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The totally real algebraic integers with

diameter less than 4

Valérie Flammang, Georges Rhin and Qiang Wu

Abstract

The diameter of a totally real algebraic integer α of degree d with conjugates
α1 < α2 < . . . < αd is diam(α) = αd − α1. For all positive integers k
and n, diam(2 cos(2kπ/n)) is less than 4. R. M. Robinson has computed,
modulo integer translations, all the other totally real algebraic integers α
with diam(α) < 4 for d ≤ 8. We have done the computations for all d ≤ 15.
We use a large family of explicit auxiliary functions related to generalized
integer transfinite diameter of real intervals. They give good bounds for the
coefficients of the minimal polynomial of α. For d = 15 we prove a recent
conjecture of Capparelli et al.
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1 Introduction

Let α be an algebraic integer of degree d ≥ 2 with minimal polynomial

P = Xd + b1X
d−1 + . . .+ bd =

d∏
i=1

(X − αi).

The diameter of α (or of P ) is diam(α) = max1≤i,j≤d |αi − αj|. The diameter
is clearly invariant by integer translation, i.e. diam(α + n) = diam(α) for any
rational integer n. It is also invariant by reflection, i.e. diam(−α) = diam(α).
In this paper we will examine the case of totally real algebraic integers α, i.e.
when all the conjugates of α are real (in this case, their minimal polynomials P
are also called hyperbolic polynomials). Let I be a real interval [a, b] containing
the numbers α1 < α2 < . . . < αd. If I has a length b − a > 4 then R. M.
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Robinson [7] proved that there are infinitely many numbers α with all αi in I.
If b − a < 4 Schur and Pólya [10], proved that there is only a finite number of
algebraic integers satisfying this property.

If diam(α) < 4 then all conjugates of β1 − 2 or of 3 − β1, where 0 < β1 < 1
is the fractional part of α1, lie in the interval H = (−2, 2.5). Then for any ε > 0,
there exists only a finite number of distinct values of diam(α) < 4 − ε. This is
easy to prove, since we may cover H by a finite number of intervals of length
= 4− ε/2.

So, the following question naturally arises:
what happens when we only suppose that diam(α) < 4?

It is known that, if I is a real interval of length equal to 4 with integer
endpoints, for example I = [−2, 2], then there exist infinitely many numbers α
with all their conjugates in I. These are the numbers 2 cos(2kπ/n) with positive
integers k and n. Their minimal polynomials can be deduced from cyclotomic
polynomials by the change of variable x = z + 1/z. By Kronecker’s theorem [4]
these are the only algebraic integers which satisfy this property. R. M. Robinson
[8] has computed all diameters less than 4 up to degree 8.

Recently Capparelli et al. [2] have computed all diameters up to degree 14.
They also give lists of diameters for the degrees 15 to 17 which have been com-
puted with heuristic conditions on the coefficients of the polynomials P . But
they conjecture that these lists are complete. In this paper, we prove that their
conjecture is valid for the degree 15.

We recall in Table 1 the results that we obtain (excluding the numbers of
cosine type):

Table 1
Number of polynomials whose diam < 4 for 2 ≤ d ≤ 15.

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number 1 3 10 14 13 15 21 19 15 10 9 4 9 6

Our method uses the arithmetical properties of the numbers α. One of the
most important tool we use, is the construction of explicit auxiliary functions
which are related to generalizations of the integer transfinite diameter. These
auxiliary functions are used to give bounds for sk which is the sum of the k − th
powers of the conjugates of α. Then we can deduce bounds for bk by Newton’s
formula:

sk + sk−1b1 + · · ·+ s1bk−1 + kbk = 0.

As explained in Section 3, up to degree 12, we built the auxiliary functions
with the algorithm given by the third author [12]. For the degrees 13 to 15 we

2



used the important refinement introduced by the first author [3].
The paper is organized as follows. In Section 2 we give the scheme of the

computation, once we are given the bounds for the sk. In Section 3 we explain
the principle of the explicit auxiliary functions and their relation with the inte-
ger transfinite diameter. We also give all kinds of auxiliary functions that we
use. In Section 4 we recall Robinson’s method of computation and how we use
the Chebyshev polynomials of some real intervals. Some numerical results and
comments are given in Section 5. In this last section, we also study polynomials
whose roots satisfy a symmetry.

