ab. If the server always serves the stochastic arrival with highest

priority, then the residual service provided is tEBL constrained with service curve β̃(t) = (R−rh)t and error

probability function ηt
(
(R− rh)T

)
= Mect−a(R−rh)T .

4.2. State-of-the-Art Delay Bounds

In this section, we present the state of the art for deriving probabilistic delay bounds in feed-forward

networks. The following theorem sums up the single-node performance bounds in stochastic network calculus

that are used as the basis for performance bounds of a network. It uses the definitions of the vertical distance

v(α, β) = sups≥0
(
α(s)− β(s)

)
, horizontal distance h(α, β) = sup{d ≥ 0 | ∃t ≥ 0: α(t) > β(t+ d)}, and the

deconvolution α � β(t) = supτ≥0
(
α(t + τ)− β(τ)

)
of α and β. It is a generalization of existing results (cf.

Theorems 5.1, 5.4, and 5.12 in [15]) to the case of VCN service curves. Our algorithm does not rely on them.

Theorem 4. Let A be the arrival process that is constrained by 〈εt, α〉 and B the departure process that

offers a VCN service of 〈ηt, β〉.

(i) Worst-case backlog: For all t ≥ 0 and all γ ≥ 0, P
(
∃s ≤ t : A(s)−B(s) > v(α, β) + γ

)
≤ εt ∗ ηt(γ);

(ii) Worst-case delay: For all t ≥ 0 and all γ ≥ 0, P
(
∃s ≤ t : A(s− h(α+ γ, β))−B(s) > 0

)
≤ εt ∗ ηt(γ).

(iii) Constraint propagation: For all t ≥ 0 and γ ≥ 0, P
(
∃u ≤ s ≤ t : B(s) − B(u) > α � β(s − u) + γ

)
≤

εt ∗ ηt(γ).
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Theorem 4, together with similar results on the concatenation, superposition, and leftover service curve

(cf. [15, Theorems 5.36, 5.42, 5.64]), allows for a worst-case delay analysis very similar to the deterministic

case. Note, however, that the notion of stochastic worst-case delay bound is stronger than that used in [15],

which consists in bounding the probability of a delay occuring at a specific time instant. In particular,

separated flow analysis (SFA) techniques can be adapted to the stochastic setting. We discuss the SFA

technique and its generalization to stochastic arrivals and servers in more detail together with a comparison

to our new algorithm in Section 4.3.

4.3. New Stochastic Delay Bounds

This section presents our algorithm for deriving upper bounds on the probability that the maximum

delay passes a given delay bound. It requires the arrivals and servers to be burst-rate and rate-latency,

respectively, and the error probability functions to be convex in the burst parameters σi and the latency

parameters θj . These assumptions allow us to use convex programming to find the optimal bound among

the family of bounds our analytic results of this section establish. Our algorithm is based on Algorithm 1,

i.e., it focuses on sample paths instead of focusing on residual services at each server.

We again assume that we are given a tandem network of n servers with a set of m flows crossing it,

and a distinguished flow of interest, flow 1. We assume that every arrival curve F
(0)
i is 〈ε(i)t , αi〉 constrained

where αi is a burst-rate curve and the error probability function ε
(i)
t (σi) is convex in σi. For the servers,

we assume that they provide a 〈η(j)t , βj〉 VCN service where βj is rate-latency and η
(j)
t (θj) is convex in θj .

In our numerical examples, we will use the exponentially bounded burstiness and latency (tEBB and tEBL)

functions of (3) and (4), which are clearly convex in σ and θ.

Let D(σ1, . . . , σm, θ1, . . . , θn) denote the worst-case delay of the deterministic tandem network with burst

parameters σ1, . . . , σm and delay parameters θ1, . . . , θn: The arrival of flow i is deterministically (αi + σi)-

constrained and server j provides a deterministic VCN service that is (βj − θj)+-constrained. Theorem 1

shows that D is an affine polynomial in the σi and θj , and Algorithm 1 allows to compute their coefficients.

The convexity assumption, together with the affinity of the system’s delay in the burst and delay pa-

rameters, will allow us to use convex programming to find, for a given delay, the optimal assignment of the

parameters that (a) allows the system to experience the given delay and (b) minimizes the probability bound

given by the sum of the flows’ and servers’ error probability functions.

