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Abstra
t

We study systems of 
ombinatorial Dyson-S
hwinger equations with an arbitrary number

N of 
oupling 
onstants. The 
onsidered Hopf algebra of Feynman graphs is NN
-graded, and

we wonder if the graded subalgebra generated by the solution is Hopf or not.

We �rst introdu
e a family of pre-Lie algebras whi
h we 
lassify, dually providing systems

generating a Hopf subalgebra; we also des
ribe the asso
iated groups, as extensions of groups

of formal di�eomorphisms on several variables.

We then 
onsider systems 
oming from Feynman graphs of a Quantum Field Theory. We

show that if the number N of independent 
oupling 
onstants is the number of intera
tions

of the 
onsidered QFT, then the generated subalgebra is Hopf. For QED, ϕ3
and QCD, we

also prove that this is the minimal value of N .

All these examples are generalizations of the �rst family of Dyson-S
hwinger systems in

the one 
oupling 
onstant 
ase, 
alled fundamental. We also give a generalization of the

se
ond family, 
alled 
y
li
.

Keywords. Dyson-S
hwinger systems; Feynman graphs; pre-Lie algebras; 
ombinatorial

Hopf algebras.

AMS 
lassi�
ation. 16T05, 81T18, 05C05.

Contents

1 Hopf algebras of de
orated trees 3

1.1 De�nition and universal property . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Graduation and duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Multigraded SDSE 6

2.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Simpli�
ation of the hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Operations on SDSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Changes of graduation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 A family of pre-Lie algebras 12

3.1 De�nition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Classi�
ation of deg1 pre-Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 SDSE asso
iated to a deg1 pre-Lie algebra . . . . . . . . . . . . . . . . . . . . . . 16

1



4 Group asso
iated to a fundamental pre-Lie algebra 18

4.1 Lie algebra asso
iated to a fundamental pre-Lie algebra . . . . . . . . . . . . . . 18

4.2 Group asso
iated to a redu
ed deg1 pre-Lie algebra . . . . . . . . . . . . . . . . . 20

5 SDSE asso
iated to a family of Feynman graphs 23

5.1 Feynman graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Graduations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Insertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 SDSE asso
iated to a theory of Feynman graphs . . . . . . . . . . . . . . . . . . 31

5.5 Minimal rank for QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 SDSE asso
iated to 
oloured graphs 36

Introdu
tion

In a Quantum Field Theory (shortly, QFT), the Green fun
tions are developed as a series in the


oupling 
onstant, indexed by the set of Feynman graphs. These series 
an be seen at the level

of Feynman graphs. They satisfy a 
ertain system (S) of 
ombinatorial Dyson-S
hwinger equa-
tion (brie�y, SDSE), whi
h uses 
ombinatorial operators of insertion, and allows to indu
tively


ompute the homogeneous 
omponents of the Green fun
tions, a

ording to their loop number

[1, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28℄. Feynman graphs are organized as a Hopf algebra

HFG , graded by the loop number, and we 
onsider the subalgebra H(S) of HFG generated by the


omponents of the unique solution of (S). A natural question is to know if the graded subalgebra

generated by the Green fun
tions is Hopf or not. This problem, and related questions about the

nature of the obtained Hopf subalgebras, are the main obje
t of study in [6, 7, 8, 9℄. It turns

out that in the 
ase of QED or ϕ3
, whi
h are QFT with only one intera
tion, this subalgebra

is indeed Hopf; this is not the 
ase for QCD, with its four intera
tions. A possibility in this

last 
ase is to re�ne the graduation, or equivalently to introdu
e more 
oupling 
onstants, whi
h

makes the subalgebra H(S) generated by the 
omponents of the solution bigger; we shall prove

here that there exists a N4
-graduation of the Hopf algebra of QCD Feynman graphs, su
h that

H(S) is a Hopf subalgebra.

The aim of this text is to study SDSE giving a Hopf subalgebra when the Hopf algebra of

Feynman graphs is given a NN
-graduation, generalizing the results of [7℄ for the loop number

graduation. Re
all that if we 
onsider only one 
oupling 
onstant, the Hopf algebra of graphs we


onsider is N-graded, and we obtained two families of SDSE, 
alled fundamental and 
y
li
, and

four operations on SDSE, allowing to obtain all SDSE giving a Hopf subalgebra. The graded

dual of this Hopf subalgebra is the enveloping algebra of a pre-Lie algebra, des
ribed in [9℄. In

the fundamental 
ase, the 
onstant stru
tures of this pre-Lie algebra are polynomial of degree

≤ 1. We generalize this de�nition to the NN
-graded 
ase (de�nition 8); these obje
ts are 
alled

deg1 pre-Lie algebras. Their 
lassi�
ation is done in theorem 24. As enveloping algebras of free

pre-Lie algebras are Grossman-Larson Hopf algebras [10, 11℄, dually the enveloping algebra of a

deg1 pre-Lie algebra 
an be embedded in a Connes-Kreimer Hopf algebra of de
orated rooted

trees [4, 5℄, giving in this way a family of SDSE su
h the asso
iated subalgebra is Hopf (theorem

27). We also des
ribe the group asso
iated to su
h pre-Lie algebras; they all 
ontain a group of

formal di�eomorphisms.

We then pro
eed to SDSE 
oming from a QFT. We �rst study all the possible graduations

of HFG whi
h are de�ned from 
ombinatorial datas asso
iated to Feynman graphs, su
h as the

number of verti
es, of internal or external half-edges or edges, or the external stru
ture: we

prove that su
h a NN
-graduation is asso
iated to a matrix C ∈ MN,|V|(Q), where V is the set

of possible verti
es in the Feynman graphs of the theory (proposition 38); the rank of C is of

spe
ial importan
e here. We show how to lift these systems at the level of de
orated rooted trees,
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using a universal property, and we re
over in this way SDSE asso
iated to deg1 pre-Lie algebras

previously des
ribed, if the rank of C is the 
ardinality of V. We may ask the question of the

minimal rank of C required to obtain a Hopf subalgebra: it is smaller than |V|. In QED or ϕn
, as

this 
ardinality is 1, the answer is obviously 1; for QCD, we prove in proposition 44 that it is also

|V| = 4. The main idea is to produ
e primitive Feynman graphs with an arbitrarily large number

of verti
es of any kind, and we 
onje
ture that for any QFT with enough primitive Feynman

graphs, the minimal rank of the graduation is the number of intera
tions of the theory. We shall


on
lude with a generalization of the se
ond family of SDSE in the N-graded 
ase, namely 
y
li


SDSE.

This arti
le is organized as follows. The �rst se
tion 
ontains reminders on Connes-Kreimer

Hopf algebras of de
orated rooted trees, their universal properties, their graduations and their

graded duals. In the se
ond se
tion, we introdu
e the notion of 
ombinatorial SDSE in Connes-

Kreimer Hopf algebras; we give three operations on SDSE, and also study the e�e
t of 
hanging

the graduation of the subalgebra H(S) generated by the unique solution of su
h a SDSE. We

then introdu
e and 
lassify deg1 pre-Lie algebras in the next se
tion, whi
h dually give us a

�rst family of NN
-graded SDSE. The group asso
iated to these pre-Lie algebras are des
ribed

in the fourth se
tion. Feynman graphs of a given QFT, their Hopf-algebrai
 stru
ture and their

SDSE are introdu
ed and studied in the next se
tion. The last, independent, se
tion deals with

a generalization of 
y
li
 SDSE.

Aknowledgment. The resear
h leading these results was partially supported by the Fren
h

National Resear
h Agen
y under the referen
e ANR-12-BS01-0017.

Notations.

1. Let M and N be nonnegative integers. We denote by [M ] the set of integers {1, . . . ,M}
and by NN

∗ the set of nonzero elements of NN
.

2. The 
anoni
al basis of KN
(and of ZN

) is denoted by (ǫ1, . . . , ǫN ).

3. Let a, b ∈ K. We denote by Fa,b(X) the formal series:

Fa,b(X) =

∞∑

k=0

a(a− b) . . . (a− b(k − 1))

k!
Xk =

{
(1 + bX)

a
b
if b 6= 0,

eaX if b = 0.

Note that for all a, a′, b ∈ K, Fa+a′,b(X) = Fa,b(X)Fa′,b(X).

1 Hopf algebras of de
orated trees

Let us start with a few reminders on the Connes-Kreimer Hopf algebras of de
orated trees

[4, 5℄ and related algebrai
 stru
tures. We 
onsider a nonempty set D, whi
h we 
all the set of

de
orations.

1.1 De�nition and universal property

De�nition 1 1. A tree is a �nite graph, 
onne
ted, with no loop; a rooted tree is a tree

with a pointed vertex, 
alled the root; a rooted tree de
orated by D is a pair (T, d), where T
is a rooted tree and d is a map from the set V (T ) of verti
es of T to D; for all v ∈ V (T ),
d(v) is 
alled the de
oration of v. The set of iso
lasses of rooted trees de
orated by D is

denoted by TD
.

2. The algebra HD
of rooted trees de
orated by D is the free 
ommutative asso
iative algebra

generated by TD
. By de�nition, the set FD

of rooted forests de
orated by D, that is to
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say monomials in TD
, or �nite disjoint unions of elements of TD

, is a basis of HD
. The

produ
t of HD
is the disjoint union of de
orated rooted forests.

Examples. We draw rooted trees with their root at the bottom.

1. The rooted trees de
orated by D with n ≤ 4 verti
es are:

qa, a ∈ D; q

q

a
b , (a, b) ∈ D2; q

qq

∨a
cb
= q

qq

∨a
bc
, q

q

q

a
b
c

, (a, b, c) ∈ D3;

q

qq q

∨a
d

c
b

= q

qq q

∨a
c

d
b

= . . . = q

qq q

∨a
b

c
d

, q

qq

q

∨a
db

c

= q

qq

q

∨a
bd

c

,
q

qq

q

∨
a

b

dc

=
q

qq

q

∨
a

b

cd

, q

q

q

q

a
b
c
d

, (a, b, c, d) ∈ D4.

2. The rooted forests de
orated by D with n ≤ 3 verti
es are:

1; qa , a ∈ D; q

q

a
b , qa q b = q b qa , (a, b) ∈ D2;

q

qq

∨a
cb
= q

qq

∨a
bc
, q

q

q

a
b
c

, q

q

a
b
q c = q c q

q

a
b , qa q b q c = qa q c q b = . . . = q c q b qa, (a, b, c) ∈ D3.

The algebra HD

an also be de�ned by a universal property [4, 27℄:

Proposition 2 Let d ∈ D. The linear endomorphism Bd of HD
sends any rooted forest

F ∈ FD
to Bd(F ) ∈ TD

obtained in grafting the di�erent trees of F on a 
ommon root de
orated by

d. This family of endomorphisms satisfy the following universal property: if A is a 
ommutative

algebra, and for all d ∈ D, Ld : A −→ A is a linear endomorphism, there exists a unique algebra

morphism φ : HD −→ A su
h that for all d ∈ D, φ ◦Bd = Ld ◦ φ.

Example. If a, b, c, d ∈ D, Ba( q b q

q

c
d ) = q

qq

q

∨a
cb

d

.

This universal property 
an be used to de�ne the Connes-Kreimer 
oprodu
t of HD
:

Proposition 3 1. There exists a unique 
oprodu
t on HD
su
h that for all d ∈ D, for all

x ∈ HD
:

∆ ◦Bd(x) = Bd(x)⊗ 1 + (Id⊗Bd) ◦∆(x).

With this 
oprodu
t, HD
be
omes a Hopf algebra. Its 
ounit is the map:

ε :

{
HD −→ K

F ∈ FD −→ δF,1.

2. Let A be a 
ommutative Hopf algebra, and for all d ∈ D, let Ld : A −→ A a linear

endomorphism su
h that for all x ∈ A:

∆ ◦ Ld(x) = Ld(x)⊗ 1 + (Id⊗ Ld) ◦∆(x).

The unique algebra morphism φ : HD −→ A su
h that for all d ∈ D, φ ◦ Bd = Ld ◦ φ is a

Hopf algebra morphism.

This 
oprodu
t admits a 
ombinatorial des
ription in terms of admissible 
uts. For example,

if a, b, c, d ∈ D:

∆ q

qq

q

∨d
cb

a

= q

qq

q

∨d
cb

a

⊗ 1 + 1⊗ q

qq

q

∨d
cb

a

+ q

q

b
a ⊗ q

q

d
c + qa ⊗ q

qq

∨d
cb
+ qc ⊗ q

q

q

d
b
a

+ q

q

b
a
q c ⊗ qd + qa q c ⊗ q

q

d
b .

Here is another appli
ation of the universal property:
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Proposition 4 Let a = (ad)d∈D be a family of elements of K. We denote by φa the unique

Hopf algebra endomorphism of HD
su
h that for all d ∈ D, φ ◦ Bd = adBd ◦ φ. For any forest

F ∈ FD
, denoting by V (F ) the set of verti
es of F :

φa(F ) =


 ∏

v∈V (F )

ad(v)


F.

Consequently, if for all d ∈ D, ad 6= 0, φa is an automorphism.

Proof. We 
onsider the endomorphism ϕ de�ned by:

∀F ∈ FD, ϕ(F ) =


 ∏

v∈V (F )

ad(v)


F.

Let F,F1, F2 ∈ FD
. As V (F1F2) = V (F1) ⊔ V (F2), ϕ(F1F2) = ϕ(F1)ϕ(F2), ϕ is an algebra

endomorphism. As V (Bd(F )) = V (F ) ⊔ {root(F )}, ϕ(Bd(F )) = adBd(ϕ(F )). Consequently,

ϕ ◦Bd = adBd ◦ ϕ. By uni
ity in the universal property, ϕ = φa. �

1.2 Graduation and duality

De�nition 5 1. A NN
-graded set is a pair (D, deg), where D is a set and deg : D −→ NN

is a map. For all α ∈ NN
, we put Dα = deg−1(α). We shall say that the NN

-graded D is


onne
ted if D0 = ∅ and if for all α ∈ NN
, deg−1(α) is �nite.

2. Let D be a NN
-graded 
onne
ted set. For all forest F ∈ FD

, we put:

deg(F ) =
∑

v∈V (F )

deg(d(v)).

