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The diameter of a totally real algebraic integer α of degree d with conjugates

For all positive integers k and n, diam(2 cos(2kπ/n)) is less than 4. R. M. Robinson has computed, modulo integer translations, all the other totally real algebraic integers α with diam(α) < 4 for d ≤ 8. We have done the computations for all d ≤ 15. We use a large family of explicit auxiliary functions related to generalized integer transfinite diameter of real intervals. They give good bounds for the coefficients of the minimal polynomial of α. For d = 15 we prove a recent conjecture of Capparelli et al.

Introduction

Let α be an algebraic integer of degree d ≥ 2 with minimal polynomial

P = X d + b 1 X d-1 + . . . + b d = d i=1 (X -α i ).
The diameter of α (or of P ) is diam(α) = max 1≤i,j≤d |α i -α j |. The diameter is clearly invariant by integer translation, i.e. diam(α + n) = diam(α) for any rational integer n. It is also invariant by reflection, i.e. diam(-α) = diam(α). In this paper we will examine the case of totally real algebraic integers α, i.e. when all the conjugates of α are real (in this case, their minimal polynomials P are also called hyperbolic polynomials). Let I be a real interval [a, b] containing the numbers α 1 < α 2 < . . . < α d . If I has a length b -a > 4 then R. M.

Robinson [START_REF] Robinson | Intervals containing infinitely many sets of conjugate algebraic integers[END_REF] proved that there are infinitely many numbers α with all α i in I. If b -a < 4 Schur and Pólya [START_REF] Schur | Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten[END_REF], proved that there is only a finite number of algebraic integers satisfying this property.

If diam(α) < 4 then all conjugates of β 1 -2 or of 3 -β 1 , where 0 < β 1 < 1 is the fractional part of α 1 , lie in the interval H = (-2, 2.5). Then for any ε > 0, there exists only a finite number of distinct values of diam(α) < 4 -ε. This is easy to prove, since we may cover H by a finite number of intervals of length = 4 -ε/2.

So, the following question naturally arises: what happens when we only suppose that diam(α) < 4?

It is known that, if I is a real interval of length equal to 4 with integer endpoints, for example I = [-2, 2], then there exist infinitely many numbers α with all their conjugates in I. These are the numbers 2 cos(2kπ/n) with positive integers k and n. Their minimal polynomials can be deduced from cyclotomic polynomials by the change of variable x = z + 1/z. By Kronecker's theorem [START_REF] Kronecker | Zwei Sätze über Gleichungen mit ganzzahligen Koeffizienten[END_REF] these are the only algebraic integers which satisfy this property. R. M. Robinson [START_REF] Robinson | Algebraic Equations with Span less than[END_REF] has computed all diameters less than 4 up to degree 8.

Recently Capparelli et al. [START_REF] Capparelli | On the Span of Polynomials with Integer Coefficients[END_REF] have computed all diameters up to degree 14. They also give lists of diameters for the degrees 15 to 17 which have been computed with heuristic conditions on the coefficients of the polynomials P . But they conjecture that these lists are complete. In this paper, we prove that their conjecture is valid for the degree 15.

We recall in Table 1 the results that we obtain (excluding the numbers of cosine type): Our method uses the arithmetical properties of the numbers α. One of the most important tool we use, is the construction of explicit auxiliary functions which are related to generalizations of the integer transfinite diameter. These auxiliary functions are used to give bounds for s k which is the sum of the k -th powers of the conjugates of α. Then we can deduce bounds for b k by Newton's formula:

s k + s k-1 b 1 + • • • + s 1 b k-1 + kb k = 0.
As explained in Section 3, up to degree 12, we built the auxiliary functions with the algorithm given by the third author [START_REF] Wu | On the linear independence measure of logarithms of rational numbers[END_REF]. For the degrees 13 to 15 we used the important refinement introduced by the first author [START_REF] Flammang | Trace of totally positive algebraic integers and integer transfinite diameter[END_REF].

The paper is organized as follows. In Section 2 we give the scheme of the computation, once we are given the bounds for the s k . In Section 3 we explain the principle of the explicit auxiliary functions and their relation with the integer transfinite diameter. We also give all kinds of auxiliary functions that we use. In Section 4 we recall Robinson's method of computation and how we use the Chebyshev polynomials of some real intervals. Some numerical results and comments are given in Section 5. In this last section, we also study polynomials whose roots satisfy a symmetry.

Scheme of computations

Since we already know all the polynomials which have their roots in (-2, 2) we only need to compute the numbers α such that α d lies in (2, 2.5). We divide this interval in 5 subintervals of length 0.1. Then all the conjugates of α d belong to an interval

I i = (a i , b i ) of length 4.1 where a i = -2 + 0.1(i -1) and b i = 2 + 0.1i for 1 ≤ i ≤ 5.
For any such interval I i we compute all the possible values of s 1 = trace(α). We give in Table 2 the bounds obtained with the auxiliary functions for the degree 15. It is noticeable that they greatly improve the naïve bounds, which are, for I 1 , -29 and 31 respectively. Then we compute all possible values of s 2 for a given value of s 1 . For the degree 15 we get 212 triples (I i , s 1 , s 2 ). For all these triples we give only relations between the s k for two values of k whose difference is equal to 1 or 2, because the auxiliary functions become less efficient when k is "large". As explained in Section 3, we give bounds for s k for k ≥ 3 depending on the values of s j for j < k by another method.