Theorem 5. Let S be a tandem network with n servers and m flows. Assume that the arrival of flow i is

stochastically constrained by a burst-rate arrival curve with error probability function ε
(i)
t and that server j
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is stochastically constrained by a rate-latency VCN service curve with error probability function η
(j)
t . Let

σ1, . . . , σm, θ1, . . . , θn ≥ 0 and t ≥ 0. Denote by d = D(σ1, . . . , σm, θ1, . . . , θn) the delay of the corresponding

deterministic tandem network with burst parameters σi and latency parameters θj.

Then the probability that flow 1 experiences a delay of more than d up to time t is upper-bounded by:

P
(
∃s ≤ t : F (0)

1 (s− d)− F (n)
1 (s) > 0

)
≤

m∑
i=1

ε
(i)
t (σi) +

n∑
j=1

η
(j)
t (θj).

Proof. Because the function D(σ1, . . . , σm, θ1, . . . , θn) is nondecreasing in all arguments, the event ∃s ≤

t : F
(0)
1 (s− d)−F (n)

1 (s) > 0 of violating the delay bound of d before time t implies that one of deterministic

arrival or service assumptions was violated before time t. That is, one of the events ∃v ≤ u ≤ t : F
(0)
i (u) −

F
(0)
i (v) > αi(u − v) + σi or ∃v ≤ u ≤ t : Cj(u) − Cj(v) < (βj(u − v) − θj)+ where Cj denotes the capacity

of server j. Taking the union bound now proves the claimed inequality.

As the sum of convex functions is convex and the constraint of the deterministic delay being equal to d is

linear, hence convex, in the parameters σi and θj , the optimization problem in Figure 4 is a convex program.

By Theorem 5, its optimal value is indeed an upper bound on the probability that flow 1 experiences a delay

of more than d up to time t. In fact, it is the best bound that we can achieve with Theorem 5.

We compare our approach with the SFA technique, which relies on the modularity of Network calculus.

For each server j it computes a residual service curve for the flow of interest (flow 1) as β̃j = (βj − α̃j)+,

where α̃j is a constraint on the cross traffic at server j, and then computes the global service for flow 1 ,β̃,

by computing the convolution of all β̃j . Then the end-to-end delay is bounded by the horizontal distance

between the arrival curve of flow 1 and β̃.

For example, on the network of Figure 1, β̃1 = (β1 − α2)+, β̃2 =
(
β2 − (α3 + α2 � β1)

)
+

(we make an

improvement compared to the classical SFA as from [25, Theorem 8], the worst-case delay is obtained for

the SDF service policy) and β̃3 =
(
β3 − (α3 � [β2 − (α2 � β1)]+)

)
+

, hence SFA obtains a delay bound of

h
(
α1 , (β1 − α2)+ ∗

(
β2 − (α3 + α2 � β1)

)
+
∗
(
β3 − (α3 � [β2 − (α2 � β1)]+)

)
+

)
.

With rate-latency VCN and burst-rate arrival curves, the delay bound obtained is also affine in the bursts

and latencies. The optimization problem of Figure 4 can then be applied to obtain an error probability bound,

which we call the sSFA bound. We denote sExact the solution of the convex program in Figure 4 that uses

Algorithm 1 for the computation of the exact worst-case delay. The delays obtained with sExact will always
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minimize

m∑
i=1

ε
(i)
t (σi) +

n∑
j=1

η
(j)
t (θj)

subject to D(σ1, . . . , σm, θ1, . . . , θn) = d
σi ≥ 0, i = 1 . . . ,m
θj ≥ 0, j = 1 . . . , n

Figure 4: Convex program to bound the probability of a delay > d up to time t.

be better than those obtained with sSFA, simply because both use a deterministic bound and then the union

bound as in the proof of Theorem 5. This technique benefits from having a tighter deterministic bound.

Hence, sExact gives a tighter stochastic bound than sSFA since it starts with an optimal deterministic

bound.

4.4. Numerical Examples and Comparison

In this section, we give numerical examples and comparisons for the tandem network in Figure 1. We

used a MATLAB implementation of our algorithm and the CVX optimization package to carry out the

computations.