This indu
es a 
onne
ted NN
-graduation of the Hopf algebra HD

, with:

∀α ∈ NN , (HD)α = V ect(F ∈ FD | deg(F ) = α).

Moreover, for this graduation, Bd is homogeneous of degree deg(d) for all d ∈ D.

If D is a NN
-graded 
onne
ted set, then, as HD

is a graded 
onne
ted Hopf algebra, its

graded dual (HD)∗ is also a Hopf algebra [13, 23℄. As a ve
tor spa
e, it 
an be identi�ed with

HD
, by the help of the symmetri
 pairing de�ned by:

∀F,G ∈ FD, 〈F,G〉 = sF δF,G,

where sF is the number of symmetries of F . The 
oprodu
t ∆′
of (HD)∗ is given by:

∀T1, . . . , Tk ∈ TD, ∆′(T1 . . . Tk) =
∑

I⊆[k]

(∏

i∈I

Ti

)
⊗

(∏

i/∈I

Ti

)
.

Its produ
t ⋆ is given by graftings: this is the Grossman-Larson produ
t [10, 11, 12℄. For example:

q

q

a
b ⋆ q

q

c
d = q

q

a
b
q

q

c
d + q

qq

q

∨c
da

b

+ q

q

q

q

c
d
a
b

.

Note that this graded dual does not depend of the 
hoi
e of the 
onne
ted graduation of D.
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By the Cartier-Quillen-Milnor-Moore's theorem, (HD)∗ is the enveloping algebra of a Lie

algebra g
D
. By 
onstru
tion of the 
oprodu
t ∆′

, the set TD
is a basis of g

D
; by de�nition of

the Grossman-Larson produ
t, for all T, T ′ ∈ TD
:

[T, T ′] =
∑

v′∈V (T ′)

grafting of T on v′ −
∑

v∈V (T )

grafting of T ′
on v.

We de�ne a produ
t ∗ on g
D
by:

T ∗ T ′ =
∑

v′∈V (T ′)

grafting of T on v′.

For any x, y ∈ g
D
, [x, y] = x ∗ y − y ∗ x. For example:

q c ∗ q

q

a
b = q

qq

∨a
bc
+ q

q

q

a
b
c

, q

q

a
b ∗ q c = q

q

q

c
a
b

.

This produ
t is not asso
iative, but is pre-Lie:

De�nition 6 A (left) pre-Lie algebra is a pair (V, ∗), where V is a ve
tor spa
e and ∗ is a
bilinear produ
t on V , su
h that for all x, y, z ∈ V :

(x ∗ y) ∗ z − x ∗ (y ∗ z) = (y ∗ x) ∗ z − y ∗ (x ∗ z).

If (V, ∗) is pre-Lie, the bra
ket de�ned by [x, y] = x ∗ y − y ∗ x is a Lie bra
ket.

Moreover, Chapoton and Livernet proved, using the theory of operads, that g
D

is a free

pre-Lie algebra [2, 3℄:

Theorem 7 Let A be a pre-Lie algebra and let ad ∈ A for all d ∈ D. There exists a unique

pre-Lie algebra morphism φ : gD −→ A su
h that φ( qd) = ad for all d ∈ D. In other words, g
D

is, as a pre-Lie algebra, freely generated by the elements

qd , d ∈ D.

1.3 Completion

We graduate HD
by the number of verti
es of forests, that is to say we 
onsider the graduation

indu
ed by the map deg : D −→ N, sending every element of D to 1. This graduation indu
es a

distan
e d on HD
, de�ned by:

d(f, g) = 2−val(f−g).

The metri
 spa
e HD
is not 
omplete: its 
ompletion is denoted by ĤD

. As a ve
tor spa
e, it

is the spa
e of 
ommutative formal series in TD
. The produ
t of HD

, being homogeneous of

degree 0, is 
ontinuous, so 
an be extended to ĤD
: this gives the usual produ
t of formal series.

Similary, for any d ∈ D, Bd, being homogeneous of degree 1, is 
ontinuous so 
an be extended

to a map Bd : ĤD −→ ĤD
.

2 Multigraded SDSE

2.1 De�nition

De�nition 8 Let D = D1⊔. . .⊔DM be a partitioned set. Let (fd)d∈D be a family of elements

of K〈〈x1, . . . , xM 〉〉. The system of Dyson-S
hwinger equations (brie�y, SDSE) asso
iated to these

elements is:

∀i ∈ [M ], Xi =
∑

d∈Di

Bd(fd(X1, . . . ,XM )),

where X = (X1, . . . ,XM ) belongs to ĤD
M
.
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By 
onvenien
e, we generally index the family of unknows by [M ], but it is of 
ourse possible
to index them by any �nite set.

Proposition 9 Let (S) be a SDSE. It has a unique solution.

Proof. If X = (X1, . . . ,XM ) is a solution of (S), then for all i, Xi is a in�nite span of trees,

so belongs to the augmentation ideal HD
+ . Hen
e, it is enough to prove that (S) has a unique

solution in ĤD
+

M
. Let us 
onsider the following map:

Θ :





ĤD
M
−→ ĤD

M

(X1, . . . ,XM ) −→


∑

d∈Di

Bi(fd(X1, . . . ,XM ))




i∈[M ]

.

As Bd is homogeneous of degree 1 for all d, we obtain that for all f, g ∈ ĤD
M
:

d(Θ(f),Θ(f)) ≤
1

2
d(f, g).

So Θ is a 
ontra
ting map. As ĤD
M

is 
omplete, Θ has a unique �xed point (X1, . . . ,XM ),
whi
h is the unique solution of (S). �

Remarks.

1. As the Di are disjoint, the nonzero Xi are sum of trees with roots de
orated by elements

of Di, so are algebrai
ally independent.

2. If Xi = 0, we 
an delete the i-th equation of (S) and repla
e fd by (fd)|xi=0 for all d ∈ D,

without 
hanging H(S).

We now assume that all the Xi are nonzero (and, as a 
onsequen
e, are algebrai
ally

independent).

De�nition 10 Let D be a 
onne
ted NN
-graded set, indu
ing a 
onne
ted NN

-graduation of

the Hopf algebra HD
. Let (S) be a SDSE on D.

1. The unique solution of S is denoted by X = (X1, . . . ,XM ), and the homogeneous 
ompo-

nents of Xi are denoted by Xi(α), i ∈ [M ], α ∈ NN
.

2. The subalgebra of HD
generated by the Xi(α)'s is denoted by H(S).

3. We shall say that (S) is Hopf if H(S) is a Hopf subalgebra of HD
.

Note that H(S) depends on the 
hoi
e of the graduation.

Example. Here is an example of SDSE. Le us �x k ≥ 1 and d0, . . . , dk ∈ N. For any

α = (α0, . . . , αk) ∈ [N ]k+1
, we put:

deg(α) = d0ǫα0 + . . .+ dkǫαk
∈ ZN .

The set of de
orations is:

D = {α ∈ [N ]k+1 | deg(α) ∈ NN \ {0}}.

7



The Hopf algebra HD
inherits a 
onne
ted NN

-graduation. We 
onsider the SDSE:

(S)FdB : ∀i ∈ [N ], Xi =
∑

α∈[N ]k

B(i,α)

(
(1 +Xα1)

d1 . . . (1 +Xαk
)dk(1 +Xi)

d0+1
)
. (1)

In parti
ular, if (d0, . . . , dk) = (0, 1, . . . , 1), this gives:

∀i ∈ [N ], Xi =
∑

α∈[N ]k

B(i,α) ((1 +Xα1) . . . (1 +Xαk
)) .

Taking k = 2, the 
omponents of X are a 
ommutative version of the elements of De�nition

20 in [6℄, whi
h generate a Hopf algebra isomorphi
 to the free Faà di Bruno Hopf algebra on

N variables. We shall prove that it is indeed a Hopf SDSE, related to the Faà di Bruno Hopf

algebra on N variables.

2.2 Simpli�
ation of the hypotheses

Lemma 11 Let (S) be a Hopf SDSE, and let d ∈ D. If fd(0, . . . , 0) = 0, then fd = 0.

Proof. Let i ∈ [M ], su
h that d ∈ Di. As fd(0, . . . , 0) = 0, qd does not appear in Xi,

and

qd never appears in any element of H(S). Let us assume that fd 6= 0. As the Xj are

algebrai
ally independent, fd(X1, . . . ,XN ) 6= 0, and there exists a linear form g on ĤD
, su
h

that g(fd(X1, . . . ,XN )) = 1. Then (g ⊗ Id) ◦ ∆(Xi) is an element of H(S), where the term

g(fd(X1, . . . ,XN )) qd = qd appears: this is a 
ontradi
tion. So fd = 0. �

Consequently, if H(S) is Hopf and fd0(0, . . . , 0) = 0 for a 
ertain d0 ∈ Di, we 
an rewrite the

i-th equation of (S) in the following way:

Xi =
∑

d∈Di\{d0}

Bd(fd(X1, . . . ,XM )).

We now assume that for all d, fd(0, . . . , 0) 6= 0.

Lemma 12 We 
onsider the two SDSE:

(S) : ∀i ∈ [M ], Xi =
∑

d∈Di

Bd(fd(X1, . . . ,XM )),

(S′) : ∀i ∈ [M ], Yi =
∑

d∈Di

Bd

(
fd(Y1, . . . , YM )

fd(0, . . . , 0)

)
.

For all d ∈ D, we put ad = fd(0, . . . , 0). Let φa be the Hopf algebra isomorphism de�ned in

proposition 4. Then for all i ∈ [M ], Xi = φa(Yi); H(S) = φa(H(S′)) and (S) is Hopf, if and only

if, (S′) is Hopf.

Proof. We put:

gd(x1, . . . , xM ) =
fd(x1, . . . , xM )

fd(0, . . . , 0)
.

As φa ◦Bd = fd(0, . . . , 0)Bd ◦ φa for all d, we obtain:

φa(Yi) =
∑

d∈Di

φa ◦Bd(gd(Y1, . . . , YM ))

=
∑

d∈Di

fd(0, . . . , 0)Bd ◦ φa(gd(Y1, . . . , YM ))

=
∑

d∈Di

fd(0, . . . , 0)Bd(gd(φa(Y1), . . . , φa(YM )))

=
∑

d∈Di

Bd(fd(φa(Y1), . . . , φa(YM ))).
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So (φa(Y1), . . . , φa(YM )) is the unique solution of (S). �

We now assume that fd(0, . . . , 0) = 1 for all d ∈ D.

Lemma 13 Let (S) be a Hopf SDSE, d1, d2 be two elements in the same Di, of the same

degree. Then fd1 = fd2.

Proof. Let us denote by α the 
ommon degree of d1 and d2. The homogeneous 
omponent

of Xi of degree α has the form

qd1 + qd2 + . . .; 
onsequently, if we 
onsider the linear forms:

f1 :

{
HD −→ K

F ∈ FD −→ δF, qd1,
f2 :

{
HD −→ K

F ∈ FD −→ δF, qd2,

then the restri
tion of f1 and f2 to H(S) are equal. As H(S) is Hopf:

fd1(X1, . . . ,XM ) = (Id⊗ f1) ◦∆(Xi) = (Id⊗ f2) ◦∆(Xi) = fd2(X1, . . . ,XM ).

So fd1 = fd2 . �

Note that, if the SDSE is Hopf, we 
an write it under the form:

∀i ∈ [M ], Xi =
∑

α∈NN
∗


 ∑

i∈Di,deg(i)=α

Bi




︸ ︷︷ ︸
=Bi,α

(fα(X1, . . . ,XM )) =
∑

α∈NN
∗

Bi,α(fα(X1, . . . ,XM )).

2.3 Operations on SDSE

De�nition 14 Let D = D1⊔. . .⊔DM be a NN
-graded 
onne
ted partitioned set. We 
onsider

the SDSE given by:

(S) : ∀i ∈ [M ], Xi =
∑

d∈Di

Bd(fd(X1, . . . ,XM )).

1. (Change of variables) Let a = (a1, . . . , aM ) be a family of nonzero s
alars. The SDSE

obtained from (S) by the 
hange of variables asso
iated to these 
oe�
ients is:

(S)a : ∀i ∈ [M ], Yi =
∑

d∈Di

Bd(fd(a1Y1, . . . , aMYM )).

2. (Restri
tion) Let I ⊆ [M ]. The restri
tion of (S) to I is the SDSE given by:

(S)|I : ∀i ∈ I, Xi =
∑

d∈Di

Bd(gd(Xj , j ∈ I)),

where for all d ∈ I, gd = fd|xj=0 for all j /∈I ∈ K[[Xj , j ∈ I]].

Proposition 15 1. Let (S) be a SDSE and let (S)a be another SDSE, obtained from (S)
by a 
hange of variables. We de�ne the 
oe�
ients ad, d ∈ D, by:

ad = ai if d ∈ Di.

Let φa be the Hopf algebra isomorphism de�ned in proposition 4. The unique solution of

(S)a is: (
1

a1
φa(X1), . . . ,

1

aM
φa(XM )

)
.

Hen
e, H(S)a = φa(H(S)) and (S) is Hopf if, and only if (S)a is Hopf.
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2. Let I ⊆M . We de�ne the 
oe�
ients ad, d ∈ D, by:

ad =




1 if d ∈

⊔

i∈I

Di,

0 otherwise.

Let φa be the Hopf algebra morphism de�ned in proposition 4. The unique solution of (S)|I
is:

(φa(Xi))i∈I .

Hen
e, H(S)|I = φa(H(S)) and, if (S) is a Hopf SDSE, then (S)|I is also a Hopf SDSE.

Proof. 1. For all i ∈ [M ], we put Yi =
1
ai
φa(Xi). Then:

Yi =
1

ai

∑

d∈Di

φa ◦Bd(fd(X1, . . . ,XM ))

=
∑

d∈Di

Bd ◦ φa(fd(X1, . . . ,XM ))

=
∑

d∈Di

Bd(fd(φa(X1), . . . , φa(XM )))

=
∑

d∈Di

Bd(fd(a1Y1, . . . , aNYM )).

So Y = (Y1, . . . , YM ) is the solution of (S)a.

