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Abstrat

We study systems of ombinatorial Dyson-Shwinger equations with an arbitrary number

N of oupling onstants. The onsidered Hopf algebra of Feynman graphs is NN
-graded, and

we wonder if the graded subalgebra generated by the solution is Hopf or not.

We �rst introdue a family of pre-Lie algebras whih we lassify, dually providing systems

generating a Hopf subalgebra; we also desribe the assoiated groups, as extensions of groups

of formal di�eomorphisms on several variables.

We then onsider systems oming from Feynman graphs of a Quantum Field Theory. We

show that if the number N of independent oupling onstants is the number of interations

of the onsidered QFT, then the generated subalgebra is Hopf. For QED, ϕ3
and QCD, we

also prove that this is the minimal value of N .

All these examples are generalizations of the �rst family of Dyson-Shwinger systems in

the one oupling onstant ase, alled fundamental. We also give a generalization of the

seond family, alled yli.

Keywords. Dyson-Shwinger systems; Feynman graphs; pre-Lie algebras; ombinatorial

Hopf algebras.
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Introdution

In a Quantum Field Theory (shortly, QFT), the Green funtions are developed as a series in the

oupling onstant, indexed by the set of Feynman graphs. These series an be seen at the level

of Feynman graphs. They satisfy a ertain system (S) of ombinatorial Dyson-Shwinger equa-
tion (brie�y, SDSE), whih uses ombinatorial operators of insertion, and allows to indutively

ompute the homogeneous omponents of the Green funtions, aording to their loop number

[1, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28℄. Feynman graphs are organized as a Hopf algebra

HFG , graded by the loop number, and we onsider the subalgebra H(S) of HFG generated by the

omponents of the unique solution of (S). A natural question is to know if the graded subalgebra

generated by the Green funtions is Hopf or not. This problem, and related questions about the

nature of the obtained Hopf subalgebras, are the main objet of study in [6, 7, 8, 9℄. It turns

out that in the ase of QED or ϕ3
, whih are QFT with only one interation, this subalgebra

is indeed Hopf; this is not the ase for QCD, with its four interations. A possibility in this

last ase is to re�ne the graduation, or equivalently to introdue more oupling onstants, whih

makes the subalgebra H(S) generated by the omponents of the solution bigger; we shall prove

here that there exists a N4
-graduation of the Hopf algebra of QCD Feynman graphs, suh that

H(S) is a Hopf subalgebra.

The aim of this text is to study SDSE giving a Hopf subalgebra when the Hopf algebra of

Feynman graphs is given a NN
-graduation, generalizing the results of [7℄ for the loop number

graduation. Reall that if we onsider only one oupling onstant, the Hopf algebra of graphs we

onsider is N-graded, and we obtained two families of SDSE, alled fundamental and yli, and

four operations on SDSE, allowing to obtain all SDSE giving a Hopf subalgebra. The graded

dual of this Hopf subalgebra is the enveloping algebra of a pre-Lie algebra, desribed in [9℄. In

the fundamental ase, the onstant strutures of this pre-Lie algebra are polynomial of degree

≤ 1. We generalize this de�nition to the NN
-graded ase (de�nition 8); these objets are alled

deg1 pre-Lie algebras. Their lassi�ation is done in theorem 24. As enveloping algebras of free

pre-Lie algebras are Grossman-Larson Hopf algebras [10, 11℄, dually the enveloping algebra of a

deg1 pre-Lie algebra an be embedded in a Connes-Kreimer Hopf algebra of deorated rooted

trees [4, 5℄, giving in this way a family of SDSE suh the assoiated subalgebra is Hopf (theorem

27). We also desribe the group assoiated to suh pre-Lie algebras; they all ontain a group of

formal di�eomorphisms.

We then proeed to SDSE oming from a QFT. We �rst study all the possible graduations

of HFG whih are de�ned from ombinatorial datas assoiated to Feynman graphs, suh as the

number of verties, of internal or external half-edges or edges, or the external struture: we

prove that suh a NN
-graduation is assoiated to a matrix C ∈ MN,|V|(Q), where V is the set

of possible verties in the Feynman graphs of the theory (proposition 38); the rank of C is of

speial importane here. We show how to lift these systems at the level of deorated rooted trees,
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using a universal property, and we reover in this way SDSE assoiated to deg1 pre-Lie algebras

previously desribed, if the rank of C is the ardinality of V. We may ask the question of the

minimal rank of C required to obtain a Hopf subalgebra: it is smaller than |V|. In QED or ϕn
, as

this ardinality is 1, the answer is obviously 1; for QCD, we prove in proposition 44 that it is also

|V| = 4. The main idea is to produe primitive Feynman graphs with an arbitrarily large number

of verties of any kind, and we onjeture that for any QFT with enough primitive Feynman

graphs, the minimal rank of the graduation is the number of interations of the theory. We shall

onlude with a generalization of the seond family of SDSE in the N-graded ase, namely yli

SDSE.

This artile is organized as follows. The �rst setion ontains reminders on Connes-Kreimer

Hopf algebras of deorated rooted trees, their universal properties, their graduations and their

graded duals. In the seond setion, we introdue the notion of ombinatorial SDSE in Connes-

Kreimer Hopf algebras; we give three operations on SDSE, and also study the e�et of hanging

the graduation of the subalgebra H(S) generated by the unique solution of suh a SDSE. We

then introdue and lassify deg1 pre-Lie algebras in the next setion, whih dually give us a

�rst family of NN
-graded SDSE. The group assoiated to these pre-Lie algebras are desribed

in the fourth setion. Feynman graphs of a given QFT, their Hopf-algebrai struture and their

SDSE are introdued and studied in the next setion. The last, independent, setion deals with

a generalization of yli SDSE.

Aknowledgment. The researh leading these results was partially supported by the Frenh

National Researh Ageny under the referene ANR-12-BS01-0017.

Notations.

1. Let M and N be nonnegative integers. We denote by [M ] the set of integers {1, . . . ,M}
and by NN

∗ the set of nonzero elements of NN
.

2. The anonial basis of KN
(and of ZN

) is denoted by (ǫ1, . . . , ǫN ).

3. Let a, b ∈ K. We denote by Fa,b(X) the formal series:

Fa,b(X) =

∞∑

k=0

a(a− b) . . . (a− b(k − 1))

k!
Xk =

{
(1 + bX)

a
b
if b 6= 0,

eaX if b = 0.

Note that for all a, a′, b ∈ K, Fa+a′,b(X) = Fa,b(X)Fa′,b(X).

1 Hopf algebras of deorated trees

Let us start with a few reminders on the Connes-Kreimer Hopf algebras of deorated trees

[4, 5℄ and related algebrai strutures. We onsider a nonempty set D, whih we all the set of

deorations.

1.1 De�nition and universal property

De�nition 1 1. A tree is a �nite graph, onneted, with no loop; a rooted tree is a tree

with a pointed vertex, alled the root; a rooted tree deorated by D is a pair (T, d), where T
is a rooted tree and d is a map from the set V (T ) of verties of T to D; for all v ∈ V (T ),
d(v) is alled the deoration of v. The set of isolasses of rooted trees deorated by D is

denoted by TD
.

2. The algebra HD
of rooted trees deorated by D is the free ommutative assoiative algebra

generated by TD
. By de�nition, the set FD

of rooted forests deorated by D, that is to
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say monomials in TD
, or �nite disjoint unions of elements of TD

, is a basis of HD
. The

produt of HD
is the disjoint union of deorated rooted forests.

Examples. We draw rooted trees with their root at the bottom.

1. The rooted trees deorated by D with n ≤ 4 verties are:

qa, a ∈ D; q

q

a
b , (a, b) ∈ D2; q

qq

∨a
cb
= q

qq

∨a
bc
, q

q

q

a
b
c

, (a, b, c) ∈ D3;

q

qq q

∨a
d

c
b

= q

qq q

∨a
c

d
b

= . . . = q

qq q

∨a
b

c
d

, q

qq

q

∨a
db

c

= q

qq

q

∨a
bd

c

,
q

qq

q

∨
a

b

dc

=
q

qq

q

∨
a

b

cd

, q

q

q

q

a
b
c
d

, (a, b, c, d) ∈ D4.

2. The rooted forests deorated by D with n ≤ 3 verties are:

1; qa , a ∈ D; q

q

a
b , qa q b = q b qa , (a, b) ∈ D2;

q

qq

∨a
cb
= q

qq

∨a
bc
, q

q

q

a
b
c

, q

q

a
b
q c = q c q

q

a
b , qa q b q c = qa q c q b = . . . = q c q b qa, (a, b, c) ∈ D3.

The algebra HD
an also be de�ned by a universal property [4, 27℄:

Proposition 2 Let d ∈ D. The linear endomorphism Bd of HD
sends any rooted forest

F ∈ FD
to Bd(F ) ∈ TD

obtained in grafting the di�erent trees of F on a ommon root deorated by

d. This family of endomorphisms satisfy the following universal property: if A is a ommutative

algebra, and for all d ∈ D, Ld : A −→ A is a linear endomorphism, there exists a unique algebra

morphism φ : HD −→ A suh that for all d ∈ D, φ ◦Bd = Ld ◦ φ.

Example. If a, b, c, d ∈ D, Ba( q b q

q

c
d ) = q

qq

q

∨a
cb

d

.

This universal property an be used to de�ne the Connes-Kreimer oprodut of HD
:

Proposition 3 1. There exists a unique oprodut on HD
suh that for all d ∈ D, for all

x ∈ HD
:

∆ ◦Bd(x) = Bd(x)⊗ 1 + (Id⊗Bd) ◦∆(x).

With this oprodut, HD
beomes a Hopf algebra. Its ounit is the map:

ε :

{
HD −→ K

F ∈ FD −→ δF,1.

2. Let A be a ommutative Hopf algebra, and for all d ∈ D, let Ld : A −→ A a linear

endomorphism suh that for all x ∈ A:

∆ ◦ Ld(x) = Ld(x)⊗ 1 + (Id⊗ Ld) ◦∆(x).

The unique algebra morphism φ : HD −→ A suh that for all d ∈ D, φ ◦ Bd = Ld ◦ φ is a

Hopf algebra morphism.

This oprodut admits a ombinatorial desription in terms of admissible uts. For example,

if a, b, c, d ∈ D:

∆ q

qq

q

∨d
cb

a

= q

qq

q

∨d
cb

a

⊗ 1 + 1⊗ q

qq

q

∨d
cb

a

+ q

q

b
a ⊗ q

q

d
c + qa ⊗ q

qq

∨d
cb
+ qc ⊗ q

q

q

d
b
a

+ q

q

b
a
q c ⊗ qd + qa q c ⊗ q

q

d
b .

Here is another appliation of the universal property:
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Proposition 4 Let a = (ad)d∈D be a family of elements of K. We denote by φa the unique

Hopf algebra endomorphism of HD
suh that for all d ∈ D, φ ◦ Bd = adBd ◦ φ. For any forest

F ∈ FD
, denoting by V (F ) the set of verties of F :

φa(F ) =


 ∏

v∈V (F )

ad(v)


F.

Consequently, if for all d ∈ D, ad 6= 0, φa is an automorphism.

Proof. We onsider the endomorphism ϕ de�ned by:

∀F ∈ FD, ϕ(F ) =


 ∏

v∈V (F )

ad(v)


F.

Let F,F1, F2 ∈ FD
. As V (F1F2) = V (F1) ⊔ V (F2), ϕ(F1F2) = ϕ(F1)ϕ(F2), ϕ is an algebra

endomorphism. As V (Bd(F )) = V (F ) ⊔ {root(F )}, ϕ(Bd(F )) = adBd(ϕ(F )). Consequently,

ϕ ◦Bd = adBd ◦ ϕ. By uniity in the universal property, ϕ = φa. �

1.2 Graduation and duality

De�nition 5 1. A NN
-graded set is a pair (D, deg), where D is a set and deg : D −→ NN

is a map. For all α ∈ NN
, we put Dα = deg−1(α). We shall say that the NN

-graded D is

onneted if D0 = ∅ and if for all α ∈ NN
, deg−1(α) is �nite.

2. Let D be a NN
-graded onneted set. For all forest F ∈ FD

, we put:

deg(F ) =
∑

v∈V (F )

deg(d(v)).

This indues a onneted NN
-graduation of the Hopf algebra HD

, with:

∀α ∈ NN , (HD)α = V ect(F ∈ FD | deg(F ) = α).

Moreover, for this graduation, Bd is homogeneous of degree deg(d) for all d ∈ D.

If D is a NN
-graded onneted set, then, as HD

is a graded onneted Hopf algebra, its

graded dual (HD)∗ is also a Hopf algebra [13, 23℄. As a vetor spae, it an be identi�ed with

HD
, by the help of the symmetri pairing de�ned by:

∀F,G ∈ FD, 〈F,G〉 = sF δF,G,

where sF is the number of symmetries of F . The oprodut ∆′
of (HD)∗ is given by:

∀T1, . . . , Tk ∈ TD, ∆′(T1 . . . Tk) =
∑

I⊆[k]

(∏

i∈I

Ti

)
⊗

(∏

i/∈I

Ti

)
.

Its produt ⋆ is given by graftings: this is the Grossman-Larson produt [10, 11, 12℄. For example:

q

q

a
b ⋆ q

q

c
d = q

q

a
b
q

q

c
d + q

qq

q

∨c
da

b

+ q

q

q

q

c
d
a
b

.

