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1Airbus Defence and Space, Space Systems, Telecommunication Systems Department, 

 31 Rue des Cosmonautes, 31402 Toulouse, France 
2CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France 

3Univ de Toulouse, LAAS, F-31400 Toulouse, France 
4Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France 

Keywords: Frequency Assignment, Multiprocessor Scheduling, Path Cover, Linear Programming, Constraint Program- 
ming, Maximal Cliques Enumeration. 

Abstract: To comply with the continually growing demand for multimedia content and higher throughputs, the telecom- 
munication industry has to keep improving the use of the bandwidth resources, leading to the well-known 
Frequency Assignment Problems (FAP). In this article, we present a new extension of these problems to the 
case of satellite systems that use a multibeam coverage. With the models we propose, we make sure that for 
each frequency plan produced there exists a corresponding satellite payload architecture that is cost-efficient 
and decently complex. Two approaches are presented and compared : a global constraint program that handles 
all the constraints simultaneously, and a decomposition method that involves both constraint programming 
and integer linear programming. For the latter approach, we show that the two identified subproblems can re- 
spectively be modeled as a multiprocessor scheduling problem and a path-covering problem, and this analogy 
is used to prove that they both belong to the category of NP-hard problems. We also show that, for the most 
common class of interference graphs in multibeam satellite systems, the maximal cliques can all be enumer- 
ated in polynomial time and their number is relatively low, therefore it is perfectly acceptable to rely on them 
in the scheduling model that we derived. Our experiments on realistic scenarios show that the decomposition 
method proposed can indeed provide a solution of the problem when the global CP model does not. 

1 INTRODUCTION 

A common characteristic of any telecommunication 
system is that it is bandwidth limited, and one of the 
main challenges for the system engineers is to 
optimally use this precious resource. Satellite 
telecommunications systems are no exception to that 
rule, and this already difficult task is even more 
complex when the specific limitations and needs of 
the satellite payload are taken into consideration. 
Plenty of literature can be found on the problem of 
assigning frequencies under the name of “Frequency 
Assignment Probems” (FAP). For instance, (Aardal 
et al., 2007) is a very thorough survey on the models 
and the optimization methods that have been 
developed over the years to solve the frequency 
assignment problems that emerged in a lot of different 
wireless communications systems. The recent 
litterature proposes more and more sophisticated 

methods to solve the FAP, such as parallel 
hyperheuristics (Segura et al., 2011), differential 
evolution (Salma et al., 2010), population-based 
heuristics (Luna et al., 2011) (Yang et al., 2014) 
or considers more and more realistic variants of the 
FAP according to specific problem characteristics 
(Koster and Tieves, 2012) (Muoz, 2012) (Wang and 
Cai, 2014). This article aims at presenting new 
models and approaches for this extension of the 
frequency assignment problem to multibeam satellite 
systems, and promising results on realistic scenarios. 

A multibeam satellite system is characterized by 
a plurality of relatively narrow beams used to provide 
coverage to its service area as shown in Fig.1, each 
beam being the representation of an antenna gain loss 
threshold for the corresponding satellite radio source. 
Still in  Fig.1, the role of the satellite payload (2) is 
to receive, downconvert, amplify, and retransmit the 
signals of the uplink (1) in the different beams of the  
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Figure 1: The uplink (1), the satellite payload (2) and the 
downlink (3) of the forward link of a multibeam satellite 
system. 

downlink (3) where the end-users are located. It is 
assumed that the system bandwidth is divided into 
identical frequency channels, the bandwidth of a 
channel being equal to that of one carrier signal. 
For each beam, it is either specified by the operator or 
assessed in advance how much bandwidth is needed 
and there- fore how many carriers must be transmitted 
in it. Assuming that the carrier uplink frequencies are 
known or treated afterwards, system engineers have to 
define for each carrier of each beam: 

- The frequency channel used in the downlink 

- The polarization of the signal in the downlink 

- The high power amplifier in the payload that will 
be amplifying the corresponding uplink carrier 

These are the variables of the problem presented 
in this paper. Values must be assigned to them with 
the goal to minimize the levels of interferences in 
each beam, the number of high power amplifiers 
needed in the satellite payload, and the number of 
hardware needed for the downconversions. More 
precisely, the approach we have selected is to aim 
at minimizing the number of high power amplifiers 
needed in the satellite payload since they are heavy, 
expensive, and highly power-consuming, while we 
will be using constraints to limit the interferences and 
the hardware needed for the downconversions to what 
is acceptable. 

The rest of the article is structured as follows. In 
section 2, the problem constraints are listed and 
detailed. Then, section 3 focuses on the different 
approaches we have devised to actually model the 
problem. Finally, section 4 provides experimental 
results and concrete scenario examples, before some 
concluding remarks in section 5. 

