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V. Andrieu∗
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In the honor of the 60th birthday of Laurent Praly

Abstract

In this paper, we study the construction of Lyapunov functions based on first or-

der approximations. In a first part, the study of local exponential stability property

of a transverse invariant manifold is considered. This part is mainly a rephrasing

of the result of [3]. It is shown with this framework how to construct a Lyapunov

function which characterizes this local stability property. In a second part, when

considering the global stability property of an equilibrium point it is shown that the

study of first order approximation along solutions of the system allows to construct

a Lyapunov function.

Notation :

• For a vector in R
n and a matrix in R

n×n the notation | · | stands for the usual

2 norm.

• For a positive definite matrix P, µmax{P} and µmin{P} are respectively the

largest and smallest eigenvalue.

1 Introduction

The use of Lyapunov functions in the study of the stability of solutions or invariant

sets of dynamical systems has a long history. It can be traced back to Lyapunov

himself who has introduced this concept in its dissertation in 1892 (see [17] for an

english translation). The primary objective of a Lyapunov function is to analyze

the behavior of trajectories of a dynamical systems and how this behavior is pre-

served after perturbations. However, this tool is also very efficient to synthesize

control algorithms as for instance stabilizing control laws, regulators, asymptotic

observers (see for instance [13, 25, 14, 20]).

∗Université Lyon 1 CNRS UMR 5007 LAGEP, France and Fachbereich C - Mathematik und Naturwis-
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This is why the study of converse Lyapunov theorem have received a huge

attention from the nonlinear control community. One of the first major contribution

to the problem of existence of a Lyapunov function can be attributed to Massera

[18]. This results have then subsequently improved over the years (see [19, 15])

and we can quote Teel and Praly who established a theorem of existence of a

Lyapunov function in a very general framework in [26]. However, despite the

rise of a very complete theory to infer the existence of a Lyapunov function, its

construction in practice appears to be a very difficult task.

On another hand, using a first order approximation to analyze the local stability

of a nonlinear system is the most commonly used approach. Indeed, a first order

analysis deals intrinsically with linear systems tools and it provides a simple way

to construct local Lyapunov functions for a nonlinear system.

In this note, the linearization approach is extended in two directions. The first

extension is the case in which the stability studied concerns a simple manifold and

not an equilibrium. This extension has already been published in [1] and [3] and

in this note we briefly rephrase these results.The second extension is to show that

when dealing with equilibrium points, global property may be characterized from

first order approximations along solutions.

In order to introduce these results and aiming at allowing to get a full grip on

the key points of the approach the following simpler framework is first considered.

Hence, some very classical results are rephrased in the following paragraph.

Consider a nonlinear dynamical system defined on R
ne with the origin as equi-

librium :

ė = F(e) , F(0) = 0 , (1)

with state e in R
ne and with a C1 vector field F : Rne → R

ne . Solutions initiated

from e in R
ne evaluated at time t are denoted E(e, t).

The origin of system (1) is said to be Locally Exponentially Stable (LES for

short) if there exist three positive real numbers k, λ and r such that the following

estimate holds :

|E(e, t)| ≤ k exp(−λ t)|e| , ∀(e, t) ∈ R
ne ×R+ , |e| ≤ r . (2)

As it is well known, the LES property of the system (1) can be checked from

the study of the first order approximation around ”0”. Indeed, it is well known

(see [14, Theorem 4.15, p.165]) that LES of the origin of (1) is equivalent with

exponential stability of the origin of the linear dynamical system defined in R
ne as

follows :

˙̃e =
∂F

∂e
(0) ẽ . (3)

Constructing a Lyapunov function for the linear system (3) is an easy task.

Indeed, if the matrix ∂ F
∂ e

(0) is Hurwitz, and given a positive definite matrix Q in

R
ne×ne the matrix P in R

ne×ne defined as :

P =
∫ +∞

0
exp

(
∂F

∂e
(0)s

)⊤

Qexp

(
∂F

∂e
(0)s

)
ds (4)

is well defined, positive definite and satisfies the Lyapunov algebraic equality :

∂F

∂e
(0)⊤P+P

∂F

∂e
(0) =−Q . (5)
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The former equation implies that the mapping ẽ 7→ ẽ⊤Pẽ is a Lyapunov function

for the system (3) since it yields along its trajectories
˙︷ ︷

ẽ⊤Pẽ =−ẽ⊤Qẽ.

Moreover, the quadratic function V (e) = e⊤Pe is a Lyapunov function for the

nonlinear system (1) since along its trajectories the following equality holds :

˙︷ ︷
e⊤Pe = 2e⊤PF(e) = e⊤

[
−Q+2

∫ 1

0
P

[
∂F

∂e
(se)−

∂F

∂e
(0)

]

︸ ︷︷ ︸
small if |e| small

ds
]
e .

This implies that there exists r > 0 and λ > 0 such that for all e such that |e| ≤ r,
˙︷ ︷

e⊤Pe<−λe⊤Pe. This characterizes local exponential stability of the origin of (1).

In conclusion to this rephrasing of the simplest framework, the following as-

sertions have been obtained.

Fact 1 : The exponential stability property for the nonlinear system implies an

exponential stability property for the linearized system.

Fact 2 : The exponential stability property for the linearized system can be char-

acterized by a quadratic Lyapunov function.

Fact 3 : The Lyapunov function associated to the linearized system may be used

directly on the nonlinear system to characterize its stability property.

In the first part of this paper, based on the result of [3], we will show that

this is also the case when considering exponential stability of a simple invariant

manifold. This allows to introduce Lyapunov function that characterizes the local

exponential stability property of an invariant manifold.

The second part of the paper is devoted to global properties. It will be shown

that these three facts are also true when considering the global attractivity of an

equilibrium. Finally, in the conclusion, we introduce some difficulties we are

facing when considering the case of the global stability property of an invariant

manifold. This gives a gimps of the results obtained in [2].

2 Local transverse exponential stability of a man-

ifold

2.1 Transverse local uniform exponential stability

Throughout this section, instead of considering the system (1), a system in the

following form is considered.

ė = F(e,x) , ẋ = G(e,x) , F(0,x) = 0 , (6)

where e is in R
ne , x is in R

nx and the functions F : Rne ×R
nx → R

ne and G :

R
ne ×R

nx → R
nx are C2. We denote by (E(e,x, t),X(e,x, t)) the (unique) solution

which goes through (e,x) in R
ne ×R

nx at time t = 0. It is assumed that these

solutions are defined for all positive times, i.e. the system is forward complete.

For this system, the manifold E = {(e,x),e = 0} is an invariant manifold. The

purpose of this section is to show that the properties obtained to characterize the

exponential stability property of an equilibrium given in the introduction (i.e. the
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facts 1, 2 and 3) are still valid when considering the stability property of this man-

ifold.