Note that this graded dual does not depend of the hoie of the onneted graduation of D.
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By the Cartier-Quillen-Milnor-Moore's theorem, (HD)∗ is the enveloping algebra of a Lie

algebra g
D
. By onstrution of the oprodut ∆′

, the set TD
is a basis of g

D
; by de�nition of

the Grossman-Larson produt, for all T, T ′ ∈ TD
:

[T, T ′] =
∑

v′∈V (T ′)

grafting of T on v′ −
∑

v∈V (T )

grafting of T ′
on v.

We de�ne a produt ∗ on g
D
by:

T ∗ T ′ =
∑

v′∈V (T ′)

grafting of T on v′.

For any x, y ∈ g
D
, [x, y] = x ∗ y − y ∗ x. For example:

q c ∗ q

q

a
b = q

qq

∨a
bc
+ q

q

q

a
b
c

, q

q

a
b ∗ q c = q

q

q

c
a
b

.

This produt is not assoiative, but is pre-Lie:

De�nition 6 A (left) pre-Lie algebra is a pair (V, ∗), where V is a vetor spae and ∗ is a
bilinear produt on V , suh that for all x, y, z ∈ V :

(x ∗ y) ∗ z − x ∗ (y ∗ z) = (y ∗ x) ∗ z − y ∗ (x ∗ z).

If (V, ∗) is pre-Lie, the braket de�ned by [x, y] = x ∗ y − y ∗ x is a Lie braket.

Moreover, Chapoton and Livernet proved, using the theory of operads, that g
D

is a free

pre-Lie algebra [2, 3℄:

Theorem 7 Let A be a pre-Lie algebra and let ad ∈ A for all d ∈ D. There exists a unique

pre-Lie algebra morphism φ : gD −→ A suh that φ( qd) = ad for all d ∈ D. In other words, g
D

is, as a pre-Lie algebra, freely generated by the elements

qd , d ∈ D.

1.3 Completion

We graduate HD
by the number of verties of forests, that is to say we onsider the graduation

indued by the map deg : D −→ N, sending every element of D to 1. This graduation indues a

distane d on HD
, de�ned by:

d(f, g) = 2−val(f−g).

The metri spae HD
is not omplete: its ompletion is denoted by ĤD

. As a vetor spae, it

is the spae of ommutative formal series in TD
. The produt of HD

, being homogeneous of

degree 0, is ontinuous, so an be extended to ĤD
: this gives the usual produt of formal series.

Similary, for any d ∈ D, Bd, being homogeneous of degree 1, is ontinuous so an be extended

to a map Bd : ĤD −→ ĤD
.

2 Multigraded SDSE

2.1 De�nition

De�nition 8 Let D = D1⊔. . .⊔DM be a partitioned set. Let (fd)d∈D be a family of elements

of K〈〈x1, . . . , xM 〉〉. The system of Dyson-Shwinger equations (brie�y, SDSE) assoiated to these

elements is:

∀i ∈ [M ], Xi =
∑

d∈Di

Bd(fd(X1, . . . ,XM )),

where X = (X1, . . . ,XM ) belongs to ĤD
M
.
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By onveniene, we generally index the family of unknows by [M ], but it is of ourse possible
to index them by any �nite set.

Proposition 9 Let (S) be a SDSE. It has a unique solution.

Proof. If X = (X1, . . . ,XM ) is a solution of (S), then for all i, Xi is a in�nite span of trees,

so belongs to the augmentation ideal HD
+ . Hene, it is enough to prove that (S) has a unique

solution in ĤD
+

M
. Let us onsider the following map:

Θ :





ĤD
M
−→ ĤD

M

(X1, . . . ,XM ) −→


∑

d∈Di

Bi(fd(X1, . . . ,XM ))




i∈[M ]

.

As Bd is homogeneous of degree 1 for all d, we obtain that for all f, g ∈ ĤD
M
:

d(Θ(f),Θ(f)) ≤
1

2
d(f, g).

So Θ is a ontrating map. As ĤD
M

is omplete, Θ has a unique �xed point (X1, . . . ,XM ),
whih is the unique solution of (S). �

Remarks.

1. As the Di are disjoint, the nonzero Xi are sum of trees with roots deorated by elements

of Di, so are algebraially independent.

2. If Xi = 0, we an delete the i-th equation of (S) and replae fd by (fd)|xi=0 for all d ∈ D,

without hanging H(S).

We now assume that all the Xi are nonzero (and, as a onsequene, are algebraially

independent).

De�nition 10 Let D be a onneted NN
-graded set, induing a onneted NN

-graduation of

the Hopf algebra HD
. Let (S) be a SDSE on D.

1. The unique solution of S is denoted by X = (X1, . . . ,XM ), and the homogeneous ompo-

nents of Xi are denoted by Xi(α), i ∈ [M ], α ∈ NN
.

2. The subalgebra of HD
generated by the Xi(α)'s is denoted by H(S).

3. We shall say that (S) is Hopf if H(S) is a Hopf subalgebra of HD
.

Note that H(S) depends on the hoie of the graduation.

Example. Here is an example of SDSE. Le us �x k ≥ 1 and d0, . . . , dk ∈ N. For any

α = (α0, . . . , αk) ∈ [N ]k+1
, we put:

deg(α) = d0ǫα0 + . . .+ dkǫαk
∈ ZN .

The set of deorations is:

D = {α ∈ [N ]k+1 | deg(α) ∈ NN \ {0}}.

7



The Hopf algebra HD
inherits a onneted NN

-graduation. We onsider the SDSE:

(S)FdB : ∀i ∈ [N ], Xi =
∑

α∈[N ]k

B(i,α)

(
(1 +Xα1)

d1 . . . (1 +Xαk
)dk(1 +Xi)

d0+1
)
. (1)

In partiular, if (d0, . . . , dk) = (0, 1, . . . , 1), this gives:

∀i ∈ [N ], Xi =
∑

α∈[N ]k

B(i,α) ((1 +Xα1) . . . (1 +Xαk
)) .

Taking k = 2, the omponents of X are a ommutative version of the elements of De�nition

20 in [6℄, whih generate a Hopf algebra isomorphi to the free Faà di Bruno Hopf algebra on

N variables. We shall prove that it is indeed a Hopf SDSE, related to the Faà di Bruno Hopf

algebra on N variables.

2.2 Simpli�ation of the hypotheses

Lemma 11 Let (S) be a Hopf SDSE, and let d ∈ D. If fd(0, . . . , 0) = 0, then fd = 0.

Proof. Let i ∈ [M ], suh that d ∈ Di. As fd(0, . . . , 0) = 0, qd does not appear in Xi,

and

qd never appears in any element of H(S). Let us assume that fd 6= 0. As the Xj are

algebraially independent, fd(X1, . . . ,XN ) 6= 0, and there exists a linear form g on ĤD
, suh

that g(fd(X1, . . . ,XN )) = 1. Then (g ⊗ Id) ◦ ∆(Xi) is an element of H(S), where the term

g(fd(X1, . . . ,XN )) qd = qd appears: this is a ontradition. So fd = 0. �

Consequently, if H(S) is Hopf and fd0(0, . . . , 0) = 0 for a ertain d0 ∈ Di, we an rewrite the

i-th equation of (S) in the following way:

Xi =
∑

d∈Di\{d0}

Bd(fd(X1, . . . ,XM )).

We now assume that for all d, fd(0, . . . , 0) 6= 0.

Lemma 12 We onsider the two SDSE:

(S) : ∀i ∈ [M ], Xi =
∑

d∈Di

Bd(fd(X1, . . . ,XM )),

(S′) : ∀i ∈ [M ], Yi =
∑

d∈Di

Bd

(
fd(Y1, . . . , YM )

fd(0, . . . , 0)

)
.

For all d ∈ D, we put ad = fd(0, . . . , 0). Let φa be the Hopf algebra isomorphism de�ned in

proposition 4. Then for all i ∈ [M ], Xi = φa(Yi); H(S) = φa(H(S′)) and (S) is Hopf, if and only

if, (S′) is Hopf.

Proof. We put:

gd(x1, . . . , xM ) =
fd(x1, . . . , xM )

fd(0, . . . , 0)
.

As φa ◦Bd = fd(0, . . . , 0)Bd ◦ φa for all d, we obtain:

φa(Yi) =
∑

d∈Di

φa ◦Bd(gd(Y1, . . . , YM ))

=
∑

d∈Di

fd(0, . . . , 0)Bd ◦ φa(gd(Y1, . . . , YM ))

=
∑

d∈Di

fd(0, . . . , 0)Bd(gd(φa(Y1), . . . , φa(YM )))

=
∑

d∈Di

Bd(fd(φa(Y1), . . . , φa(YM ))).
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So (φa(Y1), . . . , φa(YM )) is the unique solution of (S). �

We now assume that fd(0, . . . , 0) = 1 for all d ∈ D.

Lemma 13 Let (S) be a Hopf SDSE, d1, d2 be two elements in the same Di, of the same

degree. Then fd1 = fd2.

Proof. Let us denote by α the ommon degree of d1 and d2. The homogeneous omponent

of Xi of degree α has the form

qd1 + qd2 + . . .; onsequently, if we onsider the linear forms:

f1 :

{
HD −→ K

F ∈ FD −→ δF, qd1,
f2 :

{
HD −→ K

F ∈ FD −→ δF, qd2,

then the restrition of f1 and f2 to H(S) are equal. As H(S) is Hopf:

fd1(X1, . . . ,XM ) = (Id⊗ f1) ◦∆(Xi) = (Id⊗ f2) ◦∆(Xi) = fd2(X1, . . . ,XM ).

So fd1 = fd2 . �

Note that, if the SDSE is Hopf, we an write it under the form:

∀i ∈ [M ], Xi =
∑

α∈NN
∗


 ∑

i∈Di,deg(i)=α

Bi




︸ ︷︷ ︸
=Bi,α

(fα(X1, . . . ,XM )) =
∑

α∈NN
∗

Bi,α(fα(X1, . . . ,XM )).

2.3 Operations on SDSE

De�nition 14 Let D = D1⊔. . .⊔DM be a NN
-graded onneted partitioned set. We onsider

the SDSE given by:

(S) : ∀i ∈ [M ], Xi =
∑

d∈Di

Bd(fd(X1, . . . ,XM )).

1. (Change of variables) Let a = (a1, . . . , aM ) be a family of nonzero salars. The SDSE

obtained from (S) by the hange of variables assoiated to these oe�ients is:

(S)a : ∀i ∈ [M ], Yi =
∑

d∈Di

Bd(fd(a1Y1, . . . , aMYM )).

2. (Restrition) Let I ⊆ [M ]. The restrition of (S) to I is the SDSE given by:

(S)|I : ∀i ∈ I, Xi =
∑

d∈Di

Bd(gd(Xj , j ∈ I)),

where for all d ∈ I, gd = fd|xj=0 for all j /∈I ∈ K[[Xj , j ∈ I]].

Proposition 15 1. Let (S) be a SDSE and let (S)a be another SDSE, obtained from (S)
by a hange of variables. We de�ne the oe�ients ad, d ∈ D, by:

ad = ai if d ∈ Di.

Let φa be the Hopf algebra isomorphism de�ned in proposition 4. The unique solution of

(S)a is: (
1

a1
φa(X1), . . . ,

1

aM
φa(XM )

)
.

Hene, H(S)a = φa(H(S)) and (S) is Hopf if, and only if (S)a is Hopf.
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2. Let I ⊆M . We de�ne the oe�ients ad, d ∈ D, by:

ad =




1 if d ∈

⊔

i∈I

Di,

0 otherwise.

Let φa be the Hopf algebra morphism de�ned in proposition 4. The unique solution of (S)|I
is:

(φa(Xi))i∈I .

Hene, H(S)|I = φa(H(S)) and, if (S) is a Hopf SDSE, then (S)|I is also a Hopf SDSE.

Proof. 1. For all i ∈ [M ], we put Yi =
1
ai
φa(Xi). Then:

Yi =
1

ai

∑

d∈Di

φa ◦Bd(fd(X1, . . . ,XM ))

=
∑

d∈Di

Bd ◦ φa(fd(X1, . . . ,XM ))

=
∑

d∈Di

Bd(fd(φa(X1), . . . , φa(XM )))

=
∑

d∈Di

Bd(fd(a1Y1, . . . , aNYM )).

So Y = (Y1, . . . , YM ) is the solution of (S)a.

2. Proved in a similar way, noting that φa(Xi) = Yi if i ∈ I and 0 otherwise. �

De�nition 16 (Conatenation) Let (S) and (S′) be two SDSE, respetively assoiated to

partitioned NN
-graded sets D = D1 ⊔ . . . ⊔DM and D′ = D′

1 ⊔ . . . ⊔D
′
M ′, and to formal series

(fd)d∈[M ] and (f ′d)d∈[M ′]. The onatenation of (S) and (S′) is the system assoiated to the

NN
-graded partitioned set D ⊔D′ = D1 ⊔ . . . ⊔DM ⊔D

′
1 ⊔ . . . ⊔D

′
M ′ given by:

(S) ⊔ (S′) :





if 1 ≤ i ≤M, ,Xi =
∑

d∈Di

Bd(fd(X1, . . . ,XM )),

if M + 1 ≤ i ≤M +M ′, Xi =
∑

d∈D′
i−M

Bd(f
′
d(XM+1, . . . ,XM+M ′)).

Proposition 17 Let (S) and (S′) be two SDSE. Then (S)⊔ (S′) is Hopf if, and only if, (S)
and (S′) are Hopf.