 

2 THE PROBLEM CONSTRAINTS 

2.1 Frequency Related Constraints 

For the quality of transmission of a signal, the 
interferences are a determining factor and any 
frequency assignment procedure should try to 
minimize them. Let us remind that a frequency and a 
polarization must be assigned to each carrier of each 
beam in the downlink. Note that in this work, the 
isolation of the signals through the time-dimension is 
not considered. In the end, the frequency related 
constraints that are taken into account here are the 
following : 

- Polarization Isolation: 
A perfect radio antenna transmits and receives 
waves in a particular polarization and is 
insensitive to orthogonally polarized signals 
(Bousquet and Maral, 2009), meaning that the 
same frequency channel can therefore be used 
twice in the same area without risking severe 
interferences. In actual facts, antennas cannot 
transmit and receive perfectly in one 
polarization only, it is always a combination of 
two orthogonal polarizations, one of them being 
predominant. To take advantage of that property 
anyway, the choice here has been to consider 
that two carriers at the same frequency using 
orthogonal polarizations are allowed to be 
transmitted in closer zones than two carriers 
trans- mitted at the same frequency and with 
the same polarization. 

- Spatial Isolation: 
Thanks to antenna gain losses, two carriers can 
use the same color (frequency or frequency- 
polarization couple) as long as the two 
corresponding beams are sufficiently distant 
from each other. This is often turned into a 
constraint of minimum distance between them, 
leading the very classic binary interference 
constraints. The resulting representation is a 
graph G = (B, E) where each vertex b ∈ B 
corresponds to the zone covered by a beam and 
each edge e ∈ E is a link between two zones 
where it is not allowed to use the same color. 

- Limit on the Frequency Channel Reuse 
Values: 

Defining an upper-bound for these values 
allows to balance the number of times each 
channel is used, which reduces the hardware 
needs for frequency conversions. Since two 
uplink carriers can only share a downconverter 
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in the satellite payload if they need the same 
frequency downconversion, it is interesting to be 
able to define the uplink frequencies so as to 
have as many of these situations as possible, and 
this balance of the frequency reuse factors in the 
downlink is advantageous on that regard. 

2.2 Amplification of the Signals 
Constraints 

A traveling-wave tube (TWT) is a type of high power 
amplifier for radio frequency signals and a widely 
used technology for satellite telecommunication 
payloads (Bousquet and Maral, 2009). A TWT must 
be assigned to each carrier of each beam under the 
following constraints: 

- Minimization of the Number of TWT:	
A TWT is an expensive technology, one should 
therefore aim at finding a distribution of the 
carriers in the TWTs that minimizes their 
number. 

- Frequency Ranges: 
The TWTs can have a bandwidth narrower than 
the overall system bandwidth. In that case, pay- 
load engineers agree with the equipment 
manufacturer on a limited number of frequency 
ranges. Therefore, the assignment of carriers to 
the TWTs must guarantee that the frequency 
ranges are supported by the available equipment. 

- Carriers forbidden to use the same TWT: 
Two carriers cannot be amplified by the same 
TWT if their amplification requirements are too 
different, because of the non-linearity of the 
TWT. These incompatibilities are known in 
advance. 

- Single Use of the Frequency Channels: 
A TWT cannot amplify two carriers using the 
same frequency channel. 

- Limited Number of Carriers per TWT: 
A TWT is characterized by its output power 
level. That power is shared by the carriers, 
therefore the number of carriers per TWT is 
upper-bounded. 

- Contiguity of the Frequencies: 
The payload complexity is assumed to be 
significantly reduced when there are no 
frequency gaps between the carriers in the same 
TWT. 

3 MODELS 

The first model we derived is a global constraint 
program (section 3.1) that includes all the 
aforementioned constraints. It has been able to 
provide really interesting system solutions on some 
scenarios, however, when the number of variables is 
set to high realistic values, the global CP model fails 
at providing solutions or proving unfeasibility in 
reasonable time. That is why a decomposition 
method has been developed, with a subdivision of 
the problem into a multiprocessor scheduling 
(section 3.2) and a path-covering (section 3.3) 
problems. The two approaches, the single constraint 
programming model and the combination of the two 
submodels, are then compared experimentally in 
section 4. 

