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Abstract

An extension of the class of piecewise linear (PL) systems is proposed to model gene expression dynamics
dependent on dilution due to cell growth rate. The growth rate is modeled as the weighted minimum of two or
more limiting gene products responsible for bacterial growth. The production terms are still piecewise constant,
but now the degradation terms are piecewise quadratic (PQ). This new mathematical formalism exhibits con-
tinuous switches between PQ modes. We first study the novel dynamical behavior generated by the nonlinear
terms at the regions of discontinuity of the vector fields, showing that the sliding motion configurations occur-
ring in PL systems can further lead to damped convergent oscillations or periodic behavior in PQ systems. As
an application, a core model of the bacterial gene expression machinery is studied with the goal of externally
tuning the growth rate of cells. This system may exhibit several behaviors including bi-mode bistability or
damped oscillatory behavior.

1 Introduction
The concepts and methods from systems and control theory have a large potential to significantly help in systems
and synthetic biology research, where the goal is to develop and apply engineering tools to control cellular
behavior and achieve desired functions [25]. Synthetic biology aims at constructing novel biological circuits in
the cell and most recent designs focus on assembling components from the cell transcription machinery, which
includes the genes to be expressed, their promoters, RNA polymerase, ribosomes and transcription factors, all
serving as potential individual engineering components [11, 13, 31].

In this context, control-based approaches are increasingly being used in synthetic biology [1, 21, 23, 32]
where some control theoretical results are applicable, although with various limitations due to biological con-
straints [7, 29].

Here, our goal is to introduce a novel mathematical formalism to qualitatively model gene expression and
dilution due to cell growth. In fact, one of the aims of systems and synthetic biology is to link molecular-level
mechanisms (e.g. gene expression) to cell-level behavior (e.g. growth rate) [25]. To this aim, we introduce a
model where bacterial growth rate is limited by different factors, which ultimately leads to a continuous-switch
piecewise quadratic (CSPQ) formalism–derived from piecewise linear (PL) systems [8, 17].

An application of this modeling formalism is the control the cells’ growth rate by designing appropriate laws.
Growth control is essential in industrial biotechnology and fundamental research of this kind could pave the way
to novel types of antimicrobial strategies [20]. We analyze a core model of the gene expression machinery of the
bacterium Escherichia coli, where the growth rate is controlled externally by tuning the synthesis of a component
of the gene expression machinery (RNA Polymerase). This type of control can be easily implemented, for
instance, by means of inducers that activate synthetic inducible promoters [19].

A first formulation and preliminary results on CSPQ systems were introduced in [5]. Here, new properties
of these systems are investigated. Section 2 recalls and extends the formulation of CSPQ systems. In Section 3
we state and prove some theorems on the stability of each piecewise quadratic (PQ) subsystem; in particular,
new results are given on the properties of sliding modes and their differences with respect to the “standard” PL
system. Section 4 studies local stability of the CSPQ system. Section 5 discusses an application to an open-loop
control system of bacterial gene expression. Section 6 summarizes our results and conclusions.
∗Emails: alfonso.carta@gmail.fr, madalena.chaves@inria.fr, jean-luc.gouze@inria.fr
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Figure 1: Example of gene expression data points [4] and possible activation functions. Step (dash-dotted),
logoid (dashed), or a C1 Hill-type function (solid).

2 Continuous-switch piecewise quadratic systems
As introduced in [5], the switched piecewise quadratic systems are an extension of piecewise linear (PL) systems,
a class of well known qualitative models originally introduced by [15] and further studied in [6, 10, 17]. The PL
systems are very useful to study genetic networks in the absence of detailed data or parameter knowledge (see,
for instance, [27]) due to their suitableness for theoretical analysis and simulations using algorithmic tools and
software. However, PL systems consider only linear protein degradation without taking into account cell growth,
required to represent the connections between molecular and cellular mechanisms.

To overcome this problem, we consider a general model structure to describe the dynamics of the concentra-
tions of a system of n species, x = (x1, ...,xn)T ∈ Rn

≥0:

ẋi = fi(x)− (µ(x)+ γi)xi, 1≤ i≤ n . (1)

where fi(x) is the synthesis rate and γi represents the typical linear degradation constant for species i, and µ(x)
represents dilution in the concentrations, proportional to the bacterial growth rate and equal for all species. These
terms are next defined.

The function fi : Rn
≥0 → R≥0 represents the expression rate of the gene i depending on state x. Several

experiments [4, 31] show that gene expression often follows an increasing (or decreasing) curve h(x) as a function
of an activator (or inhibitor) x, between two essentially flat regions:

h(x) =


0, x < xlow
h̃(x), xlow < x < xhigh
1, x > xhigh

(2)

where h̃(x) may take any form. The logoid (linear h̃) is studied in [24]. A C1 alternative is a Hill-type function
b+ax2/(x2 +θ 2) (see Fig. 1). To facilitate theoretical analysis, in the class of piecewise linear systems, activation
functions are approximated by step functions, so that the function fi has the general form:

fi(x) =
n

∑
l=1

kilbil(x)

where kil ≥ 0 is a rate parameter and bil(x) is a sum of products of step functions, s+,s−. These are defined in
terms of a threshold parameter θ > 0:

s+(xi,θ) =

{
1 if xi > θ

0 if xi < θ
; s−(xi,θ) = 1− s+(xi,θ).