Proof. =⇒. Let us assume that (S) ⊔ (S′) is Hopf. Then (S) ⊔ (S′)|[M ] = (S) and, up to a

reindexation, (S) ⊔ (S′)|[M+M ′]\[M ] = (S′). By proposition 15, (S) and (S′) are Hopf.

⇐=. Let us assume that (S) and (S′) are Hopf. ThenH(S)⊔(S′) is isomorphi toH(S)⊗H(S′) ⊆

HD ⊗HD′
⊆ HD⊔D′

. As H(S) and H(S′) are Hopf subalgebras of H
D
and HD′

, H(S) ⊗H(S′) is

a Hopf subalgebra of HD⊔D′
, so (S) ⊔ (S′) is Hopf. �

Remark. As in [7℄, it is possible to de�ne an operation of dilatation for multigraded SDSE.

We will not use it here.
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2.4 Changes of graduation

Let D be a NN
-graded onneted set. Let C ∈ MN ′,N (Q). We assume the following hypothesis:

if α ∈ NN
satis�es Dα 6= (0), then Cα ∈ NN ′

∗ . We give D a NN ′
-graduation by:

D′
β =

⊔

α∈NN ,Cα=β

Dα.

This de�nes another onneted graduation of D. Consequently, HD
inherits a seond graduation:

HD
(β)′ =

⊕

α,Cα=β

HD
(α).

Let (S) be a SDSE on D. The solution X of (S) an be deomposed into two ways:

Xi =
∑

α∈NN

Xi(α) =
∑

β∈NN′

X ′
i(β).

Hene, we obtain two subalgebras, denoted by H(S) and H
′
(S).

Lemma 18 Under the preeding hypotheses:

1. H′
(S) ⊆ H(S); if Ker(C) = (0), this is an equality.

2. If H′
(S) is Hopf, then H(S) is Hopf.

Proof. Let β ∈ NN ′
. Then:

X ′
i(β) =

∑

Cα=β

Xi(α).

Hene, H′
(S) ⊆ H(S). Let us assume that Ker(C) = (0). Let α ∈ NN

. We put β = Cα. As C is

injetive, X ′
i(β) = Xi(α), so Xi(α) ∈ H

′
(S), and �nally H(S) = H

′
(S).

Let us assume that H′
(S) is Hopf. We denote by πα the anonial projetion on HD(α). For

all β ∈ NN ′
:

πα(X
′
i(β)) =

{
Xi(α) if Cβ = α,

0 otherwise.

Moreover, for all x, y ∈ HD
:

πα(xy) =
∑

α′+α′′=α

πα′(x)πα′′(y).

This implies that for all α ∈ NN
∗ ,, πα

(
H′

(S)

)
⊆ H(S). For β = Cα:

∆(Xi(α)) = ∆ ◦ πα(X
′
i(β))

=
∑

α′+α′′=α

(πα′ ⊗ πα′′) ◦∆(Xi(β))

∈
∑

α′+α′′=α

πα′

(
H′

(S)

)
⊗ πα′′

(
H′

(S)

)

∈ H(S) ⊗H(S).

So H(S) is a Hopf subalgebra of HD
. �

We shall often restrit ourselves to matries C whose rank is N ′
. One natural question is to

�nd the smallest N suh that there exists a NN
-graduation making the studied SDSE Hopf.
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3 A family of pre-Lie algebras

If (S) is a Hopf SDSE, as Xi is an in�nite span of trees with roots deorated by Di. Moreover,

in H(S), any linear span of rooted trees with roots deorated by Di is a linear span of Xi(α);
hene, we an write the oprodut of Xi under the form:

∆(Xi) = Xi ⊗ 1 +
∑

α∈NN
∗

Pi,α(X1, . . . ,Xn)⊗Xi(α).

So H(S) is a ommutative ombinatorial Hopf algebra in the sense of [21℄. Hene, its dual is the

enveloping of algebra of a pre-Lie algebra g(S). It is generated by the elements fi(α), dual to the

nonzero Xi(α); for all i, j ∈ [M ], for all α, β ∈ NN
∗ , there exists a salar λi,j(α, β), suh that:

fj(β) ∗ fi(α) = λi,j(α, β)fi(α+ β),

where ∗ is the pre-Lie produt of g(S). When N = 1, if the system is fundamental, we proved in

[9℄ that these oe�ients are polynomial of degree ≤ 1. We here generalize this ase for any N .

3.1 De�nition and examples

De�nition 19 Let (g, ∗) be a pre-Lie algebra. We shall say that it is deg1 if there exists a

basis (fi(α))i∈[M ],α∈NN
∗
of g, and A(i,j) ∈ KN

, b(i,j) ∈ K, suh that for all i, j ∈ [M ], α, β ∈ NN
∗ :

fj(β) ∗ fi(α) = (A(i,j) · α+ b(i,j))fi(α+ β),

where we denote by · the usual inner produt of KN
. The elements A(i,j)

and b(i,j) will be alled

the struture oe�ients of g.

Example. We take M = N . The pre-Lie produt of the N -dimensional Faà di Bruno Lie

algebra is given by:

fj(β) ∗ fi(α) = (αj + δi,j)fi(α+ β).

Here, A(i,j) = ǫj , and b
(i,j) = δi,j .

Let (g, ∗) be a deg1 pre-Lie algebra of struture oe�ients A(i,j)
and b(i,j). Let λi ∈ K−{0}

for all i ∈ [M ]. We put gi(α) = λifi(α) for all i ∈ [M ], α ∈ NN
∗ . Then:

gj(β) ∗ gi(α) = (λjA
(i,j) · α+ λjb

(i,j))gi(α+ β).

So the deg1 pre-Lie algebra with struture oe�ients A(i,j)
and b(i,j) is isomorphi to the deg1

pre-Lie algebra with struture oe�ients λjA
(i,j)

and λjb
(i,j)

: we shall say that these two pre-

Lie algebras are equivalent. Our aim in this setion is to �nd all deg1 pre-Lie algebras, up to

equivalene.

Lemma 20 Let g be a vetor spae with a basis (fi(α))i∈[M ],α∈NN
∗
, elements A(i,j) ∈ KN

,

b(i,j) ∈ K, for i, j ∈ [M ]. We de�ne a produt ∗ on g by:

fj(β) ∗ fi(α) = (A(i,j) · α+ b(i,j))fi(α+ β).

Then (g, ∗) is a pre-Lie algebra if, and only if, for all i, j, k ∈ [M ]:

(A(i,j) = 0 and b(i,j) = 0) or (A(i,j) = A(i,k)), (2)

A(i,j)b(j,k) = A(i,k)b(k,j), (3)

b(i,j)b(j,k) = b(i,k)b(k,j). (4)
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Proof. Let α, β, γ ∈ NN
∗ , i, j, k ∈ [M ]. Then:

(fk(γ) ∗ fj(β)) ∗ fi(α)− fk(γ) ∗ (fj(β) ∗ fi(α))

= (A(i,j) · α+ b(i,j))(A(j,k) · β + b(j,k))fi(α+ β + γ)

− (A(i,j) · α+ b(i,j))(A(i,k) · (α+ β) + b(i,k))fi(α+ β + γ)

= (A(i,j) · α+ b(i,j))((A(j,k) −A(i,k)) · β −A(i,k) · α+ b(j,k) − b(i,k))fi(α+ β + γ).

Consequently:

(g, ∗) is pre-Lie

⇐⇒ ∀i, j, k ∈ [M ],∀α ∈ NN
∗ ,




(A(i,j) · α+ b(i,j))(A(j,k) −A(i,k)) = 0,

(A(i,k) · α+ b(i,k))(A(k,j) −A(i,j)) = 0,

(A(i,j) · α+ b(i,j))(b(j,k) − b(i,k) −A(i,k) · α) = (A(i,k) · α+ b(i,k))(b(k,j) − b(i,j) −A(i,j) · α),

⇐⇒ ∀i, j, k ∈ [M ],



A(i,j) = 0 or A(j,k) = A(i,k),

b(i,j) = 0 or A(j,k) = A(i,k),

A(i,j)(b(j,k) − b(i,k))− b(i,j)A(i,k) = A(i,k)(b(k,j) − b(i,j))− b(i,k)A(i,j),

b(i,j))(b(j,k) − b(i,k)) = b(i,k)(b(k,j) − b(i,j)),

whih is equivalent to onditions (2)-(4). �

Proposition 21 Let [M ] = I0 ⊔ . . .⊔ Ik be a partition of [M ], suh that I1, . . . , Ik 6= ∅ (note

that I0 may be empty), A1, . . . , Ak ∈ KN
, b1, . . . , bp ∈ K, and b

(i)
p ∈ K for all i ∈ I0 and p ∈ [k].

We de�ne a deg1 pre-Lie algebra by:

A(i,j) =

{
Aq if j ∈ Iq, q ≥ 1,

0 if j ∈ I0.
b(i,j) =





δp,qbq if j ∈ Iq, q ≥ 1, i ∈ Ip, p ≥ 1,

0 if j ∈ I0,

b
(i)
q if j ∈ Iq, q ≥ 1, i ∈ I0.

This pre-Lie algebra will be alled the fundamental deg1 pre-Lie algebra of parameters I =
(I0, . . . , Ik), A = (A1, . . . , Ak) ∈MN,k(K), b = (b1, . . . , bk) ∈ Kk

and b(i,j).

Proof. Diret veri�ations prove that these struture oe�ients satisfy onditions (2)-(4). �

Remarks.

1. For example, the Faà di Bruno pre-Lie algebra of dimension N is fundamental, with Ij =
{j} for all j ∈ [M ], I0 = ∅, A = IN and b = (1, . . . , 1).

2. The pre-Lie produt of suh a pre-Lie algebra is given in the following way: if i ∈ Ip, j ∈ Iq,
α, β ∈ NN

∗ ,

fj(β) ∗ fi(α) =





(Aq · α+ δp,qbq)fi(α+ β) if p, q 6= 0,

(Aq · α+ b
(i)
q )fi(α+ β) if p = 0, q 6= 0,

0 if q = 0.
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3.2 Classi�ation of deg1 pre-Lie algebras

Let g be a deg1 pre-Lie algebra. We attah to it an oriented graph G(g), de�ned as follows:

• The verties of G(g) are the elements of [M ].

• There exists an oriented edge from i to j if, and only if, b(i,j) 6= 0.

We shall write i −→ j if there is an oriented edge from i to j in G(g).

Lemma 22 Let g be a fundamental deg1 pre-Lie algebra and let i −→ j −→ k in G(g).
Then, in G(g):

j::
** kjj

yy

i

@@✂✂✂✂✂✂✂✂

]]❁❁❁❁❁❁❁❁

Proof. By ondition (4), if i −→ j −→ k, then b(i,j)b(j,k) = b(i,k)b(k,j) 6= 0, so i −→ k and

k −→ j. With the same argument, as k −→ j −→ k, k −→ k. As j −→ k −→ j, j −→ j. �

Proposition 23 Let g be a fundamental deg1 pre-Lie algebra. The graph G(g) has the fol-

lowing struture:

1. The set of verties [M ] admits a partition [M ] = I0 ⊔ . . . ⊔ Ik.

2. For all 1 ≤ p ≤ k, the omplete subgraph of G(g) whose verties are the elements of Ip is,

either omplete, either an isolated vertex.

3. For all i ∈ I0, there exists D(i) ⊆ [k], suh that for all j ∈ [M ], i −→ j if, and only if,

j ∈
⊔

p∈D(i)

Ip.

4. If i ∈ I0, there is no vertex j suh that j −→ i.

Proof. First step. Let i0 ∈ [M ]. For all p ≥ 1, we denote by Jp the sets of verties j ∈ [M ],

suh that there exists i1, . . . , ip−1 ∈ [M ], i0 −→ i1 −→ . . . −→ ip−1 −→ j. We put J =
⋃

p≥1

Jp

and we onsider a onneted omponent K of the subgraph of G(g) of verties J . Let us prove
that K is either omplete, or is an isolated vertex. First, observe that if j −→ k in K, by

de�nition of J , there exists jp−1, suh that jp−1 −→ j −→ k. By lemma 22, {j, k} is a omplete

subgraph of K.

If K has no edge, as it is onneted, it is an isolated vertex; let us assume it has at least one

edge j −→ k. By the preeding observation, {j, k} is a omplete subgraph of K, so K ontains

omplete subgraphs. Let L be a maximal omplete subgraph of K. If L ( K, as K is onneted,

there exists k ∈ K \ L, l ∈ L, suh that k −→ l or l −→ k. We already observed that {k, l} is
omplete in both ases. Let l′ ∈ L. As L is omplete, then k −→ l −→ l′ and l′ −→ l −→ k: by
lemma 22, k −→ l′, and l′ −→ k: L ⊔ {k} is omplete, whih ontradits the maximality of L.
So K = L is omplete.

Seond step. We denote by I0 the set of verties i suh that there is no j with j −→ i. Let
K be a onneted omponent of the subgraph of verties [M ] \ I0. If k ∈ K, then k /∈ I0, so
there exists j ∈ I, suh that j −→ k. By the �rst step, K is an isolated vertex or is omplete.