The local exponential stability of an equilibrium becomes the local exponential

stability of the transverse manifold. This one is defined as follows.

Definition 1 (Transversal uniform local exponential stability (TULES-NL)) The

system (6) is forward complete and there exist strictly positive real numbers r, k

and λ such that we have, for all (e0,x0, t) in R
ne ×R

nx ×R≥0 with |e| ≤ r,

|E(e0,x0, t)| ≤ k|e0|exp(−λ t) . (7)

In other words, the system (6) is said to be TULES-NL if the manifold E :=
{(e,x) : e= 0} is exponentially stable for the system (6), locally in e and uniformly

in x.

2.2 Fact 1 : Exponential stability of a linearized system

As mentioned in the introduction, a linearized system ”around” the invariant man-

ifold has first to be considered. In this case, the system is defined as :

˙̃e =
∂F

∂e
(x)ẽ , ẋ = G̃(x) , (8)

where G̃(x) = G(0,x).
If one wish to show that Fact 1 also holds in this context we need to establish

that the manifold Ẽ := {(x, ẽ) : ẽ = 0} of the linearized system transversal to E

in (8) is exponentially stable.This is indeed the case has shown by the following

proposition which has been proved in [3].

Proposition 1 ( [3] FACT 1 holds) If Property TULES-NL holds and there exist

positive real numbers ρ , µ and c such that, for all x in R
nx ,

∣∣∣∣
∂F

∂e
(0,x)

∣∣∣∣≤ µ ,

∣∣∣∣
∂G

∂x
(0,x)

∣∣∣∣≤ ρ (9)

and, for all (e,x) in Be(kr)×R
nx ,

∣∣∣∣
∂ 2F

∂e∂e
(e,x)

∣∣∣∣ ≤ c ,

∣∣∣∣
∂ 2F

∂x∂e
(e,x)

∣∣∣∣ ≤ c ,

∣∣∣∣
∂G

∂e
(e,x)

∣∣∣∣≤ c , (10)

then the system (8) is forward complete and there exist strictly positive real num-

bers k̃ and λ̃ such that any solution (Ẽ(ẽ0,x0, t),X(x0, t)) of the transversally lin-

ear system (8) satisfies, for all (ẽ0,x0, t) in R
ne ×R

nx ×R≥0,

|Ẽ(ẽ0,x, t)| ≤ k̃ exp(−λ̃ t)|ẽ0| . (11)

The proof of this proposition given in [3] is based on the comparison between

a given e-component of a solution Ẽ(ẽ0,x0, t) of (8) with pieces of e-component

of solutions E(ẽi,xi, t − ti) of solutions of (6) where ẽi,xi are sequences of points

defined on Ẽ(ẽ0,x0, t). Thanks to the bounds (9) and (10), it is possible to show

that Ẽ and E remain sufficiently closed so that Ẽ inherit the convergence property

of the solution E. As a consequence, in the particular case in which F does not

depend on x, the two functions E and Ẽ do not depend on x either and the bounds

on the derivatives of the G function are useless.

In [3], the exponential stability of the manifold Ẽ := {(x, ẽ) : ẽ = 0} of the

linearized system transversal to E in (8) is named property UES-TL.
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2.3 Lyapunov matrix inequality

The ẽ components of the system (8) is a parametrized time varying linear system.

Hence, the solutions Ẽ(e,x, t), can be written as :

Ẽ(ẽ,x, t) = Φ(x, t)ẽ ,

where Φ is the transition matrix defined as a solution to the following R
ne×ne dy-

namical system :

˙︷ ︷
Φ(x, t) =

∂F

∂e
(0, X̃(x̃, t))Φ(x̃, t) , Φ(x̃,0) = I .

An important point that has to be noticed is that due to equation (11), each element

of the (matrix) time function t 7→ Φ(x, t) is in L2([0,+∞)). Consequently, for all

positive definite matrix Q in R
ne , the matrix function

P(x) = lim
T→+∞

∫ T

0
Φ(x,s)⊤QΦ(x,s)ds (12)

is well defined.

By computing the Lie derivative of the matrix P given in (12), it is possible to

show that this one satisfies a particular partial differential equation which shows

that this function may be used to construct a quadratic Lyapunov function of the

linearized system.

Proposition 2 ( [3] FACT 2 holds) Assume Property UES-TL holds, i.e. there

exist k̃ and λ̃ such that any solution (Ẽ(ẽ0,x0, t),X(x0, t)) of the transversally lin-

ear system (8) satisfies, 11. Assume moreover, that there exists a positive real

number µ such that ∣∣∣∣
∂F

∂e
(0,x)

∣∣∣∣≤ µ ∀x ∈ R
nx , (13)

then for all positive definite matrix Q, there exists a continuous function P : Rnx →
R

ne×ne and strictly positive real numbers p and p such that P has a derivative dG̃P

along G̃ in the following sense

dG̃P(x̃) := lim
h→0

P(X̃(x̃,h))−P(x̃)

h
, (14)

and we have, for all x̃ in R
nx ,

dG̃P(x̃)+P(x̃)
∂F

∂e
(0, x̃)+

∂F

∂e
(0, x̃)′P(x̃)≤−Q , (15)

pI ≤ P(x̃)≤ pI . (16)

When looking at the time derivative of the function (ẽ,x) 7→ ẽ⊤P(x)ẽ along the

solution of the system (8), it yields :

˙︷ ︷
ẽ⊤P(x)ẽ =−ẽ⊤Qẽ .

Hence, (ẽ,x) 7→ ẽ⊤P(x)ẽ is a Lyapunov function associated to the ẽ component of

the linearized system (8). In other words, Fact 2 introduced in the introduction is

still valid when considering transverse exponential stability property.

The assumption (13) is used to show that P satisfies the left inequality in

(16). Nevertheless this inequality holds without (13) provided the function s 7→∣∣∣ ∂ Ẽ
∂ ẽ

(0, x̃,s)
∣∣∣ does not go too fast to zero.

5



2.4 Construction of a Lyapunov function

From the matrix function P obtained previously, it is possible to define a Lyapunov

function which allows to characterize the property of local exponential stability of

E .

Proposition 3 ( [3] FACT 3 holds) If Property ULMTE holds and there exist pos-

itive real numbers η and c such that, for all (e,x) in Be(η)×R
nx ,

∣∣∣∣
∂P

∂x
(x)

∣∣∣∣≤ c , (17)

∣∣∣∣
∂ 2F

∂e∂e
(e,x)

∣∣∣∣ ≤ c ,

∣∣∣∣
∂ 2F

∂x∂e
(e,x)

∣∣∣∣≤ c ,

∣∣∣∣
∂G

∂e
(e,x)

∣∣∣∣≤ c , (18)

then Property TULES-NL holds.

