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THE MAHLER MEASURE AND ITS AREAL ANALOG FOR TOTALLY POSITIVE ALGEBRAIC INTEGERS

   

The Mahler measure and its areal analog for totally positive algebraic integers

Introduction

The Mahler measure of a polynomial P (z) = a 0 z n + . . . + a n = a 0 n j=1 (z -α j ) ∈ C[X], a 0 = 0, as defined by D. H. Lehmer [L] in 1933, is

M(P ) = |a 0 | n j=1 max(1, |α j |).
In 1962, K. Mahler [M] gave the following definition M(P ) = exp 1 0 log |P (e 2πit )|dt , which is equivalent to Lehmer's definition by Jensen's formula [J] 1 0 log |e 2πit -α|dt = log max(1, |α|).

If α is an algebraic integer, then the Mahler measure of α, denoted by M(α), is the Mahler measure of its minimal polynomial P in Z Z [z]. The absolute Mahler measure of α is defined by Ω(α) = M(α) 1/ deg (α) .

If α is an algebraic integer and M(α) = 1, then a classical theorem of Kronecker [K] tells us that α is a root of unity. It suggests the question: inf

α not a root of unity M(α) > 1 ? It is known as the Lehmer's problem and it is still open. Another formulation can be given as follows. Does there exist an absolute constant c > 0 such that: if M(α) > 1 then M(α) > 1 + c ? The smallest known value is due to Lehmer himself and is M(P ) = 1.176280 . . . where P (z) = z 10 + z 9 -z 7 -z 6 -z 5 -z 4 -z 3 + z + 1.

In this paper, we are interested in totally positive algebraic integers α, i.e., algebraic integers all of whose conjugates are positive real numbers. Let L be the set of the quantities Ω(α) where α is a totally positive algebraic integer. In 1973, A. Schinzel [Sc] showed that all totally positive algebraic integers α, different from 0 and 1, satisfy Ω(α) ≥ 1 + √ 5 2 and the equality holds if α is a root of the polynomial

x 2 -3x + 1. It means that 1 + √ 5 2
is the smallest element of the spectrum of the absolute Mahler measure of totally positive algebraic integers. In 1981, C. Smyth [START_REF] Smyth | On the measure of totally real algebraic integers[END_REF] showed that, if α is a totally positive algebraic integer, then, with a finite set of exceptions, Ω(α) ≥ 1.717177 . . .. His result uses the method of explicit auxiliary functions with heuristic search of polynomials and allows him to find the three following points of L. He also showed that L is dense in [1.727305 . . . , ∞). In 1994, with the same method and thanks to numerical improvements, we obtained [F1] that, if α is a positive algebraic integer, then, with a finite set of exceptions, Ω(α) ≥ 1.720678 . . .. This lower bound gives the two following points of the spectrum. Our recursive algorithm, developed in [F2] from Wu's algorithm [Wu] substitutes the heuristic search with a systematic search by induction of suitable polynomials used in the auxiliary functions. We prove the following

Theorem 1. If α is a nonzero totally positive algebraic integer whose minimal polynomial is different from x-1, x 2 -3x+1, x 4 -7x 3 +13x 2 -7x+1, x 6 -11x 5 +41x 4 -63x 3 +41x 2 -11x+1, x 8 -15x 7 + 83x 6 -220x 5 + 303x 4 -220x 3 + 83x 2 -15x + 1, x 8 -15x 7 + 84x 6 -225x 5 + 311x 4 - 225x 3 + 84x 2 -15x + 1 and x 16 -31x 15 + 413x 14 -3141x 13 + 15261x 12 -50187x 11 + 115410x 10 - 189036x 9 + 222621x 8 -189036x 7 + 115410x 6 -50187x 5 + 15261x 4 -3141x 3 + 413x 2 -31x + 1, then we have Ω(α) ≥ 1.722069.
This constant improves those of Q. Mu and Q. Wu [MW] (2013) and is the best constant to our knowledge.

The polynomials involved in this result are read from Table 1.

We conjecture that the following point of the spectrum has the minimal polynomial x 6 -12x 5 + 44x 4 -67x 3 + 44x 2 -12x + 1 and the Mahler measure 1.722325.