We denote by I1 ⊔ . . . ⊔ Ik the deomposition of [M ] \ I0 in onneted omponents. Let i0 ∈ I0,
and j suh that i0 −→ j. Then j /∈ I0, so there exists p ≥ 1, j ∈ Ip. If Ip is an isolated vertex,

then i0 −→ j′ for any j′ ∈ Ip. If Ip is omplete, for any j′ ∈ Ip, then i0 −→ j −→ j′, so i0 −→ j′

by lemma 22. Denoting by D(i0) the set of p suh that there exists j ∈ Ip with i0 −→ j, then
i0 −→ j if, and only if, j ∈ Ip for a p ∈ D(i0). �
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Theorem 24 Let g be a deg1 pre-Lie algebra. Up to an equivalene, it is the diret sum of

fundamental deg1 pre-Lie algebras.

Proof. First ase. We assume �rst that G(g) is omplete. Let us hoose i0 ∈ I. For all j,
b(i0,j) 6= 0: up to an equivalene, we assume that b(i0,j) = 1 for all j. Condition (4), with i = i0
beomes: for all j, k, b(j,k) = b(k,j). Still by ondition (4), as b(j,k) = b(k,j) 6= 0, for all i, j, k,
b(i,j) = b(i,k). Hene, for all i, j:

b(i,j) = b(i,i0) = b(i0,i) = 1.

Condition (2) beomes: for all i, j, k, A(j,k) = A(i,k)
. We denote by A(k)

the unique vetor suh

that A(i,k) = A(k)
for all i. Condition (3) beomes: for all j, k, A(k) = A(j)

. So there exists

a unique vetor A, suh that for all i, j, A(i,j) = A. Finally, g is a fundamental deg1 pre-Lie

algebra, with [M ] = I1.

Seond ase. We assume that G(g) is onneted. We use the notations of proposition 23.

If there is an edge from i to j, by ondition (2), for all k, A(j,k) = A(i,k)
. By onnetivity,

there exists vetors A(k)
, suh that for all i, j, k, A(i,k) = A(j,k) = A(k)

. We onsider the pre-Lie

subalgebra gp of g generated by the elements fi(α), i ∈ Ip, α ∈ NN
∗ . They are deg1 pre-Lie

algebras; if p ≥ 1 and Ip is not a single element, then the graph assoiated to gp is omplete.

By the �rst step, up to an equivalene, we an assume that A(k)
is onstant on Ip: there exists

a vetor Ap suh that A(k) = Ap for all k ∈ Ip, p ≥ 1. Moreover, there exists a salar bp, suh
that b(i,j) = bp for all i, j ∈ Ip, if p ≥ 1.

Let j ∈ I0. By onnetivity of G(g), and by de�nition of I0, there exists k suh that j −→ k,
so b(j,k) 6= 0 and b(k,j) = 0. By ondition (3), A(i,j) = 0 for all i, so A(j) = 0 if j ∈ I0.

By de�nition of the graph, if i ∈ Ip, j ∈ Iq, p, q ≥ 1 and p 6= q, then b(i,j) = 0. If j ∈ I0,
then b(i,j) = 0 for all i. Let i ∈ I0, j, k ∈ Ip, p ≥ 1. If j = k, then b(i,j) = b(i,k). If j 6= k, then
Ip is omplete and j −→ k in G(g): b(j,k) = b(j,k) 6= 0. By ondition (4), b(i,k) = b(i,j). So there

exists b
(i)
p , suh that b(i,j) = b

(i)
p for all j ∈ Ip. Finally, the struture oe�ients are given in the

following arrays:

A(i,j) :

i \ j I0 I1 . . . Ik
I0 0 A1 . . . Ak

I1 0
.

.

.

.

.

.

.

.

. 0
.

.

.

.

.

.

Ik 0 A1 . . . Ak

b(i,j) :

i \ j I0 I1 . . . Ik

I0 0 b
(i)
1 . . . b

(i)
k

I1 0 b1 . . . 0
.

.

. 0
.

.

.

.

.

.

.

.

.

Ik 0 0 . . . bk

So this is a fundamental deg1 pre-Lie algebra.

General ase. Let G1, . . . , Gl be the onneted omponents of G(g). By the seond step,

up to an equivalene of g, the pre-Lie subalgebra of g orresponding to these subgraphs are

fundamental deg1 pre-Lie algebras.

First subase. Let us assume that there exists i ∈ Gp, j ∈ Gq, with p 6= q, suh that A(i,j) 6= 0.
By ondition (2), for all k, A(j,k) = A(i,k)

. By onnetivity of Gp and Gq , we dedue that for all

i′ ∈ Gp, j
′ ∈ Gq, for all k, A

(i′,k) = A(j′,k)
.

Seond subase. Let us assume that for all i ∈ Gp, j ∈ Gq , A
(i,j) = 0. As b(i,j) = 0, for all

α, β ∈ NN
∗ , for all i ∈ Gp, j ∈ Gq , fj(β) ∗ fi(α) = 0.

We de�ne an equivalene relation ∼ on [M ] in the following way: i ∼ j if for all k, A(i,k) =
A(j,k)

. The �rst subase implies that the equivalene lasses are disjoint union of Gp: we denote

them by H1, . . . ,Hn. The seond step gives that the orresponding subalgebras g1, . . . gn are

fundamental deg1 pre-Lie algebras. By the seond subase, g = g1 ⊕ . . .⊕ gn. �
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3.3 SDSE assoiated to a deg1 pre-Lie algebra

We here desribe the dual of the enveloping algebra of a deg1 pre-Lie algebra, as a subalgebra

of a Hopf algebra of deorated rooted trees. We use for this the Guin-Oudom extension of the

pre-Lie produt [22℄.

Lemma 25 Let g be a fundamental deg1 pre-Lie algebra. For all i ∈ Ip, p 6= 0, α, β1, . . . , βk ∈
NN
∗ :

fj1(β1) . . . fjk(βk) ∗ fi(α) =





0 if one of the jp is in I0,
k∏

q=1

εq−1∏

r=0

(Aq · α+ bq(δp,q − r))fi(α+ β1 + . . .+ βk) otherwise,

where εq = ♯{p ∈ [k] | jp ∈ Iq}. If i ∈ I0:

fj1(β1) . . . fjk(βk) ∗ fi(α) =





0 if one of the jp is in I0,
k∏

q=1

εq−1∏

r=0

(Aq · α+ b(i)q − rbq)fi(α+ β1 + . . .+ βk) otherwise.

Proof. We proeed by indution on k. The result is obvious if k = 1. Let us assume the

result at rank k. We assume that i ∈ Ip, p ≥ 1. We put:

fj1(β1) . . . fjk(βk) ∗ fi(α) = P(j1,...,jk)(α)fi(α+ β1 + . . .+ βk).

Then:

fj1(β1) . . . fjk+1
(βk+1) ∗ fi(α) = fjk+1

(βk+1) ∗ (fj1(β1) . . . fjk(βk) ∗ fi(α))

−
k∑

p=1

fj1(β1) . . . (fjk+1
(βk+1) ∗ fjp(βp)) . . . fjk(βk) ∗ fi(α).

If jk+1 ∈ I0, this is zero. Let us assume that jk+1 ∈ Iq, q ≥ 1. For all p, let bl(p) be the unique
r suh that jp ∈ Ir. Then:

fj1(β1) . . . fjk+1
(βk+1) ∗ fi(α)

= P(j1,...,jk)(α)fjk+1
(βk+1) ∗ fi(α+ β1 + . . .+ βk)

−
k∑

p=1

(Aq · βp + δbl(p),qbq)fj1(β1) . . . fjp(βp + βkk+1
) . . . fjk(βk) ∗ fi(α)

= P(j1,...,jk)(α)(Aq · (α+ β1 + . . .+ βk) + δp,qbq)fi(α+ β1 + . . .+ βk+1)

− P(j1,...,jk)(α)(Aq · (β1 + . . .+ βk) + bq(εq − 1))fi(α+ β1 + . . . + βk+1)

= P(j1,...,jk)(α)(Aq · α+ bq(δp,q − εq + 1))fi(α+ β1 + . . .+ βk+1).

The omputation is similar if i ∈ I0. �

We shall write shortly:

fj1(β1) . . . fjk(βk) ∗ fi(α) = P(j1,...,jk)(α)fi(α+ β1 + . . .+ βk).

Let DM,N = [M ]×NN
∗ . Reall that g

DM,N
is the free pre-Lie algebra generated by the rooted

trees

qd , d ∈ DM,N . The set DM,N is NN
-graded, with deg(i, α) = α, and this graduation is

onneted.

If g is a deg1 pre-Lie algebra, one de�nes a onneted NN
-graduation of the pre-Lie g

(N)
T by

putting fi(α) homogeneous of degree α. We de�ne a pre-Lie algebra morphism:

φ :

{
g
(N)
T −→ g

q (i, α) −→ fi(α).
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Lemma 26 Let T ∈ TDM,N
. We denote by (r(T ), d(T )) the deoration of the root of T .

There exists a salar λT , suh that:

φ(T ) = λT fr(T )(deg(T )).

These oe�ients an be indutively de�ned by:

λT =

{
1 if T = q (i, α) ,

λT1 . . . λTk
P(r(T1),...,r(Tk))(α) if t = B(i,α)(T1 . . . Tk).

Proof. We proeed by indution on the number n of verties of T . It is obvious if n = 1.
Let us assume the result at all rank < n, n ≥ 2. We put t = B(i,α)(T1 . . . Tk). Then T =
T1 . . . Tk ∗ q (i, α) , so:

φ(T ) = φ(T1) . . . φ(Tk)fi(α)

= λT1 . . . λTk
fr(T1)(|T1|) . . . fr(Tk)(|Tk|) ∗ fi(α)

= λT1 . . . λTk
P(r(T1),...,r(Tk))(α)fi(α+ deg(T1) + . . .+ deg(Tk))

= λT1 . . . λTk
P(r(T1),...,r(Tk))(α)fi(deg(t)).

Hene, the result holds for all n. �

By duality, we obtain a Hopf algebra morphism:

φ∗ :





U(g)∗ −→ HDM,N

fi(α)
∗ −→

∑

deg(T )=α,r(T )=i

λT
sT
T.

We put µT = λT

sT
for any rooted tree T ∈ TDM,N

, and, for any i ∈ [M ]:

Xi =
∑

r(T )=i

µTT.

If t = B(i,α)

(
T β1
1 . . . T βl

l

)
, where T1, . . . , Tk are distint trees, with i ∈ Ip, p ≥ 1, denoting by εq

the number of trees t′ in T β1
1 . . . T βl

l suh that r(Ti) ∈ Iq:

µT =
λβ1

T1
. . . λβl

Tl

sβ1

T1
. . . sβl

Tl
β1! . . . βl!

k∏

q=1

εq−1∏

r=0

(Aq · α+ bq(δp,q − r))

= µα1
T1
. . . µαl

Tl

ε1! . . . εk!

β1! . . . βl!

k∏

q=1

1

εq!

εq−1∏

r=0

(Aq · α+ bq(δp,q − r)).

Consequently, if i ∈ Ip, p ≥ 1:

Xi =
∑

α∈NN
∗

B(i,α)




k∏

q=1

fi,q,α


∑

j∈Iq

Xj




 ,

with:

fi,q,α(X) = FAq·α+bqδp,q,bq (X) = FAq ·α,bq(X)Fbqδp,q ,bq(X) = FAq ·α,bq(X)(1 + bqX)δp,q .

A similar omputation for i ∈ I0 gives:

Xi =
∑

α∈NN
∗

B(i,α)




k∏

q=1

FAq·α,bq


∑

j∈Iq

Xj




k∏

q=1

F
b
(i)
q ,bq


∑

j∈Iq

Xj




 .

We proved:
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Theorem 27 Let [M ] = I0⊔ I1⊔ . . .⊔ Ik, A1, . . . , Ak ∈ KN
, b1, . . . , bk ∈ K, b

(i)
1 , . . . , b

(i)
k ∈ K

for all i ∈ I0. We onsider the following SDSE:

∀i ∈ Ip, p ≥ 1, Xi =
∑

α∈NN
∗

B(i,α)




k∏

q=1

FAq ·α,bq


∑

j∈Iq

Xj




1 + bp

∑

j∈Ip

Xj




 ,

∀i ∈ I0, Xi =
∑

α∈NN
∗

B(i,α)




k∏

q=1

FAq ·α,bq


∑

j∈Iq

Xj




k∏

q=1

F
b
(i)
q ,bq


∑

j∈Iq

Xj




 .

The NN
-graded subalgebra of HDM,N

generated by the unique solution of this SDSE is Hopf. Its

dual is the enveloping algebra of the fundamental deg1 pre-Lie algebra assoiated to I, A and b.

Example. We hoose N =M , I = {1} ⊔ . . . ⊔ {N}, A = IN and bi = 1 for all i ∈ [N ]. The
assoiated Hopf SDSE is:

(S) : ∀i ∈ [N ], Xi =
∑

α∈NN
∗

B(i,α)




N∏

q=1

(1 +Xq)
αq (1 +Xi)


 .

This is related to the SDSE desribed in (1). We only onserve as deorations the elements of:

D′ = {deg(α) | α ∈ D}.

For all α = (α0, . . . , αk) ∈ [N ]k+1
, we put B′

α = B(α0,deg(α)). The SDSE (S) beomes:

(S′) : ∀i ∈ [N ], Xi =
∑

α∈Nk

B′
(i,α)




N∏

q=1

(1 +Xq)
∑

p,αp=q dp(1 +Xi)
d0+1




⇐⇒ ∀i ∈ [N ], Xi =
∑

α∈Nk

B′
(i,α)

(
(1 +Xα1)

d1 . . . (1 +Xαk
)dk(1 +Xi)

d0+1
)
.

This is the system of (1), whih is onsequently a Hopf SDSE.