2. Proved in a similar way, noting that φa(Xi) = Yi if i ∈ I and 0 otherwise. �

De�nition 16 (Con
atenation) Let (S) and (S′) be two SDSE, respe
tively asso
iated to

partitioned NN
-graded sets D = D1 ⊔ . . . ⊔DM and D′ = D′

1 ⊔ . . . ⊔D
′
M ′, and to formal series

(fd)d∈[M ] and (f ′d)d∈[M ′]. The 
on
atenation of (S) and (S′) is the system asso
iated to the

NN
-graded partitioned set D ⊔D′ = D1 ⊔ . . . ⊔DM ⊔D

′
1 ⊔ . . . ⊔D

′
M ′ given by:

(S) ⊔ (S′) :





if 1 ≤ i ≤M, ,Xi =
∑

d∈Di

Bd(fd(X1, . . . ,XM )),

if M + 1 ≤ i ≤M +M ′, Xi =
∑

d∈D′
i−M

Bd(f
′
d(XM+1, . . . ,XM+M ′)).

Proposition 17 Let (S) and (S′) be two SDSE. Then (S)⊔ (S′) is Hopf if, and only if, (S)
and (S′) are Hopf.

Proof. =⇒. Let us assume that (S) ⊔ (S′) is Hopf. Then (S) ⊔ (S′)|[M ] = (S) and, up to a

reindexation, (S) ⊔ (S′)|[M+M ′]\[M ] = (S′). By proposition 15, (S) and (S′) are Hopf.

⇐=. Let us assume that (S) and (S′) are Hopf. ThenH(S)⊔(S′) is isomorphi
 toH(S)⊗H(S′) ⊆

HD ⊗HD′
⊆ HD⊔D′

. As H(S) and H(S′) are Hopf subalgebras of H
D
and HD′

, H(S) ⊗H(S′) is

a Hopf subalgebra of HD⊔D′
, so (S) ⊔ (S′) is Hopf. �

Remark. As in [7℄, it is possible to de�ne an operation of dilatation for multigraded SDSE.

We will not use it here.
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2.4 Changes of graduation

Let D be a NN
-graded 
onne
ted set. Let C ∈ MN ′,N (Q). We assume the following hypothesis:

if α ∈ NN
satis�es Dα 6= (0), then Cα ∈ NN ′

∗ . We give D a NN ′
-graduation by:

D′
β =

⊔

α∈NN ,Cα=β

Dα.

This de�nes another 
onne
ted graduation of D. Consequently, HD
inherits a se
ond graduation:

HD
(β)′ =

⊕

α,Cα=β

HD
(α).

Let (S) be a SDSE on D. The solution X of (S) 
an be de
omposed into two ways:

Xi =
∑

α∈NN

Xi(α) =
∑

β∈NN′

X ′
i(β).

Hen
e, we obtain two subalgebras, denoted by H(S) and H
′
(S).

Lemma 18 Under the pre
eding hypotheses:

1. H′
(S) ⊆ H(S); if Ker(C) = (0), this is an equality.

2. If H′
(S) is Hopf, then H(S) is Hopf.

Proof. Let β ∈ NN ′
. Then:

X ′
i(β) =

∑

Cα=β

Xi(α).

Hen
e, H′
(S) ⊆ H(S). Let us assume that Ker(C) = (0). Let α ∈ NN

. We put β = Cα. As C is

inje
tive, X ′
i(β) = Xi(α), so Xi(α) ∈ H

′
(S), and �nally H(S) = H

′
(S).

Let us assume that H′
(S) is Hopf. We denote by πα the 
anoni
al proje
tion on HD(α). For

all β ∈ NN ′
:

πα(X
′
i(β)) =

{
Xi(α) if Cβ = α,

0 otherwise.

Moreover, for all x, y ∈ HD
:

πα(xy) =
∑

α′+α′′=α

πα′(x)πα′′(y).

This implies that for all α ∈ NN
∗ ,, πα

(
H′

(S)

)
⊆ H(S). For β = Cα:

∆(Xi(α)) = ∆ ◦ πα(X
′
i(β))

=
∑

α′+α′′=α

(πα′ ⊗ πα′′) ◦∆(Xi(β))

∈
∑

α′+α′′=α

πα′

(
H′

(S)

)
⊗ πα′′

(
H′

(S)

)

∈ H(S) ⊗H(S).

So H(S) is a Hopf subalgebra of HD
. �

We shall often restri
t ourselves to matri
es C whose rank is N ′
. One natural question is to

�nd the smallest N su
h that there exists a NN
-graduation making the studied SDSE Hopf.
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3 A family of pre-Lie algebras

If (S) is a Hopf SDSE, as Xi is an in�nite span of trees with roots de
orated by Di. Moreover,

in H(S), any linear span of rooted trees with roots de
orated by Di is a linear span of Xi(α);
hen
e, we 
an write the 
oprodu
t of Xi under the form:

∆(Xi) = Xi ⊗ 1 +
∑

α∈NN
∗

Pi,α(X1, . . . ,Xn)⊗Xi(α).

So H(S) is a 
ommutative 
ombinatorial Hopf algebra in the sense of [21℄. Hen
e, its dual is the

enveloping of algebra of a pre-Lie algebra g(S). It is generated by the elements fi(α), dual to the

nonzero Xi(α); for all i, j ∈ [M ], for all α, β ∈ NN
∗ , there exists a s
alar λi,j(α, β), su
h that:

fj(β) ∗ fi(α) = λi,j(α, β)fi(α+ β),

where ∗ is the pre-Lie produ
t of g(S). When N = 1, if the system is fundamental, we proved in

[9℄ that these 
oe�
ients are polynomial of degree ≤ 1. We here generalize this 
ase for any N .

3.1 De�nition and examples

De�nition 19 Let (g, ∗) be a pre-Lie algebra. We shall say that it is deg1 if there exists a

basis (fi(α))i∈[M ],α∈NN
∗
of g, and A(i,j) ∈ KN

, b(i,j) ∈ K, su
h that for all i, j ∈ [M ], α, β ∈ NN
∗ :

fj(β) ∗ fi(α) = (A(i,j) · α+ b(i,j))fi(α+ β),

where we denote by · the usual inner produ
t of KN
. The elements A(i,j)

and b(i,j) will be 
alled

the stru
ture 
oe�
ients of g.

Example. We take M = N . The pre-Lie produ
t of the N -dimensional Faà di Bruno Lie

algebra is given by:

fj(β) ∗ fi(α) = (αj + δi,j)fi(α+ β).

Here, A(i,j) = ǫj , and b
(i,j) = δi,j .

Let (g, ∗) be a deg1 pre-Lie algebra of stru
ture 
oe�
ients A(i,j)
and b(i,j). Let λi ∈ K−{0}

for all i ∈ [M ]. We put gi(α) = λifi(α) for all i ∈ [M ], α ∈ NN
∗ . Then:

gj(β) ∗ gi(α) = (λjA
(i,j) · α+ λjb

(i,j))gi(α+ β).

So the deg1 pre-Lie algebra with stru
ture 
oe�
ients A(i,j)
and b(i,j) is isomorphi
 to the deg1

pre-Lie algebra with stru
ture 
oe�
ients λjA
(i,j)

and λjb
(i,j)

: we shall say that these two pre-

Lie algebras are equivalent. Our aim in this se
tion is to �nd all deg1 pre-Lie algebras, up to

equivalen
e.

Lemma 20 Let g be a ve
tor spa
e with a basis (fi(α))i∈[M ],α∈NN
∗
, elements A(i,j) ∈ KN

,

b(i,j) ∈ K, for i, j ∈ [M ]. We de�ne a produ
t ∗ on g by:

fj(β) ∗ fi(α) = (A(i,j) · α+ b(i,j))fi(α+ β).

Then (g, ∗) is a pre-Lie algebra if, and only if, for all i, j, k ∈ [M ]:

(A(i,j) = 0 and b(i,j) = 0) or (A(i,j) = A(i,k)), (2)

A(i,j)b(j,k) = A(i,k)b(k,j), (3)

b(i,j)b(j,k) = b(i,k)b(k,j). (4)
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Proof. Let α, β, γ ∈ NN
∗ , i, j, k ∈ [M ]. Then:

(fk(γ) ∗ fj(β)) ∗ fi(α)− fk(γ) ∗ (fj(β) ∗ fi(α))

= (A(i,j) · α+ b(i,j))(A(j,k) · β + b(j,k))fi(α+ β + γ)

− (A(i,j) · α+ b(i,j))(A(i,k) · (α+ β) + b(i,k))fi(α+ β + γ)

= (A(i,j) · α+ b(i,j))((A(j,k) −A(i,k)) · β −A(i,k) · α+ b(j,k) − b(i,k))fi(α+ β + γ).

Consequently:

(g, ∗) is pre-Lie

⇐⇒ ∀i, j, k ∈ [M ],∀α ∈ NN
∗ ,




(A(i,j) · α+ b(i,j))(A(j,k) −A(i,k)) = 0,

(A(i,k) · α+ b(i,k))(A(k,j) −A(i,j)) = 0,

(A(i,j) · α+ b(i,j))(b(j,k) − b(i,k) −A(i,k) · α) = (A(i,k) · α+ b(i,k))(b(k,j) − b(i,j) −A(i,j) · α),

⇐⇒ ∀i, j, k ∈ [M ],



A(i,j) = 0 or A(j,k) = A(i,k),

b(i,j) = 0 or A(j,k) = A(i,k),

A(i,j)(b(j,k) − b(i,k))− b(i,j)A(i,k) = A(i,k)(b(k,j) − b(i,j))− b(i,k)A(i,j),

b(i,j))(b(j,k) − b(i,k)) = b(i,k)(b(k,j) − b(i,j)),

whi
h is equivalent to 
onditions (2)-(4). �

Proposition 21 Let [M ] = I0 ⊔ . . .⊔ Ik be a partition of [M ], su
h that I1, . . . , Ik 6= ∅ (note

that I0 may be empty), A1, . . . , Ak ∈ KN
, b1, . . . , bp ∈ K, and b

(i)
p ∈ K for all i ∈ I0 and p ∈ [k].

We de�ne a deg1 pre-Lie algebra by:

A(i,j) =

{
Aq if j ∈ Iq, q ≥ 1,

0 if j ∈ I0.
b(i,j) =





δp,qbq if j ∈ Iq, q ≥ 1, i ∈ Ip, p ≥ 1,

0 if j ∈ I0,

b
(i)
q if j ∈ Iq, q ≥ 1, i ∈ I0.

This pre-Lie algebra will be 
alled the fundamental deg1 pre-Lie algebra of parameters I =
(I0, . . . , Ik), A = (A1, . . . , Ak) ∈MN,k(K), b = (b1, . . . , bk) ∈ Kk

and b(i,j).

Proof. Dire
t veri�
ations prove that these stru
ture 
oe�
ients satisfy 
onditions (2)-(4). �

Remarks.

1. For example, the Faà di Bruno pre-Lie algebra of dimension N is fundamental, with Ij =
{j} for all j ∈ [M ], I0 = ∅, A = IN and b = (1, . . . , 1).

2. The pre-Lie produ
t of su
h a pre-Lie algebra is given in the following way: if i ∈ Ip, j ∈ Iq,
α, β ∈ NN

∗ ,

fj(β) ∗ fi(α) =





(Aq · α+ δp,qbq)fi(α+ β) if p, q 6= 0,

(Aq · α+ b
(i)
q )fi(α+ β) if p = 0, q 6= 0,

0 if q = 0.
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3.2 Classi�
ation of deg1 pre-Lie algebras

Let g be a deg1 pre-Lie algebra. We atta
h to it an oriented graph G(g), de�ned as follows:

• The verti
es of G(g) are the elements of [M ].

• There exists an oriented edge from i to j if, and only if, b(i,j) 6= 0.

We shall write i −→ j if there is an oriented edge from i to j in G(g).

Lemma 22 Let g be a fundamental deg1 pre-Lie algebra and let i −→ j −→ k in G(g).
Then, in G(g):

j::
** kjj

yy

i

@@✂✂✂✂✂✂✂✂

]]❁❁❁❁❁❁❁❁

Proof. By 
ondition (4), if i −→ j −→ k, then b(i,j)b(j,k) = b(i,k)b(k,j) 6= 0, so i −→ k and

k −→ j. With the same argument, as k −→ j −→ k, k −→ k. As j −→ k −→ j, j −→ j. �

Proposition 23 Let g be a fundamental deg1 pre-Lie algebra. The graph G(g) has the fol-

lowing stru
ture:

1. The set of verti
es [M ] admits a partition [M ] = I0 ⊔ . . . ⊔ Ik.

2. For all 1 ≤ p ≤ k, the 
omplete subgraph of G(g) whose verti
es are the elements of Ip is,

either 
omplete, either an isolated vertex.

3. For all i ∈ I0, there exists D(i) ⊆ [k], su
h that for all j ∈ [M ], i −→ j if, and only if,

j ∈
⊔

p∈D(i)

Ip.

4. If i ∈ I0, there is no vertex j su
h that j −→ i.

Proof. First step. Let i0 ∈ [M ]. For all p ≥ 1, we denote by Jp the sets of verti
es j ∈ [M ],

su
h that there exists i1, . . . , ip−1 ∈ [M ], i0 −→ i1 −→ . . . −→ ip−1 −→ j. We put J =
⋃

p≥1

Jp

and we 
onsider a 
onne
ted 
omponent K of the subgraph of G(g) of verti
es J . Let us prove
that K is either 
omplete, or is an isolated vertex. First, observe that if j −→ k in K, by

de�nition of J , there exists jp−1, su
h that jp−1 −→ j −→ k. By lemma 22, {j, k} is a 
omplete

subgraph of K.

If K has no edge, as it is 
onne
ted, it is an isolated vertex; let us assume it has at least one

edge j −→ k. By the pre
eding observation, {j, k} is a 
omplete subgraph of K, so K 
ontains


omplete subgraphs. Let L be a maximal 
omplete subgraph of K. If L ( K, as K is 
onne
ted,

there exists k ∈ K \ L, l ∈ L, su
h that k −→ l or l −→ k. We already observed that {k, l} is

omplete in both 
ases. Let l′ ∈ L. As L is 
omplete, then k −→ l −→ l′ and l′ −→ l −→ k: by
lemma 22, k −→ l′, and l′ −→ k: L ⊔ {k} is 
omplete, whi
h 
ontradi
ts the maximality of L.
So K = L is 
omplete.