3.1 Global Constraint Programming 
Model 

The idea to derive a constraint programming model 
has been motivated by an analysis of the constraints 
on the problem variables (frequency, polarization, 
TWT) that revealed that global constraints could be 
used to model a large part of the problem. A global 
constraint (Beldiceanu et al., 2005) is a set of con- 
straints for which it is preferable to treat that set of 
constraints as a whole than to treat all the constraints 
of that conjunction of constraints individually. Using 
global constraints is a way to have a better view on 
the structure of the problem, which is then exploited 
with powerful filtering algorithms. On that regard, a 
very significant example is the all different constraint 
(van Hoeve, 2001) 

alldifferent(X ) 

that forces all the variables of the array X to be 
different. In the model below, we also use the global 
cardinality constraint 

global_cardinality_constr(X ,Y ,m,M) 

that allows to bound the number of times some items 
appear in a list, X being that list, Y the set of sought 
values, m the array of minimum number of 
occurrences for each sought value, M the array of 
maximum number of occurrences for each sought 
value. Finally, the Gecode convexity global constraint 

convex(X ) 

is used to force the integers of an integer set X to be 
a convex sequence ({1, 2, 3} is one while {1, 2, 4} is 
not). These global constraints are implemented in the 
open source solver Gecode (Schulte et al., 2013) that 
we chose to use. 
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An instance of this particular frequency 
assignment problem is defined by a set of NB beams, 
each beam b ∈ B = {1, · · · , NB} being characterized by 
the number nb of carriers transmitted in it, leading to 
an overall number of carriers 

ܰ ൌ ݊

ேಳ

ୀଵ

 

For all b ∈ B and for all c ∈ {1, · · · , nb}, 

indሺܾ, ܿሻ ൌ ܿ ݊෨

ିଵ

෨ୀଵ

 

defines a 1D sorting of these carriers and for all b ∈ B, 

Cb = {ind(b, c) | c ∈ {1, · · · , nb}} 

is the notation for the set of indices of the carriers of 
the bth beam. Therefore, note that the Cb  sets 
partition the set C = {1, · · · , NC }. The system 
bandwidth is divided into NF sub-channels indexed 
by F = {1, · · · , NF}. NT TWTs are available in the 
payload, and NP orthogonal polarizations are 
considered (typically NP = 2), the corresponding 
index sets being respectively denoted by T and P. 
Each carrier c ∈ C must be assigned a frequency 
channel fc ∈ F , a  TWT tc  ∈ T and a  polarization  
pc	∈ P. These are the problem variables. Two graphs 
G = (B, E) and G′ = (B, E′) with E′⊂ E are defined: 
an edge of E′ forbids the carriers in the two 
corresponding beams to use the same frequency 
channel whatever the polarization, whereas an edge 
of E only forbids the multiple use of the same 
frequency-polarization couple. In the following 
equations, note that card(X ) denotes the cardinality of 
the set X . Here follows the list of the constraints 
expressed with these variables: 

- For a given beam b such that nb > 1, the nb 

carriers must be contiguous in frequency, use the 
same TWT, and have the same polarization. For 
such b values, the constraints are: 

∀i ∈ {2, · · · , nb},  tind(b,1) = tind(b,i) (1)

  pind(b,1) = pind(b,i) (2)

      find(b,i1) = find(b,i)  1 (3)

- As discussed in section 2.1, channel reuse 
bounds are a tunable parameter in input used to 
limit hardware needs for the downconversions. 
Let Rmin and Rmax be the arrays of size NF of 
these bounds (note that in practice the lower-
bound array is set to 0, it is just there to fit the 
definition of the global constraint that use both 
arrays), then the corresponding corresponding 
is the following: 

global_ cardinality_constr(f, F, Rmin, Rmax) (4)

- The binary interference constraints associated 
to E can be expressed as follows for all b, b′∈ B 
such that b < b′ and (b, b′) ∈ E : 

alldifferent (fc + NF (pc  1) | c ∈ Cb ∪ Cbʼ) (5)

- And for E′, for all b, b′∈ B such that b < b′ and 
(b, b′) ∈ E ′: 

alldifferent (fc  | c ∈ Cb ∪ Cb’) (6)

- The same frequency cannot be used twice by the 
carriers of a given TWT : 

∀t ∈ T, ∀ f ∈ F, card(Tt ∩ F f ) ≤ 1 (7)

where Tt ⊂ C and Ft ⊂ C respectively are the set 
of carriers using the TWT t and the set of carriers 
using the frequency channel f , these set variables 
being linked to the arrays t and f by side 
channeling constraints that we do not provide 
here for the sake of conciseness. 

- The contiguity in the TWTs. Let us denote by Ft 

the set of frequency channels used in the TWT 
t, these set variables being easily defined with 
chan- neling constraints involving the variable 
arrays f and t. Then, the global constraint convex 
does exactly what is sought: 

∀t ∈ T, convex(Ft ) (8)

- The maximum number of carriers in a given 
TWT that is upper bounded by a tunable 
parameter n : 

∀t ∈ T, card(Tt ) ≤ n (9)

- The incompatibilities between the carriers that 
cannot use the same TWT. Let c, c’∈ C be two 
carriers forbidden to use the same TWT, then the 
corresponding constraint is the following: 

tc ് tc′ (10)

- The content of the TWTs must be of a given type. 
Let F1 ⊂ F and F2 ⊂ F be two subparts of the 
system bandwidth such that F1 ∪	 F2 = F . These 
two sets define two types of acceptable frequency 
contents for the TWTs, which means that the 
carriers in a given TWT must either all be in F1 

or all be in F2, which can be expressed as 
follows:  