Our works on the Mahler measure lead us naturally to be interested in a new height of polynomials introduced by I. Pritsker [P] in 2008. He replaced the normalized arc length measure on the unit circumference by the normalized areal measure on the unit disk D and so, for P ∈ C[z], defined:

||P || 0 = exp 1 π D log |P (z)|dA .
This height is the natural areal analog of the Mahler measure and we call it the Pritsker measure.

Let P (z) = a n d i=1 (z -α i ) = d k=1 a k z k ∈ C. He showed that ||P || 0 = M(P ) exp 1 2 |α i |<1 (|α i | 2 -1) .
From this identity, he obtained immediately the following inequalities:

∀P ∈ C[z], e -d/2 M(P ) ≤ ||P || 0 ≤ M(P ).
Moreover, he proved that an irreducible polynomial P (z) ∈ Z Z[z] with P (0) = 0 is cyclotomic if and only if ||P || 0 = 1. This result is a direct analog of Kronecker's theorem for the Mahler measure and suggests the question: does there exist an absolute constant c > 0 such that, if

||P || 0 > 1, then ||P || 0 > 1+c?
The answer to this question is negative. Consider the polynomials

P n (z) = nz n -1. Pritsker showed that ||P n || 0 → 1 as n → ∞.
Pritsker's works inspired firstly S. Choi and C. Samuels [CS]. In 2012, they improved two inequalities in the case of polynomials with "small" Pritsker measure. Secondly, in 2013, H.

Huang [H] defined, among others, a Fock-space analog of the Mahler measure for which he gives an equivalent version of Lehmer's conjecture.

If α is an algebraic integer, then the Pritsker measure of α, denoted by ||α|| 0 , is the Pritsker measure of its minimal polynomial. The absolute Pritsker measure of α is defined by N 0 (α) = ||α|| 1/ deg(α) 0

.

In this paper, we study the set of the quantities N 0 (α) where α is a totally positive algebraic integer. We prove the following Theorem 2. If α is a totally algebraic integer whose minimal polynomial is different from

x, x -1, x 2 -3x + 1, x 3 -6x 2 + 5x -1, x 4 -7x 3 + 13x 2 -7x + 1 and x 5 -11x 4 + 29x 3 -26x 2 + 9x -1,
then we have:

N 0 (α) ≥ 1.380047.
From this results derive the four smallest points of the spectrum:

1.3069371. . . = N 0 (x 2 -3x + 1) 1.3379388. . . = N 0 (x 3 -6x 2 + 5x -1) 1.3709297. . . = N 0 (x 4 -7x 3 + 13x 2 -7x + 1) 1.3754857. . . = N 0 (x 5 -11x 4 + 29x 3 -26x 2 + 9x -1)
We conjecture that the following point has minimal polynomial x 5 -13x 4 + 32x 3 -27x 2 + 9x -1 and absolute Pritsker measure 1.3816081. . ..

After studying these two measures separately, it is natural to compare them. We prove the following inequalities:

Theorem 3. If α is a totally positive algebraic integer of degree d whose minimal polynomial is different from x, x -1, x -2, 2x -1, x 2 -3x + 1, x 2 -5x + 5, x 3 -8x 2 + 6x -1, x 3 -6x 2 + 5x -1 and x 3 -5x 2 + 6x -1, then we have: 1.292012 d M(P ) 0.104208 ≤ ||P || 0 ≤ 0.637361 d M(P ) 1.553575 .
In Section 2, we explain the method of explicit auxiliary functions. We link them with a generalization of the classical integer transfinite diameter. Then we detail how our recursive algorithm enables us to get the constant of Theorem 1 for the Mahler measure. Section 3 deals with the Pritsker measure. In Section 4, we only give the auxiliary functions involved in the above inequalities. For the rest of the proof, we proceed as for those of Theorem 1. Finally, we give some numerical examples where our inequalities are better than Pritsker's ones.

All the computations are done on a MacBookPro with the languages Pari and Pascal.

2 The Mahler measure of totally positive algebraic integers

The explicit auxiliary function

Let α be a totally positive algebraic integer, α = α 1 ,..., α d be its conjugates and P its minimal polynomial.