Note that, in the case µ(x) ≡ 0, system (1) recovers the classical piecewise linear (PL) systems [8]. Assuming
that bacterial growth rate is limited by the amount of one or more generic cellular components [5] which are
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necessary to sustain the gene expression machinery of the cell, let the growth rate µ : Rn
≥0→ R≥0 be given as:

µ(x) = min
1≤i≤n

{ µi xi } (3)

where µi ≥ 0 are proportion factors depending, for instance, on the carbon source used. If µk = 0, then growth
doesn’t depend on species k. Similar expressions have been used recently for ribosomal regulation in E. coli [28].
This formulation appears also in other contexts, such as in ecology where the specific growth rate of species is
often determined by the resource that is most limiting according to Liebig’s “law of the minimum” [18].

System (1) belongs to the class of switched systems [22] in which the growth rate µ acts as the rule that
orchestrates the switching between the different subsystems (4):

mode-r: ẋi = fi(x)− [µrxr + γi]xi, 1≤ i≤ n. (4)

Each mode is piecewise quadratic (PQ), hence to study the dynamics of the (full) CSPQ system (1) we will first
characterize the dynamics of its PQ modes (4), and then investigate the properties arising from the switching
condition.

3 The PQ subsystem: dynamical study
A dynamical study is provided for mode-r in (4), that is when µ(x) = µrxr. The PQ system can be written as:

ẋ = f (x)−d(xr)x, (5)

where f = ( f1, ..., fn) and d(xr) = diag(µr xr +γ1, ...,µr xr +γn), where diag is the diagonal matrix corresponding
to the vector.

First, note that the non-negative orthant remains invariant, since xi = 0 implies ẋi ≥ 0. Second, note that all
solutions remain bounded, since fi(x)− di(xr)xi < maxx∈Rn

≥0
fi(x)− γixi, where maxx∈Rn

≥0
fi(x) < ∞, by defini-

tion of f . Without loss of generality, the dynamics of the PQ subsystem can be studied in the n-dimensional
state-space Ω = Ω1×Ω2× ...×Ωn, where each Ωi is defined by Ωi = {xi ∈ R≥0|0 ≤ xi ≤ maxi} with maxi =
maxx∈Rn

≥0
fi(x)/γi. The set Ω is thus invariant for system (5). Each protein will be involved in different inter-

actions at different concentration thresholds so, for each variable xi, we assume there are pi ordered thresholds
θ 1

i , ...,θ pi
i and let θ 0

i = 0, θ
pi+1
i = maxi. These thresholds partition Ω into hyper-rectangular regions called

domains. Specifically, a domain D⊂Ω is defined to be a set D = D1× ...×Dn, where Di is one of the following:

Di =
{

xi ∈Ωi|θ ji
i < xi < θ

ji+1
i

}
, for ji ∈ {0, ..., pi}

Di =
{

xi ∈Ωi|xi = θ
ji

i

}
, for ji ∈ {1, ..., pi}.

Let D be the set of domains in Ω. A domain D ∈ D is called a regular domain if none of the variables xi has
a threshold value in D (it is the full hyper-rectangle). In contrast, a domain D ∈ D is called a threshold domain
of order k ≤ n if exactly k variables have threshold values in D (in [24] threshold domains are called switching
domains, but we avoid this definition to prevent misunderstandings with switched system). The corresponding
variables xi are called threshold variables in D. The two sets of domains are respectively denoted by Drg andDth.

3.1 Solutions and Stability in Regular Domains
For any regular domain D, for all x ∈ D the function f (x)≡ f D is a constant, so (5) can be written as

ẋ = f D−d(xr)x, (6)

as done in [5]. Note that (6) is a hierarchical system, since the function fr(x) depends only on xr while fi(x)
depends only on xi and xr, but not on x j, j 6= r, i. Thus, for any x(t0) ∈ D the unique solution of (6) can be
found explicitly by solving first the r-component of (6), which is an autonomous differential equation, and then
successively solving for the i-components (i 6= r), having substituted xr(t) into them.
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Definition 1 Given a regular domain D ∈ Drg, the point Φ(D) = (x̄1, ..., x̄n)T ∈ Ω (defined by f D = d(xr)x) is
called the focal point for the flow in D.

The focal points of the PQ system (5) have the form:

x̄i = η(x̄r, f D
i ,µr,γi) =

f D
i

µr x̄r + γi
, i = 1, ...,n, i 6= r

x̄r = ϕ( f D
r ,µr,γr) =

−γr +
√

γ2
r +4µr f D

r

2µr
,

(7)

A focal point is a regular equilibrium point provided that it belongs to its respective regular domain, i.e. Φ(D) ∈
D. We now expand some basic results from [5] on the stability of these points.

Theorem 1 Consider a regular domain D = D1×·· ·×Dn ∈ Drg with Di = (θ ji
i ,θ ji+1

i ). Assume that Φ(D) =
(x̄1, ..., x̄n)T ∈ D. Then Φ(D) is a locally asymptotically stable equilibrium of the system (6) with respect to its

domain D. If, in addition, the following conditions are satisfied: (a) θ
ji+1

i >
f D
i
γi

and (b) θ
ji

i <
f D
i

µrθ
jr+1

r +γi
, for all

i 6= r, then Φ(D) is globally asymptotically stable with respect to D.

Proof: If Φ(D) ∈ D, then θ
ji

i < x̄i < θ
ji+1

i for all i. Note that variable xr is autonomous and its equation can be
written ẋr =−µr(xr− x̄r)(xr−ω), where x̄ is given by (7) and ω < 0 is the second root of the quadratic equation.
Since θ

jr
r < x̄r < θ

jr+1
r , it follows immediately that ẋr > 0 at xr = θ

jr
r and ẋr < 0 at xr = θ

jr+1
r . Hence xr(t)→ x̄r.