∀c, c′∈ C, fc ∈ F\F2   ∧ fc’ ∈ F\F1 ⇒ tc ് tc′ (11)

The objective is the minimization of the number 
of available TWTs actually used. That number nused  
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is a variable that can be obtained from the array t 
with two successive global counting constraints, the 
first one generating an array of the number of times 
each TWT is used, the second counting the number of 
non- zero values in the latter: 

min nused (12)

3.2 Multiprocessor Scheduling Part 

3.2.1 The Scheduling Model 

An analogy with multiprocessor scheduling problems 
is possible for the assignment of frequencies and 
polarizations, that is for the subproblem that only 
concerns the variable arrays f, p, and the constraints 
(2), (3), (4), (5) and (6). That problem, denoted by 
(S1), is an extension of the model proposed in 
(Kiatmanaroj et al., 2013) where the frequency 
assignment is addressed regardless of the 
polarizations. Each beam b ∈ B is assimilated to a 
single operation job whose processing time, 
expressed in time units, is non-preemptive and equal 
the number of carriers in that beam. Note that such 
a model is only valid because the frequencies of the 
carriers in a same beam are constrained by constraint 
(8) to be contiguous, the contiguousness of 
frequencies corresponding therefore to the non-
preemptiveness of the processing times. Each 
maximal clique of G′ is assimilated to a machine with 
non-overlapping constraints, while each maximal 
clique of G is associated to exactly two machines, 
one for each polarization. For each beam/job b ∈ B, 
C′b denotes the set of machines that correspond to the 
cliques of G′ that contain b, while Cb,1 and Cb,2 are 
the  sets of machines representing the cliques of G 
containing b that are respectively associated to the  
polarizations 1 and 2. For constraint (4), it is assumed 
that the only restriction here is an upper-bound on 
the reuse factor R ∈ N+ of the channels (same bound 
for each channel), which leads to the definition of 
M = {m1, · · · , mR} identical parallel machines. Each 
job b ∈ B requires simultaneously multiple machines. 
More precisely, it must be executed on: 

- all the machines of C’b 

- either all the machines of Cb,1, or all the machines 
of Cb,2 

- one machine of M 

Note that relying on cliques is not necessary to make 
this analogy with multiprocessor scheduling, another 
option could be to define a machine for each binary 
constraint, but relying on cliques allows to take into 
account several constraints simultaneously, just like 

global constraints in constraint programming. In the 
example of Fig.2, for the beam number 1 with the 
notations ܥ′ଵ ൌ ൛ܿᇱଵ,ଵ, ܿᇱଵ,ଶൟ, ଵ,ଵܥ ൌ ሼܿଵ,ଵ,ଵ, ܿଵ,ଵ,ଶሽ	 and  
ଵ,ଶܥ ൌ ሼܿଵ,ଶ,ଵ, ܿଵ,ଶ,ଶሽ,  we  have :  

- ܿ′ଵ,ଵ and ܿ′ଵ,ଶ associated to the cliques/machines 
{1,2} and {1,3} of G’ 

- ܿଵ,ଵ,ଵ and ܿ ଵ,ଵ,ଶ associated to the machines of first 
polarization for the cliques {1,2,3} and {1,3,4} 
in G 

- ܿଵ,ଶ,ଵ and ܿଵ,ଶ,ଶ associated to the machines of 
second polarization for the cliques {1,2,3} and 
{1,3,4} in G 

- ݉ଵ the machine M used by the beam 1 
 

In the example, the two carriers required in beam 
1 use the second and third frequency channels and 
the first kind of polarization. With a common 
deadline for all the jobs being equal to the number of 
frequency channels NF (equal to 4 in Fig.2), one  can 
see that solving this scheduling problem is equivalent 
to solving the considered subpart of our frequency 
assignment problem. 
 
  

 

 
 
 
 
 
 
  
 
  
 
 
 

Figure 2: Example of execution of one job on the 
machines. 
 
Proposition: (S1) is equivalent to solving a 
multiprocessor scheduling problem, it is 
therefore NP-hard. 

Proof: The parallel machine problem is a par- 
ticular case of (S1). 

3.2.2 Maximal Cliques Enumeration in 
Multibeam Satellites Interference 
Graphs 

As explained in the previous paragraph, one 
promising direction to solve efficiently the 
scheduling part of the frequency assignment problem 
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considered is to use the cliques of the interference 
graphs. It is thus of interest to study the theoretical 
and practical complexity of enumerating the maximal 
cliques. In multibeam systems, the analysis of their 
exhaustive enumeration differs depending on the type 
of graphs considered: regular layouts or random 
interference graphs. 