2 Scheme of computations

Since we already know all the polynomials which have their roots in (−2, 2) we
only need to compute the numbers α such that αd lies in (2, 2.5). We divide this
interval in 5 subintervals of length 0.1. Then all the conjugates of αd belong to
an interval Ii = (ai, bi) of length 4.1 where ai = −2 + 0.1(i− 1) and bi = 2 + 0.1i
for 1 ≤ i ≤ 5.

For any such interval Ii we compute all the possible values of s1 = trace(α).
We give in Table 2 the bounds obtained with the auxiliary functions for the degree
15.

Table 2
Bounds of s1 for d=15

Interval [-2.0, 2.1] [-1.9, 2.2] [-1.8, 2.3] [-1.7, 2.4] [-1.6, 2.5]
Lower Bound -2 -2 0 2 3
Upper Bound 4 5 7 9 10

It is noticeable that they greatly improve the näıve bounds, which are, for I1,
−29 and 31 respectively. Then we compute all possible values of s2 for a given
value of s1. For the degree 15 we get 212 triples (Ii, s1, s2). For all these triples we
give only relations between the sk for two values of k whose difference is equal to
1 or 2, because the auxiliary functions become less efficient when k is “large”. As
explained in Section 3, we give bounds for sk for k ≥ 3 depending on the values
of sj for j < k by another method.
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3 Auxiliary functions and integer transfinite diameter

3.1 Relation between auxiliary functions and integer transfinite
diameter

Let I be a fixed interval Ii, i.e. I = (ai, bi). We consider the auxiliary function

(3.1) f(x) = x− a log |Q(x)| ≥ m for x ∈ Ii,

where a is a positive real number and Q ∈ Z[x].
By summation on the αi, we get

d∑
i=1

f(αi) ≥ dm

then

s1 =
d∑
i=1

αi ≥ dm+ a log |
d∏
i=1

Q(αi)|.

∏d
i=1Q(αi) is the resultant of P and Q. If P does not divide the polynomial Q,

then this is a nonzero integer. Therefore

s1 ≥ dm.

For an historical survey on the use of these auxiliary functions to get a lower
bound for s1 = trace(α) when α is totally positive see Aguirre and Peral [1]. If
we take the auxiliary function as

f(x) = −x− a log |Q(x)|

we have an upper bound for s1. And if we replace x by ±xk we get bounds for
sk.
If we replace a by t/h where h = degQ, we have

(3.2) f(x) = x− t

h
log |Q(x)|.

We search a polynomial Q in Z[x] such that

max
x∈I
|Q(x)|t/he−x ≤ e−m.

If t is fixed (say t = 1), we relate this inequality to

tZ,ϕ(I) = lim inf
h≥1

h→∞

min
Q∈Z[x]
deg Q=h

max
x∈I
|Q(x)|1/hϕ(x)

which is the integer transfinite diameter of I with the weight ϕ(x) = e−x.
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3.2 Construction of auxiliary functions

If Q1, Q2, · · · , QJ are the irreducible factors of Q in 3.1, then

(3.3) f(x) = x−
J∑
j=1

ej log |Qj(x)|.

When the polynomials Qj are given, we use the semi-infinite linear programming
to optimize f (i.e. to get the largest m). This method has been introduced into
number theory by C. J. Smyth in 1984 [9]. So the main problem is to obtain a
”good set” of polynomials Qj .

Up to degree 12, we use the method given by the third author in [12] using
LLL to get a good polynomial Q. For degree 13 to 15, a more elaborate algorithm
was given by the first author [3]. The main idea is to get good polynomials Qj by
induction. Suppose that we have Q1, Q2, · · · , QJ and an optimal f for this set of
polynomials in the form 3.1. Then, for several values of the integer k, we search
a polynomial R ∈ Z[x] of degree k such that

sup
x∈I
|Q(x)R(x)|

t
h+k e−x ≤ e−m

that is to say
sup
x∈I
|Q(x)R(x)|e

−x(h+k)
t

is as small as possible. We apply LLL to the set of linear forms

Q(xn)R(xn)e
−xn(h+k)

t

where the numbers xn are suitable points in I, including the points where f has
its smallest local minima. We get a polynomial R whose factors Rj are good
candidates to enlarge the set of polynomials (Q1, Q2, · · · , QJ). We only keep the
polynomials Rj which have a nonzero coefficient ej in the new optimized auxiliary
function f . After optimization some previous polynomials Qj may have a zero
coefficient and are removed.