We assume identical Bernoulli arrival processes that have a probability p = 0.15 to generate a bit every

millisecond, i.e., they have an expected rate of r = 150 b/s. An application of [27, Proposition 3] with p =

0.15 and ε = 0.01 shows the t.a.c. guarantee that P
(
A(t)−A(s) ≥ 0.16(t−s)+b

)
≤ e−αb where α is maximal

such that peα + 1− p ≤ e(p+ε)α for all s and t measured in ms. The value of α is approximately α ≈ 0.151,

for which the inequality still holds. Applying [15, Theorem 3.13(ii)] with θ = 0.01 gives the v.b.c. guarantee

of P
(
∃s ≤ t : A(t)− A(s) > 0.17(t− s) + b

)
≤ e−0.151·b + θ−1

∫∞
b
e−0.151·y dy = (1 + 100/0.151) · e−0.151·b ≤

659·e−0.151·b for all t. Finally, using [15, Theorem 3.24(ii)] with θ = 0.01, i.e., by relaxing the rate by another

10 b/s, we get the m.b.c. bound of P
(
∃u ≤ s ≤ t : A(s)−A(u) > 0.18(s−u)+b

)
≤ θ−1

∫ b
b−θt 659·e−0.151·y dy ≤

100·
∫∞
b−0.01·t 659·e−0.151·y dy = (65 900/0.151)·e0.00151·t−0.151·b ≤ 436 424·e0.00151·t−0.151·b for all t. This is an

explicit tEBB error probability bound for the Bernoulli arrivals. We assume constant-rate servers with a rate

of R = 1 180 b/s and additional independent high-priority cross-traffic at every server identical to the arrivals,

which, by the discussion at the end of Section 4.1.2, gives a tEBL error probability bound for the service to

flows 1, 2, and 3 at each server of P
(
∃u ≤ s ≤ t : C(s)−C(u) < (s−u−T )+

)
≤ 436 424·e0.00151·t−0.151·T where

u, s, t, and T are measured in ms. This makes server 2 have a utilization rate of ρ = 4 ·150/1 180 ≈ 50.85%.

Figure 5 shows the bounds of the sExact and sSFA algorithms in the three-server system for the probability

that the delay up to time t = 10 s is more than d for values of d between 0 s and 2 s. Both bounds are close

to each other and larger than 1012 for d = 0.02 s. After that, however, their ratio gets larger as d increases.
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Figure 5: Stochastic delay bounds and simulations for three-server system.

(Note that the figure uses a logarithmic scale and thus their distance does not.) We observe that the bound

of our sExact algorithm becomes meaningful, i.e., becomes less than 1, at d ≈ 1.74 s, whereas the bound of

the sSFA algorithm becomes meaningful only at d ≈ 4.4 s. Figure 5 also contains simulation data for the

network with Bernoulli arrivals. It uses N = 20 000 simulation runs and depicts the relative amount of runs

in which the maximum delay up to t = 10 s is greater than d. This relative amount is strictly between 0

and 1 only for values of d between 0.78 s and 2 s. In this interval, the sSFA bound is still larger than 1. While

there is still a considerable gap between the simulated maximum delays and the sExact bound, the plots

suggest a similar slope of the simulated data and the sExact bound in logarithmic scale. This observation

spawns further questions and directions for future research.

5. Conclusion

This paper presented a new and fast algorithm for computing the exact worst-case delay of tandem

networks with arbitrary multiplexing when the arrivals are constrained by burst-rate arrival curves and the

servers provide a rate-latency service curve. As a byproduct, we proved that the worst-case delay is, in fact,

an affine function of the burstiness and latency parameters of the arrivals and servers. Our algorithm is the

first that computes the linear coefficients and runs in time O(n2).

Linearity in the burstiness and latency parameters allowed the extension of our bounds to the case where

arrivals and server capacities are stochastic processes. For the case that the error probability functions

are convex, e.g., the exponentially bounded burstiness (tEBB) and exponentially bounded latency (tEBL)

models, we gave a polynomial-time algorithm based for finding stochastic delay bounds. We showed that our

algorithm gives bounds at least as good as the state-of-the-art SFA-type method and provided a quantitative

numerical comparison.
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Future work will focus on finding the worst-case delay for specific multiplexing policies and more general

topologies. As some of these problems are NP-hard even in feed-forward topologies, only approximations

can be efficiently computed, but the quantification of such an approximation is an important issue. We

would also like to further explore the gap between v.b.c.-type and m.b.c.-type stochastic models with respect

to delay bounds. In particular, the correlation between the arrival processes and the events of breaking a

constraint should be worth investigating.
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Appendix A. Proof of Theorem 1

The worst-case delay is ∆1(0, . . . , 0) and we need to to compute ∆j .