Cliques in Regular Layouts 
A regular layout is an organization of the beams that 
provides a continuous coverage of the zone with 
overlapping beams that describe an hexagonal lattice, 
as shown in Fig.1 for instance. It is a very common 
choice for the system engineer since the contiguous 
coverage it provides can be a crucial specification of 
the customer, and also, it requires simpler antenna 
designs than a non-uniform layout. For a beam b∈ B, 
let us denote by cb the position of its center and by 
Γ(b) the set of its adjacent beams. A common 
industrial approach for a regular layout with beams of 

radius r is have Γ(b) = {b̃ ∈ B| b̃ ≠ b and || cb̃ − cb ||<d} 

with d being equal to either 3r or 2√3r leading to the 
representations (a) and (c) of Fig.3. They are usually 
called 3-colors pattern and 4-colors pattern because 
with such edges in the interference graph, it is 
possible to partition the set of vertices into 
respectively 3 and 4 independent sets as shown in 
figure (b) and (d) of Fig.3. An important property of 
the regular interference graphs with the edges defined 
this way is the following: 

 
(a) (b) 

 
(c)   (d) 

Figure 3: (a) Adjacent beams, 3r threshold (b) Independent 
sets, 3r threshold (c) Adjacent beams, 2√3r threshold (d) 
Independent sets, 2√3r threshold. 

Proposition: The maximal cliques of the 
interference graphs corresponding to the regular 

patterns in regular layouts can all be enumerated in 
polynomial time 
 
Proof: The key idea is that for each exclusion 
pattern, there exists a finite number m such that for 
each vertex b ∈ B there exist m potential cliques that 
might contain b, m being independent of the size NB  

of the graph. For instance, for a graph with the edges 
of the 4-colors pattern, geometrical considerations 
allow to understand that, for a given vertex : 

- it cannot belong to a clique of size 5 and more, 

- the cliques of size 4 that might contain it are 
those of Fig.4 plus those obtained by rotating of 
గ

ଷ
 around the center of the corresponding beam 

leading to a total of 20 distinct potential cliques,  

- the only way it can belong to a maximal clique 
of size 1, 2 or 3 is that the corresponding beam 
is surrounded by less beams than in the full 
configuration of Fig.4, which can happen either 
because the beam in question is near the bound 
of the layout or because there are “holes” in it. 
Therefore, if such a clique exists, it is a 
subgraph of what would have been a clique of 
size 4 if some beams had not been missing. 
These situations are also in finite number and can 
be precisely enumerated. 

 

  
Figure 4: Cliques of size 4 with 4-colors pattern. 

Note that in the example of the 4-colors pattern, the 
number of cliques is therefore upper-bounded by 
20NB. Each potential clique is characterized by a 
specific set of adjacent beams and, for the cliques of 
size less than 4, a set of non-existing beams whose 
positions are perfectly known in terms of distance to 
the beam tested and orientation with respect to a given 
reference direction, say the horizontal direction. The 
same type of rationale applies for the graphs defined 
with the 3-colors pattern. Therefore, to enumerate all 
the maximal cliques in the case of regular layouts, one 
would only have to iterate on the vertices b ∈ B, that 
is on the beams, and test each clique possibility to 
see which ones actually exist for each b.  That way, 
the list of maximal cliques can gradually grow, 
simple tests allowing to avoid redundancies. In the 
end, the maximal cliques of the regular layouts are 
indeed enumerated with a polynomial complexity. 
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Cliques in Realistic Random Layouts 

Even if the standard way to design a layout is to rely 
on the uniform patterns, it can be interesting to break 
that regularity in order to match the heterogeneity of 
the requirements over the service area. One can there- 
fore have to work with a layout that can have beams 
of differents widths and positions for their centers that 
do not describe any particular known geometrical 
pattern. It was therefore necessary in that case to 
determine whether it was still an acceptable 
approach to enumerate the cliques before actually 
solving the frequency assignment problem. To do 
so, the slightly modified version of the Bron-
Kerbosch (Bron and Kerbosch, 1973) algorithm 
proposed by Tomita et al.  (Tomita et al., 2006) has 
been implemented and used on sets of graphs that were 
randomly generated with constraints on the vertex 
degrees. In practice, in multibeam satellite systems 
interference graphs, these vertex degrees are rarely 
less than 1 and greater than 12, so this has been 
specified as the main constraint in the constraint 
program used to generate these graphs. We generated 
10000 different graphs of size |B] = 200 (maximum 
size for a realistic scenario) and observed that the 
mean number of cliques was 881 and the mean 
execution time was 14 millisec- onds. These cliques 
numbers are far from the 3||

ଷ
 upper bound of the 

number of cliques in an undirected graph, which is 
very interesting in practice because too high numbers 
of cliques could have made it impossible or 
unreasonable to rely on a model based on them. But 
most importantly, the computational times are 
relatively low, even instantaneous at the time scale of 
the designing phases of the satellite 
telecommunication systems. In the end, this means 
that this preliminary enumeration of the cliques is a 
pre-processing operation for the frequency 
assignment problem that is perfectly acceptable, 
whatever the type of layout. 