The auxiliary function involved in Theorem 1 has the following type:

for x > 0, f (x) = log max(1, x) -c 0 log x - 1≤j≤J c j log |Q j (x)| ≥ m
where the c j are positive real numbers and the polynomials Q j are non zero polynomials in Z Z[x].

Then we have

d i=1 f (α i ) ≥ md i.e., log M(α) ≥ md + 1≤j≤J c j log | d i=1 Q j (α i )|.
We assume that P does not divide any Q j , then

d i=1 Q j (α i ) is a nonzero integer because it is the resultant of P and Q j .
Therefore, if α is not a root of Q j , we have

Ω(α) ≥ e m .
It is possible to reduce the domain of study of the function f . If we consider the function

g(x) = 1/2[f (x) + f (1/x)],
we get a minimum greater or equal to that given by f . But g is invariant under the application x → 1/x so it is sufficient to study g on (0,1). Thus, without loss of generality, we can limit our study to auxiliary functions invariant under this transformation. This implies that we can take for Q j reciprocal polynomials, i.e., Q j

(x) = x deg Q j Q j (1/x). The condition f (x) = f (1/x) gives 2c 0 + 1≤j≤J c j deg(Q j ) = 1.
We denote deg(Q j ) = 2d j for 1 ≤ j ≤ J.

On (0,1), the auxiliary function f can be written

f (x) = -c 0 log x - 1≤j≤J c j log Q j (x) x d j - 1≤j≤J c j log x d j ≥ m.
Thus, if we put

y = x + 1 x -2 and x = (2 + y -y 2 + 4y)/2, f (x) becomes for y > 0, g(y) = - 1 2 log x - 1≤j≤J c j log |U j (y)| ≥ m (1)
where deg(U j ) = d j . Moreover, we impose the condition 1≤j≤J c j deg(U j ) < 1 2 in order that the supremum of the function g to be finite.

The main problem is to find a good list of polynomials Q j which gives a value of m as large as possible. Thus, we link the auxiliary function with a generalization of the integer transfinite diameter in order to find the polynomials with our recursive algorithm.

Auxiliary functions and integer transfinite diameter

In this section, we shall need the following definition: Let K be a compact subset of C.

If ϕ is a positive function defined on K, the ϕ-generalized integer transfinite diameter of K is defined as

t Z,ϕ (K) = lim inf inf sup |P (y)| 1 n ϕ(x) . n ≥ 1 P ∈ Z[X] y ∈ K n → ∞ deg(P ) = n
This weighted version of the integer transfinite diameter was introduced by F. Amoroso [A] and is an important tool in the study of rational approximations of logarithms of rational numbers. Inside the auxiliary function (1), we replace the numbers c j by rational numbers a j /q where q is a common denominator of the c j for 1 ≤ j ≤ J. Then we can write:

for y > 0, g(y) = - 1 2 log x - t r log |Q(y)| ≥ m (2)
where

Q = J j=1 U a j j ∈ Z Z[X] is of degree r = J i=1 a j deg U j and t = J i=1
c j deg U j is a positive rational number < 1/2. We want to get a function whose minimum m is as large as possible.

Thus we search a polynomial Q

∈ Z Z[X] such that sup y>0 |Q(y)| t/r x 1/2 ≤ e -m .
If we suppose that t < 1/2 is fixed, it is clear that we need an effective upper bound for the quantity

t Z,ϕ ((0, ∞)) = lim inf inf sup |P (y)| t r ϕ(x) r ≥ 1 P ∈ Z[X] y > 0 r → +∞ deg(P ) = r
where we use the weight ϕ(x) = x 1/2 . Even if we replace the compact subset K by the infinite interval (0, ∞), the weight ϕ ensures that the quantity t Z,ϕ ((0, ∞)) is finite.

Construction of the auxiliary function

The improvement compared with Wu's algorithm is that our polynomials are obtained by induction. Suppose that we have Q 1 , Q 2 , ..., Q J . Then we use the semi-infinite linear programming (introduced into number theory by C. Smyth [START_REF] Smyth | The mean value of totally real algebraic numbers[END_REF]) to optimize f for this set of polynomials (i.e., to get the greatest possible m). We obtain the numbers c 1 , c 2 , ..., c J and f in the form (2)

with t = J i=1 c j deg(Q j ).
For several value of k, we search a polynomial R(y) = is as small as possible.