Define

Qkj = bkj + xkj + rkj Tj .

As Q`j is an affine function in Tj , b
`
j and x`j , we only need to show that every ∆j is affine in the Q`j .

Initialization: Computation of ∆n. The only burst that can be transmitted by server n−1 is for destination

n. Suppose that a burst of size xn is transmitted at time tn−1. It is obvious that the worst-case scenario is

that the server is exact until the bit on interest is served.

The delay of the bit of interest is then the solution δ = ∆n(xnn) of the equation xnn+bnn+rnnδ = Rn(δ−Tn)+,

see Figure A.6. It is equal to

∆n(xnn) =
RnTn + xnn + bnn

Rn − rnn
= Tn +

Qnn
Rnn

,

where Rnn = Rn − rnn.
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Figure A.6: Delay incurred at server n.

Inductive step: Computation of ∆j from ∆j+1. Suppose that ∆j+1 is known and satisfies the properties

above. We first compute the delay induced from server j assuming that the service is exact for flows ending

at server k (of before) and infinite for flows ending at server k + 1 (or after). Call ∆k
j this delay. This is a

function of xkj the bursts transmitted by server j − 1.

∆k
j (xjj , . . . , x

n
j ) is computed the following way: It takes time δ to serve flows ending at j, . . . , k, and data

from any other flow is transmitted to server j + 1. This quantity of data is x`j+1 = b`j + x`j + r`jδ for ` > k

where δ satisfies
k∑
`=j

x`j + b`j + r`jδ = Rj(δ − Tj)+ ,

i.e., δ = Tj +
∑k
`=j Q

`
j/
(
Rj −

∑k
`=j r

`
j

)
. For ` > k, we then have the equality

x`j+1 = Q`j + r`j

∑k
`=j Q

`
j

Rj −
∑k
`=j r

`
j

.

Then

∆k
j (xjj , . . . , x

n
j ) = δ + ∆j+1(0, . . . , 0, xk+1

j+1 , . . . , x
n
j+1)

= Tj +

∑k
`=j Q

`
j

Rj −
∑k
`=j r

`
j

+Dj+1 +

n∑
`′=k+1

1

R`′j+1

(
Q`
′

j + r`
′

j

∑k
`=j Q

`
j

Rj −
∑k
`=j r

`
j

)

= Tj +Dj+1 +

n∑
`=k+1

Q`j
R`j+1

+

k∑
`=j

Q`j

Rj −
∑k
`′=j r

`′
j

(
1 +

n∑
`′=k+1

r`
′

j

R`′j+1

)

The other scenarios that should be taken into account is when part of the flows ending at k are served,

and the other part is transmitted instantaneously to server j + 1 (due to the SDF service policy, only one
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flow can be partially served). When yk is this latter quantity, the worst-case delay from time tj−1 is

∆k,yk
j (xj , . . . , xn) = Tj +X + ∆j+1

(
0, . . . , 0, yk, Q

k+1
j + rk+1

j X, . . . , Qnj + rnjX
)

= Tj +Dj+1 +X

(
1 +

n∑
`′=k+1

r`
′

j

R`′j+1

)
+

n∑
`′=k+1

Q`
′

j

R`′j+1

+
yk
Rkj+1

where X =
(
(
∑k
`=j Q

`
j)− yk

)
/
(
Rj −

∑k
`=j r

`
j

)
. This is a linear function in yk.

The next lemma shows that we can drop these “mixed” scenarios as they lead to shorter delays.

Lemma 4. ∀yk, ∆k,yk
j ≤ max(∆k

j ,∆
k−1
j ).

Proof. First notice that there exists α such that ∆k,yk
j = ∆k

j + αyk with

α =
1

Rkj+1

−
1 +

∑n
`′=k+1 r

`′

j /R`
′

j+1

Rj −
∑k
`=k r

`
j

.

Depending on whether α is positive or negative (the null case is trivial), ∆k,yk
j is maximized when yk is

maximized or for yk = 0.

If α is positive, then the delay is maximized with the maximal value for yk, which corresponds to not

serving the flow ending at k at all and to ∆k−1
j .

If it is negative, then the delay is maximized by yk = 0, which corresponds to reducing the flow’s backlog

to 0 and to ∆k
j .

