

BAGECO 10

Bacterial Genetics and Ecology - Coexisting on a Changing Planet

15-19 June 2009 • Uppsala • Sweden

Program & Abstract

We thank all our sponsors for their contribution!

Gold sponsors

The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning

Swedish University of Agricultural Sciences

Silver sponsors

Exhibitors

Local Organizing Committee

Professor Janet Jansson

Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden (<u>ianet.jansson@mikrob.slu.se</u>)
Senior Staff Scientist, Lawrence Berkeley National Laboratory, Berkeley, CA, USA (<u>irjansson@lbl.gov</u>)

Stefan Bertilsson, Uppsala University Susanne Broqvist, SLU Sara Hallin, SLU

Conference Secretariat

Academic Conferences
SLU & Uppsala University in cooperation

Tel: +46 18 67 20 84 e-mail: <u>bageco@slu.se</u>

SPATIAL PATTERNS OF BACTERIA SHOW THAT MEMBERS OF HIGHER TAXA SHARE ECOLOGICAL CHARACTERISTICS

Philippot L¹, Bru D¹, Saby NPA², Čuhel J³, Arrouays D², Šimek M³ and Hallin S⁴

¹INRA, University of Burgundy, Soil and Environmental Microbiology Dijon, France

²INRA, Centre de Recherche d'Orléans, US 1106, INFOSOL Unit, France

³ Biology Centre, Institute of Soil Biology and University of South Bohemia - Faculty of Science, České Budějovice, Czech Republic

⁴Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden

Whether bacteria display spatial patterns of distribution and at which level of taxonomic organisation such patterns can be observed are central questions in microbial ecology. To investigate the spatial distribution of bacterial groups at high taxonomical levels, we quantified the abundance of eight bacterial taxa at the phylum or class levels in a pasture by using quantitative PCR. Geostatistical modelling was used to analyse the spatial patterns of the taxa distributions. The distributions of the relative abundance of most taxa displayed strong spatial patterns at the field scale (2 to 37 m). These spatial patterns were taxon-specific and correlated to soil properties, which indicates that members of a bacterial clade defined at high taxonomical levels shared specific ecological traits in the pasture. Ecologically meaningful assemblages of bacteria at the phylum or class level in the environment provides evidence that deep branching patterns of the 16S rRNA bacterial tree are actually mirrored in nature.