For variable xi, i 6= r, one can write

ẋi = (µrxr + γi)
(

f D
i

µrxr + γi
− xi

)
,

where µrxr + γi > 0. The local stability follows by linearization around Φ(D), which yields a triangular system
with negative diagonal entries. To prove global stability with respect to D, assume that (a) and (b) hold. Then

θ
ji

i <
f D
i

µrθ
jr+1

r + γi
<

f D
i

µrxr + γi
<

f D
i
γi

< θ
ji+1

i .

Thus, xi ≥ θ
ji+1

i implies ẋi < 0 and xi ≤ θ
ji

i implies ẋi > 0 and both imply that xi cannot leave the interval Di.
Therefore, the regular domain D is a forward-invariant set for the system. Since the system is in a cascade,
xr(t)→ x̄r also implies xi(t)→ x̄i, which concludes the first part.

If (a) or (b) fail, one can show that stability is only local. Suppose (a) is false so θ
ji+1

i < f D
i /γi for some i.

For any ε > 0 small enough, consider an initial condition x0 satisfying:

x0i = θ
ji+1

i − ε <
f D
i
γi

,
f D
i

µrxr0 + γi
> θ

ji+1
i

Then ẋi > 0 for some time interval and, letting ε > 0 tend to zero, some trajectories will leave the domain D
through the boundary xi = θ

ji+1
i .

Note that, for PL systems, global asymptotic stability with respect to D is guaranteed: since µr = 0, the focal
points are given by xi = f D

i /γi for all i and conditions (a)-(b) are automatically satisfied. In general, all trajectories
in a regular domain D flow towards the focal point Φ(D) asymptotically unless they reach a boundary and leave
the domain D. Since the step functions are not defined for xi = θ

ji
i , we next analyze in detail the dynamics at

threshold domains.

3.2 Solutions and Stability in Threshold Domains
Since the function f is a sum of products of step functions, it is discontinuous at the threshold points. In order to
provide the existence and the possibility for solutions to be continued on all domains, we have to define the right-
hand side of system (5) at these points. To do this, we use a construction originally proposed by Filippov [12]
and then applied to PL systems [17]. The method consists of extending the system (5) to a differential inclusion,

ẋ ∈ H(x), (8)
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where H is a set valued function (i.e. H(x)⊆ Rn). If D ∈Drg, then we define H simply as

H(x) = { f D−d(xr)x}, ∀x ∈ D. (9)

If D ∈Dth, we define H as

H(x) = co({ f D
′
−d(xr)x | D

′ ∈ R(D)}), ∀x ∈ D, (10)

where R(D) = {D′ ∈Drg | D⊆ ∂D
′} is the set of all regular domains with D in their boundary, and co(X) is the

closed convex hull of X . For threshold domains, H(x) is typically multi-valued so solutions of the differential
inclusion are defined as follows.

Definition 2 A solution of (8) on [0,T ] in the sense of Filippov is an absolutely continuous function (w.r.t. t)
ξt(x0) such that ξ0(x0) = x0 and ξ̇t ∈ H(ξt), for almost all t ∈ [0,T ].

To see how to construct H(x) at a discontinuity point, consider the case where x belongs to a threshold domain
S separating two regular domains DA and DB. Hence,

H(x) = co({ f DA −d(xr)x, f DB −d(xr)x})

represents the segment joining the endpoints of the vectors gA = f DA −d(xr)x and gB = f DB −d(xr)x. Roughly
speaking, trajectories can cross S if the vector fields gA and gB point in the same sense across S, slide along S if
gA and gB point in opposite senses towards S and be repelled from S if gA and gB point in opposite senses away
from S (see some examples of vector fields in Fig. 2). The last two cases are known as stable and unstable sliding
motion in the literature [12]. Moreover, the velocity of the sliding motion (stable or unstable) on S is given by

ẋ = α f DA +(1−α) f DB −d(xr)x. (11)

The dynamics of PQ systems is similar to that of PL systems at threshold domains in xr, but they exhibit new
behavior on the emergence of sliding motion at thresholds of the form xi, i 6= r (see the discussion in Sec-
tions 3.3, 3.4 below). It is useful to extend the concept of focal point to threshold domains by defining the focal
set:

Definition 3 Let supp(D) be the (n− k)-dimensional hyperplane supporting D. If D is a threshold domain of
order k, then its focal set Φ(D) is

Φ(D) = supp(D) ∩ {x : 0 ∈ H(x)}, (12)

where H(x) is defined as in (10).

Hence, Φ(D) for D ∈ Dth is the set containing all the equilibrium points of the differential inclusion (8),
which lie on supp(D). Thus, Φ(D) can be a singleton, but more generally is a closed convex bounded set and
hence is referred to as a focal set.

From now on, we make a technical assumption saying that the focal set Φ(D) does not intersect the supporting
hyperplanes of threshold domains at the boundary of D:

Assumption 1 For all D ∈D , we assume that Φ(D)∩ supp(D′) = /0, for all D
′ ⊂ ∂ (D).

System (5) may also have singular equilibrium (to be studied on a case-by-case basis), defined as a point x̄
belonging to some threshold plane and satisfying the condition 0 ∈ H(x̄).