3 Auxiliary functions and integer transfinite diameter

Relation between auxiliary functions and integer transfinite diameter

Let I be a fixed interval I i , i.e. I = (a i , b i ). We consider the auxiliary function

(3.1) f (x) = x -a log |Q(x)| ≥ m for x ∈ I i ,
where a is a positive real number and

Q ∈ Z[x].
By summation on the α i , we get

d i=1 f (α i ) ≥ dm then s 1 = d i=1 α i ≥ dm + a log | d i=1 Q(α i )|. d i=1 Q(α i )
is the resultant of P and Q. If P does not divide the polynomial Q, then this is a nonzero integer. Therefore

s 1 ≥ dm.
For an historical survey on the use of these auxiliary functions to get a lower bound for s 1 = trace(α) when α is totally positive see Aguirre and Peral [START_REF] Aguirre | The trace problem for totally positive algebraic integers, Number Theory and Polynomials[END_REF]. If we take the auxiliary function as

f (x) = -x -a log |Q(x)|
we have an upper bound for s 1 . And if we replace x by ±x k we get bounds for s k . If we replace a by t/h where h = deg Q, we have

(3.2) f (x) = x - t h log |Q(x)|. We search a polynomial Q in Z[x] such that max x∈I |Q(x)| t/h e -x ≤ e -m .
If t is fixed (say t = 1), we relate this inequality to

t Z,ϕ (I) = lim inf h≥1 h→∞ min Q∈Z[x] deg Q=h max x∈I |Q(x)| 1/h ϕ(x)
which is the integer transfinite diameter of I with the weight ϕ(x) = e -x .

Construction of auxiliary functions

If Q 1 , Q 2 , • • • , Q J are the irreducible factors of Q in 3.1, then (3.3) f (x) = x - J j=1 e j log |Q j (x)|.
When the polynomials Q j are given, we use the semi-infinite linear programming to optimize f (i.e. to get the largest m). This method has been introduced into number theory by C. J. Smyth in 1984 [START_REF] Smyth | The mean value of totally real algebraic numbers[END_REF]. So the main problem is to obtain a "good set" of polynomials Q j .

Up to degree 12, we use the method given by the third author in [START_REF] Wu | On the linear independence measure of logarithms of rational numbers[END_REF] using LLL to get a good polynomial Q. For degree 13 to 15, a more elaborate algorithm was given by the first author [START_REF] Flammang | Trace of totally positive algebraic integers and integer transfinite diameter[END_REF]. The main idea is to get good polynomials Q j by induction. Suppose that we have Q 1 , Q 2 , • • • , Q J and an optimal f for this set of polynomials in the form 3.1. Then, for several values of the integer k, we search

a polynomial R ∈ Z[x] of degree k such that sup x∈I |Q(x)R(x)| t h+k e -x ≤ e -m that is to say sup x∈I |Q(x)R(x)|e -x(h+k) t
is as small as possible. We apply LLL to the set of linear forms

Q(x n )R(x n )e -xn(h+k) t
where the numbers x n are suitable points in I, including the points where f has its smallest local minima. We get a polynomial R whose factors R j are good candidates to enlarge the set of polynomials (Q

1 , Q 2 , • • • , Q J ).
We only keep the polynomials R j which have a nonzero coefficient e j in the new optimized auxiliary function f . After optimization some previous polynomials Q j may have a zero coefficient and are removed. We give in Table 3 the polynomials Q j and the coefficients e j of the auxiliary function f given in 3.3 which gives the inequality

s 1 ≥ -0.179 • • • d for α d in I 1 .
Table 3 The explicit auxiliary function for the lower bound of s 1 in I 1 e j d j Coefficients of Q j from degree 0 to d j 0.011924266819 1 -1 1 0.096866488945 1 0 1 0.451013485389 The polynomials with * are polynomials which have complex roots.

Computation of the minimum of f (x)

We suppose that f is an auxiliary function defined as in 3.3. We give an algorithm to prove that f is a convex function in its domain of definition D. It is sufficient to prove that the second derivative of f is positive in D. By factorization of the polynomials Q j in irreducible real factors, we see that f is a sum of terms type 1:

e j (x-α) 2
, where α is a real root of a polynomial Q j and of type 2:

2e k ((x-γ) 2 -δ 2 ) ((x-γ) 2 +δ 2 ) 2
where γ + iδ (δ > 0) is a complex root of a polynomial Q k (k may be equal to j). We suppose now that all the real roots α are taken in increasing order and that the complex roots γ + iδ are taken in increasing order of their real parts. Algorithm

Step 1: let S be a sequence of complex roots γ +iδ with consecutive real parts. We add all terms of type 2 related to this sequence S. Then we add to this rational function all the terms of type 1, associated to a real root α, from the greatest α less than the smallest δ of the sequence S to the smallest α greater than the greatest δ of the sequence. Let F S be the rational function that we obtain. By Sturm's process, we compute the number of real zeros of the numerator of the function F S which are in the domain of definition of f . If, for all sequences S, there is no zero in D then we are done: f is convex. If this is not the case we use the:

Step 2:

We add to the exceptional functions F S , which have zeros in D, some terms of type 1 with real roots α which are close to the real roots already used in F S such that now F S has no zeros in D. N.B: for the function given in Table 3, it is sufficient to use the step 1 of the algorithm.