This is a direct consequence of the use of V (e,x) = e′P(x)e as a Lyapunov

function. The bounds (17) and (18) are used to show that, with equation (15),

the time derivative of this Lyapunov function is negative in a (uniform) tubular

neighborhood of the manifold {(e,x),e = 0}.

In conclusion, from Proposition 1, 2 and 3 it yields that Fact 1 , Fact 2 and

Fact 3 obtained in the analysis of local exponential stability of an equilibrium

are still valid in the context of local exponential stability of a transverse manifold.

In [3] the previous framework has been employed as a design tool in different

contexts :

• It has been employed to construct a Lyapunov function which characterize

the property of exponential incremental stability.

• It has been used to show that a detectability property introduced in [23] is a

necessary condition to the existence of an exponential full order observer.

• It has been employed (see also in [4]) to give necessary and sufficient condi-

tion to achieve synchronization.

All results written so far concerns local properties. The following section is

concerned with global property of an equilibrium point. Our aim is to follow the

same strategy in order to construct global Lyapunov functions.

3 Global stability properties

3.1 Local exponential stability and global attractivity

In the previous section has been studied the case of the local asymptotic stability

(of a manifold or of an equilibrium point). In this Section, another property is

studied : the global attractivity. In other words, we consider again system (1) and

we assume that for all e in R
ne ,

lim
t→+∞

|E(e, t)|= 0 . (19)

Note that global attractivity in combination with the local asymptotic stability of

the origin implies that the system is globally and asymptotically stable. However,

it is not globally exponentially stable in the usual sense (see [14, definition 4.5

p.150]) . Nevertheless the following property can be simply obtained.
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Proposition 4 Assume the origin of (1) is locally exponentially stable and glob-

ally attractive, then there exist a positive real number λ and a continuous strictly

increasing function k : R+ → R+ such that :

|E(e, t)| ≤ k(|e|)exp(−λ t)|e| . (20)

Proof : The origin being locally exponentially stable, there exist three positive

real numbers λ1, k1 and r1 such that equality (2) holds. Consider the mapping

c : Rne ×R→ R+ defined by :

c(e, t) =
|E(e, t)|

|e|exp(−λ t)
,

where 0 < λ < λ1. Since inequality (2) holds, it yields that this is a continuous

function. Moreover, the global attractivity property and the LES of the origin of

system (1) implies that :

lim
t→+∞

c(e, t) = 0 , ∀e ∈ R
ne .

Consider the function c̄ : [r1,+∞)→ R+∪{+∞} defined as :

c̄(s) = sup
r1≤|e|≤s,t≥0

{c(e, t)} .

We first show that in fact this function takes finite value for all s. Indeed, assume

this is not the case for a given s, i.e. c̄(s) = +∞. This implies that there exists

a sequence (ei, ti)i∈N with r1 ≤ |ei| ≤ s such that c(ei, ti) ≥ i. However, (ei)i∈N

being a sequence in a compact set, it is possible to extract a sub-sequence (ei j
) j∈N

such that ei j
→ e∗ with r1 ≤ |e∗| ≤ s. Note that this implies ti j

→+∞. Moreover,

by the global attractivity property, there exists t∗ such that |E(e∗, t∗)| ≤ r1
2 . By

continuity of the solutions it yields that there exists j∗ such that |E(ei j
, t∗)| ≤ r1

for j > j∗. Without loss of generality, we may assume that ti j
≥ t∗ for j > j∗. The

LES property implies for all j > j∗ :

i j < c(ei j
, ti j

)=
|E(ei j

, ti j
)|

|ei j
|exp(−λ t)

≤
k1 exp(−λ1(ti j

− t∗))|E(ei j
, t∗)|

|ei j
|exp(−λ ti j

)
≤

ksexp(λ1t∗)

r1
.

Hence a contradiction. Consequently, for all s ≥ r1, c̄(s) is bounded. It is also

increasing. So it is possible to select k : R+ → R+ as any continuous function

such that :

k(s)≥

{
k1 s ≤ r1

c̄(s) s ≥ r1
.

It is clear from its definition that the property (20) is satisfied. 2

Example 1 A very simple example of such a property is the scalar system :

ė =−
e

1+e2
. (21)

Solutions of this ordinary differential equation satisfies the following equations :

E(e, t)2 exp
(

E(e, t)2
)
= e2 exp(e2)exp(−2t) , ∀e ∈ R .
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This implies

E(e, t)2 ≤ E(e, t)2 exp
(

E(e, t)2
)
≤ e2 exp(e2)exp(−2t) ,

and global attractivity and LES of the origin of (21) hold since equation (20) is

satisfied with k(s) = sexp
(

1
2 s2
)

and λ = 1.

3.2 Global Lyapunov functions based on first order ap-

proximations

3.2.1 Fact 1 : Stability property of the linearized system along the

solutions

A natural question is to know if the local exponential stability and global attrac-

tivity property can be characterized from a first order approximation analysis. To

oppose to the local study made in the introduction, the linearized system around the

equilibrium can’t describe the property of solutions away from the origin. Hence,

the linearized system along all solutions have to be considered.

Assuming that F is C1 everywhere, the linearized system along trajectories is

defined as :

˙̃e =
∂F

∂e
(e)ẽ , ė = F(e) , (22)

with (e, ẽ) in R
ne ×R

ne . This system is also called the lifted system in [9] or the

variational system in [8].

Note that the ẽ-components of this system may be rewritten as the following.

˙̃e =
∂F

∂e
(0)ẽ

︸ ︷︷ ︸
(LES)⇒goes exp. to zero

+

[
∂F

∂e
(e)−

∂F

∂e
(0)

]

︸ ︷︷ ︸
(Glob. Attract.)⇒ goes to zero

ẽ (23)

The following proposition shows that if the e components go exponentially to zero,

then the ẽ components do the same.

Proposition 5 (FACT 1 for global property) Let F be C1 in R
ne and C2 around

the origin. Assume the origin of (1) is locally exponentially stable and globally at-

tractive, then there exist a positive real number λ̃ and a strictly increasing function

k̃ : R+ → R+ such that :

|Ẽ(e, t)| ≤ k̃(|e|)exp(−λ̃ t)|ẽ| . (24)

Proof : The origin being locally exponentially stable, we can define the matrix P

as in (4). With the algebraic Lyapunov equation (see (5)), it yields that along the

solution of the system (1), the following equality holds :

˙︷ ︷
ẽ⊤Pẽ =−ẽ⊤Qẽ+2ẽ⊤P

[
∂F

∂e
(e)−

∂F

∂e
(0)

]
ẽ ,

≤

[
−

µmin{Q}

µmax{P}
+ γ(e)

]
ẽ⊤Pẽ , (25)

where γ : Rne → R+ is the continuous function defined as

γ(e) = 2
µmax{P}

µmin{P}

∣∣∣∣
∂F

∂e
(e)−

∂F

∂e
(0)

∣∣∣∣
2

.
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The function F being C2 around the origin, γ is locally Lipschitz around the origin.