3.3 Dynamics at threshold domains xr = θr

Consider the case when two regular domains, DA and DB, share a boundary segment S with xr = θr and their
focal points are on opposite sides of this threshold domain:

sup{xr : x ∈ DA}< θr < inf{xr : x ∈ DB}

and Φr(DA) > θr > Φr(DB).
Since the ẋr equation depends only on xr, a solution of the form (11) can be constructed where the value of α

is constant for all x∈ S and thus a sliding motion occurs along the threshold domain, as in the case of PL systems.
Moreover, the vector field on S converges towards the focal set as defined in (12) (see [6, 17] for more details).
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(a) (b)

(c) (d)

Figure 2: Different configurations of dynamics at a threshold domain, xi = θi with i 6= r, for a 2-dimensional
PQ system. Note that xr is represented on the horizontal axis and xi on the vertical axis. The figures represent
two regular domains DA and DB, separated by a threshold domain (dashed black horizontal line). Each domain
contains the other’s focal point (diamond symbols, ΦA and ΦB). The dashed (resp. dot-dashed) blue curve
represents the nullcline ẋi = 0 for domain DA (resp. DB) through the respective focal point, while the solid
blue curve represents a linear combination of the two vector fields: (α f DA

i +(1−α) f DB
i )/γi. The dashed (resp.

dot-dashed) arrows represent the vector field in domain DA (resp. DB). One trajectory is depicted for each case
(solid red curves). The common parameters for (b)-(d) are: µr = 0.5, γr = γi = 1, θi = 2.1, f DA

r = 2, f DA
i = 3.75,

f DB
r = 7. The plots represent: (a) the PL case, µr = 0, γr = γi = 1, f DA

r = 1.2, f DA
i = 2.3, f DB

r = 3.2, f DB
i = 1.2,

(b) the case f DA
i > f DB

i = 3, (c) the case f DA
i = f DB

i , and (d) the case f DA
i < f DB

i = 4.5.
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3.4 Dynamics at threshold domains xi = θi, i 6= r

To give a clear idea of the different dynamical behaviors that may arise, here we will study only the 2-dimensional
case, with variables (xi,xr). Let the boundary segment S between DA and DB be of the form xi = θi, i 6= r:

sup{xi : x ∈ DA}< θi < inf{xi : x ∈ DB} (13)

and
Φi(DA) > θi > Φi(DB), (14)

which characterizes the location of Φi(D), the i-th coordinate of region D’s focal point. Three different cases can
happen, shown in Fig. 2(b)-(d), depending on the configuration of the nullclines ẋi = 0 passing through the focal
points, which are of the form νi(xr) = f D

i /(µrxr + γi) given in (7). The three configurations are characterized
by the sign of f DA

i − f DB
i which implies an ordering between the two nullclines (dashed and dot-dashed curves

in Fig. 2) and introduces a subdivision of the threshold domain xi = θi into regions where the vector fields have
the same or opposite signs. Theorem 2 summarizes the main results. For comparison, the “standard” PL case is
shown in Fig. 2(a).

Theorem 2 Consider a 2-dimensional system of the form (5), with coordinates (xi,xr), and let DA and DB be
two adjacent regular domains of system sharing a boundary segment S of the form xi = θi, i 6= r. Assume
conditions (13) and (14) are satisfied and that the focal set Φ(S), given by (12), belongs to S. The dynamics of
the system at the threshold domain S can then be characterized as follows:

1. If f DA
i > f DB

i , then the system has a stable sliding motion on S towards the focal set Φ(S);

2. If f DA
i = f DB

i , then the system has a damped oscillation on DA and DB towards the focal set Φ(S);

3. If f DA
i < f DB

i , then the focal set Φ(S) is unstable, and there is an unstable sliding motion on the threshold
domain.

Proof: The 2-dimensional system has the form:

ẋr = f D
r − (µrxr + γr)xr =−µr(xr−Φr(D))(xr +ω

D),
ẋi = f D

i − (µrxr + γi)xi, (15)

where Φr(D) > 0,ωD > 0 are given by

Φr(D) =
−γr +

√
γ2

r +4µr f D
r

2µr
, ω

D =
γr +

√
γ2

r +4µr f D
r

2µr
.

In general, let νA(xr) and νB(xr) represent the nullclines ẋi = 0 of the system passing through the focal points
Φ(DA) and Φ(DB). Let RA and RB denote the xr coordinate of the intersection between the nullclines and the
segment S:

θi = ν
A(RA), θi = ν

B(RB).

with RDα = f Dα
i

µrθi
− γi

µr
, α ∈ {A,B}.

1. In this case, from (7) we see that νA(xr) > νB(xr) for all xr ∈ S and also RA > RB. In particular, the focal
set is between νA(xr) and νB(xr). Therefore, from the vector fields on DA and DB it becomes clear that

xr < RB : f DA
i −d(xr)θi > 0, f DB

i −d(xr)θi > 0,

RB < xr < RA : f DA
i −d(xr)θi > 0 > f DB

i −d(xr)θi,

xr > RA : f DA
i −d(xr)θi < 0, f DB

i −d(xr)θi < 0.