We now prove that there ∆j is in fact on of the ∆k
j . In other words, ∆j is affine.

Lemma 5. There exists k such that ∆j = ∆k
j (that is, for all xj , . . . , xn, we have ∆j(xj , . . . , xn) =

∆k
j (xj , . . . , xn)) and for all k, Rkj ≥ R

k+1
j .

Proof. The proof is also by induction. We prove that ∀j, we have the equivalence

∆j = ∆k
j ⇔ ∀k′ > k

1

Rk′j+1

>
1

Rj −
∑k
`=j r

`
j

(
1 +

n∑
`′=k′+1

r`
′

j

R`′j+1

)

and
1

Rkj+1

≤ 1

Rj −
∑k
`=j r

`
j

(
1 +

n∑
`′=k+1

r`
′

j

R`′j+1

)
.

Assertion (B) is proved at the same time.
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The equivalence above also state that if for all k′ > k ∆j 6= ∆k′

j , then ∆n
j ≤ ∆n−1

j ≤ · · · ≤ ∆k
j . Let us

assume this.

The coefficient of Q`j in ∆k′

j for all k′ ≤ k and ` > k is 1
R`

j+1

and that of Qkj is

• either 1
Rj−

∑k
`=j r

`
j

(
1 +

∑n
`′=k+1

r`
′

j

R`′
j+1

)
(for ∆k

j )

• or 1
Rk

j+1

(for ∆`
j , ` < k).

Suppose that

1

Rj −
∑k
`=j r

`
j

(
1 +

n∑
`′=k+1

r`
′

j

R`′j+1

)
≥ 1

Rkj+1

. (A.1)

For ` ≤ k′ < k, the coefficient of Q`j in ∆k′

j is

1

Rj −
∑k′

`′=j r
`′
j

(
1 +

n∑
`′=k′+1

r`
′

j

R`′j+1

)
≤

≤ 1

Rj −
∑k′

`′=j r
`′
j

(
1 +

n∑
`′=k+1

r`
′

j

R`′j+1

+

k∑
`′=k′+1

r`
′

j

Rkj+1

)

≤ 1

Rj −
∑k′

`=j r
`
j

(
1 +

n∑
`′=k+1

r`
′

j

R`′j+1

+

k∑
`′=k′+1

r`
′

j

Rj −
∑k
`′′=j r

`′′
j

[
1 +

n∑
`′′=k+1

r`
′′

j

R`′′j+1

])

=

[
1 +

n∑
`′=k+1

r`
′

j

R`′j+1

]
1

Rj −
∑k′

`′=j r
`′
j

(
1 +

∑k
`′=k′+1 r

`′

j

Rj −
∑k
`′=j r

`′
j

)

=

[
1 +

n∑
`′=k+1

r`
′

j

R`′j+1

]
1

Rj −
∑k
`′=j r

`′
j

,

which is the coefficient of Q`j in ∆k
j . The first inequality uses (B) for server j + 1 and the second uses

Ineq. (A.1).

Moreover, for k′ < ` < k, the coefficient of Q`j in ∆k′

j is

1

Rk′j+1

≤ 1

Rkj+1

≤ 1

Rj −
∑k
`=j r

`
j

(
1 +

n∑
`′=k+1

r`
′

j

R`′j+1

)
,

so ∆k
j ≥ ∆k′

j and ∆j = ∆k
j .

The same kinds of computations lead to ∆k−1
j > ∆k

j if 1
Rk

j+1

> 1
Rj−

∑k
`=j r

`
j

(
1 +

∑n
`′=k+1

r`
′

j

R`′
j+1

)
Set Rkj according to the ∆j that is computed (that is ∆k

j for some k). Then we still have R`j ≤ R
`+1
j

and (B) is true for server j.
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To conclude, just remark that the delay for flow 1 is ∆1(0, . . . , 0), which is a polynomial of degree 1 of the

variables bi and Tj . Lemma 5 also gives a polynomial greedy algorithm to compute the coefficients for every

bi and Tj in polynomial time, and an explicit construction for a worst-case scenario: Proceed backward from

server n to server 1, and for each server k, there are n − k + 1 potential worst-case trajectories. Checking

that one case is the actual worst-case trajectory can be done by checking one inequality. Those inequalities

imply the computation of some constants (new flows arriving). As a flow enters the system at one server

only, the total number of computations for constants is O(m). So, finding the actual worst-case can be done

in O(n − k) operations (there is one inequality to check for each case) apart from the computation of the

constants r`j and b`j , and the computation of the worst-case delay can be done in O(n2 + m). Note that if

every flow has a different path, then m = O(n2) and computing the worst-case delay can be done in O(n2).