3.3 Path Covering Part 

Let us assume that the frequencies and the 
polarizations have been assigned somehow to the 
carriers of a given system, possibly with a scheduling 
based procedure as the one presented in section 3.2. 
Then, one can wonder what the problem of 
assigning the TWTs to these carriers becomes, that 
problem being denoted by (S2). The first important 
remark is that the constraint 11 on the type of TWTs 
can now be seen as additional incompatibilities in 
constraint 10 since the frequencies of the carriers are 
now known. The second is that it is now possible to 

represent the problem as a path-covering problem of 
a digraph in which the vertices represent the NC 
carriers of the system (see Fig. 5), a path 
representing a TWT and its content.  In this graph, 
for all f ∈ F\{NF }, the only possible direct successors 
of the carriers using the frequency f are those using 
the frequency f + 1, the in-degrees of the carriers 
using the frequency 1 being all equal to 0, just like 
the out-degrees of the carriers using the frequency 
NF . As a consequence of these few properties, such 
graphs are acyclic. The incompatibilities between 
two carriers that cannot be in the same TWT/path 
are represented with dotted-line connections. For a 
given carrier, two situations impact the number of 
out-arcs : when this carrier is not the last carrier of the 
beam it belongs to, and when there exist 
incompatible carriers that use the next frequency. In 
the former case, only one arc leaves the carrier 
considered  and  its  head  is  the  next carrier in the 
 
 
 
 
 
 
 
 
 
 

Figure 5: Carrier based graph for TWT assignment. 

corresponding beam. In the latter case, the carrier 
cannot be connected to the carriers with which an 
incompatibility is shared. Otherwise, for a carrier 
that is not in any of these two situations, it is 
connected to all the carriers using the next frequency. 
One can then see that assigning TWTs to the carriers 
comes down in that case to finding the minimum 
number of disjoint paths that cover all the vertices, 
the contiguity (constraint 8) and the fact that the same 
frequency cannot be used twice in a TWT (constraint 
7) being automatically verified with a graph built that 
way. But there are also some additional constraints 
to take into account such as the upper-bound for the 
length of the paths (constraint 9), the constraint not 
to use the same TWT for two incompatible carriers 
(constraint 10), and finally the constraint that the 
carriers of a block of carriers must use the same 
TWT (constraint 1). In the end, an instance of the 
problem considered is entirely defined by : an acyclic 
digraph D whose vertices can be partitioned into a 
certain number of ordered “levels” and whose arcs 
are only between two vertices of a level and the next, 
an upper bound l for the length of the paths, a set for 
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each carrier of the carriers it must share a TWT with 
(empty sets being allowed), and a set for each carrier 
of the carriers incompatible with that carrier (empty 
sets also allowed). 
 
Proposition: (S2) is an NP-hard path-covering 
problem 
 
Proof: Without the additional constraints (1,9,10), 
the problem of covering a digraph with a minimum 
number of point-disjoint paths can be solved in 
polynomial time as shown in (Boesch and Gimpel, 
1977). But once they are taken into account, it can be 
proven that the problem becomes NP-hard. Indeed, 
let us consider an instance of the problem of finding 
a minimum cardinality cover of the elements of a 
partially ordered set (poset) with chains of restricted 
length, whose NP-completeness has been proven in 
(Shum and Trotter, 1996). It is common to represent 
that poset with a digraph partitioned in ordered levels, 
the edges connecting the comparable elements of 
the set from one level to the next: this is precisely a 
Hasse diagram. Then, with the upper bound for the 
path lengths equal to the maximum length of a chain 
and with, for each carrier, empty sets for the sets of 
carriers that must use the same TWT and the sets 
of incompatible carriers, one can see that solving 
this poset cover instance is equivalent to solving a 
particular instance of the path-covering problem 
considered in this paper. Therefore, it is also NP-
complete.  
 

To solve it, the following integer linear 
programming model has been derived : 
 

݉݅݊ݑ௧

ே

௧ୀଵ

 (13)

s . t .  

ݐ∀ ∈ ௧ݔ,ܥ ൌ 1

ே

௧ୀଵ

 (14)

 

ݐ∀ ∈ ܶ, ∀݂ ∈ ௧ݔݕ,ܨ  1

ே

ୀଵ

 (15)

 

ݐ∀ ∈ ܶ, ௧ݑ 
1

ܰ
ݔ௧

ே

ୀଵ

 (16)

 

ݐ∀ ∈ ܶ,ݔ௧  ݊

ே

ୀଵ

 (17)

 

∀ܿ, ܿᇱ ∈ ܥ that are incompatible, ∀ݐ ∈ ܶ, 
௧ݔ  ᇱ௧ݔ  1 (18)