This implies that the vector fields can be normally continued “outside the nullclines”, for all xr < RB (transition
from DA to DB) and xr > RA (transition from DB to DA). Between the nullclines, a stable sliding motion can be
constructed according to (11) (see Fig. 2(b)).
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2. In this case, it follows that the nullclines coincide: νA(xr) ≡ νB(xr) which is also the convex hull of the
two vector fields. Therefore, f DA

i = f DB
i = fi, RA = RB = R and we have: [xr −R] · [ fi− d(xr)θi] < 0, so the

vector fields can be continued normally from DA to DB for xr < R, and in the opposite sense for xr > R (see
Fig. 2(c)). To prove that the oscillatory dynamics is converging towards Φ(S)∩H(x) = (θi,R), we will translate
system (15) towards this point and then use Lyapunov’s direct method. Thus, letting zi = xi−θi and zr = xr−R,
after simplification we obtain for α ∈ {A,B}:

żr =−gα(zr), żi =−θiµrzr− (µrzr +
fi

θi
)zi, (16)

with
gα(zr) := µr(zr +R−Φr(Dα))(zr +R+ω

Dα ) (17)

for zi ≥ −θi and zr ≥ −R. Note that x ∈ DA is equivalent to zi < 0 and similarly x ∈ DB is equivalent to zi > 0.
Consider the following Lyapunov function candidate for system (16):

V (zr,zi) =
{

z2
r −bAzi, zi ≤ 0

z2
r +bBzi, zi > 0,

(18)

where
bα =

2
µrθi
|gα(0)|, α ∈ {A,B}. (19)

It is clear that V is continuous and positive definite on R2 since V (0,0) = 0 and V (zi,zr) > 0 for all (zi,zr) 6= (0,0).
Also, V is proper on R2, since the set {z∈R2 : V (z)≤ L} is compact for each L > 0. Let z∗ be any initial condition
in DA∩DB and z(t) the corresponding trajectory of (16). The derivative of V along z(t), V̇ (t), is given by:

V̇ (t) =

{
−2zrgA(zr)+bAθiµrzr +bA(µrzr + fi

θi
)zi, zi ≤ 0

−2zrgB(zr)−bBθiµrzr−bB(µrzr + fi
θi

)zi, zi > 0.

We need to analyze the sign of the terms in dV/dt. For the last term, note that −R≤ zr < 0 implies :

µr|zr|< µrR < µrR+ γi =
fi

θi
⇒ µrzr +

fi

θi
> 0.

Therefore, bα(µrzr + fi
θi

) > 0 for all zr ≥−R, which implies
bA(µrzr + fi

θi
)zi ≤ 0, zi < 0

0, zi = 0
−bB(µrzr + fi

θi
)zi < 0, zi > 0.

(20)

Consider now the first two terms for zi < 0:

−2zrgA(zr)+bA
θiµrzr =−2zr(gA(zr)−gA(0)) < 0, (21)

for all zr ≥ −R and zr 6= 0. We used the fact that |gA(0)| = gA(0), due to R > Φr(DA), and also that gA is an
increasing function for all zr ≥−R (its derivative is given by dgA/dzr = 2(zr +R)+ γr/µr). Similarly, for zi > 0,
we have |gB(0)|=−gB(0), due to R < Φr(B), hence

−2zrgB(zr)−bB
θiµrzr =−2zr(gB(zr)−gB(0)) < 0, (22)

for all zr ≥ −R and zr 6= 0, since gB is also an increasing function for all zr ≥ −R (its derivative is the same as
for gA).

Putting together the inequalities (20)-(22) we conclude that dV/dt < 0 for all (zi,zr) 6= (0,0). For points
on the threshold zi = 0, although dV/dt is discontinuous, (21) and (22) show that the values at zi = 0+ and
zi = 0− are both negative, so V (z(t)) is a strictly decreasing function of time, for any trajectory z(t). Then V is
a Lyapunov function in the sense of Definition 2 of [2], and Theorem 3 in this same reference can be used to
conclude that the point (θi,R) is indeed an equilibrium point of system (16).
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3. In this case, the nullclines satisfy the opposite ordering to those in the first case, that is νA(xr) < νB(xr)
for all xr ∈ S and RA < RB, which leads to:

xr < RA : f DA
i −d(xr)θi > 0, f DB

i −d(xr)θi > 0,

RA < xr < RB : f DA
i −d(xr)θi < 0 < f DB

i −d(xr)θi,

xr > RB : f DA
i −d(xr)θi < 0, f DB

i −d(xr)θi < 0.

This implies that the vector fields can again be normally continued “outside the nullclines”, for all xr < RA

(transition from DA to DB) and xr > RB (transition from DB to DA). However, for RA < xr < RB, the vector fields
generate an unstable sliding motion on the threshold xi = θi. Depending on the parameters, a periodic orbit may
appear between the two domains (see Fig. 2(d)).

4 Local stability analysis of the CSPQ system
System (1) belongs to a very small family within the wide class of switching systems (see, for instance, [3]) since
its vector field is continuous at all points of the switching surfaces, except at the intersections with threshold
domains (where the vector field is not uniquely defined). To study existence and local stability of equilibria of
CSPQ systems, for each µr > 0, we will define an open region χr ⊂ Rn, in which system (1) is in mode-r. Let
M = {1≤ m≤ n : µm > 0} be the set of indexes of variables contributing to the growth rate and then define for
all r ∈M:

χr = {[x1, ...,xn]T ∈ Rn : µrxr < µixi, ∀i 6= r}. (23)

Define also the switching surface between modes r and p:

Sr,p = {[x1, ...,xn]T ∈ Rn : µpxp−µrxr = 0} . (24)

Let Ψm and Λm (m = 1, . . . ,n) be the sets containing, respectively, all the locally stable and all the unstable points
of the m-mode (as determined in Section 3).