Appendix B. About the Linear Programming Approach

Since other approaches to worst-case delay bounds already exist in the literature, we now want to explain

the differences of our new formulation to existing ones.

In [12], the linear program presented to compute the worst-case delay is of the form

maximize AX subject to BX ≤ C and X ≥ 0.

Vector A and matrix B do not depend on the parameters Params = (σ1, . . . , σm, θ1 . . . , θn). Translating our

approach näıvely into this formalism would lead to compute the minimum of a function with the constraint

min
{
f(σ1, . . . , σm, θ1 . . . , θn) | max{AX | BX ≤ C} = d and σi ≥ 0, θj ≥ 0

}
.

The maximum cannot be dropped since we want to ensure a worst-case trajectory.

Another solution, following the lines of [26], would be to consider the dual problem: as A and B do not

depend on Param, the dual problem is (expressing the dependencies in the parameters)

minimize Ct(Param)Y subject to BTY ≤ AT , Y ≥ 0.

Now, only the objective function depends on the parameters, and the optimal value is then obtained at

a vertex of the convex set of the constraints. The delay can then be expressed as a minimum of a finite

number of linear functions, but this number can be exponential in the number of constraints, which makes
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this solution intractable.

Appendix C. On the Choice of the Stochastic Model

As mentioned in Section 4.1, there are three principal types of stochastic model assumptions for arrival

curves: The traffic amount centric (t.a.c.) model, the virtual backlog centric (v.b.c.) model, and the

maximum virtual backlog centric (m.b.c.) model. The t.a.c. and v.b.c. models are ordered in increasing

strength in the sense that an v.b.c. arrival process is also an t.a.c. arrival process if the arrival constraint

curve α and the error probability function ε are equal. Such an ordering does not exist between the v.b.c

and m.b.c. models, if only for the fact that the error probability functions εt in the m.b.c. model also depend

on the time parameter t. Moreover, the m.b.c. model is not a meaningful stochastic model if one chooses the

error probability function independent of t: If εt = ε for all t, then Ciucu and Schmitt [29, Section 4.4] have

shown that every stationary ergodic m.b.c. arrival process is quasi-deterministic. Thus, typically, εt(σ)→ 1

as t→∞ in the m.b.c. model.

In this paper, we chose the m.b.c. model for arrivals (and an analogous one for server capacities). This

poses the question why we made this choice, and did not, say, choose the v.b.c. model. Even though we

explained in Section 4.1 that even t.a.c. arrival curves can be translated into m.b.c. curves, this translation

requires to augment the rate bound by a small bit and is thus not applicable to heavy load scenarios near

the stability point. In fact, we chose the m.b.c. model not to simplify the exposition, but because we see

a fundamental hurdle to prove analogous results in the v.b.c. model. Burchard et al. [20, Section III-C]

already discussed some of the difficulties that arise in a v.b.c.-type model. They explained that the difficulty

of composing two stochastic service curves lies in the fact that v.b.c.-type conditions would need to be

evaluated at a time t that is a random variable and not a constant value. In the rest of this section, we want

to extend on this point by giving an in-depth explanation of the problem. By that, we give an argument for

the usage of the m.b.c. model by showing that we would otherwise need to make very strong independence

assumptions.

Let us focus on the simple example of the composition of two VCN servers and two flows crossing both

servers with two stochastic service constraints of v.b.c.-type. That is,

∀t : P
(
∃s ≤ t : C1(t)− C1(s) < β1(t− s)

)
≤ η1

∀t : P
(
∃s ≤ t : C2(t)− C2(s) < β2(t− s)

)
≤ η2.

We want to derive a (simple) service curve for the composed server. It is a result of deterministic network
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calculus (see, e.g., [23]) that

(
∀s ≤ t : C2(t)− C2(s) ≥ β2(t− s) ∧ ∀u ≤ s = start(t) : C1(s)− C1(u) ≥ β1(s− u)

)
⇒ B2(t) ≥ A ∗ β1 ∗ β2(t).