Hence, there exist two positive real number r and L such that

γ(e)≤ L|e| , ∀|e| ≤ r . (26)

From Grönwall lemma, equation (25) implies :

|Ẽ(ẽ,e, t)| ≤

√
Ẽ(ẽ,e, t)⊤PẼ(ẽ,e, t)

µmin{P}
,

≤

√
µmax{P}

µmin{P}
exp

(
1

2

∫ t

0
γ(E(e,s))ds

)
exp

(
−

µmin{Q}

2µmax{P}
t

)
|ẽ| .

(27)

Let t∗ be the continuous function defined as :

t∗(e) = max



0,

− ln
(

r
k(|e|)|e|

)

λ



 .

Note that if k(|e|)|e| ≤ r, t∗(e) = 0. Moreover, if k(|e|)|e|> r, t∗(e)> 0 and in this

case

k(|e|)exp(−λ t∗(e))|e| ≤ r .

Hence, due to the local exponential stability and global attractivity property, equa-

tion (20) yields for all e,

|E (e, t∗(e))| ≤ k(|e|)exp (−λ t∗(e)) |e| ≤ r .

Employing (20), once again, and (26), the following inequalities are obtained for

t ≥ t∗(e) :

∫ t

0
γ(E(e,s))ds ≤

∫ t∗(e)

0
γ(E(e,s))ds+

∫ t

t∗(e)
γ(E(e,s))ds ,

≤

∫ t∗(e)

0
γ(E(e,s))ds+Lk(|e|)|e|

∫ t

t∗(e)
exp(−λ s)ds ,

≤

∫ t∗(e)

0
γ(E(e,s))ds+

Lr

λ
:= c(e) .

Notice that the previous inequality is also true for t ≤ t∗(e). Consequently, using

the previous approximation in equation (27) the proof ends since equation (24) is

obtained with :

λ̃ =
µmin{Q}

2µmax{P}
, k̃(s) =

√
µmax{P}

µmin{P}
exp

(
1

2
max
|e|≤s

c(e)

)
.

2

Example 2 Going back to the previous example given in equation (21), the lin-

earized system is given as :

˙̃e =−
1−e2

1+e2
ẽ .

9



This gives :

∣∣∣Ẽ(ẽ,e, t)
∣∣∣= exp

(
−t +

∫ t

0

2E(e,s)2

1+E(e,s)2
ds

)
|ẽ| ,

≤ exp

(
−t +

∫ t

0
2k(|e|)2 exp(−s)ds

)
|ẽ| ,

≤ exp
(
−t +2k(|e|)2(1−exp(−t))

)
|ẽ| .

This gives equation (24) with :

k̃(s) = exp
(

2k(s)2
)
= exp

(
2s2 exp

(
s2
))

, λ̃ = 1 .

3.2.2 Fact 2 : Lyapunov matrix inequality

By linearity the ẽ components of the linearized system (22) can be written :

Ẽ(ẽ,e, t) = Φ(e, t)ẽ ,

where Φ is the transition matrix. This transition matrix is defined as the solution

of the following R
ne×ne dynamical system :

˙︷ ︷
Φ(e, t) =

∂F

∂e
(E(e, t))Φ(e, t) , Φ(e,0) = I .

An important point that has to be noticed is that due to equation (24), each element

of the (matrix) time function t 7→ Φ(e, t) is in L2([0,+∞)). Consequently, for all

positive definite matrix Q in R
ne×ne , the matrix function :

P(e) = lim
T→+∞

∫ T

0
Φ(e,s)⊤QΦ(e,s)ds , (28)

is well defined. Moreover, it can be shown that the following proposition holds.

Proposition 6 (FACT 2 for global property) Assume that there exist function (k, k̃)

and positive real numbers (λ , λ̃ ) such that (20) and (24) are satisfied. Then, the

matrix function P : Rne → R
ne×ne defined in (28) is well defined, continuous, and

there exist a non increasing function p and a non decreasing function p̄ such that

0 < p(|e|)I ≤ P(e)≤ p̄(|e|)I , ∀ e ∈ R
ne . (29)

Moreover1 ,

dF P(e)+P(e)
∂F

∂e
(e)+

∂F

∂e
(e)⊤P(e)

︸ ︷︷ ︸
=LF P(e)

≤−Q , ∀ e ∈ R
ne . (30)

Finally, if the vector field F is C3 then P is C2.

1See the notation (14).
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Proof : From (24), for all (e, t) in R
ne ×R≥0 :

|Φ(e, t)| ≤ k̃(|e|)exp(−λ̃ t) .

This allows us to claim that, for every symmetric positive definite matrix Q, the

function P : Rne → R
ne×ne given by (28) is well defined, continuous and satisfies :

µmax{P(e)} ≤
k̃(|e|)2

2λ̃
µmax{Q}= p(|e|) , ∀e ∈ R

ne .

On another hand, let c be a continuous mapping which satisfies the following in-

equality : ∣∣∣∣
∂F

∂e
(e)

∣∣∣∣≤ c(|e|) .

Morover, for all (t,v) in (R×R
ne), we have :

∂

∂ t

(
v′ [Φ(e, t)]−1

)
=−v′ [Φ(e, t)]−1 ∂F

∂e
(E(e, t)) .

However since we have by (20) :
∣∣∣∣
∂F

∂e
(E(e, t))

∣∣∣∣≤ c(|k(e)| |e|) ,

it yields the following estimate :
∣∣∣v′Φ(e, t)−1

∣∣∣≤ exp
(

c(k(|e|)|e|)t
)
|v| , ∀(t,v) ∈ (R×R

ne ) .

This implies for all (t,v) in (R×R
ne ) :

[v′v]2 ≤
∣∣∣v′Φ(e, t)−1

∣∣∣
2
|Φ(e, t)v|2 ,

≤
1

µmin{Q}

∣∣∣v′Φ(e, t)−1
∣∣∣
2

v′Φ(e, t)′QΦ(e, t)v ,

≤
|v|2 exp

(
2c(k(|e|)|e|)t

)

µmin{Q}
v′Φ(e, t)′QΦ(e, t)v .

So, this yields :

v′Φ(e, t)′QΦ(e, t)v ≥ µmin{Q}exp
(
−c(k(|e|)|e|)t

)
|v|2 , ∀(t,v) ∈ (R×R

ne) .

Consequently, we get :

p(|e|) =
µmin{Q}

2c(k(|e|)|e|)
≤ λmin{P(e)} ∀ẽ ∈ R

ne .

Finally, to get (30), let us exploit the semi group property of the solutions. We

have for all (ẽ,e) in R
ne ×R

ne and all (t,r) in R
2
≥0 :

Ẽ(Ẽ(ẽ,e, t),E(e, t),r) = Ẽ(ẽ,e, t + r) .