For simplicity, it is assumed that equilibria of each mode do not lie on switching surfaces Sr,p.

Assumption 2 For all r, p ∈M: Ψm∩Sr,p = /0, Λm∩Sr,p = /0 for m ∈ {r, p}.

Therefore, a stable (resp. unstable) point of the m-mode is also a stable (resp. unstable) point of the CSPQ (1),
only if it belongs to χm, the region in which the m-mode is active. Let

Ψ = ∪m∈M (Ψm∩χm) . (25)

denote the set of locally stable points of (1). Prop. 1 shows that two modes cannot mutually contain each other’s
focal points, thus eliminating possible oscillatory behavior around the switching surfaces.

Proposition 1 Given any D ∈ Drg, let ΦP and ΦR represent its focal points in modes p and r. Then either
ΦP /∈ χR or ΦR /∈ χP.

Proof: Given regular domain D the focal points ΦP, ΦR are calculated according to (7):

Φ
P
p =
−γp +

√
γ2

p +4µp f D
p

2µp
, Φ

P
r =

f D
r

µpΦP
p + γr

(26)

Φ
R
p =

f D
p

µrΦR
r + γp

, Φ
R
r =
−γr +

√
γ2

r +4µr f D
r

2µr
(27)

To prove the statement by contradiction, assume that it is false, so both ΦP ∈ χR and ΦR ∈ χP. Then we can write
µpΦP

p > µrΦ
P
r and µpΦR

p < µrΦ
R
r and, after some algebra, these inequalities lead to both−γr +

√
γ2

r +4µr f D
r >

−γp +
√

γ2
p +4µp f D

p and its opposite. Hence the Proposition holds.
Finally, consider the dynamics at the intersection of the switching surface with a regular domain SD = D∩Sr,p.

The continuity of the vector field at SD together with Assumption 2 and Prop. 1 imply that trajectories will
eventually evolve away from SD. In particular, it rules out sliding motion on a switching surface, for the generic
case.
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Figure 3: Regulatory network of the CSPQ model (28). The system consists of RNAP and ribosomes (RIB),
encoded by their respective proxy genes rnap and rib (in fact, RNAP and RIB are made up of different subunits
but here, for simplicity, we consider two proxy gene classes). The synthesis of RNAP is positively regulated by
RIB, RNAP and the control parameter u while RIB is positively regulated by RNAP from the promoters P1 and
P2.
Corollary 1 Consider system (1) with assumption 2. Let D ∈ Drg and assume it intersects a switching surface,
SD = D∩Sr,p 6= /0. Then SD contains no stable equilibria.

The global dynamics of the CSPQ system can clearly generate many different configurations, given the
possible combinations of PQ systems. A general overview of different possibilities can be found, for instance,
in [12] (chapter 9).

5 Growth rate control through RNAP and ribosomes
As an application of the CSPQ formalism, we focus on the gene expression machinery of the bacterium Es-
cherichia coli during the exponential phase [27], with the aim of adjusting the growth rate of the cells to a
desired level. We will further analyze the 2-dimensional CSPQ open loop model developed in previous work [5].
It is a model of a mutant E. coli inspired by the experiments in [30], where an engineered inducible-promoter is
used to externally control the expression of RNAP (see parameter u in (28)).

Our model is based on the idea that growth rate is related to the amount of proteins in the cell. All proteins
are produced in a two-step process [14]: (i) transcription is catalyzed by RNA polymerase (RNAP), an enzyme
which allows the synthesis of mRNA from DNA; (ii) during translation, the mRNA is translated into proteins by
ribosomes, complex molecules composed of various proteins and rRNAs.

The aim of our study is to investigate the possibility of generating single or multiple equilibria, and under
which conditions. For example, switching between different equilibria of the bacterial system might be a strategy
for reducing protein production costs associated with a target protein [28]. Thus, in Section 5.2, we focus on
characterizing the most interesting stability scenarios.

5.1 CSPQ model of the RNAP-ribosomes system
The two variables of our model, xp,xr ∈R≥0, are the concentrations of RNAP and ribosomes both of which play
a pivotal role in protein synthesis and contribute to cell growth (Fig. 3). Using (3) for the growth rate, our model
becomes:

ẋr = k1
r s+(xp,θ

1
p)+ k2

r s+(xp,θ
2
p)− (µ(x)+ γr)xr

ẋp = u
[
k0

ps+(xp,θ
1
p)s+(xr,θ

1
r )+ k1

ps+(xp,θ
2
p)s+(xr,θ

2
r )
]

− (µ(x)+ γp)xp

(28)

where µ(x) = min(µpxp,µrxr) and u ∈ [0,1] is a constant control parameter that modulates the expression of
RNAP and eventually tunes growth rate. In synthetic biology constructions, u can be a chemical inducer such as
aTc or IPTG [13].

The xr equation describes synthesis of ribosomes limited by the production rate of stable-RNAs, which in
turn are regulated at the level of transcription by RNAP [16]. Stable-RNAs are produced from two promoters:
the house-keeping P2 (activated by a low concentration of RNAP, θ 1

p ) and a second promoter P1 (activated by a
higher concentration θ 2

p ).
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Table 1: The regular domains of system (28).