As a consequence, we can write:

P
(
B2(t) < A ∗ β1 ∗ β2(t)

)
≤P

(
∃s ≤ t : C2(t)− C2(s) < β2(t− s)

)
+ P

(
∃u ≤ ŝ = start(t) : C1(ŝ)− C1(u) < β1(ŝ− u)

) (C.1)

The term P
(
∃s ≤ t : C2(t)− C2(s) < β2(t− s)

)
is at most η2 by the service constraint for server 2.

Difficulties arise when wanting to bound the second probability. One cannot simply use the definition of

the service constraint for server 1 because ŝ = start(t) is not a constant value. Buchard et al. [20] stated

that the fact that ŝ is not a constant value, but a random variable, is what causes problems. We want to

make the somewhat more precise statement that the problem lies in the potential dependency of ŝ and the

violation of the service constraint. Denote by Et the event ∃s ≤ t : C1(t) − C1(s) < β1(t − s). In fact, we

will show that the second probability of the sum in (C.1) is bounded by η1 if ŝ is independent of Eŝ in the

sense that the conditional probability P
(
Eŝ | ŝ = s

)
is equal to (or upper-bounded by) P(Es).

But first, to have the conditional probability and also the event Eŝ well-defined, we need to show that ŝ

is indeed a random variable, which is not trivial.

Lemma 6. Let A be the arrival process and B the departure process of a server. Then start(t) is a random

variable for every t ≥ 0.

Proof. We start by proving that every arrival and service process is separable. Indeed, we show the stronger

claim that every (random) element of the function class F only depends on its values at the positive ratio-

nals Q+: So let F ∈ F and t ≥ 0. We choose an increasing sequence of positive rationals tk ∈ Q+ with

limit tk → t. By left-continuity, F (t) = limF (tk), i.e., the function value F (t) only depends on the function

values F (tk) at positive rationals.

Set D(t) = A(t)−B(t). Because of left-continuity, for all 0 ≤ s < t, we have the equivalence

∃s < τ ≤ t : D(τ) = 0 ⇐⇒ ∃s < τ1 < τ2 < · · · < t : ∀k : τk ∈ Q+ ∧D(τk) ≤ 2−k (C.2)
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with probability 1. Setting VK equal to

⋃
s<τ1<t
τ1∈T

⋃
τ1<τ2<t
τ2∈T

· · ·
⋃

τK−1<τK<t
τK∈T

K⋂
k=1

{ω ∈ Ω | Dω(τk) ≤ 2−k}

we see that every VK is measurable and the sequence of the VK is nonincreasing. Hence the monotone limit

{ω ∈ Ω | ∃s < τ ≤ t : Dω(τ) = 0} = lim
K→∞

VK

is measurable. Thus for every t ∈ R+, start(t) is a random variable as we can write

{ω ∈ Ω | startω(t) ≤ s} = Ω \ {ω ∈ Ω | ∃s < τ ≤ t : Dω(τ) = 0},

which is clearly a measurable set for every 0 ≤ s ≤ t.

We can then use the law of total probability P(Eŝ) = E
[
P(Eŝ | ŝ)

]
to show that the probability of

interest P(Eŝ) is bounded by η1 by monotony of the expected value because the conditional probability

P(Eŝ | ŝ) is. This then shows that (C.1) is bounded by η1 + η2.

On the other hand, if there is a tight correlation between the instant of violating the service constraint

and ŝ, then this argument is not valid. Take, for instance, ŝ as the random variable

ŝ = inf
{
s ≤ t | ∃u ≤ s : C1(s)− C1(u) < β1(s− u)

}
∪ {0}

of the earliest instance ≤ t where the service constraint is violated, or 0 if it is not violated before time t.

Then, in fact, P(Eŝ) = P
(
∃u ≤ s ≤ t : C1(s) − C1(u) < β1(s − u)

)
, which suggests that an m.b.c.-type

constraint is more natural to consider if correlation cannot be ruled out.

A method for getting delay bounds for a chain of server with disjoint cross-traffic was introduced by

Burchard et al. [20]. The key ingredient to their proof is to relax the latency of almost each server by a

parameter a > 0. By that, they are able to circumvent the formally stronger assumptions of an m.b.c.

model, which are know to lead to several zero-one-laws in certain cases. We believe that an adaption of their

method can be combined with our approach.
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