Se
ond step. We denote by I0 the set of verti
es i su
h that there is no j with j −→ i. Let
K be a 
onne
ted 
omponent of the subgraph of verti
es [M ] \ I0. If k ∈ K, then k /∈ I0, so
there exists j ∈ I, su
h that j −→ k. By the �rst step, K is an isolated vertex or is 
omplete.

We denote by I1 ⊔ . . . ⊔ Ik the de
omposition of [M ] \ I0 in 
onne
ted 
omponents. Let i0 ∈ I0,
and j su
h that i0 −→ j. Then j /∈ I0, so there exists p ≥ 1, j ∈ Ip. If Ip is an isolated vertex,

then i0 −→ j′ for any j′ ∈ Ip. If Ip is 
omplete, for any j′ ∈ Ip, then i0 −→ j −→ j′, so i0 −→ j′

by lemma 22. Denoting by D(i0) the set of p su
h that there exists j ∈ Ip with i0 −→ j, then
i0 −→ j if, and only if, j ∈ Ip for a p ∈ D(i0). �
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Theorem 24 Let g be a deg1 pre-Lie algebra. Up to an equivalen
e, it is the dire
t sum of

fundamental deg1 pre-Lie algebras.

Proof. First 
ase. We assume �rst that G(g) is 
omplete. Let us 
hoose i0 ∈ I. For all j,
b(i0,j) 6= 0: up to an equivalen
e, we assume that b(i0,j) = 1 for all j. Condition (4), with i = i0
be
omes: for all j, k, b(j,k) = b(k,j). Still by 
ondition (4), as b(j,k) = b(k,j) 6= 0, for all i, j, k,
b(i,j) = b(i,k). Hen
e, for all i, j:

b(i,j) = b(i,i0) = b(i0,i) = 1.

Condition (2) be
omes: for all i, j, k, A(j,k) = A(i,k)
. We denote by A(k)

the unique ve
tor su
h

that A(i,k) = A(k)
for all i. Condition (3) be
omes: for all j, k, A(k) = A(j)

. So there exists

a unique ve
tor A, su
h that for all i, j, A(i,j) = A. Finally, g is a fundamental deg1 pre-Lie

algebra, with [M ] = I1.

Se
ond 
ase. We assume that G(g) is 
onne
ted. We use the notations of proposition 23.

If there is an edge from i to j, by 
ondition (2), for all k, A(j,k) = A(i,k)
. By 
onne
tivity,

there exists ve
tors A(k)
, su
h that for all i, j, k, A(i,k) = A(j,k) = A(k)

. We 
onsider the pre-Lie

subalgebra gp of g generated by the elements fi(α), i ∈ Ip, α ∈ NN
∗ . They are deg1 pre-Lie

algebras; if p ≥ 1 and Ip is not a single element, then the graph asso
iated to gp is 
omplete.

By the �rst step, up to an equivalen
e, we 
an assume that A(k)
is 
onstant on Ip: there exists

a ve
tor Ap su
h that A(k) = Ap for all k ∈ Ip, p ≥ 1. Moreover, there exists a s
alar bp, su
h
that b(i,j) = bp for all i, j ∈ Ip, if p ≥ 1.

Let j ∈ I0. By 
onne
tivity of G(g), and by de�nition of I0, there exists k su
h that j −→ k,
so b(j,k) 6= 0 and b(k,j) = 0. By 
ondition (3), A(i,j) = 0 for all i, so A(j) = 0 if j ∈ I0.

By de�nition of the graph, if i ∈ Ip, j ∈ Iq, p, q ≥ 1 and p 6= q, then b(i,j) = 0. If j ∈ I0,
then b(i,j) = 0 for all i. Let i ∈ I0, j, k ∈ Ip, p ≥ 1. If j = k, then b(i,j) = b(i,k). If j 6= k, then
Ip is 
omplete and j −→ k in G(g): b(j,k) = b(j,k) 6= 0. By 
ondition (4), b(i,k) = b(i,j). So there

exists b
(i)
p , su
h that b(i,j) = b

(i)
p for all j ∈ Ip. Finally, the stru
ture 
oe�
ients are given in the

following arrays:

A(i,j) :

i \ j I0 I1 . . . Ik
I0 0 A1 . . . Ak

I1 0
.

.

.

.

.

.

.

.

. 0
.

.

.

.

.

.

Ik 0 A1 . . . Ak

b(i,j) :

i \ j I0 I1 . . . Ik

I0 0 b
(i)
1 . . . b

(i)
k

I1 0 b1 . . . 0
.

.

. 0
.

.

.

.

.

.

.

.

.

Ik 0 0 . . . bk

So this is a fundamental deg1 pre-Lie algebra.

General 
ase. Let G1, . . . , Gl be the 
onne
ted 
omponents of G(g). By the se
ond step,

up to an equivalen
e of g, the pre-Lie subalgebra of g 
orresponding to these subgraphs are

fundamental deg1 pre-Lie algebras.

First sub
ase. Let us assume that there exists i ∈ Gp, j ∈ Gq, with p 6= q, su
h that A(i,j) 6= 0.
By 
ondition (2), for all k, A(j,k) = A(i,k)

. By 
onne
tivity of Gp and Gq , we dedu
e that for all

i′ ∈ Gp, j
′ ∈ Gq, for all k, A

(i′,k) = A(j′,k)
.

Se
ond sub
ase. Let us assume that for all i ∈ Gp, j ∈ Gq , A
(i,j) = 0. As b(i,j) = 0, for all

α, β ∈ NN
∗ , for all i ∈ Gp, j ∈ Gq , fj(β) ∗ fi(α) = 0.

We de�ne an equivalen
e relation ∼ on [M ] in the following way: i ∼ j if for all k, A(i,k) =
A(j,k)

. The �rst sub
ase implies that the equivalen
e 
lasses are disjoint union of Gp: we denote

them by H1, . . . ,Hn. The se
ond step gives that the 
orresponding subalgebras g1, . . . gn are

fundamental deg1 pre-Lie algebras. By the se
ond sub
ase, g = g1 ⊕ . . .⊕ gn. �
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3.3 SDSE asso
iated to a deg1 pre-Lie algebra

We here des
ribe the dual of the enveloping algebra of a deg1 pre-Lie algebra, as a subalgebra

of a Hopf algebra of de
orated rooted trees. We use for this the Guin-Oudom extension of the

pre-Lie produ
t [22℄.

Lemma 25 Let g be a fundamental deg1 pre-Lie algebra. For all i ∈ Ip, p 6= 0, α, β1, . . . , βk ∈
NN
∗ :

fj1(β1) . . . fjk(βk) ∗ fi(α) =





0 if one of the jp is in I0,
k∏

q=1

εq−1∏

r=0

(Aq · α+ bq(δp,q − r))fi(α+ β1 + . . .+ βk) otherwise,

where εq = ♯{p ∈ [k] | jp ∈ Iq}. If i ∈ I0:

fj1(β1) . . . fjk(βk) ∗ fi(α) =





0 if one of the jp is in I0,
k∏

q=1

εq−1∏

r=0

(Aq · α+ b(i)q − rbq)fi(α+ β1 + . . .+ βk) otherwise.

Proof. We pro
eed by indu
tion on k. The result is obvious if k = 1. Let us assume the

result at rank k. We assume that i ∈ Ip, p ≥ 1. We put:

fj1(β1) . . . fjk(βk) ∗ fi(α) = P(j1,...,jk)(α)fi(α+ β1 + . . .+ βk).

Then:

fj1(β1) . . . fjk+1
(βk+1) ∗ fi(α) = fjk+1

(βk+1) ∗ (fj1(β1) . . . fjk(βk) ∗ fi(α))

−
k∑

p=1

fj1(β1) . . . (fjk+1
(βk+1) ∗ fjp(βp)) . . . fjk(βk) ∗ fi(α).

If jk+1 ∈ I0, this is zero. Let us assume that jk+1 ∈ Iq, q ≥ 1. For all p, let bl(p) be the unique
r su
h that jp ∈ Ir. Then:

fj1(β1) . . . fjk+1
(βk+1) ∗ fi(α)

= P(j1,...,jk)(α)fjk+1
(βk+1) ∗ fi(α+ β1 + . . .+ βk)

−
k∑

p=1

(Aq · βp + δbl(p),qbq)fj1(β1) . . . fjp(βp + βkk+1
) . . . fjk(βk) ∗ fi(α)

= P(j1,...,jk)(α)(Aq · (α+ β1 + . . .+ βk) + δp,qbq)fi(α+ β1 + . . .+ βk+1)

− P(j1,...,jk)(α)(Aq · (β1 + . . .+ βk) + bq(εq − 1))fi(α+ β1 + . . . + βk+1)

= P(j1,...,jk)(α)(Aq · α+ bq(δp,q − εq + 1))fi(α+ β1 + . . .+ βk+1).

The 
omputation is similar if i ∈ I0. �

We shall write shortly:

fj1(β1) . . . fjk(βk) ∗ fi(α) = P(j1,...,jk)(α)fi(α+ β1 + . . .+ βk).

Let DM,N = [M ]×NN
∗ . Re
all that g

DM,N
is the free pre-Lie algebra generated by the rooted

trees

qd , d ∈ DM,N . The set DM,N is NN
-graded, with deg(i, α) = α, and this graduation is


onne
ted.

If g is a deg1 pre-Lie algebra, one de�nes a 
onne
ted NN
-graduation of the pre-Lie g

(N)
T by

putting fi(α) homogeneous of degree α. We de�ne a pre-Lie algebra morphism:

φ :

{
g
(N)
T −→ g

q (i, α) −→ fi(α).
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Lemma 26 Let T ∈ TDM,N
. We denote by (r(T ), d(T )) the de
oration of the root of T .

There exists a s
alar λT , su
h that:

φ(T ) = λT fr(T )(deg(T )).

These 
oe�
ients 
an be indu
tively de�ned by:

λT =

{
1 if T = q (i, α) ,

λT1 . . . λTk
P(r(T1),...,r(Tk))(α) if t = B(i,α)(T1 . . . Tk).

Proof. We pro
eed by indu
tion on the number n of verti
es of T . It is obvious if n = 1.
Let us assume the result at all rank < n, n ≥ 2. We put t = B(i,α)(T1 . . . Tk). Then T =
T1 . . . Tk ∗ q (i, α) , so:

φ(T ) = φ(T1) . . . φ(Tk)fi(α)

= λT1 . . . λTk
fr(T1)(|T1|) . . . fr(Tk)(|Tk|) ∗ fi(α)

= λT1 . . . λTk
P(r(T1),...,r(Tk))(α)fi(α+ deg(T1) + . . .+ deg(Tk))

= λT1 . . . λTk
P(r(T1),...,r(Tk))(α)fi(deg(t)).

Hen
e, the result holds for all n. �

By duality, we obtain a Hopf algebra morphism:

φ∗ :





U(g)∗ −→ HDM,N

fi(α)
∗ −→

∑

deg(T )=α,r(T )=i

λT
sT
T.

We put µT = λT

sT
for any rooted tree T ∈ TDM,N

, and, for any i ∈ [M ]:

Xi =
∑

r(T )=i

µTT.

If t = B(i,α)

(
T β1
1 . . . T βl

l

)
, where T1, . . . , Tk are distin
t trees, with i ∈ Ip, p ≥ 1, denoting by εq

the number of trees t′ in T β1
1 . . . T βl

l su
h that r(Ti) ∈ Iq:

µT =
λβ1

T1
. . . λβl

Tl

sβ1

T1
. . . sβl

Tl
β1! . . . βl!

k∏

q=1

εq−1∏

r=0

(Aq · α+ bq(δp,q − r))

= µα1
T1
. . . µαl

Tl

ε1! . . . εk!

β1! . . . βl!

k∏

q=1

1

εq!

εq−1∏

r=0

(Aq · α+ bq(δp,q − r)).

Consequently, if i ∈ Ip, p ≥ 1:

Xi =
∑

α∈NN
∗

B(i,α)




k∏

q=1

fi,q,α


∑

j∈Iq

Xj




 ,

with:

fi,q,α(X) = FAq·α+bqδp,q,bq (X) = FAq ·α,bq(X)Fbqδp,q ,bq(X) = FAq ·α,bq(X)(1 + bqX)δp,q .

A similar 
omputation for i ∈ I0 gives:

Xi =
∑

α∈NN
∗

B(i,α)




k∏

q=1

FAq·α,bq


∑

j∈Iq

Xj




k∏

q=1

F
b
(i)
q ,bq


∑

j∈Iq

Xj




 .

We proved:
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Theorem 27 Let [M ] = I0⊔ I1⊔ . . .⊔ Ik, A1, . . . , Ak ∈ KN
, b1, . . . , bk ∈ K, b

(i)
1 , . . . , b

(i)
k ∈ K

for all i ∈ I0. We 
onsider the following SDSE:

∀i ∈ Ip, p ≥ 1, Xi =
∑

α∈NN
∗

B(i,α)




k∏

q=1

FAq ·α,bq


∑

j∈Iq

Xj




1 + bp

∑

j∈Ip

Xj




 ,

∀i ∈ I0, Xi =
∑

α∈NN
∗

B(i,α)




k∏

q=1

FAq ·α,bq


∑

j∈Iq

Xj




k∏

q=1

F
b
(i)
q ,bq


∑

j∈Iq

Xj




 .

The NN
-graded subalgebra of HDM,N

generated by the unique solution of this SDSE is Hopf. Its

dual is the enveloping algebra of the fundamental deg1 pre-Lie algebra asso
iated to I, A and b.

Example. We 
hoose N =M , I = {1} ⊔ . . . ⊔ {N}, A = IN and bi = 1 for all i ∈ [N ]. The
asso
iated Hopf SDSE is:

(S) : ∀i ∈ [N ], Xi =
∑

α∈NN
∗

B(i,α)




N∏

q=1

(1 +Xq)
αq (1 +Xi)


 .

This is related to the SDSE des
ribed in (1). We only 
onserve as de
orations the elements of:

D′ = {deg(α) | α ∈ D}.