4 Group assoiated to a fundamental pre-Lie algebra

4.1 Lie algebra assoiated to a fundamental pre-Lie algebra

Proposition 28 Let g be a fundamental deg1 pre-Lie algebra, with parameters I, A and b.
We denote by r the rank of A. Then g is isomorphi, as a Lie algebra, to a fundamental deg1

pre-Lie algebra g
′
with struture oe�ients given by:

A′(i,j) :
i \ j 1 . . . r r + 1 . . .M

1 . . .M A′
j 0

b′(i,j) :

i \ j 1 . . . k k + 1 . . .M

1 . . . k 0 0

k + 1 . . .M b
′(i)
j 0

A′ =

(
Ir
∗

)
,

with 0 ≤ r ≤ k ≤M . We shall say that suh a fundamental deg1 pre-Lie algebra is redued.

Proof. First step. For any p ≥ 1, let us �x i0 ∈ Ip. If i ∈ Ip \ {i0}, we put gi(α) =
fi(α)− fi0(α) for all α ∈ NN

∗ . If j ∈ Iq, q 6= 0:

fj(β) ∗ gi(α) = (Aq · α+ bqδp,q)gi(α+ β).
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Consequently:

gj(β) ∗ gi(α) = 0 if j ∈ Ip \ {i0}, fj(β) ∗ gi(α) = 0 if j ∈ I0.

Replaing the elements fi(α) by gi(α) for all i ∈ Ip \ {i0}, these omputations proves that g is

isomorphi to a deg1 pre-Lie algebra g
′
, with [M ] = I ′0 ⊔ . . . ⊔ I

′
k, suh that

I ′q =





{i0} if q = p,

I0 ⊔ Ip \ {i0} if q = 0,

Iq otherwise.

Proeding in this way for all p, and after a reindexation, we obtain that g is isomorphi to a

fundamental deg1 pre-Lie algebra with:

A(i,j) :
i \ j 1 . . . k k + 1 . . .M

1 . . .M A1 . . . Ak 0

b(i,j) :

i \ j 1 . . . . . . k k + 1 . . .M

1 b1 0 . . . 0 0
.

.

. 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
.

.

.

k 0 . . . 0 bk
.

.

.

k + 1 . . .M b
(i)
1 . . . . . . b

(i)
k 0

If 1 ≤ i, j ≤ k, in g
′
:

[fj(β), fi(α)] = (Aj · α+ δi,jbi)fi(α+ β)− (Ai · β + δi,jbj)fj(α+ β)

= Aj · αfi(α+ β)−Ai · βfj(α+ β).

Hene, the Lie braket of g does not depend of b.

Seond step. Up to a Lie algebra isomorphism, we an now assume that b1 = . . . = bk = 0.
Let P ∈ GLk(K). For all i ∈ [k], we put:

gi(α) =
∑

j

pj,ifj(α).

Then (gi(α))i≤k,α∈NN
∗
⊔ (fi(α))i>k,α∈NN

∗
is a basis of g. Moreover, if i, j ∈ [k]:

gj(β) ∗ gj(α) =
∑

i′,j′

pj′,jpi′,ifj′(β) ∗ fi′(α)

=
∑

i′,j′

pj′,jpi′,iAj′ · αfi′(α+ β)

=


∑

j′

pj′,jAj′


 · αgi(α+ β).

Similar omputations give, if 1 ≤ j ≤ k < i ≤ N :

gj(β) ∗ fi(α) =




∑

j′

pj′,jAj′


 · α+


∑

j′

pj′,jb
(i)
j′




 fi(α+ β).
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Moreover, if 1 ≤ i ≤ k < j ≤ N :

fj(β) ∗ gi(α) = 0.

Hene, g is isomorphi, as a Lie algebra, to the fundamental deg1 pre-Lie g
′
, with A′ = AP , and

b′(i,j) = 0 if i, j ≤ k. Up to a permutations of the rows and the olumns of A, we an assume

that:

A =

(
A1 A2

A3 A4

)
,

with A1 ∈ GLr(K). As r = Rank(A), there exists Q ∈Mr,k−r, suh that:

(
A2

A4

)
=

(
A1

A3

)
Q.

We then take:

P =

(
A−1

1 −Q
0 Ik−r

)
,

and then:

A′ =

(
Ir 0
∗ 0

)
,

whih �nally gives the announed result. �

4.2 Group assoiated to a redued deg1 pre-Lie algebra

Notations. Let p ∈ N∗
and q ∈ N. We �x a matrix B ∈Mq,p(K). For all i ∈ [p], we denote:

Gi = {xi(1 + F ) | F ∈ K[[x1, . . . , xp, y1, . . . , yq]]+} ⊆ K[[x1, . . . , xp, y1, . . . , yq]]+.

Proposition 29 Let GB = G1 × . . . × Gp ⊆ K[[x1, . . . , xp, y1, . . . , yq]]
p
, with the produt

de�ned in the following way: if F = (F1, . . . , Fp) and G = (G1, . . . , Gp) ∈ GB,

F •G = G

(
F1, . . . , Fp, y1

(
F1

x1

)B1,1

. . .

(
Fp

xp

)B1,p

, . . . , yq

(
F1

x1

)Bq,1

. . .

(
Fp

xp

)Bq,p

)
.

Then GB is isomorphi to the group of haraters of a Np+q
-graded Hopf algebra HB. The

graded dual of HB is the enveloping algebra of the redued deg1 pre-Lie algebra gB assoiated to

the struture oe�ients:

A(i,j) :
i \ j 1 . . . p

1 . . . p Aj
A =

(
Ip
B

)
b(i,j) :

i \ j 1 . . . p

1 . . . p 0

Proof. We shall write shortly F • G = G
(
F, Y

(
F
x

)B)
. Let us �rst prove that GB is a

monoid. Let F,G,H ∈ GB.

F • (G •H) = G •H

(
F, y

(
F

x

)B
)

= H


G

(
F, y

(
F

x

)B
)
, y

(
F

x

)B


G
(
F, y

(
F
x

)B)

F




B



= H


G

(
F, y

(
F

x

)B
)
, y



G
(
F, y

(
F
x

)B)

x




B



= H

(
F •G, y

(
F •G

x

)B
)

= (F •G) •H.
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The identity of this monoid is the element I = (x1, . . . , xp).

Let λ = (λ1, . . . , λp, µ1, . . . , µq) ∈ (K∗)p+q
. We de�ne:

φλ :

{
GB −→ GB

F −→
(

1
λi
Fi(λ1x1, . . . , λpxp, µ1y1, . . . , µqyq)

)
1≤i≤p

.

Let us prove that this de�nes a ation of the torus T = (K∗)p+q
on the monoid GB by auto-

morphisms. We shall write shortly φλ,µ(F ) =
1
λF (λx, µy). Clearly, φλ,µ ◦ φλ′,µ′ = φλλ′,µµ′

and

φ1,1 = IdGB
, so this is indeed an ation. Let F,G ∈ GB.

φ(λ,µ)(F •G) =
1

λ
G

(
F (λx, µy), µy

(
F (λx, µy)

λx

)B
)

= φ(λ,µ)(F ) • φ(λ,µ)(G).

For all i ∈ [p], λ ∈ Np+q
∗ , we put:

Xi(λ) :

{
GB −→ K

G −→ oe�ient of xix
λ1
1 . . . x

λp
p y

µ1
1 . . . y

µq
q in Gi.

We obtain an ation on the torus T on these funtions by transposition:

φ∗λ(Xi(α))(G) = Xi(α)(φλ(G))

= Xi(α)

(
1

λ
G(λx, µy)

)

=
1

λi
λα1
1 . . . λ

αp
p µ

αp+1

1 . . . µ
αp+q
q Xi(α)(G).

So this ation is given by φλ(Xi(α)) = λαXi(α). Consequently, denoting by HB the algebra

generated by the elements Xi(α), it gives it a Np+q
-graduation, for whih Xi(α) is homogeneous

of degree α: this graduation is �nite-dimensional and onneted.

We de�ne a oprodut ∆ : HB −→ ̂HB ⊗HB in the following way:

∀X ∈ HB, ∀F,G ∈GB, ∆(X)(F,G) = X(F •G).

As the torus ats by automorphisms, for all λ ∈ T :

∆(φ∗λ(X))(F,G) = X(φλ(F •G)) = X(φλ(F ) • φλ(G)) = (φ∗λ ⊗ φ
∗
λ) ◦∆(X)(F,G).

Hene, ∆ respets the ation of T , so respets the graduation implied by this ation, and onse-

quently is homogeneous of degree 0. As the graduation is �nite-dimensional, ∆(HB) ⊆ HB⊗HB.

As GB is a monoid, HB is a bialgebra. As it is onneted, it is a Hopf algebra, so GB is a group.

By onstrution, the group of haraters of HB is GB.

By Cartier-Quillen-Milnor-Moore's theorem, the graded dual of HB is the enveloping algebra

of a Lie algebra g, whose basis is given by elements fi(α) dual to the elements Xi(α). Moreover,

as the omposition of GB is linear in the seond variable, the Lie braket of g is indued by a

pre-Lie produt ∗; by homogeneity, for all i, j ∈ [p], α, β ∈ Np+q
∗ , there exists a salar λ(i,j)(α, β)

suh that:

fj(β) ∗ fi(α) = λ(i,j)(α, β)fi(α+ β).

Moreover, λ(i,j)(α, β) is the oe�ient of Xj(β) ⊗Xi(α) in ∆(Xi(α + β)). Diret omputations

give that:

fj(β) ∗ fi(α) =


αj +

q∑

j′=1

Aj′,jαj′+p + δi,j


 fi(α+ β),
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so g is isomorphi to gB as a Lie algebra. �

Example. If q = 0, we obtain a Faà di Bruno group of formal di�eomorphisms, with the

omposition. This is the ase for the SDSE (S)FdB in (1), where A = IN . The assoiated group

is:

G = ({(x1(1 + F1), . . . , xN (1 + FN )) | F1, . . . , FN ∈ K[[x1, . . . , xN ]]+} , ◦) .

Proposition 30 Let V0 be the group (K[[x1, . . . , xp, y1, . . . , yq]]+,+). The group GB ats by

automorphisms on V0 by:

∀F ∈ GB, ∀P ∈ V0, F →֒ P = P

(
F, y

(
F

x

)B
)
.

For all r ≥ 0, the group V r
0 ⋊ GB is isomorphi to the harater group of a Np+q

-graded Hopf

algebra HB,r, whose graded dual is the enveloping algebra of a fundamental deg1 pre-Lie algebra

gB with struture oe�ients:

A(i,j) :
i \ j 1 . . . p p+ 1 . . . p+ r

1 . . . p+ r Aj 0
A =

(
Ip
B

)
.

b(i,j) :
i \ j 1 . . . p+ r

1 . . . p+ r 0

Proof. Let F ∈ GB, P,Q ∈ V0. Obviosuly, F →֒ (P + Q) = F →֒ P + F →֒ Q. Let

F,G ∈ GB, P ∈ V0. Then:

F →֒ (G →֒ P ) = P


G

(
F, y

(
F

x

)B
)
, y

(
F

x

)B


G
(
F, y

(
F
x

)B)

F




B



= P


G

(
F, y

(
F

x

)B
)
, y



G
(
F, y

(
F
x

)B)

x




B



= G

(
F, y

(
F

x

)B
)
→֒ P

= (F •G) →֒ P.

We de�ne an ation of the torus T = (K∗)p+q
over V0 by:

ψλ(P ) = P (λ1x1, . . . , λpxp, µ1y1, . . . , µqyq).

It is easy to prove that this is an ation by automorphisms, and for all F ∈ GB, P ∈ V0:

ψλ(F →֒ P ) = φλ(F ) →֒ ψλ(P ).

A system of oordinates of the group V r
0 ⋊GB is given by the elements Xi(α) de�ned on GB

and Yj(α) de�ned on V r
0 by:

Yj(α) :

{
V r
0 −→ K

(P1, . . . , Pr) −→ oe�ient of xα in Pj.

These elements generate an algebra HB,r, ontaining HB. The ation of the torus extends the

graduation of HB to HB,r, making a graded onneted algebra. Consequently, it inherits a

oprodut, dual of the omposition of the group V r
0 ⋊GB, making it a graded onneted Hopf

algebra. Note that HB,r ontains HB, and by onstrution its harater group is V r
0 ⋊GB.
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The omposition in V r
0 ⋊GB is given by:

(P1, . . . , Pr, F ) • (Q1, . . . , Qr, G) = ((P1 + F →֒ Q1, . . . , Pr + F →֒ Qr, F •G).

Consequently, it is linear in the seond variable; hene, the graded dual of HB,r is the enveloping

algebra of a pre-Lie algebra g. This has a basis (fi(α))i∈[p],α∈Np+q
∗
⊔ (gj(β))j∈[r],β∈Np+q

∗
, dual of

the SDSE of oordinates Xi(α) and Yj(β). The pre-Lie produt of fj(β) and fi(α) is the same

as in gB, and diret omputations give:

fj(β) ∗ gi(α) = Aj · αgi(α+ β), gj(β) ∗ fi(α) = 0, gj(β) ∗ gi(α) = 0.

So this is indeed isomorphi to a redued deg1 pre-Lie algebra, as announed. �

This last result is proved similarly:

Proposition 31 Let a ∈ Kr
and b ∈ Kp

. Let Va,b be the group (K[[x1, . . . , xp, y1, . . . , yq]]+,+).
The group V r

0 ⋊GB ats by automorphisms on Va,b by:

(P1, . . . , Pr, F ) →֒ Q = Q

(
F, y

(
F

x

)B
)
ea1P1+...+arPr

(
F1

x1

)b1

. . .