 
∀ܿ, ܿᇱ ∈ ݐ∀ in the same block of carriers ܥ ∈ ܶ, 

௧ݔ െ ᇲ௧ݔ ൌ 0 (19)

 
ݐ∀ ∈ ܶ, ∀݂ ∈ ሼܨ ிܰሽ, 

ቌ  ᇱݕ

ேಷ

ᇲୀାଵ

  ிܰݕ െ ிܰݕሺାଵሻቍ ௧ݔ  ிܰ

ே

ୀଵ

 (20)

where yc f ∈ {0, 1} are input Boolean arguments that 
indicate whether the carrier c ∈ C uses the frequency f 
∈ F , xct {0, 1} are the Boolean variables that indicate if 
the carrier c ∈ C uses the TWT t ∈ T , and finally the 
ut ∈ {0, 1} are the Boolean variables that indicate 
whether the TWT t is actually used. Constraint 14 is 
the constraint to have only one TWT assigned to each 
carrier, 15 forbids a given TWT to be used by two 
different carriers using the same frequency channel, 
16 is the constraint that forces the ut to be equal to 1 
as soon as the TWT t is used at least once, 17 is the 
limit on the number of carriers in the same TWT, 
constraint 18 forbids two incompatible carriers to use 
the same TWT, 19 forces the carriers in the same block 
of carriers to use the same TWT, 20 ensures the 
contiguity of the frequency channels in each TWT, 
finally 13 is the minimization of the number of TWT 
actually used. 

4 EXPERIMENTAL RESULTS 

Experiments were needed to assess the performances 
of the two following approaches: 

- Global Approach (GA): 
The global constraint program of section 3.1 
solved with a CP solver (Gecode) 

- Decomposition Method (DM) : 
Sequential solving of (S1) of section 3.2 with 
a CP solver (Gecode) and then of (S2) of 
section 3.3 with an ILP solver (Gurobi) 

 

A first detailed example is presented in Fig.6 with a 
fictitious scenario over France and Italy, with NB = 12 
regularly organized beams. The characteristics of the 
problem solved were the following : 
 

-  Each beam b ∈ {1, · · · , 12} of Fig.6 has a required 
number of carriers nb than is either equal to 1 or 
to 2, the carriers being indexed as shown inside 
the beams in Fig.6a 
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- For the beams b with a number of carriers 
nb>1, we require contiguous carrier 
frequencies, same polarization and same TWT 

- The system bandwidth is divided into NF=6 
channels 

- The acceptable frequency ranges for the 
TWTs are {1, 2, 3} and {4, 5, 6} 

-  The TWT reuse upper-bound is set to 3, i.e. 
the width of an admissible frequency range 

- The 4-color pattern is used to define binary 
interference constraints for the reuse of the 
same frequency-polarization couple (Fig.3c) 

-  The 3-color pattern is used to define binary 
interference constraints for the reuse of the 
same frequency, regardless of the polarization 
(Fig.3a) 

-  Carrier n◦5 is incompatible with carriers n◦9 
and n◦10, carrier n◦13 is incompatible with 
carriers n◦17 and n◦18, carrier n◦7 is 
incompatible with n◦8, which means that they 
cannot use the same TWT 

- Each frequency channel must be used at 
most third times 

-  Objective function : number of TWTs used 

 
( a )  

 

( b )  

Figure 6: (a) Multibeam coverage and polarizations (b) 
Frequencies and TWTs. 

This is one of the instances for which GA 
solved with Gecode is unacceptably long to find a 
solution. On the other hand, with DM, the scheduling 
part and the subsequent binary linear program are 

both solved extremely efficiently respectively by 
Gecode and Gurobi. On Fig.6a, the regular layout is 
reprensented with a ring color for each polarization, 
and on Fig.6b, the frequencies of the carriers found in 
the scheduling part can be read on the horizontal axis, 
and each color for the carriers represents one TWT. 
Note that the design of Fig.6 obtained for that 
example is optimal since the number of TWTs used 
is exactly equal to the number of carriers divided 
by the maximum number of carriers in a TWT. 
 

When instances are randomly generated, note that 
there is no guarantee that they will be feasible. Even 
if this is true for both approaches, in the case of DM, 
this risk of infeasibility is even increased since some 
of the path-covering problem constraints are 
currently not anticipated in the preceding scheduling 
problem (the frequency ranges of the TWTs for 
instance). In practice, infeasibility is significantly 
harder to detect than actual solutions for feasible 
instances, at least when Gecode is used, that is in GA 
and in (S1) of DM. In the results of this section, the 
statistic values presented only consider the instances 
that turned out to be feasible. 
 