We apply LLL to the linear forms

Q(y i )V (y i )x (r+k)/2t i
where x i are control points uniformly distributed in the interval (0,1) and y i = x i + 1/x i -2, including the points where f has its least local minima. We get a polynomial R whose factors R j are good candidates to enlarge the set of polynomials (Q 1 , Q 2 , ...,Q J ). We only keep the polynomials R j which have a nonzero coefficient c j in the new optimized auxiliary function f . After optimization, some previous polynomials Q j may have a zero coefficient c j and so are removed.

In order to get the constant of Theorem 1, we take k from 8 to 20 successively.

3 The Pritsker measure of totally positive algebraic integers

The auxiliary function involved in Theorem 2 is of the following type:

for x > 0, f (x) = log max(1, x) + 1 2 min(1, x) 2 -1 -c 0 log x - 1≤j≤J c j log |Q j (x)| ≥ m
where the c j are positive real numbers and the polynomials Q j are non zero polynomials in Z Z[x].

Thus, for several values of k, we seek a polynomial R(

x) = k l=0 a l x l ∈ Z Z[x] such that sup x>0 |Q(x)R(x)| t r+k max(1, x) exp 1 2 min(1, x) 2 -1 -1 ≤ e -m i.e., sup x>0 |Q(x)R(x)| max(1, x) exp 1 2 min(1, x) 2 -1 (r+k)/t
is as small as possible.

We apply LLL to the linear forms

|Q(x i )R(x i )| max(1, x i ) exp 1 2 min(1, x i ) 2 -1 -(r+k)/t
where the x i are control points uniformly distributed in the interval (0,70).

Then, we proceed as described in Section 1.

To obtain the constant of Theorem 2, we take k from 4 to 35.

Comparison of the two measures

The auxiliary function used for the lower bound of Theorem 3 is of the following type:

for x > 0, f (x) = log max(1, x) + 1 2 min(1, x) 2 -1 -c 0 log max(1, x) - 1≤j≤J c j log |Q j (x)| ≥ m
where the c j are positive real numbers and the polynomials

Q j are non zero polynomials in Z Z[x].
The auxiliary function used for the upper bound of Theorem 3 is of the following type:

for x > 0, f (x) = -log max(1, x)- 1 2 min(1, x) 2 -1 +c 0 log max(1, x)- 1≤j≤J c j log |Q j (x)| ≥ m
where the c j are positive real numbers and the polynomials Q j are non zero polynomials in Z Z[x].

In our recursive algorithm, we take k from 4 to 10 only in order to have a small number of exceptions in the inequalities.

We consider the totally positive algebraic integers that appeared in the proof of Theorem 1.

For each of them, we compute the bounds obtained by I. Pritsker and our bounds. The results are recorded in Table 3. We see that our bounds are better than Pritsker's ones for this set of totally positive algebraic integers.

Table 1: Polynomials involved in Theorem 1 with their coefficients.