(
Fp

xp

)bp

.

If a(1), . . . , a(s) ∈ Kr
and b(1), . . . , b(s) ∈ Kp

, the group (Va(1),b(1) ⊕ . . .⊕a(s),b(s)) ⋊ (V r
0 ⋊GB) is

isomorphi to the harater group of a Np+q
-graded Hopf algebra HB,r,a,b, whose graded dual is

the enveloping algebra of a fundamental deg1 pre-Lie algebra gB with struture oe�ients:

A(i,j) :
i \ j 1 . . . p p+ 1 . . . p+ r + s

1 . . . p+ r Aj 0
A =

(
Ip
B

)
.

b(i,j) :

i \ j 1 . . . p p+ 1 . . . + p+ r p+ r + 1 . . . p+ r + s

1 . . . p+ r 0 0 0

p+ r + 1 . . . p+ r + s b
(i−p−r)
j a

(i−p−r)
j−p 0

5 SDSE assoiated to a family of Feynman graphs

5.1 Feynman graphs

De�nition 32 A theory of Feynman graphs T is given by:

• A set HE of types of half-edges, with an inidene rule, that is to say an involutive map

ι : HE −→ HE.

• A set V of vertex types, that is to say a set of �nite multisets (in other words �nite unordered

sequenes) of elements of HE, of ardinality at least 3.

The edges of T are the multisets {t, ι(t)}, where t is an element of HE. The set of edges of T is

denoted by E.

Examples.

1. In QED, HEQED = { , , }, and the inidene rule is given by:

←→ , ←→ .

There are two edges, = { , } and =
{

,
}
. There

is one vertex type, = { , , }.
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2. In QCD, HEQCD = { , , , , }, and:

VQCD =

{
, , ,

}
.

The inidene rule is given by:

←→ , ←→ , ←→ .

There are three edges, (gluon), (fermion) and (ghost).

3. Let N ≥ 3. In ϕN
, EϕN = { }. There is only one vertex type, whih is the multiset

formed by N opies of . There is only one edge, denoted by .

De�nition 33 Let T = (HE ,V, ι) be a theory of Feynman graphs. A 1PI graph G of the

theory T is given by:

• A nonempty, �nite set HE of half-edges, with a map type : HE −→ HE.

• A nonempty, �nite set V of verties.

• An inidene map for half-edges, that is to say an involution map i : HE −→ HE.

• A soure map for half-edges, that is to say a map s : HE −→ V .

The following onditions must be satis�ed:

1. (Respet of the inidene rule) for any e ∈ HE suh that i(e) 6= e, ι(type(e)) = type(i(e)).

2. (Respet of the vertex types) for any v ∈ V , the multiset type(v) = {type(e) | s(e) = v}
belongs to V.

3. (Connetivity and one-partiule irreduibility) the set of internal edges of G is:

Int(G) = {{e, i(e)} | e ∈ HE, i(e) 6= e}.

The soure map makes (V, Int(G)) a graph. This graph is 1-PI, that is to say that it is

onneted and remains onneted if one edge e ∈ Int(G) is deleted.

4. (External struture) the set of external half-edges f G is:

Ext(G) = {e | e ∈ HE, i(e) = e}.

We de�ne typeExt(G) as the multiset {type(e) | e ∈ Ext(G)}. Two ase are possible:

(a) typeExt(G) = {t1, t2}, with ι(t1) = t2. In this ase, we shall say that the external

struture of G is of type edge typeExt(G).

(b) typeExt(G) ∈ V. In this ase, we shall say that the external struture of G is of type

vertex typeExt(G).

A Feynman graph is the disjoint union of a �nite number (possibly 0) 1-PI Feynman graphs,

alled its onneted omponents. The set of Feynman graphs of the theory T is denoted by FGT .

We shall only onsider theories suh that there exists 1-PI Feynman graphs for all type of

external strutures.

Examples.

24



1. Here are examples of 1-PI Feynman graphs in QED.

External struture Examples

, , , , ,

, ,

, ,

2. Here are examples of 1-PI Feynman graphs in QCD.

External struture Examples

, , ,

, , ,

,

, , ,
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External struture Examples

, ,

, ,

3. Here are examples of 1-PI Feynman graphs in ϕ3
.

External struture Examples

, , , , ,

, ,

De�nition 34 1. Let G = (HE,V, i, s) and G′ = (HE′, V ′, i′, s′) be two Feynman graphs

of a theory T . We shall say that G′
is a subgraph of G if:

(a) HE′ ⊆ HE, V ′ = s(HE′) and s′ = s|HE′
.

(b) For any e ∈ HE′
, i′(e) = e or i′(e) = i(e).

2. Let G′
be a onneted subgraph of G. We de�ne a struture G/G′ = (HE′′, V ′′, i′′, s′′) in

the following way:

• If the type of the external struture of G′
is a vertex:

(a) HE′′ = (HE \HE′) ⊔ Ext(G′).

(b) V ′′ = (V \ V ′) ⊔ {0}.

() For all e ∈ HE′′
:

s′′(e) =

{
s(e) if e ∈ HE \HE′,

0 if e ∈ Ext(G′).

(d) For all e ∈ HE′′
, i′′(e) = i(e).

• If the type of the external struture of G′
is an edge, let us denote by e1 and e2 its two

external half-edges.

(a) HE′′ = HE \HE′
.

(b) V ′′ = V \ V ′
.

() For all e ∈ HE′′
, s′′(e) = s(e).

(d) For all e ∈ HE′′
:

i′′(e) =





i(e2) if e = i(e1),

i(e1) ife = i(e2),

i(e) otherwise.
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If G′
is not onneted, we put G′ = G′

1 . . . G
′
k its deomposition into onneted parts, and

de�ne G/G′ = (. . . (G/G′
1)/G

′
2) . . .)/G

′
k. It does not depend of the order hosen on the

onneted omponents of G′
.

3. If G/G′
is a Feynman graph, we shall say that G′

is an admissible subgraph and we shall

write G′ ⊆ G.

Roughly speaking, G/G′
is obtained by deleting G′

from G and ontrating the hole whih

appeared until it vanishes. By onvention, G/G = 1 and G/1 = G. Observe that if G′ ( G and

G is 1-PI, then G/G′
is also 1-PI, with the same external struture as G.

The set FG(T ) is a basis of the Hopf algebra HFG(T ) assoiated to a theory T of Feynman

graphs. Its produt is given by the disjoint union of Feynman graphs; its oprodut is given by:

∀G ∈ FG(T ), ∆(G) =
∑

G′⊆G

G′ ⊗G/G′.

Examples. In QED:

∆ = ⊗ 1 + 1⊗ + ⊗ ,

∆ = ⊗ 1 + 1⊗ + ⊗ ,

∆ = ⊗ 1 + 1⊗ + 2 ⊗ .

De�nition 35 Let G be a Feynman graph of a given theory T . The loop number of G is:

ℓ(G) = ♯Int(G)− ♯V ert(G) + ♯{onneted omponents of G}.

Note that beause of the 1-PI ondition, for all nonempty graph G, ℓ(G) ≥ 1.

We shall prove afterwards that the loop number de�nes a onneted N-graduation of the Hopf

algebra HFG(T ).

5.2 Graduations

Let us �x a theory T = (HE ,V, ι). We look for graduations of the Hopf algebra HFG(T ). We

shall use the following notions:

De�nition 36 1. The inidene matrix of T is the matrix AT = (ae,v)e∈HE,v∈V , where

ae,v is the multipliity of e in the multiset v.

2. The redued inidene matrix of T is the matrix A′
T = (a′e,v)e∈E,v∈V , where:

a′e,v =





ae1,v
2

if e = {e1, e1},

ae1,v + ae2,v
2

if e = {e1, e2} with e1 6= e2.

3. Let G ∈ FG(T ). We de�ne four vetors related to G:
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(a) VG = (vt(G))t∈V , where vt(G) is the number of verties v of G suh that type(v) = t.

(b) EG = (het(G))t∈HE , where het(G) is the number of half-edges e of G suh that

type(e) = t.

() E′
G = (et(G))t∈E , where et(G) is the number of internal edges e of G suh that

type(e) = t.

(d) SG = (st(G))t∈V⊔E , where st(G) is the number of onneted omponents of G of

external struture t.

Examples.

AQED =




1
1
1


 , AQCD =




1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
1 1 3 4



, Aϕn = (n).

A′
QED =

(
1
1
2

)
, A′

QCD =




1 0 0 0
0 1 0 0
1
2

1
2

3
2 2


 , A′

ϕn
=
(n
2

)
.

Proposition 37 Let G ∈ FG(T ). Then:

1. EG = AT VG.

2. E′
G = A′

T VG − (A′
T Id)SG.

3. The number of external half-edges of G is (1 . . . 1)(AT 2Id)SG.

4. The loop number of G is:

ℓ(G) =

(
(1 . . . 1)Aτ

2
− (1 . . . 1)

)
VG −

(
(1 . . . 1)

(
AT

2
0

)
− (1 . . . 10 . . . 0)

)
SG.

Proof. The �rst three points are easy results of graph theory. The number of onneted

omponents of G is (1 . . . 1)SG; the number of external half-edges of G is given, from the third

point, by (1 . . . 1)(AT 2Id)SG. Hene, the number of internal edges of G is given by:

(1 . . . 1)EG − (1 . . . 1)(AT 2Id)SG
2

.

The loop number of G is onsequently given by:

ℓ(G) =
(1 . . . 1)EG − (1 . . . 1)(AT 2Id)SG

2
− (1 . . . 1)VG + (1 . . . 1)SG

=

(
(1 . . . 1)Aτ

2
− (1 . . . 1)

)
VG −

(
(1 . . . 1)

(
AT

2
Id

)
− (1 . . . 1)

)
SG

=

(
(1 . . . 1)Aτ

2
− (1 . . . 1)

)
VG −

(
(1 . . . 1)

(
AT

2
0

)
− (1 . . . 10 . . . 0)

)
SG,

whih proves the last point. �

We now look for QN
-graduations of the Hopf algebra HFG(T ), whih only depend on the

ombinatorial datas of de�nition 36-3. Aording to proposition 37, for suh a graduation, there

exists a map f : N|V| × N|V|+|E| −→ QN
, suh that for any graph G, deg(G) = f(VG, SG).
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Proposition 38 Let f : N|V| ×N|V|+|E| −→ QN
. We onsider the QN

-graduation of HFG(T )

de�ned by deg(G) = f(VG, SG). It is a Hopf algebra graduation if, and only if, there exists

C ∈MN,|V|(Q) suh that for any Feynman graph G:

deg(G) = CVG − (C 0)SG.

Proof. Let G and G′
be two graphs. Then VGG′ = VG + VG′

and SGG′ = SG + SG′
.

Consequently, the graduation respets the produt if, and only if, for all G,G′
:

f(VG + VG′ , SG + SG′) = f(VG, SG) + f(VG′ , SG′).

that is to say if, and only if, f is additive. Hene, f gives a graduation of the algebra HFG(T )

if, and only if, there exists C ∈ MN,|V|(Q) and D ∈ MN,|V|+|E|(Q) suh that for any Feynman

graph G, deg(G) = CVG +DSG.

Let G′ ⊆ G. By de�nition of G′′ = G/G′
, VG′′ = VG−VG′ +(Id0)SG′

and SG′′ = SG. Hene:

deg(G) = CVG +DSG

= CVG′′ + CVG′ − C(Id 0)SG′ +DSG′′

= deg(G′) + deg(G′′)− (D +C(Id 0))SG′ .

So f gives a graduation ofHFG(T ) if, and only if, for all subdiagram G′ ⊆ G, (D+C(Id0))SG′ = 0.
As there exists diagrams for any external struture, we an hoose G and G′

suh that SG′
is

the i-th vetor of the anonial basis; hene, we have a graduation of HFG(T ) if, and only if,

D + C(Id 0) = 0. �

Consequently, any matrix C ∈ MN,|V|(Q) de�nes a QN
-graduation of the Hopf algebra

HFG(T ). This of ourse may be not a NN
-graduation, or may be not onneted.

Examples.

1. The loop number ℓ gives a Hopf algebra N-graduation with Cℓ =
(1 . . . 1)Aτ

2
− (1 . . . 1).

This is a onneted N-graduation, as we only onsider 1-PI graphs.

2. Let t ∈ ET , and let C be the t-th row of A′
T ; the assoiated graduation is noted degt.

For all G ∈ FG(T ), degt(G) = et(G) + st(G). This is a N-graduation, whih may be not

onneted.

3. If deg and deg′ are two graduations of the Hopf algebra HFG(T ), then deg ⊕ deg
′
de�ned

by deg ⊕ deg′(G) = (deg(G), deg′(G)) is also a graduation of HFG(T ). If deg and deg′ are

respetively given by C and C ′
, deg ⊕ deg′ is given by

(
C
C ′

)
.

5.3 Insertions

De�nition 39 Let G and G′
be two Feynman graphs of a theory T .