Differentiating with respect to ẽ the previous equality yields :

∂ Ẽ

∂ ẽ
(Ẽ(ẽ,e, t),E(e, t),r)

∂ Ẽ

∂ ẽ
(ẽ,e, t) =

∂ Ẽ

∂ ẽ
(ẽ,e, t + r) .

11



Hence, we get the property :

Φ(E(e, t),r)Φ(e, t) = Φ(e, t + r) .

Setting in the previous equality :

e := E(e,h) , h :=−t , s := t + r ,

we get for all e in R
ne and all (s,h) in R

2 :

Φ(e,s+h)Φ(E(e,h),−h) = Φ(E(e,h),s) .

Consequently, this yields :

P(E(e,h)) = = lim
T→+∞

∫ T

0
Φ(E(e,h),s)′QΦ(E(e,h),s)ds ,

= lim
T→+∞

(Φ(E(e,h),−h))′
[∫ T

0
(Φ(e,s+h))′ QΦ(e,s+h)ds

]

Φ(E(e,h),−h) .

But we have :

lim
h→0

Φ(E(e,h),−h)− I

h
=−

∂F

∂e
(e) ,

lim
h→0

Φ(e,s+h)−Φ(e,s)

h
=

∂

∂ s
(Φ(e,s)) ,

and

∫ T

0

∂

∂ s
(Φ(e,s))′ Q(Φ(e,s))ds+

∫ T

0
(Φ(e,s))′ Q

∂

∂ s
(Φ(e,s))ds =

Φ(e,T )′QΦ(e,T )−Q .

Since limT and limh commute because of the exponential convergence to 0 of

Φ(e,s), we conclude that (30) is satisfied.

The last assertion of the proposition is simply obtained noticing that if F is

C3 then the matrix function Φ(e, t) is also C2 in e. Moreover the first and second

derivatives of its coefficient belong also to L2[0,+∞). 2

Example 3 If we pursue the analysis for the scalar example given in equation

(21), it yields

p(e) =
1

2
, p(e)≤ k̃(e)2 lim

T→+∞

∫ T

0
exp(−2s)ds =

exp
(

4e2 exp(e2)
)

2
.

3.2.3 Fact 3 : Construction of a Lyapunov function

With the matrix function P defined for instance in (28) which Lie derivative satis-

fies inequality (30), it yields that along the solution of the linearized system (22) :

˙︷ ︷
ẽ⊤P(e)ẽ =−ẽ⊤Qẽ .
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In other words, the mapping (ẽ,e) 7→ ẽ⊤P(e)ẽ is a global Lyapunov function for

the ẽ components of the linearized system (28).

However, e 7→ e⊤P(e)e is not a global Lyapunov function for ė= F(e). Indeed,

a simple computation gives :

˙︷ ︷
e⊤P(e)e = 2e⊤P(e)

[
F(e)−

∂F

∂e
(e)e

]
−e⊤Qe .

This is negative definite if F(e)− ∂ F
∂ e

(e)e is small. However, there is no guarantee

that this is case away from the origin.

Nevertheless, it is still possible to construct a Lyapunov function for the system

(1). Indeed, the matrix function P may be used to define a Riemanian metric on

R
ne which may be used as a Lyapunov function. Precisely, if P is a C2 function

the values of which are symmetric matrices satisfying (29), The length of any

piece-wise C1 path γ : [s1,s2]→ R
ne between two arbitrary points e1 = γ(s1) and

e2 = γ(s2) in R
ne is defined as :

L(γ)
∣∣∣
s2

s1

=

∫ s2

s1

√
dγ

ds
(σ)′P(γ(σ))

dγ

ds
(σ)dσ . (31)

By minimizing along all such path we get the distance dP(e1,e2).
Then, thanks to the well established relation between (geodesically) monotone

vector field (semi-group generator) (operator) and contracting (non-expansive) flow

(semi-group) (see [16, 11, 6, 12] and many others), we know that if P is C2 and

the metric space is complete, this distance between any two solutions of (1) is ex-

ponentially decreasing to 0 as time goes on forward if (30) is satisfied with Q is a

positive definite symmetric matrix. For a proof, see for example [16, Theorem 1]

or [12, Theorems 5.7 and 5.33] or [21, Lemma 3.3] (replacing f (x) by x+h f (x)).
From this fact, a candidate Lyapunov function is the Riemannian distance to

the origin. Hence we introduce the function V : Rne → R+

V (e) = dP(e,0) . (32)

In the following proposition it is shown that this function is indeed a good Lya-

punov function candidate and moreover that it admits an upper Dini derivative

along the solution of the system (1) which is negative definite.

Proposition 7 (FACT 3 for global property) Assume F is C2. Assume moreover

that there exists a C2 matrix function P such that equations (29) and (30) hold and

that the function p satisfies the following property

lim
r→+∞

p(r)r2 =+∞ . (33)

Then the function V defined in (32) is a Lyapunov function for the system (1).

More precisely V admits an upper Dini derivative along the solutions of system (1)

defined as

D+
F V (e) := limsup

hց0

V (E(e,h))−V (e)

h
,

which satisfies

D+
F V (e)≤−

µmin{Q}

p̄(|e|)
V (e) .

Hence the origin is locally exponentially stable and globally attractive.
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Proof : Given an initial point e in R
ne and a direction v also in R

ne , geodesics are

given as solution to the geodesic equation:

d2γℓ
ds2

(s)(s) =
n

∑
i, j

�
ℓ
i j

dγi

ds
(s)

dγ j

ds
(s) , γ(0) = e ,

dγ

ds
(0) = v , (34)

where the (�ℓi j) are Christoffel symbols associated to P which are C1 if P is C2.

The right hand side of the previous equation being C1 we know that solutions(
γ(s), dγ

ds
(s)
)

of (34) exist at least for small s, are unique and C1. Hence, γ(·) is

C2 on its domain of existence.

Now, with [23, Lemma A.1] and the assumption given in equation (33) it yields

that these geodesic can be maximally extended to R. With Hopf-Rinow Theorem,

this implies that the metric space (Rne ,P) is complete. Moreover, for any e in R
ne

there exists γ∗ : [0,se]→ R
ne a C2 curve (a geodesic) such that :

dP(e,0) = L(γ∗)
∣∣∣
se

0
.

As a convention, it is assumed in the following and without loss of generality

that the geodesics are normalized :

dγ∗

ds
(s)⊤P(γ∗(s))

dγ∗

ds
(s) = 1 .

Hence the function V defined in (32) satisfies :

V (e)=
∫ se

0

√
dγ∗

ds
(s)⊤P(γ∗(s))

dγ∗

ds
(s)ds=

∫ se

0

dγ∗

ds
(s)⊤P(γ∗(s))

dγ∗

ds
(s)ds= se .