j c j U j 1 0.15896787 z 2 0.04241521 z -1 3 0.00020790 z -2 4 0.01491572 z 2 -3z + 1 5 0.00092761 z 2 -4z + 1 6 0.00251285 z 3 -5z 2 + 6z -1 7 0.00125715 z 3 -6z 2 + 5z -1 8 0.00520917 z 4 -7z 3 + 13z 2 -7z + 1 9 0.00012028 z 4 -8z 3 + 15z 2 -8z + 1 10 0.00133227 z 4 -7z 3 + 14z 2 -8z + 1 11 0.00036481 z 4 -8z 3 + 14z 2 -7z + 1 12 0.00018247 z 6 -11z 5 + 42z 4 -67z 3 + 45z 2 -12z + 1 13 0.00035109 z 7 -13z 6 + 61z 5 -131z 4 + 136z 3 -66z 2 + 14z -1 14 0.00012876 z 7 -13z 6 + 61z 5 -132z 4 + 138z 3 -67z 2 + 14z -1 15 0.00006016 z 7 -13z 6 + 62z 5 -135z 4 + 140z 3 -67z 2 + 14z -1 16 0.00016459 z 7 -13z 6 + 62z 5 -137z 4 + 147z 3 -73z 2 + 15z -1 17 0.00016285 z 7 -12z 6 + 55z 5 -120z 4 + 129z 3 -65z 2 + 14z -1 18 0.00134672 z 8 -15z 7 + 83z 6 -220z 5 + 303z 4 -220z 3 + 83z 2 -15z + 1 19 0.00007718 z 8 -15z 7 + 85z 6 -232z 5 + 328z 4 -242z 3 + 91z 2 -16z + 1 20 0.00014420 2z 8 -26z 7 + 128z 6 -308z 5 + 391z 4 -265z 3 + 94z 2 -16z + 1 21 0.00012982 z 11 -21z 10 + 182z 9 -853z 8 + 2386z 7 -4151z 6 + 4545z 5 -3109z 4 + 1298z 3 -315z 2 +40z -2 22 0.00003860 z 11 -21z 10 + 181z 9 -837z 8 + 2287z 7 -3841z 6 + 4002z 5 -2557z 4 + 973z 3 -209z 2
+23z -1 23 0.00001784 2z 12 -42z 11 + 369z 10 -1778z 9 + 5192z 8 -9614z 7 + 11504z 6 -8919z 5 + 4435z 4 -1378z 3 + 254z 2 -25z + 1 24 0.00008883 z 13 -25z 12 + 266z 11 -1582z 10 + 5817z 9 -13835z 8 + 21682z 7 -22449z 6 + 15233z 5 -6667z 4 + 1833z 3 -302z 2 + 27z -1 25 0.00026384 z 16 -31z 15 + 413z 14 -3141z 13 + 15261z 12 -50187z 11 + 115410z 10 -189036z 9 +222621z 8 -189036z 7 + 115410z 6 -50187z 5 + 15261z 4 -3141z 3 + 413z 2 -31z + 1 26 0.00008705 z 17 -33z 16 + 482z 15 -4118z 14 + 22929z 13 -87820z 12 + 238254z 11 -465043z 10 +657575z 9 -674220z 8 + 499573z 7 -265657z 6 + 100250z 5 -26365z 4 + 4688z 3 -534z 2 +35z -1 27 0.00007497 z 19 -36z 18 + 583z 17 -5626z 16 + 36136z 15 -163492z 14 + 538049z 13 -1312164z 12 +2395438z 11 -3287672z 10 + 3392771z 9 -2624445z 8 + 1512731z 7 -643834z 6 +199609z 5 -44154z 4 + 6741z 3 -671z 2 + 39z -1

Table 2: Polynomials involved in Theorem 2 with their coefficient.

1 0.35505128 x 2 0.21907420 x -1 3 0.03298538 2x -1 4 0.03301366 x 2 -3x + 1 5 0.00099899 x 2 -4x + 2 6 0.01856425 x 3 -6x 2 + 5x -1 7 0.00138141 3x 3 -9x 2 + 6x -1 8 0.00092641 x 3 -8x 2 + 6x -1 9
0.00007574 2x 3 -8x 2 + 6x -1 45 0.00003063 x 13 -34x 12 + 435x 11 -2711x 10 + 9425x 9 -19827x 8 + 26588x 7 -23525x 6 + 13991x 5 -5606x 4 + 1488x 3 -250x 2 + 24x -1 46 0.00028721 x 13 -29x 12 + 328x 11 -1895x 10 + 6311x 9 -13029x 8 + 17502x 7 -15800x 6 + 9749x 5 -4114x 4 + 1165x 3 -211x 2 + 22x -1 47 0.00008997 x 13 -36x 12 + 462x 11 -2852x 10 + 9799x 9 -20384x 8 + 27079x 7 -23786x 6 + 14073x 5 -5620x 4 + 1489x 3 -250x 2 + 24x -1 48 0.00007372 x 13 -32x 12 + 390x 11 -2419x 10 + 8586x 9 -18561x 8 + 25487x 7 -22953x 6 + 13816x 5 -5577x 4 + 1486x 3 -250x 2 + 24x -1 49 0.00041544 x 14 -31x 13 + 385x 12 -2533x 11 + 9924x 10 -24695x 9 + 40656x 8 -45466x 7 + 35083x 6 -18777x 5 + 6923x 4 -1718x 3 + 273x 2 -25x + 1 50 0.00019770 x 15 -34x 14 + 463x 13 -3381x 12 + 14941x 11 -42607x 10 + 81569x 9 -107671x 8 +99766x 7 -65514x 6 + 30501x 5 -9959x 4 + 2221x 3 -321x 2 + 27x -1 51 0.0001395