D1 =
{

x ∈ R2
≥0 : 0≤ xr < θ

1
r , 0≤ xp < θ

1
p
}

D2 =
{

x ∈ R2
≥0 : θ

1
r < xr < θ

2
r , 0≤ xp < θ

1
p
}

D3 =
{

x ∈ R2
≥0 : θ

2
r < xr ≤ maxr, 0≤ xp < θ

1
p
}

D4 =
{

x ∈ R2
≥0 : 0≤ xr < θ

1
r , θ

1
p < xp < θ

2
p
}

D5 =
{

x ∈ R2
≥0 : θ

1
r < xr < θ

2
r , θ

1
p < xp < θ

2
p
}

D6 =
{

x ∈ R2
≥0 : θ

2
r < xr ≤ maxr,θ

1
p < xp < θ

2
p
}

D7 =
{

x ∈ R2
≥0 : 0≤ xr < θ

1
r , θ

2
p < xp ≤ maxp

}
D8 =

{
x ∈ R2

≥0 : θ
1
r < xr < θ

2
r , θ

2
p < xp ≤ maxp

}
D9 =

{
x ∈ R2

≥0 : θ
2
r < xr ≤ maxr,θ

2
p < xp ≤ maxp

}
.

Table 2: The focal points Φ j = (Φ j,r,Φ j,p) for each domain D j of system (28), in terms of the functions ϕ,η
defined in (7).

Φ j mode-p mode-r
Φ1 x̄p = ϕ(0,µp,γp) x̄r = ϕ(0,µr,γr)
Φ2 x̄r = η(x̄p,0,µp,γr) x̄p = η(x̄r,0,µr,γp)
Φ3
Φ4 x̄p = ϕ(0,µp,γp) x̄r = ϕ(k1

r ,µr,γr)
x̄r = η(x̄p,k1

r ,µp,γr) x̄p = η(x̄r,0,µr,γp)
Φ5 x̄p = ϕ(uk0

p,µp,γp) x̄r = ϕ(k1
r ,µr,γr)

Φ6 x̄r = η(x̄p,k1
r ,µp,γr) x̄p = η(x̄r,uk0

p,µr,γp)
Φ7 x̄p = ϕ(0,µp,γp) x̄r = ϕ(k1

r + k2
r ,µr,γr)

x̄r = η(x̄p,k1
r + k2

r ,µp,γr) x̄p = η(x̄r,0,µr,γp)
Φ8 x̄p = ϕ(uk0

p,µp,γp) x̄r = ϕ(k1
r + k2

r ,µr,γr)
x̄r = η(x̄p,k1

r + k2
r ,µp,γr) x̄p = η(x̄r,uk0

p,µr,γp)
Φ9 x̄p = ϕ(u[k0

p + k1
p],µp,γp) x̄r = ϕ(k1

r + k2
r ,µr,γr)

x̄r = η(x̄p,k1
r + k2

r ,µp,γr) x̄p = η(x̄r,u[k0
p + k1

p],µr,γp)

The xp equation represents RNAP with both transcription and translation regulation. The synthesis of RNAP
proceeds in two steps, as it is limited by the production of two sub-units (β and β ′) encoded by two different
genes [26]. Thus, a lower concentration of RNAP and ribosomes (resp., θ 1

p and θ 1
r ) are required for a basal

synthesis of RNAP (uk0
p) whereas higher concentrations (resp., θ 2

p and θ 2
r ) are needed for the main synthesis of

RNAP (u[k0
p + k1

p]).
During exponential phase the growth rate is constant [27] so, for each fixed u, according to (3) the system is

near a steady state (x̄r(u), x̄p(u)), with growth rate:

µ̄(u) = min(µp x̄p(u),µr x̄r(u)) (29)

Controlling bacterial growth rate is thus equivalent to controlling the steady states by means of parameter u.
From the considerations above, it follows that 0≤ θ 1

r ≤ θ 2
r ≤maxr and 0≤ θ 1

p ≤ θ 2
p ≤maxp. Therefore, the

state space of each of the two modes of system (28) can be partitioned into nine regular domains (see Table 1).
The threshold domains are as defined in Section 3 (not shown). The focal points of the two modes for each
regular domain D j ( j = 1, ...,9) can be calculated according to (7) (see Table 2). Higher dimensional systems
may be studied through hybrid models dedicated software such as GeneticNetworkAnalyser [9].

To illustrate the dependence of growth rate on the control parameter u, Fig. 4 depicts a bifurcation diagram
with u ∈ [0,1] and all other parameters fixed. First, for each u, the equilibria of system (28) are calculated
through (25) and then the growth rate expression is computed using (29).
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µ̄

Figure 4: A growth rate bifurcation diagram as function of the control parameter u. Black stars represent the zero
steady state (present for any value of u). Blue circles (resp., red squares) represent steady states corresponding
to mode-p (resp., mode-r). Red triangles represent a steady state for mode-r in the case of damped oscillations
between domains D5 and D8 (see Prop. 4). Parameter values used: θ 1

r = 1, θ 2
r = 5, θ 1

p = 1, θ 2
p = 3, k1

r = 6,
k2

r = 17, k0
p = 10,k1

p = 15, γr = γp = 1, µr = 0.5, and µp = 0.8.

5.2 Asymptotic behavior and growth rate characterization
The bifurcation diagram changes as a function of the parameters. Here we chose a set of parameters to illustrate
the variety of dynamical behaviors that can be obtained with system (28). Fig. 4 shows six different scenarios
corresponding to different combinations of equilibria and hence to different growth rates. A straightforward
characterization of the different scenarios can be given in terms of the formulas in Table 2.