For all α = (α0, . . . , αk) ∈ [N ]k+1
, we put B′

α = B(α0,deg(α)). The SDSE (S) be
omes:

(S′) : ∀i ∈ [N ], Xi =
∑

α∈Nk

B′
(i,α)




N∏

q=1

(1 +Xq)
∑

p,αp=q dp(1 +Xi)
d0+1




⇐⇒ ∀i ∈ [N ], Xi =
∑

α∈Nk

B′
(i,α)

(
(1 +Xα1)

d1 . . . (1 +Xαk
)dk(1 +Xi)

d0+1
)
.

This is the system of (1), whi
h is 
onsequently a Hopf SDSE.

4 Group asso
iated to a fundamental pre-Lie algebra

4.1 Lie algebra asso
iated to a fundamental pre-Lie algebra

Proposition 28 Let g be a fundamental deg1 pre-Lie algebra, with parameters I, A and b.
We denote by r the rank of A. Then g is isomorphi
, as a Lie algebra, to a fundamental deg1

pre-Lie algebra g
′
with stru
ture 
oe�
ients given by:

A′(i,j) :
i \ j 1 . . . r r + 1 . . .M

1 . . .M A′
j 0

b′(i,j) :

i \ j 1 . . . k k + 1 . . .M

1 . . . k 0 0

k + 1 . . .M b
′(i)
j 0

A′ =

(
Ir
∗

)
,

with 0 ≤ r ≤ k ≤M . We shall say that su
h a fundamental deg1 pre-Lie algebra is redu
ed.

Proof. First step. For any p ≥ 1, let us �x i0 ∈ Ip. If i ∈ Ip \ {i0}, we put gi(α) =
fi(α)− fi0(α) for all α ∈ NN

∗ . If j ∈ Iq, q 6= 0:

fj(β) ∗ gi(α) = (Aq · α+ bqδp,q)gi(α+ β).
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Consequently:

gj(β) ∗ gi(α) = 0 if j ∈ Ip \ {i0}, fj(β) ∗ gi(α) = 0 if j ∈ I0.

Repla
ing the elements fi(α) by gi(α) for all i ∈ Ip \ {i0}, these 
omputations proves that g is

isomorphi
 to a deg1 pre-Lie algebra g
′
, with [M ] = I ′0 ⊔ . . . ⊔ I

′
k, su
h that

I ′q =





{i0} if q = p,

I0 ⊔ Ip \ {i0} if q = 0,

Iq otherwise.

Pro
eding in this way for all p, and after a reindexation, we obtain that g is isomorphi
 to a

fundamental deg1 pre-Lie algebra with:

A(i,j) :
i \ j 1 . . . k k + 1 . . .M

1 . . .M A1 . . . Ak 0

b(i,j) :

i \ j 1 . . . . . . k k + 1 . . .M

1 b1 0 . . . 0 0
.

.

. 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
.

.

.

k 0 . . . 0 bk
.

.

.

k + 1 . . .M b
(i)
1 . . . . . . b

(i)
k 0

If 1 ≤ i, j ≤ k, in g
′
:

[fj(β), fi(α)] = (Aj · α+ δi,jbi)fi(α+ β)− (Ai · β + δi,jbj)fj(α+ β)

= Aj · αfi(α+ β)−Ai · βfj(α+ β).

Hen
e, the Lie bra
ket of g does not depend of b.

Se
ond step. Up to a Lie algebra isomorphism, we 
an now assume that b1 = . . . = bk = 0.
Let P ∈ GLk(K). For all i ∈ [k], we put:

gi(α) =
∑

j

pj,ifj(α).

Then (gi(α))i≤k,α∈NN
∗
⊔ (fi(α))i>k,α∈NN

∗
is a basis of g. Moreover, if i, j ∈ [k]:

gj(β) ∗ gj(α) =
∑

i′,j′

pj′,jpi′,ifj′(β) ∗ fi′(α)

=
∑

i′,j′

pj′,jpi′,iAj′ · αfi′(α+ β)

=


∑

j′

pj′,jAj′


 · αgi(α+ β).

Similar 
omputations give, if 1 ≤ j ≤ k < i ≤ N :

gj(β) ∗ fi(α) =




∑

j′

pj′,jAj′


 · α+


∑

j′

pj′,jb
(i)
j′




 fi(α+ β).
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Moreover, if 1 ≤ i ≤ k < j ≤ N :

fj(β) ∗ gi(α) = 0.

Hen
e, g is isomorphi
, as a Lie algebra, to the fundamental deg1 pre-Lie g
′
, with A′ = AP , and

b′(i,j) = 0 if i, j ≤ k. Up to a permutations of the rows and the 
olumns of A, we 
an assume

that:

A =

(
A1 A2

A3 A4

)
,

with A1 ∈ GLr(K). As r = Rank(A), there exists Q ∈Mr,k−r, su
h that:

(
A2

A4

)
=

(
A1

A3

)
Q.

We then take:

P =

(
A−1

1 −Q
0 Ik−r

)
,

and then:

A′ =

(
Ir 0
∗ 0

)
,

whi
h �nally gives the announ
ed result. �

4.2 Group asso
iated to a redu
ed deg1 pre-Lie algebra

Notations. Let p ∈ N∗
and q ∈ N. We �x a matrix B ∈Mq,p(K). For all i ∈ [p], we denote:

Gi = {xi(1 + F ) | F ∈ K[[x1, . . . , xp, y1, . . . , yq]]+} ⊆ K[[x1, . . . , xp, y1, . . . , yq]]+.

Proposition 29 Let GB = G1 × . . . × Gp ⊆ K[[x1, . . . , xp, y1, . . . , yq]]
p
, with the produ
t

de�ned in the following way: if F = (F1, . . . , Fp) and G = (G1, . . . , Gp) ∈ GB,

F •G = G

(
F1, . . . , Fp, y1

(
F1

x1

)B1,1

. . .

(
Fp

xp

)B1,p

, . . . , yq

(
F1

x1

)Bq,1

. . .

(
Fp

xp

)Bq,p

)
.

Then GB is isomorphi
 to the group of 
hara
ters of a Np+q
-graded Hopf algebra HB. The

graded dual of HB is the enveloping algebra of the redu
ed deg1 pre-Lie algebra gB asso
iated to

the stru
ture 
oe�
ients:

A(i,j) :
i \ j 1 . . . p

1 . . . p Aj
A =

(
Ip
B

)
b(i,j) :

i \ j 1 . . . p

1 . . . p 0

Proof. We shall write shortly F • G = G
(
F, Y

(
F
x

)B)
. Let us �rst prove that GB is a

monoid. Let F,G,H ∈ GB.

F • (G •H) = G •H

(
F, y

(
F

x

)B
)

= H


G

(
F, y

(
F

x

)B
)
, y

(
F

x

)B


G
(
F, y

(
F
x

)B)

F




B



= H


G

(
F, y

(
F

x

)B
)
, y



G
(
F, y

(
F
x

)B)

x




B



= H

(
F •G, y

(
F •G

x

)B
)

= (F •G) •H.
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The identity of this monoid is the element I = (x1, . . . , xp).

Let λ = (λ1, . . . , λp, µ1, . . . , µq) ∈ (K∗)p+q
. We de�ne:

φλ :

{
GB −→ GB

F −→
(

1
λi
Fi(λ1x1, . . . , λpxp, µ1y1, . . . , µqyq)

)
1≤i≤p

.

Let us prove that this de�nes a a
tion of the torus T = (K∗)p+q
on the monoid GB by auto-

morphisms. We shall write shortly φλ,µ(F ) =
1
λF (λx, µy). Clearly, φλ,µ ◦ φλ′,µ′ = φλλ′,µµ′

and

φ1,1 = IdGB
, so this is indeed an a
tion. Let F,G ∈ GB.

φ(λ,µ)(F •G) =
1

λ
G

(
F (λx, µy), µy

(
F (λx, µy)

λx

)B
)

= φ(λ,µ)(F ) • φ(λ,µ)(G).

For all i ∈ [p], λ ∈ Np+q
∗ , we put:

Xi(λ) :

{
GB −→ K

G −→ 
oe�
ient of xix
λ1
1 . . . x

λp
p y

µ1
1 . . . y

µq
q in Gi.

We obtain an a
tion on the torus T on these fun
tions by transposition:

φ∗λ(Xi(α))(G) = Xi(α)(φλ(G))

= Xi(α)

(
1

λ
G(λx, µy)

)

=
1

λi
λα1
1 . . . λ

αp
p µ

αp+1

1 . . . µ
αp+q
q Xi(α)(G).

So this a
tion is given by φλ(Xi(α)) = λαXi(α). Consequently, denoting by HB the algebra

generated by the elements Xi(α), it gives it a Np+q
-graduation, for whi
h Xi(α) is homogeneous

of degree α: this graduation is �nite-dimensional and 
onne
ted.

We de�ne a 
oprodu
t ∆ : HB −→ ̂HB ⊗HB in the following way:

∀X ∈ HB, ∀F,G ∈GB, ∆(X)(F,G) = X(F •G).

As the torus a
ts by automorphisms, for all λ ∈ T :

∆(φ∗λ(X))(F,G) = X(φλ(F •G)) = X(φλ(F ) • φλ(G)) = (φ∗λ ⊗ φ
∗
λ) ◦∆(X)(F,G).

Hen
e, ∆ respe
ts the a
tion of T , so respe
ts the graduation implied by this a
tion, and 
onse-

quently is homogeneous of degree 0. As the graduation is �nite-dimensional, ∆(HB) ⊆ HB⊗HB.

As GB is a monoid, HB is a bialgebra. As it is 
onne
ted, it is a Hopf algebra, so GB is a group.

By 
onstru
tion, the group of 
hara
ters of HB is GB.

By Cartier-Quillen-Milnor-Moore's theorem, the graded dual of HB is the enveloping algebra

of a Lie algebra g, whose basis is given by elements fi(α) dual to the elements Xi(α). Moreover,

as the 
omposition of GB is linear in the se
ond variable, the Lie bra
ket of g is indu
ed by a

pre-Lie produ
t ∗; by homogeneity, for all i, j ∈ [p], α, β ∈ Np+q
∗ , there exists a s
alar λ(i,j)(α, β)

su
h that:

fj(β) ∗ fi(α) = λ(i,j)(α, β)fi(α+ β).

Moreover, λ(i,j)(α, β) is the 
oe�
ient of Xj(β) ⊗Xi(α) in ∆(Xi(α + β)). Dire
t 
omputations

give that:

fj(β) ∗ fi(α) =


αj +

q∑

j′=1

Aj′,jαj′+p + δi,j


 fi(α+ β),
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so g is isomorphi
 to gB as a Lie algebra. �

Example. If q = 0, we obtain a Faà di Bruno group of formal di�eomorphisms, with the


omposition. This is the 
ase for the SDSE (S)FdB in (1), where A = IN . The asso
iated group

is:

G = ({(x1(1 + F1), . . . , xN (1 + FN )) | F1, . . . , FN ∈ K[[x1, . . . , xN ]]+} , ◦) .

Proposition 30 Let V0 be the group (K[[x1, . . . , xp, y1, . . . , yq]]+,+). The group GB a
ts by

automorphisms on V0 by:

∀F ∈ GB, ∀P ∈ V0, F →֒ P = P

(
F, y

(
F

x

)B
)
.

For all r ≥ 0, the group V r
0 ⋊ GB is isomorphi
 to the 
hara
ter group of a Np+q

-graded Hopf

algebra HB,r, whose graded dual is the enveloping algebra of a fundamental deg1 pre-Lie algebra

gB with stru
ture 
oe�
ients:

A(i,j) :
i \ j 1 . . . p p+ 1 . . . p+ r

1 . . . p+ r Aj 0
A =

(
Ip
B

)
.

b(i,j) :
i \ j 1 . . . p+ r

1 . . . p+ r 0

Proof. Let F ∈ GB, P,Q ∈ V0. Obviosuly, F →֒ (P + Q) = F →֒ P + F →֒ Q. Let

F,G ∈ GB, P ∈ V0. Then:

F →֒ (G →֒ P ) = P


G

(
F, y

(
F

x

)B
)
, y

(
F

x

)B


G
(
F, y

(
F
x

)B)

F




B



= P


G

(
F, y

(
F

x

)B
)
, y



G
(
F, y

(
F
x

)B)

x




B



= G

(
F, y

(
F

x

)B
)
→֒ P

= (F •G) →֒ P.

We de�ne an a
tion of the torus T = (K∗)p+q
over V0 by:

ψλ(P ) = P (λ1x1, . . . , λpxp, µ1y1, . . . , µqyq).

It is easy to prove that this is an a
tion by automorphisms, and for all F ∈ GB, P ∈ V0:

ψλ(F →֒ P ) = φλ(F ) →֒ ψλ(P ).

A system of 
oordinates of the group V r
0 ⋊GB is given by the elements Xi(α) de�ned on GB

and Yj(α) de�ned on V r
0 by:

Yj(α) :

{
V r
0 −→ K

(P1, . . . , Pr) −→ 
oe�
ient of xα in Pj.

These elements generate an algebra HB,r, 
ontaining HB. The a
tion of the torus extends the

graduation of HB to HB,r, making a graded 
onne
ted algebra. Consequently, it inherits a


oprodu
t, dual of the 
omposition of the group V r
0 ⋊GB, making it a graded 
onne
ted Hopf

algebra. Note that HB,r 
ontains HB, and by 
onstru
tion its 
hara
ter group is V r
0 ⋊GB.
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The 
omposition in V r
0 ⋊GB is given by:

(P1, . . . , Pr, F ) • (Q1, . . . , Qr, G) = ((P1 + F →֒ Q1, . . . , Pr + F →֒ Qr, F •G).

Consequently, it is linear in the se
ond variable; hen
e, the graded dual of HB,r is the enveloping

algebra of a pre-Lie algebra g. This has a basis (fi(α))i∈[p],α∈Np+q
∗
⊔ (gj(β))j∈[r],β∈Np+q

∗
, dual of

the SDSE of 
oordinates Xi(α) and Yj(β). The pre-Lie produ
t of fj(β) and fi(α) is the same

as in gB, and dire
t 
omputations give:

fj(β) ∗ gi(α) = Aj · αgi(α+ β), gj(β) ∗ fi(α) = 0, gj(β) ∗ gi(α) = 0.