x 15 -38x 14 + 545x 13 -4031x 12 + 17628x 11 -49170x 10 + 91713x 9 -117996x 8 +106826x 7 -68765x 6 + 31492x 5 -10150x 4 + 2242x 3 -322x 2 + 27x -1 52 0.0000651

x 17 -38x 16 + 604x 15 -5339x 14 + 29359x 13 -106776x 12 + 267165x 11 -472631x 10 +602676x 9 -561207x 8 + 384361x 7 -193778x 6 + 71447x 5 -18956x 4 + 3510x 3 -429x 2 +31x -1 53 0.0000197

x 19 -44x 18 + 811x 17 -8364x 16 + 54453x 15 -239252x 14 + 739805x 13 -1655854x 12 +2735704x 11 -3382218x 10 + 3157621x 9 -2236949x 8 + 1203101x 7 -489025x 6 +148606x 5 -33106x 4 + 5230x 3 -553x 2 + 35x -1 54 0.00001440 x 20 -47x 19 + 931x 18 -10364x 17 + 73053x 16 -348423x 15 + 1173249x 14 -2872845x 13 +5226603x 12 -7178644x 11 + 7530013x 10 -6078050x 9 + 3788844x 8 -1822729x 7 + 672900x 6 -188367x 5 + 39165x 4 -5844x 3 + 590x 2 -36x + 1 55 0.0000347

x 20 -48x 19 + 972x 18 -11057x 17 + 79497x 16 -385761x 15 + 1317937x 14 -3265130x 13 +5993613x 12 -8282603x 11 + 8715572x 10 -7035412x 9 + 4371546x 8 -2089175x 7 + 763517x 6 -210855x 5 + 43105x 4 -6304x 3 + 622x 2 -37x + 1 56 0.0000469

x 20 -47x 19 + 935x 18 -10468x 17 + 74154x 16 -354968x 15 + 1198175x 14 -2938041x 13 +5348584x 12 -7345969x 11 + 7700694x 10 -6208329x 9 + 3863186x 8 -1854174x 7 + 682581x 6 -190467x 5 + 39468x 4 -5870x 3 + 591x 2 -36x + 1 57 0.0001469

x 20 -48x 19 + 966x 18 -10871x 17 + 77142x 16 -369133x 15 + 1243595x 14 -3039991x 13 +5512542x 12 -7537822x 11 + 7865425x 10 -6312278x 9 + 3911092x 8 -1870040x 7 + 686243x 6 -191024x 5 + 39518x 4 -5872x 3 + 591x 2 -36x + 1 58 0.0000388