For each instance tested with the DM approach, 
the corresponding (S1) scheduling problem is solved 
with Gecode using the corresponding subset of 
constraints in the global model of section 3.1. Then, 
the solutions of (S1) are transformed into (S2) path-
covering instances that are solved with Gurobi 
thanks to the ILP model we derived in section 3.3. 
With GA, let us remind that the problem is entirely 
solved with Gecode. For the first phase of our series 
of experiments, we generated FAP instances with 
similar characteristics as the example detailed before, 
with the following few changes : 

- Each beam b ∈ {1, · · · , 12} of Fig.6 has a now 
required number of carriers nb  than is either 
equal to 0 or to 1 

- The TWT carrier incompatibilities are now 
ran- domly generated (about 10% of all the 
possible carrier couples) 

- The overall number of required carriers 
NC =∑ ݊ଵஸஸଵଶ  is gradually increased, from 
4 to 12, 100 feasible instances being generated 
at each stage 

- Each frequency channel cannot be used more 
than once when 4 ≤ NC ≤ 6 and more than twice 

when 7 ≤ NC ≤ 12 
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Figure 7: Comparison of GA and DM on 4-carriers to 12- 
carriers instances with execution time statistics. 

 

Figure 8: Comparison of GA and DM on 4-carriers to 12- 
carriers instances with objective value statistics. 

Fig. 8 and Fig. 7 allow to compare GA and DM in 
terms of objective values and execution times. As 
expected, we can observe that in the the case of a 
joint assignment of TWT, frequency and polarization 
to the carriers (GA), the execution times are greater 
than those of DM but the objective values are better 
in average. In the particular case of the instances we 
generated, GA always reaches the theoretical optimal 
value which is equal to 

ceiling ൬
Overall	number	of	carriers

Maximum	number	of	carriers	in	a	TWT
൰ 

However, the decomposition method often manages 
to reach that optimal number of TWTs too as shown 
in Table 1. This is a crucial remark we wanted to 
emphasize since it is what legitimates the use of DM 
when GA is not usable in practice. 

Table 1: Percentage of times the theoretical optimum is 
reached with DM for each set of instances of varying num- 
ber of carriers. 

4 carriers 5 carriers 6 carriers
87% 72% 75%

7 carriers 8 carriers 9 carriers
83% 59% 53%

10 carriers 11 carriers 12 carriers
69% 76% 64%

In the next phase of our experiments, the overall 
number of carriers in the system has been set to be 
greater than 12 and less than 19, the carrier 
requirements in each beam being either equal to 1 or 
2, and the frequency channel reuse limit being now 
set to 3. As a result, some new constraints have to be 
taken into account for the beams b such that nb > 1 : 
contiguity of frequencies, same polarization and same 
TWT for the carriers belonging to the same beam. In 
practice, this is the point where GA becomes unusable 
both for feasible and infeasible instances, because of 
extremely long execution times even on these 
instances that are still relatively small compared to the 
biggest realistic situations. This explains why it has 
been necessary to develop DM. In Fig. 9, the 
execution times of (S1) (scheduling) and (S2) (path-
covering) are compared on the whole range of 
instances, from 4-carriers instances to 18-carriers 
instances. Two main things can be observed in that 
figure. First, the difference between the instances 
with at most 12 carriers and those with at least 13 
carriers is clear: the new constraints linked to the 
beams for which the carrier requirement is strictly 
higher than one slow the search. Also, we see that 
the computational times grow faster for the 
scheduling problem than for the path-covering 
problem. That remark is even more important when 
we consider the fact that infeasible instances are also 
re- ally hard to detect for Gecode in the scheduling 
part. (S1) is therefore the subproblem that deserves 
more attention for future work, the goal being to 
solve the highest realistic instances. Our not yet 
exploited analysis of the cliques in the interference 
graphs could certainly be an interesting direction. 

 

Figure 9: (S1) (scheduling part) and (S2) (path-covering 
part) execution times. 
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5 CONCLUSION 

The models we proposed for this particular frequency 
assignment problem applied to the design of multi-
beam satellite systems allowed to algorithmically 
solve instances that could not be solved by satellite 
telecommunications engineers. We showed that the 
decomposition method we devised could produce so- 
lutions and even optimal solutions in reasonable 
computational times especially compared to the 
perfor- mances of the global constraint program for 
that prob- lem. We also showed that relying on the 
cliques of the interference graphs was an acceptable 
direction and most likely a way to improve our 
current algorithms for the scheduling subproblem of 
our decomposition method. Concerning the path-
covering problem, a series of experiments showed 
that realistic instances where solved almost 
instantaneously by the solver Gurobi, which tells us 
that we extracted an interesting subproblem, and we 
will definitely try to take advantage of this in some 
way in the next algorithms we will implement. To 
solve the largest realistic instances, work still has to be 
done to get faster results and improving the algorithms 
for the scheduling part might not be enough. Instead 
of solving the two identified subproblems 
sequentially, we might aim at more integrated 
approaches inspired by combinatorial Benders’ cuts 
for instance, or with filtering algorithms solving 
locally the path covering problem. 
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