We give in Table 3 the polynomials Qj and the coefficients ej of the auxiliary
function f given in 3.3 which gives the inequality s1 ≥ −0.179 · · · d for αd in I1.
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Table 3
The explicit auxiliary function for the lower bound of s1 in I1
ej dj Coefficients of Qj from degree 0 to dj

0.011924266819 1 -1 1
0.096866488945 1 0 1
0.451013485389 1 1 1
0.527960449230 1 2 1
0.019566079389 2 -3 0 1
0.023273574120 2 -2 0 1
0.172825687626 2 -1 1 1
0.005291433336 3 -1 -4 0 1
0.012502796101 3 -1 -3 0 1
0.094662108579 3 -1 -2 1 1
0.003914026079 3 1 -3 0 1
0.071375556773 4 1 -4 -4 1 1
0.013261762401 4 1 -1 -4 0 1
0.021700560081 5 1 3 -3 -4 1 1
0.008611832838 5 1 5 -1 -5 0 1
0.028107777149 5 3 4 -5 -5 1 1
0.002577198250 5 3 8 -1 -6 0 1
0.002519477706 6 -5 -1 13 0 -7 0 1
0.005370851864 6 -4 3 13 -1 -7 0 1
0.010760212439 6 -1 3 6 -4 -5 1 1
0.020912491011 6 1 8 2 -9 -4 2 1 *
0.010610276065 6 1 8 8 -6 -6 1 1
0.000063033687 6 1 14 11 -8 -7 1 1
0.002043090659 8 -1 -7 -5 13 7 -10 -5 2 1 *
0.033279104801 8 -1 -1 10 23 5 -14 -6 2 1 *
0.002949394220 8 1 -4 -10 10 15 -6 -7 1 1
0.002368600679 9 1 5 -10 -20 15 21 -7 -8 1 1
0.000672281393 10 1 -1 -27 -39 25 57 3 -24 -6 3 1
0.003803608820 10 1 8 -6 -45 -12 46 19 -17 -8 2 1 *
0.015037380017 11 -1 -1 22 26 -47 -51 34 35 -10 -10 1 1 *
0.000861196960 12 -5 -14 31 84 -21 -137 -29 85 32 -22 -10 2 1 *
0.000592076853 12 -1 -1 34 83 -3 -130 -42 79 34 -21 -10 2 1 *
0.000631943824 12 -1 3 60 121 -26 -186 -45 103 40 -24 -11 2 1 *
0.005649700707 13 -1 -6 9 64 51 -109 -146 39 109 12 -31 -8 3 1*

The polynomials with * are polynomials which have complex roots.
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3.3 Computation of the minimum of f(x)

We suppose that f is an auxiliary function defined as in 3.3. We give an algorithm
to prove that f is a convex function in its domain of definition D. It is sufficient
to prove that the second derivative of f is positive in D. By factorization of the
polynomials Qj in irreducible real factors, we see that f ′′ is a sum of terms of type
1: ej

(x−α)2
, where α is a real root of a polynomial Qj and of type 2: 2ek((x−γ)2−δ2)

((x−γ)2+δ2)2

where γ+ iδ (δ > 0) is a complex root of a polynomial Qk (k may be equal to j).
We suppose now that all the real roots α are taken in increasing order and that
the complex roots γ + iδ are taken in increasing order of their real parts.
Algorithm

Step 1:

let S be a sequence of complex roots γ+iδ with consecutive real parts. We add all
terms of type 2 related to this sequence S. Then we add to this rational function
all the terms of type 1, associated to a real root α, from the greatest α less than
the smallest δ of the sequence S to the smallest α greater than the greatest δ
of the sequence. Let FS be the rational function that we obtain. By Sturm’s
process, we compute the number of real zeros of the numerator of the function
FS which are in the domain of definition of f . If, for all sequences S, there is no
zero in D then we are done: f is convex. If this is not the case we use the:

Step 2:

We add to the exceptional functions FS , which have zeros in D, some terms of
type 1 with real roots α which are close to the real roots already used in FS such
that now FS has no zeros in D.
N.B: for the function given in Table 3, it is sufficient to use the step 1 of the
algorithm.