x 20 -47x 19 + 933x 18 -10437x 17 + 74025x 16 -355205x 15 + 1202014x 14 -2953319x 13 +5382780x 12 -7395811x 11 + 7750793x 10 -6243945x 9 + 3881218x 8 -1860622x 7 + 684168x 6 -190722x 5 + 39492x 4 -5871x 3 + 591x 2 -36x + 1 where P 1 = x 2 -4x + 2, P 2 = x 3 -8x 2 + 6x -1, P 3 = x 4 -7x 3 + 13x 2 -7x + 1, P 4 = x 4 -8x 3 + 14x 2 -7x + 1, P 5 = x 5 -11x 4 + 29x 3 -26x 2 + 9x -1, P 6 = x 5 -13x 4 + 32x 3 -27x 2 + 9x -1, P 7 = x 5 -12x 4 + 31x 3 -27x 2 + 9x -1, P 8 = x 7 -16x 6 + 75x 5 -148x 4 + 137x 3 -62x 2 + 13x -1, P 9 = x 7 -16x 6 + 75x 5 -148x 4 + 137x 3 -62x 2 + 13x -1, P 10 = x 7 -18x 6 + 89x 5 -172x 4 + 150x 3 -64x 2 + 13x -1, P 11 = x 7 -14x 6 + 66x 5 -136x 4 + 131x 3 -61x 2 + 13x -1, P 12 = x 7 -17x 6 + 90x 5 -201x 4 + 214x 3 -115x 2 + 30x -3, P 13 = x 7 -16x 6 + 78x 5 -157x 4 + 143x 3 -63x 2 + 13x -1, P 14 = x 7 -16x 6 + 80x 5 -160x 4 + 144x 3 -63x 2 + 13x -1, P 15 = x 8 -19x 7 + 121x 6 -312x 5 + 386x 4 -251x 3 + 87x 2 -15x + 1, P 16 = x 8 -21x 7 + 124x 6 -309x 5 + 378x 4 -246x 3 + 86x 2 -15x + 1, P 17 = x 8 -21x 7 + 130x 6 -334x 5 + 407x 4 -259x 3 + 88x 2 -15x + 1, P 18 = x 8 -21x 7 + 128x 6 -321x 5 + 391x 4 -252x 3 + 87x 2 -15x + 1, P 19 = x 8 -23x 7 + 139x 6 -342x 5 + 409x 4 -259x 3 + 88x 2 -15x + 1, P 20 = x 10 -24x 9 + 194x 8 -743x 7 + 1526x 6 -1798x 5 + 1265x 4 -537x 3 + 134x 2 -18x + 1, P 21 = x 12 -26x 11 + 265x 10 -1388x 9 + 4177x 8 -7677x 7 + 8944x 6 -6752x 5 + 3322x 4 -1050x 3 +204x 2 -22x + 1, P 22 = x 12 -29x 11 + 309x 10 -1629x 9 + 4833x 8 -8678x 7 + 9852x 6 -7250x 5 + 3483x 4 -1078x 3 +206x 2 -22x + 1.

a

  l y l ∈ Z Z[y] such that sup y>0 |Q(y)R(y)| t r+k x 1/2 ≤ e -m , i.e., such that sup y>0 |Q(y)R(y)|x (r+k)/2t

Table 3 :

 3 Comparison of Pritsker's bounds and the author's bounds. P denote the minimal polynomial of a totally positive algebraic integer.

		Pritsker's lower	The author's lower		The author's upper	Pritsker's upper
		bound	bound		bound	bound
	P	exp(-d/2) M(P ) 1.292012 d M(P ) 0.104208	||P || 0	0.637361 d M(P ) 1.553575	M(P )
	P 1	1.2560190	1.8971700	2.4584229	2.7370205	3.4142136
	P 2	1.6030140	2.6487513	3.2073594	5.5412214	7.1842101
	P 3	1.0919725	3.4638739	3.5323256	4.2298481	8.0686459
	P 4	1.1827872	3.4928309	3.6776663	4.7887919	8.7396813
	P 5	1.2816202	4.7940717	4.9235736	7.5181727	15.613331
	P 6	1.3637370	4.8251981	5.0341295	8.2796922	16.613718
	P 7	1.3629872	4.8249215	5.2018670	8.2726203	16.604583
	P 8	1.4594204	9.0027274	10.204362	17.670411	48.329366
	P 9	1.4594204	9.0027274	10.204362	17.670411	48.329366
	P 10	1.8860326	9.2465478	11.649260	26.318821	62.456823
	P 11	1.4012628	8.9646575	10.125036	16.588582	46.403452
	P 12	1.9127553	9.2601144	14.584773	26.900422	63.341755
	P 13	1.7589460	9.1795726	11.320272	23.615559	58.248292
	P 14	1.7888136	9.1956936	11.281170	24.241466	59.237370
	P 15	1.7428906	12.482526	14.412289	32.266459	95.158601
	P 16	1.6630924	12.421712	13.695129	30.000620	90.801766
	P 17	2.0587843	12.701090	15.740401	41.796323	112.40582
	P 18	1.7442265	12.483523	14.327744	32.304892	95.231542
	P 19	1.8286845	12.545188	14.901925	34.767411	99.842791
	P 20	1.7614652	23.151136	25.727951	63.006289	261.42461
	P 21	1.8501100	43.110638	49.272933	130.61455	746.38764
	P 22	2.0192595	43.505462	52.161849	149.63011	814.62741