1. We denote by G′
1, . . . , G

′
k the onneted omponents of G′

. A plae of insertion fof G′
into

G is given by:

(a) for all G′
i of external struture of type a vertex t, a pair (vi, fi), where vi is a vertex of G

of type t, and fi a bijetion from the set of external edges of Gi to the set of half-edges e
of G′

suh that s(e) = t, ompatible with the type, that is to say type(fi(e
′)) = type(e′)

for all e′. Moreover, if G′
i and G

′
j are both of external struture of type t, with i 6= j,

then vi 6= vj.
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(b) for all G′
i of external struture of type an edge t, a pair (ei, fi) where ei = {e

(1)
i , e

(2)
i }

is an internal edge of G of type t, and fi a bijetion from the set of the two external

half-edges of t into {e
(1)
i , e

(2)
i }.

() For all internal edge e of G, the set of omponents Gi suh that ei = e is totally

ordered.

Note that the set of plaes of insertion of G′
into G is �nite and may be empty. Its

ardinality is denoted ins(G′, G).

2. Let F be a plae of insertion of G′
into G. The insertion G′ F

→֒ G is the Feynman graph

obtained in this way:

(a) For all G′
i of external struture of type vertex, delete vi and all the half-edges e suh

that s(e) = vi; then glue eah external edge e′ of G′
i to i(fi(e

′)) if if is not equal to

fi(e
′); otherwise, e′ beomes an external edge.

(b) For eah internal edge e, suh that there exists omponents G′
i with ei = e, �rst

separate the two half-edges onstituing this internal edge; then insert all these ompo-

nents G′
i, following their total order, by gluing their external edges with the two open

half-edges aording to fi.

For any Feynman graph suh that ins(G′, G) 6= 0, we put:

BG(G
′) =

1

ins(G′, G)

∑

F

G′ F
→֒ G.

Proposition 40 1. For all graph G, the spae IG = V ect(G′, ins(G′, G) 6= 0) is a left

omodule.

2. For all primitive graph G, for all x ∈ IG:

∆ ◦BG(x) = BG(x)⊗ 1 + (Id⊗BG) ◦∆(x).

3. We de�ne a graduation on HFG(T ) with the help of a matrix C ∈MN,|V|(Q). Then for any

Feynman graph G, BG is homogeneous of degree deg(G).

Proof. 1. Let G and G′
be two graphs. Then G′ ∈ IG if, and only if, the two following

onditions hold:

• For any t ∈ V, st(G
′) ≤ vt(G).

• For any t ∈ E , (st(G
′) ≥ 1) =⇒ (et(G

′) ≥ 1).

Consequently, if G′ ∈ IG and G′′ ⊂ G′
, noting that st(G

′/G′′) ≤ st(G
′) for all t ∈ V ⊔ E , then

G′/G′′ ∈ IG. So IG is a left omodule.

2. Let G′ ∈ FG(T ), suh that ins(G′, G) 6= 0. AsG is primitive, ∆(G) = G = ⊗1+1⊗G, soG

has no proper subgraph. For all insertion plae f , let us onsider a subgraph H of G′′ = G′ f
→֒ G.

If H ontains internal edges of G′′
whih does not belong to G′

, as G′
has no proper subgraph, it

ontains all the edges of G, and, as H is a subgraph, it is equal to G. Otherwise, H is a subgraph

of G′
, and then G′′/H = G′/H

f ′

→֒ G for a partiular F ′
. Summing, we obtain:

∆(BG(G
′)) =

1

ins(G′, G)

∑

f


G′ f

→֒ G⊗ 1 +
∑

H⊆G′

H ′ ⊗G′/H
f ′

→֒ G




= BG(G
′)⊗ 1 +

∑

H⊆G′

H ⊗BG(G
′/H)

= BG(G
′)⊗ 1 + (Id⊗BG) ◦∆(G′).
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By linearity, the result holds for all x ∈ IG.

3. Let G and G′
be Feynman graphs, and G′′ = G′ F

→֒ G. Then SG′′ = SG and VG′′ =
VG + VG′ − (Id 0)SG′

. Hene:

deg(G′′) = CVG + CVG′ −C(Id 0)SG′ − (C 0)SG

= CVG − (C 0)SG + CVG′ − (C 0)SG′

= deg(G) + deg(G′).

So BG is homogeneous of degree deg(G). �

5.4 SDSE assoiated to a theory of Feynman graphs

Let T be a family of Feynman graphs. We put V = {t1, . . . , tk}, E = {tk+1, . . . , tk+l} and

M = k + l. We hoose a onneted NN
-graduation of HFG(T ) given by a N × k matrix C. In

order to ease the notation, for all i ∈ [k], we put vti(G) = vi(G) and for all k + 1 ≤ j ≤ k + l,
etj (G) = ej(G), for any Feynman graph G.

Notations.

1. For eah i, we denote by Pi the set of primitive 1-PI Feynman graphs of the theory T of

external struture of type ti.

2. Let α1, . . . , αN beN indeterminates (the oupling onstants). For any graph G, if deg(G) =
(d1, . . . , dN ), we put αdeg(G) = αd1

1 . . . αdN
N .

We onsider the following SDSE on HFG(T ):

(ST ) : ∀i ∈ [M ], Xi =
∑

G∈Pi

αdeg(G)BG




k∏

j=1

(1 +Xj)
vi(G)

k+l∏

j=k+1

(1−Xj)
−ej(G)


 .

We deompose Xi aording to the powers of the αi:

Xi =
∑

d∈NN
∗

αdXi(d).

It is not di�ult to show that Xi(d) is homogeneous of degree d, as BG is homogeneous of degree

deg(G). The subalgebra generated by the Xi(d)
′s is denoted by H(ST ).

Combinatorially, Xi is a span of all onneted graph of external struture of type ti; its ho-
mogeneous omponents an be indutively omputed by taking all possible insertions of already

omputed homogeneous omponents of Xj into primitive Feynman graphs of the good external

struture, in order to obtain the expeted degree.

We lift this SDSE to the level of rooted trees. The set of deorations is the set of primitive

onneted Feynman graphs:

P =
k+l⊔

i=1

Pi.

The graduation of HD
CK is given by the degree of primitive Feynman graphs, and we onsider

the SDSE on HD
CK :

(S′
T ) : ∀i ∈ [M ], Yi =

∑

G∈Pi

BG




k∏

j=1

(1 + Yj)
vi(G)

k+l∏

j=k+1

(1− Yj)
−ej(G)


 .
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The homogeneous omponent of Yi of degree d is denoted by Yi(d) and the subalgebra of HD
CK

generated by the Yi(d) is denoted by H(S′
T ).

Proposition 41 If H(S′
T ) is a Hopf subalgebra of HD

CK , then H(ST ) is a Hopf subalgebra

of HFG(T ), and the algebra morphism de�ned by Yi(d) −→ Xi(d) is a surjetive Hopf algebra

morphism from H(S′
T ) to H(ST ).

Proof. Let T be a rooted tree deorated by D. We shall say it is admissible if for all vertex

v of T , denoting by G the deoration of v and by G1, . . . ,Gk the deorations of the hildren of

v, then G1 . . .Gk ∈ IG. We denote by A′
the subalgebra generated by all admissible trees. If T

is admissible, then for all admissible ut c of T , P c(T ) and Rc(T ) are admissible, so A′
is a Hopf

subalgebra. By de�nition of (ST ), Yi(d) ∈ A
′
for all i ∈ [M ], d ∈ NN

∗ .

One an de�ne an algebra morphism φ from A′
to HFG(T ) indutively by:

φ(B+
G(T1 . . . Tk)) = BG(φ(T1) . . . φ(Tk)),

for all admissible tree B+
G(T1 . . . Tk). It is well-de�ned: indeed, if φ(T1), . . . , φ(Tk) are well-

de�ned, then for all i, φ(Ti) is a linear span of graphs with the external struture given by the de-
oration of the root of Ti. As BG(T1 . . . Tk) is admissible, φ(T1) . . . φ(Tk) ∈ IG, so φ(B

+
G(T1 . . . Tk))

is well-de�ned. As BG and B+
G are both homogeneous of degree deg(G), an easy indution proves

that φ is homogeneous of degree 0. As φ ◦B+
G = BG ◦φ on A′

for all G′
, φ(Yi(d)) = Xi(d) for all

i ∈ [M ] and all d ∈ NN
∗ . By the one-oyle property of B+

G and BG on IG, (φ⊗ φ) ◦∆ = ∆ ◦ φ
on A′

. Consequently, if H(S′
T ) is a Hopf subalgebra of H

D
CK , its image H(ST ) is a Hopf subalgebra

of HFG(T ). �

Theorem 42 If Rank(C) = |V|, then H(S′
T ) is a Hopf subalgebra of HD

CK ; moreover, the

SDSE (S′
T ) is assoiated to a deg1 pre-Lie algebra.

Proof. First, observe that, as C is a N × k-matrix, Rank(C) ≤ k = |V|.

Let us assume that Rank(C) = k. There exists a matrix C ′ ∈Mk,N(K), suh that C ′C = Idk.
For any primitive Feynman graph G of external struture ti and of degree d, if (ǫ1, . . . , ǫM ) is
the anonial basis of KM

, noting that d = CVG − (C 0)ǫi:

VG = C ′d+ (Idk 0)ǫi, E′
G = A′

T C
′d− (0 Idl)ǫi.

For all i ∈ [M ], for all d ∈ NN
∗ , we put:

B+
i,n =

∑

G∈Pi,deg(G)=d

B+
G .

The SDSE an be written as:

Yi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 + Yj)
∑

p c′j,pdp
k+l∏

j=k+1

(1− Yj)
∑

p,q a
′
j,pc

′
p,qdj (1 + Yi)




if i ≤ k,

Yi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 + Yj)
∑

p c′j,pdp
k+l∏

j=k+1

(1− Yj)
∑

p,q a
′
j,pc

′
p,qdj (1− Yi)




if i ≥ k + 1.

Hene, we reognize the deg1 pre-Lie algebra with Ip = {p} for all 1 ≤ p ≤ k + l, b given by:

b(i,j) =

{
δi,j if i ≤ k,

−δi,j if i ≥ k + 1,

and A given by the matrix

(
C ′

−A′
T C

′

)
. �

As C ′
has also rank k:
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Corollary 43 If Rank(C) = |V| = k, the graded dual of the Hopf algebra H(S′
T ) is the

enveloping algebra of the redued deg1 pre-Lie algebra with struture oe�ients given by:

A′(i,j) :
i \ j 1 . . . k k + 1 . . . k + l

1 . . .M A′
j 0

A′ =

(
Ik
A′′

)

b′(i,j) :
i \ j 1 . . .M

1 . . .M 0

If C is invertible, then A′′ = −A′
T . Moreover, H(S′

T ) is isomorphi to the oordinate Hopf algebra

of the group V l
0 ⋊GA′′

.

Proof. It remains to onsider the ase where C is invertible. In this ase, C ′ = C−1
and

A =

(
C ′

−A′
T C

′

)
. We then take A = A′C =

(
Idk
−A′

T

)
. �

Examples.

1. If there is only one vertex type, we an hoose the graduation by the loop number.

(a) For QED, C =
(
1
2

)
, so C ′ = (2); hene, A =




1
2
−1

2
−−1

4




and A′ =




1
−1
−1

2



. The

SDSE is:

X1 =
∑

k≥1

αk
∑

G∈D1(k)

BG

(
(1 +X1)

2k+1

(1−X2)k(1−X3)2k

)
,

X2 =
∑

k≥1

αk
∑

G∈D2(k)

BG

(
(1 +X1)

2k

(1−X2)k−1(1−X3)2k

)
,

X3 =
∑

k≥1

αk
∑

G∈D3(k)

BG

(
(1 +X1)

2k

(1−X2)k(1−X3)2k−1

)
,

where D1(k), D2(k) and D3(k) are sets of primitive Feynman graphs with k loops and

respetive external strutures , and . In partiular:

D2(k) =











 if k = 1,

∅ otherwise;

D3(k) =





{ }
if k = 1,

∅ otherwise.

(b) In ϕn
, C =

(
n−2
2

)
, so C ′ =

(
2

n−2

)
; hene, A =

( 2
n−2

− n
n−2

)
and A′ =

(
1
−n

2

)
. The

SDSE is:

X1 =
∑

k≥1

αk
∑

G∈D1(k)

BG

(
(1 +X1)

2k
n−2

+1

(1−X2)
nk
n−2

)
,

X2 =
∑

k≥1

αk
∑

G∈D2(k)

BG

(
(1 +X1)

2k
n−2

(1−X2)
nk
n−2

−1

)
,

where D1(k) and D2(k) are sets of primitive Feynman graphs with k loops and re-

spetive external strutures the vertex and the edge.
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2. In QCD, we take:

C =




1 0 0 0
0 1 0 0
1
2

1
2

3
2 2

1
2

1
2

1
2 1


 .

If G is a QCD Feynman graph, then:

deg(G) =


deg (G), deg (G), deg (G), ℓ(G)


 .

It is a onneted N4
-graduation. Moreover, C ′ = C−1

, and:

A =




1 0 0 0
0 1 0 0
1 1 2 −4
−1 −1 −1 3
−1 0 0 0
0 −1 0 0
0 0 −1 0




, A′ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0
−1

2 −1
2 −3

2 −2




.