So this is indeed isomorphi
 to a redu
ed deg1 pre-Lie algebra, as announ
ed. �

This last result is proved similarly:

Proposition 31 Let a ∈ Kr
and b ∈ Kp

. Let Va,b be the group (K[[x1, . . . , xp, y1, . . . , yq]]+,+).
The group V r

0 ⋊GB a
ts by automorphisms on Va,b by:

(P1, . . . , Pr, F ) →֒ Q = Q

(
F, y

(
F

x

)B
)
ea1P1+...+arPr

(
F1

x1

)b1

. . .

(
Fp

xp

)bp

.

If a(1), . . . , a(s) ∈ Kr
and b(1), . . . , b(s) ∈ Kp

, the group (Va(1),b(1) ⊕ . . .⊕a(s),b(s)) ⋊ (V r
0 ⋊GB) is

isomorphi
 to the 
hara
ter group of a Np+q
-graded Hopf algebra HB,r,a,b, whose graded dual is

the enveloping algebra of a fundamental deg1 pre-Lie algebra gB with stru
ture 
oe�
ients:

A(i,j) :
i \ j 1 . . . p p+ 1 . . . p+ r + s

1 . . . p+ r Aj 0
A =

(
Ip
B

)
.

b(i,j) :

i \ j 1 . . . p p+ 1 . . . + p+ r p+ r + 1 . . . p+ r + s

1 . . . p+ r 0 0 0

p+ r + 1 . . . p+ r + s b
(i−p−r)
j a

(i−p−r)
j−p 0

5 SDSE asso
iated to a family of Feynman graphs

5.1 Feynman graphs

De�nition 32 A theory of Feynman graphs T is given by:

• A set HE of types of half-edges, with an in
iden
e rule, that is to say an involutive map

ι : HE −→ HE.

• A set V of vertex types, that is to say a set of �nite multisets (in other words �nite unordered

sequen
es) of elements of HE, of 
ardinality at least 3.

The edges of T are the multisets {t, ι(t)}, where t is an element of HE. The set of edges of T is

denoted by E.

Examples.

1. In QED, HEQED = { , , }, and the in
iden
e rule is given by:

←→ , ←→ .

There are two edges, = { , } and =
{

,
}
. There

is one vertex type, = { , , }.
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2. In QCD, HEQCD = { , , , , }, and:

VQCD =

{
, , ,

}
.

The in
iden
e rule is given by:

←→ , ←→ , ←→ .

There are three edges, (gluon), (fermion) and (ghost).

3. Let N ≥ 3. In ϕN
, EϕN = { }. There is only one vertex type, whi
h is the multiset

formed by N 
opies of . There is only one edge, denoted by .

De�nition 33 Let T = (HE ,V, ι) be a theory of Feynman graphs. A 1PI graph G of the

theory T is given by:

• A nonempty, �nite set HE of half-edges, with a map type : HE −→ HE.

• A nonempty, �nite set V of verti
es.

• An in
iden
e map for half-edges, that is to say an involution map i : HE −→ HE.

• A sour
e map for half-edges, that is to say a map s : HE −→ V .

The following 
onditions must be satis�ed:

1. (Respe
t of the in
iden
e rule) for any e ∈ HE su
h that i(e) 6= e, ι(type(e)) = type(i(e)).

2. (Respe
t of the vertex types) for any v ∈ V , the multiset type(v) = {type(e) | s(e) = v}
belongs to V.

3. (Conne
tivity and one-parti
ule irredu
ibility) the set of internal edges of G is:

Int(G) = {{e, i(e)} | e ∈ HE, i(e) 6= e}.

The sour
e map makes (V, Int(G)) a graph. This graph is 1-PI, that is to say that it is


onne
ted and remains 
onne
ted if one edge e ∈ Int(G) is deleted.

4. (External stru
ture) the set of external half-edges f G is:

Ext(G) = {e | e ∈ HE, i(e) = e}.

We de�ne typeExt(G) as the multiset {type(e) | e ∈ Ext(G)}. Two 
ase are possible:

(a) typeExt(G) = {t1, t2}, with ι(t1) = t2. In this 
ase, we shall say that the external

stru
ture of G is of type edge typeExt(G).

(b) typeExt(G) ∈ V. In this 
ase, we shall say that the external stru
ture of G is of type

vertex typeExt(G).

A Feynman graph is the disjoint union of a �nite number (possibly 0) 1-PI Feynman graphs,


alled its 
onne
ted 
omponents. The set of Feynman graphs of the theory T is denoted by FGT .

We shall only 
onsider theories su
h that there exists 1-PI Feynman graphs for all type of

external stru
tures.

Examples.
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1. Here are examples of 1-PI Feynman graphs in QED.

External stru
ture Examples

, , , , ,

, ,

, ,

2. Here are examples of 1-PI Feynman graphs in QCD.

External stru
ture Examples

, , ,

, , ,

,

, , ,
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External stru
ture Examples

, ,

, ,

3. Here are examples of 1-PI Feynman graphs in ϕ3
.

External stru
ture Examples

, , , , ,

, ,

De�nition 34 1. Let G = (HE,V, i, s) and G′ = (HE′, V ′, i′, s′) be two Feynman graphs

of a theory T . We shall say that G′
is a subgraph of G if:

(a) HE′ ⊆ HE, V ′ = s(HE′) and s′ = s|HE′
.

(b) For any e ∈ HE′
, i′(e) = e or i′(e) = i(e).

2. Let G′
be a 
onne
ted subgraph of G. We de�ne a stru
ture G/G′ = (HE′′, V ′′, i′′, s′′) in

the following way:

• If the type of the external stru
ture of G′
is a vertex:

(a) HE′′ = (HE \HE′) ⊔ Ext(G′).

(b) V ′′ = (V \ V ′) ⊔ {0}.

(
) For all e ∈ HE′′
:

s′′(e) =

{
s(e) if e ∈ HE \HE′,

0 if e ∈ Ext(G′).

(d) For all e ∈ HE′′
, i′′(e) = i(e).

• If the type of the external stru
ture of G′
is an edge, let us denote by e1 and e2 its two

external half-edges.

(a) HE′′ = HE \HE′
.

(b) V ′′ = V \ V ′
.

(
) For all e ∈ HE′′
, s′′(e) = s(e).

(d) For all e ∈ HE′′
:

i′′(e) =





i(e2) if e = i(e1),

i(e1) ife = i(e2),

i(e) otherwise.
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If G′
is not 
onne
ted, we put G′ = G′

1 . . . G
′
k its de
omposition into 
onne
ted parts, and

de�ne G/G′ = (. . . (G/G′
1)/G

′
2) . . .)/G

′
k. It does not depend of the order 
hosen on the


onne
ted 
omponents of G′
.

3. If G/G′
is a Feynman graph, we shall say that G′

is an admissible subgraph and we shall

write G′ ⊆ G.

Roughly speaking, G/G′
is obtained by deleting G′

from G and 
ontra
ting the hole whi
h

appeared until it vanishes. By 
onvention, G/G = 1 and G/1 = G. Observe that if G′ ( G and

G is 1-PI, then G/G′
is also 1-PI, with the same external stru
ture as G.

The set FG(T ) is a basis of the Hopf algebra HFG(T ) asso
iated to a theory T of Feynman

graphs. Its produ
t is given by the disjoint union of Feynman graphs; its 
oprodu
t is given by:

∀G ∈ FG(T ), ∆(G) =
∑

G′⊆G

G′ ⊗G/G′.

Examples. In QED:

∆ = ⊗ 1 + 1⊗ + ⊗ ,

∆ = ⊗ 1 + 1⊗ + ⊗ ,

∆ = ⊗ 1 + 1⊗ + 2 ⊗ .

De�nition 35 Let G be a Feynman graph of a given theory T . The loop number of G is:

ℓ(G) = ♯Int(G)− ♯V ert(G) + ♯{
onne
ted 
omponents of G}.

Note that be
ause of the 1-PI 
ondition, for all nonempty graph G, ℓ(G) ≥ 1.

We shall prove afterwards that the loop number de�nes a 
onne
ted N-graduation of the Hopf

algebra HFG(T ).

5.2 Graduations

Let us �x a theory T = (HE ,V, ι). We look for graduations of the Hopf algebra HFG(T ). We

shall use the following notions:

De�nition 36 1. The in
iden
e matrix of T is the matrix AT = (ae,v)e∈HE,v∈V , where

ae,v is the multipli
ity of e in the multiset v.

2. The redu
ed in
iden
e matrix of T is the matrix A′
T = (a′e,v)e∈E,v∈V , where:

a′e,v =





ae1,v
2

if e = {e1, e1},

ae1,v + ae2,v
2

if e = {e1, e2} with e1 6= e2.

3. Let G ∈ FG(T ). We de�ne four ve
tors related to G:
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(a) VG = (vt(G))t∈V , where vt(G) is the number of verti
es v of G su
h that type(v) = t.

(b) EG = (het(G))t∈HE , where het(G) is the number of half-edges e of G su
h that

type(e) = t.

(
) E′
G = (et(G))t∈E , where et(G) is the number of internal edges e of G su
h that

type(e) = t.

(d) SG = (st(G))t∈V⊔E , where st(G) is the number of 
onne
ted 
omponents of G of

external stru
ture t.

Examples.

AQED =




1
1
1


 , AQCD =




1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
1 1 3 4



, Aϕn = (n).

A′
QED =

(
1
1
2

)
, A′

QCD =




1 0 0 0
0 1 0 0
1
2

1
2

3
2 2


 , A′

ϕn
=
(n
2

)
.

Proposition 37 Let G ∈ FG(T ). Then:

1. EG = AT VG.

2. E′
G = A′

T VG − (A′
T Id)SG.

3. The number of external half-edges of G is (1 . . . 1)(AT 2Id)SG.

4. The loop number of G is:

ℓ(G) =

(
(1 . . . 1)Aτ

2
− (1 . . . 1)

)
VG −

(
(1 . . . 1)

(
AT

2
0

)
− (1 . . . 10 . . . 0)

)
SG.

Proof. The �rst three points are easy results of graph theory. The number of 
onne
ted


omponents of G is (1 . . . 1)SG; the number of external half-edges of G is given, from the third

point, by (1 . . . 1)(AT 2Id)SG. Hen
e, the number of internal edges of G is given by:

(1 . . . 1)EG − (1 . . . 1)(AT 2Id)SG
2

.

The loop number of G is 
onsequently given by:

ℓ(G) =
(1 . . . 1)EG − (1 . . . 1)(AT 2Id)SG

2
− (1 . . . 1)VG + (1 . . . 1)SG

=

(
(1 . . . 1)Aτ

2
− (1 . . . 1)

)
VG −

(
(1 . . . 1)

(
AT

2
Id

)
− (1 . . . 1)

)
SG

=

(
(1 . . . 1)Aτ

2
− (1 . . . 1)

)
VG −

(
(1 . . . 1)

(
AT

2
0

)
− (1 . . . 10 . . . 0)

)
SG,

whi
h proves the last point. �

We now look for QN
-graduations of the Hopf algebra HFG(T ), whi
h only depend on the


ombinatorial datas of de�nition 36-3. A

ording to proposition 37, for su
h a graduation, there

exists a map f : N|V| × N|V|+|E| −→ QN
, su
h that for any graph G, deg(G) = f(VG, SG).
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Proposition 38 Let f : N|V| ×N|V|+|E| −→ QN
. We 
onsider the QN

-graduation of HFG(T )

de�ned by deg(G) = f(VG, SG). It is a Hopf algebra graduation if, and only if, there exists

C ∈MN,|V|(Q) su
h that for any Feynman graph G:

deg(G) = CVG − (C 0)SG.

Proof. Let G and G′
be two graphs. Then VGG′ = VG + VG′

and SGG′ = SG + SG′
.

Consequently, the graduation respe
ts the produ
t if, and only if, for all G,G′
:

f(VG + VG′ , SG + SG′) = f(VG, SG) + f(VG′ , SG′).

that is to say if, and only if, f is additive. Hen
e, f gives a graduation of the algebra HFG(T )

if, and only if, there exists C ∈ MN,|V|(Q) and D ∈ MN,|V|+|E|(Q) su
h that for any Feynman

graph G, deg(G) = CVG +DSG.

Let G′ ⊆ G. By de�nition of G′′ = G/G′
, VG′′ = VG−VG′ +(Id0)SG′

and SG′′ = SG. Hen
e:

deg(G) = CVG +DSG

= CVG′′ + CVG′ − C(Id 0)SG′ +DSG′′

= deg(G′) + deg(G′′)− (D +C(Id 0))SG′ .

So f gives a graduation ofHFG(T ) if, and only if, for all subdiagram G′ ⊆ G, (D+C(Id0))SG′ = 0.
As there exists diagrams for any external stru
ture, we 
an 
hoose G and G′

su
h that SG′
is

the i-th ve
tor of the 
anoni
al basis; hen
e, we have a graduation of HFG(T ) if, and only if,

D + C(Id 0) = 0. �

Consequently, any matrix C ∈ MN,|V|(Q) de�nes a QN
-graduation of the Hopf algebra

HFG(T ). This of 
ourse may be not a NN
-graduation, or may be not 
onne
ted.

Examples.

1. The loop number ℓ gives a Hopf algebra N-graduation with Cℓ =
(1 . . . 1)Aτ

2
− (1 . . . 1).

This is a 
onne
ted N-graduation, as we only 
onsider 1-PI graphs.

2. Let t ∈ ET , and let C be the t-th row of A′
T ; the asso
iated graduation is noted degt.

For all G ∈ FG(T ), degt(G) = et(G) + st(G). This is a N-graduation, whi
h may be not


onne
ted.

3. If deg and deg′ are two graduations of the Hopf algebra HFG(T ), then deg ⊕ deg
′
de�ned

by deg ⊕ deg′(G) = (deg(G), deg′(G)) is also a graduation of HFG(T ). If deg and deg′ are

respe
tively given by C and C ′
, deg ⊕ deg′ is given by

(
C
C ′

)
.

5.3 Insertions

De�nition 39 Let G and G′
be two Feynman graphs of a theory T .