Let us first show that V is a positive definite and proper function. Since γ∗ :

[0,se] is a continuous path from e to zero, this implies that there exists s0 in [0,se]
such that :

|γ∗(s0)|= |e| , |γ∗(s)| ≤ |e| , ∀s ∈ [s0,se] . (35)

Note that :

V (e) =
∫ se

0

√
dγ∗

ds
(s)⊤P(γ∗(s))

dγ∗

ds
(s)ds ,

≥

∫ se

s0

√
dγ∗

ds
(s)⊤P(γ∗(s))

dγ∗

ds
(s)ds ,

≥
√

p(|e|)

∫ se

s0

√
dγ∗

ds
(s)⊤

dγ∗

ds
(s)ds ,

Since minimal geodesic for an Euclidean metric are straight lines s 7→
sγ∗(s0)
se−s0

, this

implies :

∫ se

s0

√
dγ∗

ds
(s)⊤

dγ∗

ds
(s)ds ≥

∫ se

s0

√
γ∗(s0)⊤γ∗(s0)

(se − s0)2
ds = |γ∗(s0)| .

Hence, with (35), it implies :

V (e)≥
√

p(|e|)|e| .
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Moreover,

V (e)≤
∫ se

0

e⊤

se
P

(
se⊤

se

)
e

se
ds ,

≤ p(|e|)
∫ se

0

e⊤

se

e

se
ds ,

≤
p(|e|)

se
|e|2 .

Since we have V (e) = se, the two previous inequalities imply the following :

√
p(|e|)|e| ≤V (e)≤

√
p(|e|)|e| . (36)

With (33), this implies that the function V is positive definite and proper.

Let now Γ(s, t) be the mapping defined by :

∂Γ

∂ t
(s, t) = F(Γ(s, t)) , Γ(s,0) = γ∗(s) .

The vector field F being C2, the mapping γ∗ being C2, it yields that Γ is C2. Note

that Γ(s,h) is a C2 path such that :

Γ(se,h) = E(e,h) , Γ(0,h) = 0 .

This implies the following inequality for all h ≥ 0 :

V (E(e,h)) ≤

∫ se

0

√
∂Γ

∂ s
(s,h)⊤P(Γ(s,h))

∂Γ

∂ s
(s,h)ds .

This yields :

D+
F V (e)≤ limsup

h→0

∫ se

0

√
∂ Γ
∂ s
(s,h)⊤P(Γ(s,h)) ∂ Γ

∂ s
(s,h)−

√
∂ γ∗

∂ s
(s)⊤P(γ∗(s)) ∂ γ∗

∂ s
(s)

h
ds .

Hence, with Fatou’s lemma, it yields :

D+V (e)≤
∫ se

0
limsup

h→0

√
∂ Γ
∂ s
(s,h)⊤P(Γ(s,h)) ∂ Γ

∂ s
(s,h)−

√
∂ γ∗

∂ s
(s)⊤P(γ∗(s)) ∂ γ∗

∂ s
(s)

h
ds .

The mapping h 7→
√

∂ Γ
∂ s

(s,h)⊤P(Γ(s,h)) ∂ Γ
∂ s

(s,h) being C1 (since Γ and P are C2),

it yields

D+V (e)≤
∫ se

0

∂

∂h

{√
∂Γ

∂ s
(s, ·)⊤P(Γ(s, ·))

∂Γ

∂ s
(s, ·)

}

h=0

ds ,

=−
∫ se

0

1

2

dγ∗

ds
(s)⊤Q

dγ∗

ds
(s)

√
∂ γ∗

∂ s
(s)⊤P(γ∗(s)) ∂ γ∗

∂ s
(s)

ds ,

≤−
1

2
µmin{Q}

∫ se

0

dγ∗

ds
(s)⊤

dγ∗

ds
(s)ds ,
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where the last inequality employs the fact that the geodesics are normalized. With

Cauchy-Schwartz inequality, this implies :

D+V (e)≤−
1

2
µmin{Q}

(∫ se

0

√
dγ∗

ds
(s)⊤

dγ∗

ds
(s)ds

)2

.

Since minimal geodesic for an Euclidean metric are straight lines, this implies :

D+V (e)≤−
1

2
µmin{Q}

∫ se

0

√
e

se

⊤ e

se
ds ,

≤−
µmin{Q}

2
√

p(|e|)

∫ se

0

√
e

se

⊤
P

(
se

se

)
e

se
ds ,

≤−
µmin{Q}

2
√

p(|e|)
V (e) .

This, together with (36) implies global asymptotic stability of the origin. Since

0 < p(0)< p(0), it also implies that the origin is locally exponentially stable. 2

Note that an interesting property of the considered Lyapunov function is that

given two points e1 and e2 both in R
ne , if we denote dP(e1,e2) the Riemmanian

distance between these two points and γ∗ the minimal (and normalized) geodesic,

it yields following the previous proof, this implies that there exists s0 such that

|γ∗(s0)−e2|= |e1 −e2| , |γ
∗(s)−e2| ≤ |e1 −e2| , ∀s ∈ [s0,s2] .

From this, it yields

dP(e1,e2)≥
∫ s2

s0

√
dγ∗

ds
(s)⊤P(γ∗(s))

dγ∗

ds
(s)ds ,

Moreover, for all s in [s0,s2], we have |γ∗(s)| ≤ |γ∗(s)−e2|+ |e2| ≤ |e1−e2|+ |e2|.
Hence, it yields :

dP(e1,e2)≥
√

p(|e1 −e2|+ |e2|)

∫ s2

s0

√
dγ∗

ds
(s)⊤

dγ∗

ds
(s)ds ,

≥
√

p(|e1 −e2|+ |e2|)|γ
∗(s0)−e2| ,

≥
√

p(|e1 −e2|+ |e2|)|e1 −e2| .

Moreover,

dP(e1,e2)≤
p(|e1 −e2|+ |e2|))

dP(e1,e2)
|e1 −e2|

2 .

The two previous inequalities imply :

√
p(|e1 −e2|+ |e2|))|e1 −e2| ≤ dP(e1,e2)≤

√
p(|e1 −e2|+ |e2|))|e1 −e2| .

Moreover, we have

D+
F,F dP(e1,e2)≤−

∫ s2

s1

γ̇∗(s)Qγ̇∗(s)ds ≤−
µmin{Q}

2
√

p(|e1 −e2|+ |e2|)
dp(e1,e2) ,
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where

D+
F,F dP(e1,e2) := limsup

hց0

dP(E(e1,h)),E(e2,h))

h
.

In other words, there exists a strictly decreasing distance between any two points.

Consequently, it yields exponential convergence of the euclidean distance between

any two trajectories toward zero. Hence, roughly speaking, we have shown that

when the origin is locally exponentially stable and globally attractive then there

exists a strictly decreasing distance between any two trajectories. However, this

convergence is not uniform in e1 and e2. This is a strong difference with the prop-

erty of incremental stability as studied for instance in [5] or [7]. Note moreover that

it is shown in [22] that the asymptotic stability property and incremental stability

property are different.