Then it is easy to compute the local minima of f within two consecutive real roots by the downhill simplex algorithm [START_REF] Press | Numerical Recipes[END_REF].

Other kinds of auxiliary functions

With

f (x) = x 2 -e 0 x - J j=1 e j log |Q j (x)| ≥ m
where e 0 is real, we get s 2 -e 0 s 1 ≥ dm. So, if s 1 = σ 1 , then s 2 ≥ e 0 σ 1 + dm. We optimize the linear form e 0 σ 1 + dm to get a lower bound of s 2 when s 1 = σ 1 . If we replace x 2 by -x 2 , we get an upper bound for s . As we explained in the introduction we give relations between the numbers s k . Let us give an example for the relation between s 4 and s 2 . We use the auxiliary function

f (x) = x 4 -e 0 x 2 - J j=1 e j log |Q j (x)| ≥ m
where e 0 is real and m ≥ 0. Then we get s 4 ≥ e 0 s 2 and this relation does not depend on the degree d. We maximize e 0 and stop the optimization when m ≥ 0.01. For the upper bound x 4 -e 0 x 2 is replaced by -x 4 + e 0 x 2 and we minimize e 0 .

Chebyshev polynomials

Let T k the Chebyshev polynomial of degree k of the interval (a,b). This is the monic polynomial whose sup norm is the smaller on (a,b). They may be defined by the relations

T 1 = x -A, T 2 = x 2 -2Ax + A 2 -2B 2 and T k = (x -A)T k-1 -B 2 T k-2 for k > 2 where A = (a + b)/2 and B = (b -a)/4. Then max a≤x≤b |T k (x)| = 2B k for k ≥ 1.
Then we have the relation | 1≤i≤d T k (α i )| ≤ 2dB k and this gives a lower and an upper bound for s k depending on the known values of s j for 0 ≤ j ≤ k -1.

Robinson's method

The coefficients of the minimal polynomial P of α are computed by induction. In our case I i , b 1 and b 2 are fixed. We suppose that we already know b 1 , b 2 , • • • , b k and want to compute the bounds for b k+1 . Let Q k+1 be the following polynomial

Q k+1 = 1 (d -k + 1)! ( d dx ) d-k+1 P = c 0 x k+1 + c 1 x k + • • • + c k x + a
where c j is an integer multiple of b j , and a is an unknown integer (which will be b k+1 ). Q k+1 = Q k+1 -a is a well known polynomial. In I i Q k+1 has k local extrema at the roots of its derivative. These roots r 1 , r 2 , • • • , r k have been computed before. We take r 0 = a i and r k+1 = b i . We compute the values of Q k+1 (r i ) for 0 ≤ i ≤ k + 1. The admissible integers a are those for which Q k+1 has all its minima negative and all its maxima positive. For each a we compute the roots of Q k+1 with the Newton-Raphson method starting at the points (r i + r i+1 )/2 for 0 ≤ i ≤ k. When the diameter of Q k+1 is less than 4, we replace k by k + 1. When k = d, we eliminate with Pari [5] the reducible polynomials.

5 Numerical results

Symmetry

Some polynomials P of even degree 2d have their roots which are pairwise symwith respect to 1/2. We say that P is symmetric. If we put in P y = -x 2 + x + 2, we get a polynomial Q of degree d whose roots lie in the interval (-1.75, 2.25). The polynomial Q may be of cosine type. The reverse transformation will not always give an irreducible polynomial. We give on the Web site [11] all pairs P, Q. There are 17 such pairs. For the degree 16, Capparelli et al. give 3 polynomials and 2 of them are symmetric. So, we may reformulate the classical question: Is there infinitely many α with diam(α) < 4 and if it is so how many are symmetric?

The computations

All the computations have been done with Pascal on a PC. For the degree 14 the computing time was 34 days and for the degree 15 it took 440 days.
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Table 1

 1 Number of polynomials whose diam < 4 for 2 ≤ d ≤ 15.

	d	2 3 4	5	6	7	8	9 10 11 12 13 14 15
	Number 1 3 10 14 13 15 21 19 15 10 9	4	9	6

Table 2 Bounds

 2 

	Lower Bound	-2	-2	0	2	3
	Upper Bound	4	5	7	9	10

of s 1 for d=15 Interval [-2.0, 2.1] [-1.9, 2.2] [-1.8, 2.3] [-1.7, 2.4] [-1.6, 2.5]