Then it is easy to compute the local minima of f within two consecutive real
roots by the downhill simplex algorithm [6].

3.4 Other kinds of auxiliary functions

With

f(x) = x2 − e0x−
J∑
j=1

ej log |Qj(x)| ≥ m
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where e0 is real, we get s2 − e0s1 ≥ dm. So, if s1 = σ1, then s2 ≥ e0σ1 + dm.
We optimize the linear form e0σ1 + dm to get a lower bound of s2 when s1 = σ1.
If we replace x2 by −x2, we get an upper bound for s2. As we explained in the
introduction we give relations between the numbers sk. Let us give an example
for the relation between s4 and s2. We use the auxiliary function

f(x) = x4 − e0x2 −
J∑
j=1

ej log |Qj(x)| ≥ m

where e0 is real and m ≥ 0. Then we get s4 ≥ e0s2 and this relation does
not depend on the degree d. We maximize e0 and stop the optimization when
m ≥ 0.01. For the upper bound x4 − e0x

2 is replaced by −x4 + e0x
2 and we

minimize e0.

3.5 Chebyshev polynomials

Let Tk the Chebyshev polynomial of degree k of the interval (a,b). This is the
monic polynomial whose sup norm is the smaller on (a,b). They may be defined
by the relations

T1 = x− A, T2 = x2 − 2Ax+ A2 − 2B2 and Tk = (x− A)Tk−1 − B2Tk−2 for
k > 2 where A = (a+ b)/2 and B = (b− a)/4. Then maxa≤x≤b |Tk(x)| = 2Bk for
k ≥ 1.

Then we have the relation |
∑

1≤i≤d Tk(αi)| ≤ 2dBk and this gives a lower and
an upper bound for sk depending on the known values of sj for 0 ≤ j ≤ k − 1.

4 Robinson’s method

The coefficients of the minimal polynomial P of α are computed by induction. In
our case Ii, b1 and b2 are fixed. We suppose that we already know b1, b2, · · · , bk
and want to compute the bounds for bk+1. Let Qk+1 be the following polynomial

Qk+1 =
1

(d− k + 1)!
(
d

dx
)d−k+1P = c0x

k+1 + c1x
k + · · ·+ ckx+ a

where cj is an integer multiple of bj , and a is an unknown integer (which will
be bk+1). Q̃k+1 = Qk+1 − a is a well known polynomial. In Ii Q̃k+1 has k
local extrema at the roots of its derivative. These roots r1, r2, · · · , rk have been
computed before. We take r0 = ai and rk+1 = bi. We compute the values
of Q̃k+1(ri) for 0 ≤ i ≤ k + 1. The admissible integers a are those for which
Qk+1 has all its minima negative and all its maxima positive. For each a we

8



compute the roots of Qk+1 with the Newton-Raphson method starting at the
points (ri + ri+1)/2 for 0 ≤ i ≤ k. When the diameter of Qk+1 is less than 4,
we replace k by k + 1. When k = d, we eliminate with Pari [5] the reducible
polynomials.

5 Numerical results

5.1 Symmetry

Some polynomials P of even degree 2d have their roots which are pairwise sym-
metric with respect to 1/2. We say that P is symmetric. If we put in P
y = −x2 + x + 2, we get a polynomial Q of degree d whose roots lie in the
interval (−1.75, 2.25). The polynomial Q may be of cosine type. The reverse
transformation will not always give an irreducible polynomial. We give on the
Web site [11] all pairs P,Q. There are 17 such pairs. For the degree 16, Capparelli
et al. give 3 polynomials and 2 of them are symmetric.
So, we may reformulate the classical question:
Is there infinitely many α with diam(α) < 4 and if it is so how many are sym-
metric?

5.2 The computations

All the computations have been done with Pascal on a PC. For the degree 14 the
computing time was 34 days and for the degree 15 it took 440 days.
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Essays in Honor of George Pólya (H. Chernoff, M. M. Schiffer, H. Solomon
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