1. We denote by G′
1, . . . , G

′
k the 
onne
ted 
omponents of G′

. A pla
e of insertion fof G′
into

G is given by:

(a) for all G′
i of external stru
ture of type a vertex t, a pair (vi, fi), where vi is a vertex of G

of type t, and fi a bije
tion from the set of external edges of Gi to the set of half-edges e
of G′

su
h that s(e) = t, 
ompatible with the type, that is to say type(fi(e
′)) = type(e′)

for all e′. Moreover, if G′
i and G

′
j are both of external stru
ture of type t, with i 6= j,

then vi 6= vj.
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(b) for all G′
i of external stru
ture of type an edge t, a pair (ei, fi) where ei = {e

(1)
i , e

(2)
i }

is an internal edge of G of type t, and fi a bije
tion from the set of the two external

half-edges of t into {e
(1)
i , e

(2)
i }.

(
) For all internal edge e of G, the set of 
omponents Gi su
h that ei = e is totally

ordered.

Note that the set of pla
es of insertion of G′
into G is �nite and may be empty. Its


ardinality is denoted ins(G′, G).

2. Let F be a pla
e of insertion of G′
into G. The insertion G′ F

→֒ G is the Feynman graph

obtained in this way:

(a) For all G′
i of external stru
ture of type vertex, delete vi and all the half-edges e su
h

that s(e) = vi; then glue ea
h external edge e′ of G′
i to i(fi(e

′)) if if is not equal to

fi(e
′); otherwise, e′ be
omes an external edge.

(b) For ea
h internal edge e, su
h that there exists 
omponents G′
i with ei = e, �rst

separate the two half-edges 
onstituing this internal edge; then insert all these 
ompo-

nents G′
i, following their total order, by gluing their external edges with the two open

half-edges a

ording to fi.

For any Feynman graph su
h that ins(G′, G) 6= 0, we put:

BG(G
′) =

1

ins(G′, G)

∑

F

G′ F
→֒ G.

Proposition 40 1. For all graph G, the spa
e IG = V ect(G′, ins(G′, G) 6= 0) is a left


omodule.

2. For all primitive graph G, for all x ∈ IG:

∆ ◦BG(x) = BG(x)⊗ 1 + (Id⊗BG) ◦∆(x).

3. We de�ne a graduation on HFG(T ) with the help of a matrix C ∈MN,|V|(Q). Then for any

Feynman graph G, BG is homogeneous of degree deg(G).

Proof. 1. Let G and G′
be two graphs. Then G′ ∈ IG if, and only if, the two following


onditions hold:

• For any t ∈ V, st(G
′) ≤ vt(G).

• For any t ∈ E , (st(G
′) ≥ 1) =⇒ (et(G

′) ≥ 1).

Consequently, if G′ ∈ IG and G′′ ⊂ G′
, noting that st(G

′/G′′) ≤ st(G
′) for all t ∈ V ⊔ E , then

G′/G′′ ∈ IG. So IG is a left 
omodule.

2. Let G′ ∈ FG(T ), su
h that ins(G′, G) 6= 0. AsG is primitive, ∆(G) = G = ⊗1+1⊗G, soG

has no proper subgraph. For all insertion pla
e f , let us 
onsider a subgraph H of G′′ = G′ f
→֒ G.

If H 
ontains internal edges of G′′
whi
h does not belong to G′

, as G′
has no proper subgraph, it


ontains all the edges of G, and, as H is a subgraph, it is equal to G. Otherwise, H is a subgraph

of G′
, and then G′′/H = G′/H

f ′

→֒ G for a parti
ular F ′
. Summing, we obtain:

∆(BG(G
′)) =

1

ins(G′, G)

∑

f


G′ f

→֒ G⊗ 1 +
∑

H⊆G′

H ′ ⊗G′/H
f ′

→֒ G




= BG(G
′)⊗ 1 +

∑

H⊆G′

H ⊗BG(G
′/H)

= BG(G
′)⊗ 1 + (Id⊗BG) ◦∆(G′).
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By linearity, the result holds for all x ∈ IG.

3. Let G and G′
be Feynman graphs, and G′′ = G′ F

→֒ G. Then SG′′ = SG and VG′′ =
VG + VG′ − (Id 0)SG′

. Hen
e:

deg(G′′) = CVG + CVG′ −C(Id 0)SG′ − (C 0)SG

= CVG − (C 0)SG + CVG′ − (C 0)SG′

= deg(G) + deg(G′).

So BG is homogeneous of degree deg(G). �

5.4 SDSE asso
iated to a theory of Feynman graphs

Let T be a family of Feynman graphs. We put V = {t1, . . . , tk}, E = {tk+1, . . . , tk+l} and

M = k + l. We 
hoose a 
onne
ted NN
-graduation of HFG(T ) given by a N × k matrix C. In

order to ease the notation, for all i ∈ [k], we put vti(G) = vi(G) and for all k + 1 ≤ j ≤ k + l,
etj (G) = ej(G), for any Feynman graph G.

Notations.

1. For ea
h i, we denote by Pi the set of primitive 1-PI Feynman graphs of the theory T of

external stru
ture of type ti.

2. Let α1, . . . , αN beN indeterminates (the 
oupling 
onstants). For any graph G, if deg(G) =
(d1, . . . , dN ), we put αdeg(G) = αd1

1 . . . αdN
N .

We 
onsider the following SDSE on HFG(T ):

(ST ) : ∀i ∈ [M ], Xi =
∑

G∈Pi

αdeg(G)BG




k∏

j=1

(1 +Xj)
vi(G)

k+l∏

j=k+1

(1−Xj)
−ej(G)


 .

We de
ompose Xi a

ording to the powers of the αi:

Xi =
∑

d∈NN
∗

αdXi(d).

It is not di�
ult to show that Xi(d) is homogeneous of degree d, as BG is homogeneous of degree

deg(G). The subalgebra generated by the Xi(d)
′s is denoted by H(ST ).

Combinatorially, Xi is a span of all 
onne
ted graph of external stru
ture of type ti; its ho-
mogeneous 
omponents 
an be indu
tively 
omputed by taking all possible insertions of already


omputed homogeneous 
omponents of Xj into primitive Feynman graphs of the good external

stru
ture, in order to obtain the expe
ted degree.

We lift this SDSE to the level of rooted trees. The set of de
orations is the set of primitive


onne
ted Feynman graphs:

P =
k+l⊔

i=1

Pi.

The graduation of HD
CK is given by the degree of primitive Feynman graphs, and we 
onsider

the SDSE on HD
CK :

(S′
T ) : ∀i ∈ [M ], Yi =

∑

G∈Pi

BG




k∏

j=1

(1 + Yj)
vi(G)

k+l∏

j=k+1

(1− Yj)
−ej(G)


 .
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The homogeneous 
omponent of Yi of degree d is denoted by Yi(d) and the subalgebra of HD
CK

generated by the Yi(d) is denoted by H(S′
T ).

Proposition 41 If H(S′
T ) is a Hopf subalgebra of HD

CK , then H(ST ) is a Hopf subalgebra

of HFG(T ), and the algebra morphism de�ned by Yi(d) −→ Xi(d) is a surje
tive Hopf algebra

morphism from H(S′
T ) to H(ST ).

Proof. Let T be a rooted tree de
orated by D. We shall say it is admissible if for all vertex

v of T , denoting by G the de
oration of v and by G1, . . . ,Gk the de
orations of the 
hildren of

v, then G1 . . .Gk ∈ IG. We denote by A′
the subalgebra generated by all admissible trees. If T

is admissible, then for all admissible 
ut c of T , P c(T ) and Rc(T ) are admissible, so A′
is a Hopf

subalgebra. By de�nition of (ST ), Yi(d) ∈ A
′
for all i ∈ [M ], d ∈ NN

∗ .

One 
an de�ne an algebra morphism φ from A′
to HFG(T ) indu
tively by:

φ(B+
G(T1 . . . Tk)) = BG(φ(T1) . . . φ(Tk)),

for all admissible tree B+
G(T1 . . . Tk). It is well-de�ned: indeed, if φ(T1), . . . , φ(Tk) are well-

de�ned, then for all i, φ(Ti) is a linear span of graphs with the external stru
ture given by the de
-
oration of the root of Ti. As BG(T1 . . . Tk) is admissible, φ(T1) . . . φ(Tk) ∈ IG, so φ(B

+
G(T1 . . . Tk))

is well-de�ned. As BG and B+
G are both homogeneous of degree deg(G), an easy indu
tion proves

that φ is homogeneous of degree 0. As φ ◦B+
G = BG ◦φ on A′

for all G′
, φ(Yi(d)) = Xi(d) for all

i ∈ [M ] and all d ∈ NN
∗ . By the one-
o
y
le property of B+

G and BG on IG, (φ⊗ φ) ◦∆ = ∆ ◦ φ
on A′

. Consequently, if H(S′
T ) is a Hopf subalgebra of H

D
CK , its image H(ST ) is a Hopf subalgebra

of HFG(T ). �

Theorem 42 If Rank(C) = |V|, then H(S′
T ) is a Hopf subalgebra of HD

CK ; moreover, the

SDSE (S′
T ) is asso
iated to a deg1 pre-Lie algebra.

Proof. First, observe that, as C is a N × k-matrix, Rank(C) ≤ k = |V|.

Let us assume that Rank(C) = k. There exists a matrix C ′ ∈Mk,N(K), su
h that C ′C = Idk.
For any primitive Feynman graph G of external stru
ture ti and of degree d, if (ǫ1, . . . , ǫM ) is
the 
anoni
al basis of KM

, noting that d = CVG − (C 0)ǫi:

VG = C ′d+ (Idk 0)ǫi, E′
G = A′

T C
′d− (0 Idl)ǫi.

For all i ∈ [M ], for all d ∈ NN
∗ , we put:

B+
i,n =

∑

G∈Pi,deg(G)=d

B+
G .

The SDSE 
an be written as:

Yi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 + Yj)
∑

p c′j,pdp
k+l∏

j=k+1

(1− Yj)
∑

p,q a
′
j,pc

′
p,qdj (1 + Yi)




if i ≤ k,

Yi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 + Yj)
∑

p c′j,pdp
k+l∏

j=k+1

(1− Yj)
∑

p,q a
′
j,pc

′
p,qdj (1− Yi)




if i ≥ k + 1.

Hen
e, we re
ognize the deg1 pre-Lie algebra with Ip = {p} for all 1 ≤ p ≤ k + l, b given by:

b(i,j) =

{
δi,j if i ≤ k,

−δi,j if i ≥ k + 1,

and A given by the matrix

(
C ′

−A′
T C

′

)
. �

As C ′
has also rank k:

32



Corollary 43 If Rank(C) = |V| = k, the graded dual of the Hopf algebra H(S′
T ) is the

enveloping algebra of the redu
ed deg1 pre-Lie algebra with stru
ture 
oe�
ients given by:

A′(i,j) :
i \ j 1 . . . k k + 1 . . . k + l

1 . . .M A′
j 0

A′ =

(
Ik
A′′

)

b′(i,j) :
i \ j 1 . . .M

1 . . .M 0

If C is invertible, then A′′ = −A′
T . Moreover, H(S′

T ) is isomorphi
 to the 
oordinate Hopf algebra

of the group V l
0 ⋊GA′′

.

Proof. It remains to 
onsider the 
ase where C is invertible. In this 
ase, C ′ = C−1
and

A =

(
C ′

−A′
T C

′

)
. We then take A = A′C =

(
Idk
−A′

T

)
. �

Examples.

1. If there is only one vertex type, we 
an 
hoose the graduation by the loop number.

(a) For QED, C =
(
1
2

)
, so C ′ = (2); hen
e, A =




1
2
−1

2
−−1

4




and A′ =




1
−1
−1

2



. The

SDSE is:

X1 =
∑

k≥1

αk
∑

G∈D1(k)

BG

(
(1 +X1)

2k+1

(1−X2)k(1−X3)2k

)
,

X2 =
∑

k≥1

αk
∑

G∈D2(k)

BG

(
(1 +X1)

2k

(1−X2)k−1(1−X3)2k

)
,

X3 =
∑

k≥1

αk
∑

G∈D3(k)

BG

(
(1 +X1)

2k

(1−X2)k(1−X3)2k−1

)
,

where D1(k), D2(k) and D3(k) are sets of primitive Feynman graphs with k loops and

respe
tive external stru
tures , and . In parti
ular:

D2(k) =











 if k = 1,

∅ otherwise;

D3(k) =





{ }
if k = 1,

∅ otherwise.

(b) In ϕn
, C =

(
n−2
2

)
, so C ′ =

(
2

n−2

)
; hen
e, A =

( 2
n−2

− n
n−2

)
and A′ =

(
1
−n

2

)
. The

SDSE is:

X1 =
∑

k≥1

αk
∑

G∈D1(k)

BG

(
(1 +X1)

2k
n−2

+1

(1−X2)
nk
n−2

)
,

X2 =
∑

k≥1

αk
∑

G∈D2(k)

BG

(
(1 +X1)

2k
n−2

(1−X2)
nk
n−2

−1

)
,

where D1(k) and D2(k) are sets of primitive Feynman graphs with k loops and re-

spe
tive external stru
tures the vertex and the edge.
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2. In QCD, we take:

C =




1 0 0 0
0 1 0 0
1
2

1
2

3
2 2

1
2

1
2

1
2 1


 .

If G is a QCD Feynman graph, then:

deg(G) =


deg (G), deg (G), deg (G), ℓ(G)


 .

It is a 
onne
ted N4
-graduation. Moreover, C ′ = C−1

, and:

A =




1 0 0 0
0 1 0 0
1 1 2 −4
−1 −1 −1 3
−1 0 0 0
0 −1 0 0
0 0 −1 0




, A′ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0
−1

2 −1
2 −3

2 −2




.