Note that as mentioned in [3], when the two function p and p are respectively

lower and upper bounded by a nonzero constant then the convergence obtained is

uniform. In this case, the usual definition of incremental stability is recovered.

3.2.4 About the requirement (33)

The requirement (33) is essential to make sure that Rne endowed with the Riemannian

metric P is complete. It is also essential to make sure that the obtained Lyapunov

function is proper. It imposes that the mapping p doesn’t vanish to quickly as |e|
goes to infinity. Going back to a definition of the mapping p obtained in the proof

of Proposition 6, it yields that if the vector field F is globally Lipschitz then p

is a constant. In other words, in the globally Lipschitz context this assumption is

trivially satisfied.

Another solution to make sure that this assumption is satisfied is to modify the

function P to make sure that this one is lower bounded by a positive real number.

Indeed, note that the trajectories of the system

ė =
F(e)

1+
∣∣∣ ∂ F

∂ e
(e)
∣∣∣
3
, ˙̃e =

∂ F
∂ e

(e)

1+
∣∣∣ ∂ F

∂ e
(e)
∣∣∣
3

ẽ

are the same than the one of the lifted system (22) (this system is obtained after

a time rescaling). Consequently, the origin is globally attractive. Moreover, it is

not difficult to show that its origin is also locally exponentially stable. Finally, if

F is C4 then the vector field e 7→
F(e)

1+| ∂ F
∂ e

(e)|
3 is C3. Let Φ̃ be the transition matrix

defined as the solution of the following R
ne×ne dynamical system :

d

dt
Φ̃(e, t) =

∂ F
∂ e

(E(e, t))

1+
∣∣∣ ∂ F

∂ e
(E(e, t))

∣∣∣
3

Φ̃(e, t) , Φ̃(e,0) = I .

Again, each element of the (matrix) time function t 7→ Φ̃(e, t) is in L2([0,+∞)).
Consequently, for all positive definite matrix Q in R

ne×ne , the matrix function :

P̃(e) = lim
T→+∞

∫ T

0
Φ̃(e,s)⊤QΦ̃(e,s)ds , (37)

is well defined. With this mapping, the following property may be obtained.
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Proposition 8 (Lower bounded P) Assume that there exist function (k, k̃) and pos-

itive real numbers (λ , λ̃ ) such that (20) and (24) are satisfied. Then, the matrix

function P : Rne → R
ne×ne defined in (37) is well defined, continuous, and there

exist a a positive real number p and a non decreasing function p̄ such that

0 < pI ≤ P̃(e)≤ p̄(|e|)I , ∀ e ∈ R
ne . (38)

Moreover,

dF P̃(e)+ P̃(e)
∂F

∂e
(e)+

∂F

∂e
(e)⊤P̃(e)≤−Q

(
1+

∣∣∣∣
∂F

∂e
(e)

∣∣∣∣
3
)

, ∀ e ∈ R
ne . (39)

Finally, if the vector field F is C4 then P is C2.

Proof : The proof follows the same step then the one of Proposition 6. For all (e, t)
in R

ne ×R≥0 there exists :

∣∣Φ̃(e, t)
∣∣≤ k̃(|e|)exp(−λ̃ t) .

This allows us to claim that, for every symmetric positive definite matrix Q, the

function P : Rnx → R
ne×ne given by (28) is well defined, continuous and satisfies :

µmax{P(e)} ≤
k̃(|e|)2

2λ̃
µmax{Q}= p(|e|) , ∀e ∈ R

ne .

Morover, for all (t,v) in (R×R
ne), we have :

∂

∂ t

(
v′ [Φ(e, t)]−1

)
=−v′ [Φ(e, t)]−1

∂ F
∂ e

(E(e, t))

1+
∣∣∣ ∂ F

∂ e
(E(e, t))

∣∣∣
3
.

However since we have by (20)

∣∣∣∣∣∣∣

∂ F
∂ e

(E(e, t))

1+
∣∣∣ ∂ F

∂ e
(E(e, t))

∣∣∣
3

∣∣∣∣∣∣∣
≤ 1 ,

it yields the following estimate :

∣∣∣v′Φ(e, t)−1
∣∣∣≤ exp(t) |v| , ∀(t,v) ∈ (R×R

ne) ,

From this following the proof of Proposition 6, it yields :

p =
µmin{Q}

2
≤ λmin{P(e)} ∀ẽ ∈ R

ne .

Also, the following inequality may be obtained :

d F

1+| ∂ F
∂ e

(e)|3
P̃(e)+ P̃(e)

∂ F
∂ e

(e)

1+ | ∂ F
∂ e

(e)|3
+

∂ F
∂ e

(e)⊤

1+ | ∂ F
∂ e

(e)|3
P̃(e)≤−Q , ∀ e ∈ R

ne .

Multiplying the former equation by 1+ | ∂ F
∂ e

(e)|3 and it yields the result. 2
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Since the matrix function P is lower bounded, we can define a Lyapunov func-

tion following the proposition 7. Roughtly speaking we have established the fol-

lowing Lyapunov inverse result : Assuming some regularity on the system, if the

origin is locally exponentially stable and globally attractive then there exists a

strictly decreasing Lyapunov function given as a Riemannian distance to the ori-

gin.

Of course the local exponential stability property is essential. Note that in

[10], is shown that up to a change of coordinates (which is not a diffeomorphism

since it is not smooth at the origin) it is possible to transform any asymptotically

stable system in an exponentially stable system. This implies that up to a change

of variable, it is always possible to consider Lyapunov function coming from a

Riemannian distance.

3.3 Stabilization

From the previous analysis, it has been shown that a linearization approach leads

to the constuction of global Lyapunov function in the case of local exponential sta-

bility and global attractivity. It may be interesting to know if this type of Lyapunov

function may be used in control design.

We consider here a controlled nonlinear system given on R
n as

ẇ = f (w)+g(w)u , (40)

with f : Rn → R
n and g : Rn → R

n are smooth vector fields and u the controlled

input is in R.

Our objective is to construct a control u = φ(w) that achieves local exponential

stabilization and global attractivity of the origin. Based on the former analysis, a

sufficient condition based on the use of a Riemanian Lyapunov function may be

given. Note however that these assumptions inspired from [8] and [1] are very

conservative.

Proposition 9 Assume there exists a mapping P : Rn → R
n×n such that

1. The matrix function P is C3, satisfies the condition (29), (33) and there ex-

ists a positive real number λ and a positive definite matrix Q such that the

following matrix inequality holds :

d f P(w)+P(w)
∂ f

∂w
(w)+

∂ f

∂w
(w)⊤P(w)−λ |P(w)g(w)|2 ≤−Q , ∀ w ∈R

n .