The SDSE is:

X1 =
∑

k∈N4
∗

αk
∑

G∈D1(k)

BG

(
(1 +X1)

k1+1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1(1−X6)k2(1−X7)k3

)
,

X2 =
∑

k∈N4
∗

αk
∑

G∈D2(k)

BG

(
(1 +X1)

k1(1 +X2)
k2+1(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1(1−X6)k2(1−X7)k3

)
,

X3 =
∑

k∈N4
∗

αk
∑

G∈D3(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)+1(1 +X4)
β(k)

(1−X5)k1(1−X6)k2(1−X7)k3

)
,

X4 =
∑

k∈N4
∗

αk
∑

G∈D4(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)+1

(1−X5)k1(1−X6)k2(1−X7)k3

)
,

X5 =
∑

k∈N4
∗

αk
∑

G∈D5(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1−1(1−X6)k2(1−X7)k3

)
,

X6 =
∑

k∈N4
∗

αk
∑

G∈D6(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1(1−X6)k2−1(1−X7)k3

)
,

X7 =
∑

k∈N4
∗

αk
∑

G∈D7(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1(1−X6)k2(1−X7)k3−1

)
,

with α(k) = k1 + k2 +2k3− 4k4 and β(k) = −k1− k2− k3 +3k4, and where D1(k), D2(k),
D3(k), D4(k), D5(k), D6(k) and D7(k) are sets of primitive Feynman graphs of degree k
and respetive external strutures:

, , , , , , .

Remark. We an extend the set of onsidered Feynman graphs by admiting other external

strutures, indexed by k+ l+1, . . . , k+ l+m. for k+1 ≤ j ≤ k+ l and k+ l+1 ≤ i ≤ k+ l+m,
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let λ
(i)
j be the number of opies of half-edges of the j-th type of edge tj in the i-th external

struture, divided by 2. We obtain a SDSE given by:

Xi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 +Xj)
∑

p c
′
j,pdp

k+l∏

j=k+1

(1−Xj)
∑

p,q a
′
j,pc

′
p,qdj (1 +Xi)




if i ≤ k,

Xi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 +Xj)
∑

p c
′
j,pdp

k+l∏

j=k+1

(1−Xj)
∑

p,q a
′
j,pc

′
p,qdj (1−Xi)




if k + 1 ≤ i ≤ k + l,

Xi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 +Xj)
∑

p c
′
j,pdp

k+l∏

j=k+1

(1−Xj)
∑

p,q a
′
j,pc

′
p,qdj

k+l∏

j=k+1

(1−Xj)
λ
(i)
j




otherwise.

We reognize the deg1 pre-Lie algebra with Ip = {p} for all 1 ≤ p ≤ k+ l, I0 = {k+ l+1, . . . , k+
l + n}, b given by:

b(i,j) =





δi,j if i ≤ k,

−δi,j if k + 1 ≤ i ≤ k + l,

−λ
(i)
j if i ≥ k + l + 1,

and A given by the matrix

(
C ′

−A′
T C

′

)
. If C is invertible, H(S′

T ) is isomorphi to the Hopf

algebra of oordinates of the group:

(Vλ(k+l+1),0 ⊕ . . . ⊕ Vλ(k+l+m),0)⋊ (V l
0 ⋊GA′′).

5.5 Minimal rank for QCD

Let us onsider a QFT, the SDSE (S′
T ) assoiated to it, and a matrix C giving a onneted

NN
-graduation. We proved that if Rank(C) = |V|, then H(ST ) is Hopf; we would like to know

what the minimal rank of C required to make H(S′
T ) a Hopf subalgebra is. For QED or ϕn

, as

|V| = 1, this is obviously 1. If the theory has enough primitive Feynman graphs, this minimal

rank is |V|: we now prove this result for QCD.

Proposition 44 In the QCD ase, the graduation indued by C gives a Hopf SDSE if, and

only if Rank(C) = 4.

Proof. We already proved the impliation⇐=. We �rst onstrut enough primitive Feynman

graphs of external struture . Let (a, b, c, d) ∈ N4
∗. We start with G = .

Judiiously gluing the external edges of a opies of , b opies of , c opies of

and d opies of on the edges and , reating in this way new

2a+ 2b+ 3c+ 4d new verties of type , we obtain a primitive Feynman graph G′
with:

VG′ =




1
0
0
0


+ a




2
0
0
0


+ b




2
2
0
0


+ c




3
0
1
0


+ d




4
0
0
1


 .
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Let us assume that H(S′
T ) is Hopf and that Rank(C) ≤ 3. There exists a nonzero vetor

v ∈ Q4
, suh that Cv = (0). We deompose this vetor v in the basis:







2
0
0
0


 ,




2
2
0
0


 ,




3
0
1
0


 ,




4
0
0
1





 .

After a multipliation by a nonzero integer and separation of the terms aording to their signs,

we obtain that there exists two di�erent vetors w and w′
, suh that:

w = a




2
0
0
0


+ b




2
2
0
0


+ c




3
0
1
0


+ d




4
0
0
1


 , a, b, c, d ∈ N,

w′ = a′




2
0
0
0


+ b′




2
2
0
0


+ c′




3
0
1
0


+ d′




4
0
0
1


 , a′, b′, c′, d′ ∈ N,

Cw = Cw′.

Let G and G′
be primitive Feynman graphs of external struture suh that:

VG =




1
0
0
0


+w, VG′ =




1
0
0
0


+ w′.

Their degree are:

deg(G) = CVG − (C 0)




1
0
.

.

.

0


 = Cw, deg(G′) = CVG′ − (C 0)




1
0
.

.

.

0


 = Cw′.

So deg(G) = deg(G′). Aording to lemma 13, fG = fG′
, so in partiular, for all i ∈ [4],

vi(G) = vi(G
′), whih implies that VG = VG′

and �nally w = w′
, whih is a ontradition. We

onlude that Rank(C) = 4. �

6 SDSE assoiated to oloured graphs

We now generalize multiyli SDSE of [7, 9℄. We are interested here in SDSE of the form:

(S) : ∀i ∈ [M ], Xi =
∑

α∈NN
∗

Bi,α


1 +

∑

j∈Ii,α

Xj


 ,

where the Ii,α are nonempty sets.

De�nition 45 1. A N -oloured oriented graph is an oriented graph G, with a map from

the set E(G) of edges of G into [N ]. We denote by V (G) the set of verties of G. For

all i, j ∈ V (G), for all α = (α1, . . . , αN ) ∈ NN
, we shall write i

α
−→ j if there exists an

oriented path from i to j in G, with αi edges oloured by i for all i ∈ [N ].
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2. Let G be a N -oloured oriented graph. The SDSE assoiated to G is assoiated to the

NN
-graded partitioned set D = V (G)× NN

∗ :

(SG) : ∀i ∈ V (G), Xi =
∑

α∈NN
∗

Bi,α


1 +

∑

i
α

−→j

Xj


 .

3. Let G be a N -oloured oriented graph. We shall say that G is Hopf if, for all i, j, k ∈ V (G),
for all α, β ∈ NN

∗ ,

(i
α
−→ j and j

β
−→ k)⇐⇒ (i

α
−→ j and i

α+β
−→ k).

(Note that =⇒ is always satis�ed).

Proposition 46 We onsider a SDSE of the form:

(S) : ∀i ∈ [M ], Xi =
∑

α∈NN
∗

Bi,α


1 +

∑

j∈Ii,α

Xj


 ,

It is Hopf, if, and only if, there exists a N -oloured Hopf graph on [M ] suh that (S) is equal to
(SG). If this holds, the dual pre-Lie algebra ofH(SG) is assoiative; it has a basis (fi(α))i∈V (G),α∈NN

∗

and the produt is given by:

fj(β) ∗ fi(α) =

{
fi(α+ β) if i

α
−→ j,

0 otherwise.

Proof. =⇒. First step. Let us assume that (S) is Hopf. We �x i, j, k ∈ [M ] and α, β, γ ∈ NN
∗ .

We put:

a =

{
1 if j ∈ Ii,α,

0 otherwise;

b =

{
1 if k ∈ Ii,α+β,

0 otherwise;

c =

{
1 if k ∈ Ij,β,

0 otherwise.

We obtain:

Xi(α+ β) = q i, α + β + a q

q

i, α
j, β + . . . ,

Xi(α+ β + γ) = q i, α + β + γ+ b q
q

i, α + β
k, γ + ac q

q

q

i, α
j, β
k, γ

+ . . .

Hene:

∆(Xi(α+ β + γ)) = qk, γ ⊗ (b q i, α + β + ac q
q

i, α
j, β + . . .)︸ ︷︷ ︸

=X

. . .

As H(S) is Hopf, X is a multiple of Xi(α+β), so ab = ac: a = 0 or b = c. In partiular, if a 6= 0,

b = c. Hene, for all i, j, k ∈ [M ], for all α, β ∈ NN
∗ , j ∈ Ii,α and k ∈ Ij,β if, and only if, i ∈ Ii,α

and k ∈ Ii,α+γ .

Seond step. We de�ne a oloured graph struture G on [M ] in the following way: for all

i, j ∈ [M ], for all p ∈ [N ], there exists an edge from i to j deorated by p if, and only if, j ∈ Ii,ǫp .

Let us prove that for all i, k ∈ [M ], for all α ∈ NN
∗ , k ∈ Ii,α if, and only if, i

α
−→ k in G. We

proeed by indution on |α| = α1+ . . .+αN . This is obvious if |α| = 1. Let us assume the result

at rank |α| − 1.
=⇒. Let us hoose α′

and α′′
, suh that α = α′ + α′′

, |α′| = |α| − 1 and |α′′| = 1. Let

j ∈ Ii,α′
. By the �rst step, then k ∈ Ij,α′′

. By the indution hypothesis, i
α′

−→ j and j
α′′

−→ k, so

i
α
−→ k.
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⇐=. Let us assume that i
α
−→ k. We onsider a path in G from i to k, of weight α. If j is

the last step, there exists α′, α′′
, suh that α = α′ + α′′

, |α′| = |α| − 1 and |α′′| = 1, i
α′

−→ j and

j
α′′

−→ k. By the indution hypothesis, j ∈ Ii,α′
and k ∈ Ij,α′′

. By the �rst step, k ∈ Ii,α.
Hene:

(S) : ∀i ∈ [M ], Xi =
∑

α∈NN
∗

Bi,α


1 +

∑

i
α

−→j

Xj


 .

So (S) = (SG). The �rst step implies that (G) is Hopf.

=⇒. Let us onsider a Hopf N -oloured graph G. We de�ne a produt on the vetor spae

g = V ect(fi(α))i∈V (G),α∈NN
∗
by:

fj(β) ∗ fi(α) =

{
fi(α+ β) if i

α
−→ j,

0 otherwise.

Let i, j, k ∈ V (G). For any α, β, γ ∈ NN
∗ :

(fk(γ) ∗ fj(β)) ∗ fi(α) =

{
fi(α+ β + γ) if i

α
−→ j and j

β
−→ k,

0 otherwise;

fk(γ) ∗ (fj(β)fi(α)) =

{
fi(α+ β + γ) if i

α
−→ j and i

α+β
−→ k,

0 otherwise.

So ∗ is assoiative. Hene, g is a NN
-graded onneted pre-Lie algebra. It is not di�ult to prove

that the graded dual of its enveloping algebra, imbedded in HD
, is the subalgebra generated by

the solution of the SDSE (SG), whih as a onsequene is Hopf. �

An example of oloured graph is given by families of ommuting endofuntions:

Proposition 47 Let V be a set and, for all 1 ≤ p ≤ [N ], let fp : V −→ V be a map. We

onstrut a graph Gf in the following way:

• V (G) = V .

• For all i, j ∈ V , for all p ∈ [N ], i
ǫp
−→ j if, and only if, fp(i) = j.

In other terms, G is the oloured graph of maps f1, . . . , fN . Then Gf is Hopf, if and only if, for

all p, q ∈ [N ], fp ◦ fq = fq ◦ fp.

Proof. =⇒. Let us assume that Gf is Hopf. Let i, j ∈ V . We put j = fq(i), j
′ = fp(i),

k = fq ◦ fp(i), α = ǫq and β = ǫp. Then i
α
−→ j and i

α+β
−→ k, so j

β
−→ k: hene,

fp(j) = fp ◦ fq(j) = k = fq ◦ fp(i).

⇐=. Let us assume that i
α
−→ j and i

α+β
−→ k. There exists a sequene p1, . . . , pm suh

that ǫp1 + . . . + ǫpm = α, fp1 ◦ . . . ◦ fpm(i) = j. There exists a sequene p1, . . . , pm suh that

ǫq1 + . . . + ǫqm+n
= α + β, fq1 ◦ . . . ◦ fqm+n

(i) = k. Note that m = |α|, and m + n = |α + β|.
Moreover, the multiset {p1, . . . , pm} is inluded in the multiset {q1, . . . , qm+n}. We proeed by

indution on n = |β|. If n = 1, let us assume that {q1, . . . , qm+n} \ {p1, . . . , pm} = {qr}. The

ommutation relation implies that:

fq1 ◦ . . . ◦ fqm+n
(i) = fr ◦ fq1 ◦ . . . fqr−1 ◦ fqr+1 ◦ . . . ◦ fqm+1(i).

By permuting the pj 's using the ommutation relations, we obtain that these two elements are

equal. Hene, fr(j) = l, so j
β
−→ k.
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Let us assume the result at rank n − 1. There exists k′, suh that i
α+β′

−→ k′ k′
β′′

−→ k,

β = β′ + β′′, |β′| = n− 1 and |β′′| = 1. By the indution hypothesis, j
β′′

−→ k′, so j
β
−→ k. �

Example. Let V = Z/NZ, N = 1 and:

f :

{
Z/NZ −→ Z/NZ

k −→ k + 1.

The SDSE assoiated to f is a yli SDSE of [7, 9℄.

Remark. There are other examples of oloured Hopf graphs, for example:

•

1
��

1

��❅
❅❅

❅❅
❅❅

•

2
��

• •
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