The SDSE is:

X1 =
∑

k∈N4
∗

αk
∑

G∈D1(k)

BG

(
(1 +X1)

k1+1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1(1−X6)k2(1−X7)k3

)
,

X2 =
∑

k∈N4
∗

αk
∑

G∈D2(k)

BG

(
(1 +X1)

k1(1 +X2)
k2+1(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1(1−X6)k2(1−X7)k3

)
,

X3 =
∑

k∈N4
∗

αk
∑

G∈D3(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)+1(1 +X4)
β(k)

(1−X5)k1(1−X6)k2(1−X7)k3

)
,

X4 =
∑

k∈N4
∗

αk
∑

G∈D4(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)+1

(1−X5)k1(1−X6)k2(1−X7)k3

)
,

X5 =
∑

k∈N4
∗

αk
∑

G∈D5(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1−1(1−X6)k2(1−X7)k3

)
,

X6 =
∑

k∈N4
∗

αk
∑

G∈D6(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1(1−X6)k2−1(1−X7)k3

)
,

X7 =
∑

k∈N4
∗

αk
∑

G∈D7(k)

BG

(
(1 +X1)

k1(1 +X2)
k2(1 +X3)

α(k)(1 +X4)
β(k)

(1−X5)k1(1−X6)k2(1−X7)k3−1

)
,

with α(k) = k1 + k2 +2k3− 4k4 and β(k) = −k1− k2− k3 +3k4, and where D1(k), D2(k),
D3(k), D4(k), D5(k), D6(k) and D7(k) are sets of primitive Feynman graphs of degree k
and respe
tive external stru
tures:

, , , , , , .

Remark. We 
an extend the set of 
onsidered Feynman graphs by admiting other external

stru
tures, indexed by k+ l+1, . . . , k+ l+m. for k+1 ≤ j ≤ k+ l and k+ l+1 ≤ i ≤ k+ l+m,
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let λ
(i)
j be the number of 
opies of half-edges of the j-th type of edge tj in the i-th external

stru
ture, divided by 2. We obtain a SDSE given by:

Xi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 +Xj)
∑

p c
′
j,pdp

k+l∏

j=k+1

(1−Xj)
∑

p,q a
′
j,pc

′
p,qdj (1 +Xi)




if i ≤ k,

Xi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 +Xj)
∑

p c
′
j,pdp

k+l∏

j=k+1

(1−Xj)
∑

p,q a
′
j,pc

′
p,qdj (1−Xi)




if k + 1 ≤ i ≤ k + l,

Xi =
∑

d∈NN
∗

Bi,d




k∏

j=1

(1 +Xj)
∑

p c
′
j,pdp

k+l∏

j=k+1

(1−Xj)
∑

p,q a
′
j,pc

′
p,qdj

k+l∏

j=k+1

(1−Xj)
λ
(i)
j




otherwise.

We re
ognize the deg1 pre-Lie algebra with Ip = {p} for all 1 ≤ p ≤ k+ l, I0 = {k+ l+1, . . . , k+
l + n}, b given by:

b(i,j) =





δi,j if i ≤ k,

−δi,j if k + 1 ≤ i ≤ k + l,

−λ
(i)
j if i ≥ k + l + 1,

and A given by the matrix

(
C ′

−A′
T C

′

)
. If C is invertible, H(S′

T ) is isomorphi
 to the Hopf

algebra of 
oordinates of the group:

(Vλ(k+l+1),0 ⊕ . . . ⊕ Vλ(k+l+m),0)⋊ (V l
0 ⋊GA′′).

5.5 Minimal rank for QCD

Let us 
onsider a QFT, the SDSE (S′
T ) asso
iated to it, and a matrix C giving a 
onne
ted

NN
-graduation. We proved that if Rank(C) = |V|, then H(ST ) is Hopf; we would like to know

what the minimal rank of C required to make H(S′
T ) a Hopf subalgebra is. For QED or ϕn

, as

|V| = 1, this is obviously 1. If the theory has enough primitive Feynman graphs, this minimal

rank is |V|: we now prove this result for QCD.

Proposition 44 In the QCD 
ase, the graduation indu
ed by C gives a Hopf SDSE if, and

only if Rank(C) = 4.

Proof. We already proved the impli
ation⇐=. We �rst 
onstru
t enough primitive Feynman

graphs of external stru
ture . Let (a, b, c, d) ∈ N4
∗. We start with G = .

Judi
iously gluing the external edges of a 
opies of , b 
opies of , c 
opies of

and d 
opies of on the edges and , 
reating in this way new

2a+ 2b+ 3c+ 4d new verti
es of type , we obtain a primitive Feynman graph G′
with:

VG′ =




1
0
0
0


+ a




2
0
0
0


+ b




2
2
0
0


+ c




3
0
1
0


+ d




4
0
0
1


 .
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Let us assume that H(S′
T ) is Hopf and that Rank(C) ≤ 3. There exists a nonzero ve
tor

v ∈ Q4
, su
h that Cv = (0). We de
ompose this ve
tor v in the basis:







2
0
0
0


 ,




2
2
0
0


 ,




3
0
1
0


 ,




4
0
0
1





 .

After a multipli
ation by a nonzero integer and separation of the terms a

ording to their signs,

we obtain that there exists two di�erent ve
tors w and w′
, su
h that:

w = a




2
0
0
0


+ b




2
2
0
0


+ c




3
0
1
0


+ d




4
0
0
1


 , a, b, c, d ∈ N,

w′ = a′




2
0
0
0


+ b′




2
2
0
0


+ c′




3
0
1
0


+ d′




4
0
0
1


 , a′, b′, c′, d′ ∈ N,

Cw = Cw′.

Let G and G′
be primitive Feynman graphs of external stru
ture su
h that:

VG =




1
0
0
0


+w, VG′ =




1
0
0
0


+ w′.

Their degree are:

deg(G) = CVG − (C 0)




1
0
.

.

.

0


 = Cw, deg(G′) = CVG′ − (C 0)




1
0
.

.

.

0


 = Cw′.

So deg(G) = deg(G′). A

ording to lemma 13, fG = fG′
, so in parti
ular, for all i ∈ [4],

vi(G) = vi(G
′), whi
h implies that VG = VG′

and �nally w = w′
, whi
h is a 
ontradi
tion. We


on
lude that Rank(C) = 4. �

6 SDSE asso
iated to 
oloured graphs

We now generalize multi
yli
 SDSE of [7, 9℄. We are interested here in SDSE of the form:

(S) : ∀i ∈ [M ], Xi =
∑

α∈NN
∗

Bi,α


1 +

∑

j∈Ii,α

Xj


 ,

where the Ii,α are nonempty sets.

De�nition 45 1. A N -
oloured oriented graph is an oriented graph G, with a map from

the set E(G) of edges of G into [N ]. We denote by V (G) the set of verti
es of G. For

all i, j ∈ V (G), for all α = (α1, . . . , αN ) ∈ NN
, we shall write i

α
−→ j if there exists an

oriented path from i to j in G, with αi edges 
oloured by i for all i ∈ [N ].
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2. Let G be a N -
oloured oriented graph. The SDSE asso
iated to G is asso
iated to the

NN
-graded partitioned set D = V (G)× NN

∗ :

(SG) : ∀i ∈ V (G), Xi =
∑

α∈NN
∗

Bi,α


1 +

∑

i
α

−→j

Xj


 .

3. Let G be a N -
oloured oriented graph. We shall say that G is Hopf if, for all i, j, k ∈ V (G),
for all α, β ∈ NN

∗ ,

(i
α
−→ j and j

β
−→ k)⇐⇒ (i

α
−→ j and i

α+β
−→ k).

(Note that =⇒ is always satis�ed).

Proposition 46 We 
onsider a SDSE of the form:

(S) : ∀i ∈ [M ], Xi =
∑

α∈NN
∗

Bi,α


1 +

∑

j∈Ii,α

Xj


 ,

It is Hopf, if, and only if, there exists a N -
oloured Hopf graph on [M ] su
h that (S) is equal to
(SG). If this holds, the dual pre-Lie algebra ofH(SG) is asso
iative; it has a basis (fi(α))i∈V (G),α∈NN

∗

and the produ
t is given by:

fj(β) ∗ fi(α) =

{
fi(α+ β) if i

α
−→ j,

0 otherwise.

Proof. =⇒. First step. Let us assume that (S) is Hopf. We �x i, j, k ∈ [M ] and α, β, γ ∈ NN
∗ .

We put:

a =

{
1 if j ∈ Ii,α,

0 otherwise;

b =

{
1 if k ∈ Ii,α+β,

0 otherwise;

c =

{
1 if k ∈ Ij,β,

0 otherwise.

We obtain:

Xi(α+ β) = q i, α + β + a q

q

i, α
j, β + . . . ,

Xi(α+ β + γ) = q i, α + β + γ+ b q
q

i, α + β
k, γ + ac q

q

q

i, α
j, β
k, γ

+ . . .

Hen
e:

∆(Xi(α+ β + γ)) = qk, γ ⊗ (b q i, α + β + ac q
q

i, α
j, β + . . .)︸ ︷︷ ︸

=X

. . .

As H(S) is Hopf, X is a multiple of Xi(α+β), so ab = ac: a = 0 or b = c. In parti
ular, if a 6= 0,

b = c. Hen
e, for all i, j, k ∈ [M ], for all α, β ∈ NN
∗ , j ∈ Ii,α and k ∈ Ij,β if, and only if, i ∈ Ii,α

and k ∈ Ii,α+γ .

Se
ond step. We de�ne a 
oloured graph stru
ture G on [M ] in the following way: for all

i, j ∈ [M ], for all p ∈ [N ], there exists an edge from i to j de
orated by p if, and only if, j ∈ Ii,ǫp .

Let us prove that for all i, k ∈ [M ], for all α ∈ NN
∗ , k ∈ Ii,α if, and only if, i

α
−→ k in G. We

pro
eed by indu
tion on |α| = α1+ . . .+αN . This is obvious if |α| = 1. Let us assume the result

at rank |α| − 1.
=⇒. Let us 
hoose α′

and α′′
, su
h that α = α′ + α′′

, |α′| = |α| − 1 and |α′′| = 1. Let

j ∈ Ii,α′
. By the �rst step, then k ∈ Ij,α′′

. By the indu
tion hypothesis, i
α′

−→ j and j
α′′

−→ k, so

i
α
−→ k.
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⇐=. Let us assume that i
α
−→ k. We 
onsider a path in G from i to k, of weight α. If j is

the last step, there exists α′, α′′
, su
h that α = α′ + α′′

, |α′| = |α| − 1 and |α′′| = 1, i
α′

−→ j and

j
α′′

−→ k. By the indu
tion hypothesis, j ∈ Ii,α′
and k ∈ Ij,α′′

. By the �rst step, k ∈ Ii,α.
Hen
e:

(S) : ∀i ∈ [M ], Xi =
∑

α∈NN
∗

Bi,α


1 +

∑

i
α

−→j

Xj


 .

So (S) = (SG). The �rst step implies that (G) is Hopf.

=⇒. Let us 
onsider a Hopf N -
oloured graph G. We de�ne a produ
t on the ve
tor spa
e

g = V ect(fi(α))i∈V (G),α∈NN
∗
by:

fj(β) ∗ fi(α) =

{
fi(α+ β) if i

α
−→ j,

0 otherwise.

Let i, j, k ∈ V (G). For any α, β, γ ∈ NN
∗ :

(fk(γ) ∗ fj(β)) ∗ fi(α) =

{
fi(α+ β + γ) if i

α
−→ j and j

β
−→ k,

0 otherwise;

fk(γ) ∗ (fj(β)fi(α)) =

{
fi(α+ β + γ) if i

α
−→ j and i

α+β
−→ k,

0 otherwise.

So ∗ is asso
iative. Hen
e, g is a NN
-graded 
onne
ted pre-Lie algebra. It is not di�
ult to prove

that the graded dual of its enveloping algebra, imbedded in HD
, is the subalgebra generated by

the solution of the SDSE (SG), whi
h as a 
onsequen
e is Hopf. �

An example of 
oloured graph is given by families of 
ommuting endofun
tions:

Proposition 47 Let V be a set and, for all 1 ≤ p ≤ [N ], let fp : V −→ V be a map. We


onstru
t a graph Gf in the following way:

• V (G) = V .

• For all i, j ∈ V , for all p ∈ [N ], i
ǫp
−→ j if, and only if, fp(i) = j.

In other terms, G is the 
oloured graph of maps f1, . . . , fN . Then Gf is Hopf, if and only if, for

all p, q ∈ [N ], fp ◦ fq = fq ◦ fp.

Proof. =⇒. Let us assume that Gf is Hopf. Let i, j ∈ V . We put j = fq(i), j
′ = fp(i),

k = fq ◦ fp(i), α = ǫq and β = ǫp. Then i
α
−→ j and i

α+β
−→ k, so j

β
−→ k: hen
e,

fp(j) = fp ◦ fq(j) = k = fq ◦ fp(i).

⇐=. Let us assume that i
α
−→ j and i

α+β
−→ k. There exists a sequen
e p1, . . . , pm su
h

that ǫp1 + . . . + ǫpm = α, fp1 ◦ . . . ◦ fpm(i) = j. There exists a sequen
e p1, . . . , pm su
h that

ǫq1 + . . . + ǫqm+n
= α + β, fq1 ◦ . . . ◦ fqm+n

(i) = k. Note that m = |α|, and m + n = |α + β|.
Moreover, the multiset {p1, . . . , pm} is in
luded in the multiset {q1, . . . , qm+n}. We pro
eed by

indu
tion on n = |β|. If n = 1, let us assume that {q1, . . . , qm+n} \ {p1, . . . , pm} = {qr}. The


ommutation relation implies that:

fq1 ◦ . . . ◦ fqm+n
(i) = fr ◦ fq1 ◦ . . . fqr−1 ◦ fqr+1 ◦ . . . ◦ fqm+1(i).

By permuting the pj 's using the 
ommutation relations, we obtain that these two elements are

equal. Hen
e, fr(j) = l, so j
β
−→ k.
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Let us assume the result at rank n − 1. There exists k′, su
h that i
α+β′

−→ k′ k′
β′′

−→ k,

β = β′ + β′′, |β′| = n− 1 and |β′′| = 1. By the indu
tion hypothesis, j
β′′

−→ k′, so j
β
−→ k. �

Example. Let V = Z/NZ, N = 1 and:

f :

{
Z/NZ −→ Z/NZ

k −→ k + 1.

The SDSE asso
iated to f is a 
y
li
 SDSE of [7, 9℄.

Remark. There are other examples of 
oloured Hopf graphs, for example:

•

1
��

1

��❅
❅❅

❅❅
❅❅

•

2
��

• •
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