(41)

2. g is a Killing vector field for the metric P. In other word, for all w in R
n :

LgP(w) = dgP(w)+P(w)
∂g

∂w
(w)+

∂g

∂w
(w)⊤P(w) = 0 .

3. There exists a mapping U : Rn → R such that :

∂U

∂w
(w) = P(w)g(w)⊤ . (42)

Then the control law u=−λU(w) achieves local exponential stability and globally

attractivity of the origin of system (40) in closed loop.
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Proof : The proof follows readily from Proposition 7. Indeed, the closed loop

system may be rewritten as

F(w) = f (w)−λg(w)U(w) .

Note that if we compute the Lie derivative of the tensor P, it yields

LF P(w) = L f P(w)−λLgP(w)U(w)−P(w)g(w)
∂U

∂w
(w)

From the assumptions, this yields the following property :

LF P(w) = L f P(w)−λ |P(w)g(w)|2 ≤−Q

From Proposition 7, it implies the result. 2

Following [3], it is possible to slightly relax these assumptions by introducing a

scaling factor α(w) which multiply g and by rewriting these assumption accord-

ingly.

4 Conclusion and final remark

In this note, it has been shown how first order approximation study may lead to the

construction of Lyapunov function that characterizes the local exponential stability

of a transverse manifold. In the context of stabilization of an equilibrium point, a

global Lyapunov function may be constructed from first order approximation. In

this case, one has to consider the Riemaniann length to the origin as a Lyapunov

function.

An interesting question is to consider the problem of global stability property

for a transverse manifold. However, as it can be shown in this simple example,

some problematic effect can show up. Consider the following planar system de-

fined on R
2:

ė =−φ(x)e , ẋ = µxx , φ(x) = λ +x sin(x) . (43)

It can be checked, that its solutions are defined for all t in R as :

E(e0,x0, t) = exp

(
−λ t +

cos(1)−cos(eµxtx0)

µx

)
e0 , X(e0,x0, t) = eµxtx0 .

This implies that the manifold {(e,x),e = 0} is locally exponential stable and glob-

ally attractive uniformly in x. Indeed, we have for all (e0,x0) in R :

|E((e0,x0), t)| ≤ exp

(
cos(1)+1

µx

)
exp(−λ t)|e0| .

However, note that if we consider the transversally linear system, we have :

˙︷ ︷[
Ẽ

X̃

]
=

[
φ(eµxtx0) φ ′(eµxtx0)E(e0,x0, t)

0 µx

][
Ẽ

X̃

]
,

which gives (with Ẽ(t) = Ẽ(ẽ0, x̃0,e0,x0, t)) :

Ẽ(t) = exp

(∫ t

0
φ(eµxsx0)ds

)
ẽ0 +

∫ t

0
exp

(∫ t

s
φ(eµxν x0)dν

)
φ ′(eµxν x0)

×E(w0,s)e
µxsx̃0ds ,

= exp

(∫ t

0
φ(eµxsx0)ds

)[
ẽ0 +

∫ t

0
φ ′(eµxsx0)e

µxse0x̃0ds

]
.
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Hence, this yields x0 6= 0,

Ẽ(t) = exp

(∫ t

0
φ(eµxsx0)ds

)[
ẽ0 +

φ(eµxtx0)−φ(x0)

µx

e0x̃0

x0

]
.

With φ previously defined it gives :

Ẽ(t) = exp

(
cos(x0)−cos(eµxtx0)

µx

)

×

[
e−λ t ẽ0 +

e(µx−λ )t sin(eµxtx0)− sin(x0)e
−λ t

µx
e0x̃0

]
.

It can be checked that Ẽ(t) doesn’t converge to zero if λ < µx if for instance e0 = 1,

x0 = 1, x̃0 = 1. From this remarks, this implies that the study of the linearized

system have to be taken with care. Indeed, this implies that the Fact 1 given in

the introduction is no longer valid in this context. More precisely, exponential

convergence to the origin of the e dynamics, doesn’t imply that the ẽ component

of the linearized system along the solutions converges to zero.

In [2], it has been shown that when the convergence rate to the manifold is

larger then the expansion rate in the manifold, Fact 1 may hold. In this case, it is

possible to construct a Lyapunov function based on first order approximation.

Finally, the construction of a matrix function P which satisfies equations (15),

(30) or (41) is a crucial step in order to make this framework interesting from a

practical point of view. Preliminary results aiming at solving a differential Ric-

cati equation (as the one given in (41)) are given in [24]. Backstepping based

approaches is also a possible research line (see [27] or [28]). Finally, a method fol-

lowing a numerical approximation of the partial differential equation should also

be considered.

References

[1] V. Andrieu, B. Jayawardhana, and L. Praly. On transverse exponential sta-

bility and its use in incremental stability, observer and synchronization. In

Proc. of the 52nd IEEE Conference on Decision and Control, 2013.

[2] V. Andrieu, B. Jayawardhana, and L. Praly. Globally transverse exponential

stability. Technical report, 2015.

[3] V. Andrieu, B. Jayawardhana, and L. Praly. Transverse exponential stability

and applications. Submitted to IEEE Transactions on Automatic Control,

2015.

[4] V. Andrieu, B. Jayawardhana, and S. Tarbouriech. Necessary and sufficient

condition for local exponential synchronization of nonlinear systems. In

Proc. of the 54th IEEE Conference on Decision and Control, 2015.

[5] D. Angeli. A lyapunov approach to incremental stability properties. Auto-

matic Control, IEEE Transactions on, 47(3):410–421, 2002.
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control. Communications and Control Engineering Series. Springer-Verlag,

1997.

22



[26] A.R. Teel and L. Praly. A smooth Lyapunov function from a class-${\ math-

cal {KL}}$ estimate involving two positive semidefinite functions. ESAIM:

Control Optim. Calc. Var., 5:313–367, 2000.

[27] M. Zamani and P. Tabuada. Backstepping design for incremental stability.

Automatic Control, IEEE Transactions on, 56(9):2184–2189, 2011.

[28] M. Zamani, N. van de Wouw, and R. Majumdar. Backstepping controller

synthesis and characterizations of incremental stability. Systems & Control

Letters, 62(10):949–962, 2013.

23


	Introduction
	Local transverse exponential stability of a manifold
	Transverse local uniform exponential stability 
	Fact 1 : Exponential stability of a linearized system 
	Lyapunov matrix inequality
	Construction of a Lyapunov function

	Global stability properties
	Local exponential stability and global attractivity
	Global Lyapunov functions based on first order approximations
	Fact 1 : Stability property of the linearized system along the solutions
	Fact 2 : Lyapunov matrix inequality
	Fact 3 : Construction of a Lyapunov function
	About the requirement (33) 

	Stabilization

	Conclusion and final remark