Proposition 2 [Absence of growth] Assume the control parameter u is such that µpx̄p < µr x̄r, ϕ(uk0
p,µp,γp) <

θ 1
p , and ϕ(u[k0

p + k1
p],µp,γp) < θ 2

p . Then the only equilibrium of the system is the origin. Moreover, for any u,
assume that the initial condition satisfies xp(t0) < θ 1

p . Then the solution converges to the origin.

From a biological point of view, the origin corresponds to absence of bacterial growth, which happens either
when u is too low to induce RNAP expression (scenario-a) or when RNAP initial condition is too low to initiate
gene transcription (all scenarios in Fig. 4).

From Corollary 1, it follows that system (28) eventually remains on only one of its modes. This allows for
monostability (scenarios b,c in Fig. 4) or bistability (scenarios d,e,f ). In scenarios e,f, the system is mono-mode
bistable in mode-r, since the two non-zero equilibria belong to the same mode. In scenario d the system is
bi-mode bistable, since both modes contribute with a positive equilibrium.

Proposition 3 [Bi-mode Bistability] Assume that the equilibria are given by Φ9 of mode-p and Φ5 = Φ6 of mode-
r. Then the two growth rate expressions are µ̄ = µpϕ(u[k0

p +k1
p],µp,γp) (high level) and µ̄ = µrϕ(k1

r ,µr,γr) (low
level).

Next, we investigate the occurrence of Theorem 2 configurations. It is clear that the production rates are
monotone in both variables, which means that cases as in part 3 (with periodic solutions) can be ruled out.
Configurations as in part 1 or 2 may happen: damped oscillations may exist around the segment S58 = {x : θ 1

r <
xr < θ 2

r ,xp = θ 2
p} between domains D5 and D8, as shown next and illustrated in Fig. 5.

Proposition 4 [Damped oscillations] Assume that, in mode-r, Φ5 = Φ6 ∈D8 and Φ8 ∈D5∪D6. Then the system
has damped oscillations converging to an equilibrium in the focal set Φ(S58).

Proof: In mode-r, the vector fields for D5 and D8 are of the form:

D5 : ẋr = k1
r − (µrxr + γ)xr, ẋp = uk0

p− (µrxr + γ)xp,

D8 : ẋr = k1
r + k2

r − (µrxr + γ)xr, ẋp = uk0
p− (µrxr + γ)xp.
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Φ8

Φ5

Φ9

Figure 5: Phase plane of the CSPQ system (28), corresponding to scenario- f of Fig. 4. The dashed horizontal
and vertical lines represent the thresholds (θ i

j) of the system and the domains are labeled Dk, k ∈ {1, . . . ,9}.
The mode switching line is in solid black. The dashed red curve represents the nullcline ẋp = 0 in mode-r and
also corresponds to the focal set Φ(S58) (see Prop. 4). Three trajectories are shown in dash-dotted magenta,
each converging to one of the equilibria points: origin, Φ9, or the point given by Prop. 4. For comparison, the
corresponding solutions of a differentially continuous system (2) are also shown (solid magenta curves). The
parameters are as in Fig. 4 with u = 0.85.

For parameters satisfying:

−γ +
√

γ2 +4µrk1
r

2µr
< θ 2

p <
−γ +

√
γ2 +4µr(k1

r + k2
r )

2µr

θ 1
r <

uk0
p

2
√

γ2 +4µrk1
r
,

the system satisfies the conditions of Theorem 2, part 2 (with xi = xp), at the threshold domain xp = θ 2
p . This

proves the statement.
This last case leads to interesting dynamics since it permits a large range of parameters to have fairly high

growth rate but always with a limited concentration of ribosomes (xr), which are thought to have a high produc-
tion cost [28]. It can also be combined with bistability, as in scenario- f of Fig. 4.

Finally, the usefulness of the abstract CSPQ formalism is illustrated by comparison with a C1 system, where
the step functions are replaced by a function of the form (2) with h̃(x) = b+ax2/(x2 +θ 2) (with a,b determined
by continuity and xlow = θ i

j − 0.3 and xhigh = θ i
j + 0.3). In Figs. 5 and 6, it is clear that the solutions of both

CSPQ and C1 systems remain qualitatively close. In addition, the new behavior characterized by Theorem 2 is
also observed in the “more biological” system.

6 Conclusion
The class of continuous-switch piecewise quadratic (CSPQ) systems was obtained from PL systems by intro-
ducing a nonlinear term to represent dilution due to growth rate, which is modeled by different expressions
depending on the internal state. The nonlinear terms introduce new dynamical behavior at the threshold domains
where the vector fields are discontinuous. In the case of opposing vector fields, we have characterized differ-
ent configurations which include not only the possible occurrence of sliding motion, as in PL systems, but also
damped oscillations or periodic behavior.

As an application, a CSPQ model was developed to investigate the control of growth rate in E. coli cells
during exponential phase. The analysis revealed several interesting biological scenarios including bistability
and steady states that combine high growth rate with a low amount of ribosomes (useful for lowering protein
production costs).

13



Figure 6: Comparison of the CSPQ system (dash-dotted curves) with an analogous continuously differentiable
system (2) (solid curves). The solutions as a function of time correspond to the damped oscillatory trajectories
in Fig. 5.

To conclude, we believe the CSPQ formalism models properties of realistic gene expression networks with
dynamics dependent on dilution. This qualitative approach is a valid starting point to help guide the construc-
tion of synthetic gene networks, by allowing biologists to select experimental conditions most likely to yield
successful results.
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