Marc Baboulin

Veselin Dobrev

Jack Dongarra

Christopher Earl

Joel Falcou

Azzam Haidar

Ian Karlin

Tzanio Kolev

Ian Masliah

Stanimire Tomov

Towards a High-Performance Tensor Algebra Package for Accelerators

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Code Generation

C++11 features will be used as much as possible. Additional needs will be handled by defining a domain specific embedded language (DSEL). This technique is used in C++ to take advantage of DSL features while using the optimizations provided by a standard compiler. It will handle the generation of versions (index reordering, next) to be empirically evaluated and be part of the autotuning framework.

Autotuning

We are developing fixed-size gemm kernels for GPUs, Xeon Phi, and multicore (see Figure on Right for a single core intel Xeon E5-2620 and K40) through an autotuning framework. A number of generic versions are developed and parametrized for performance. The parameters are autotuned (empirically) to find "best" kernels for specific size.

Tensor operations in high-order FEM

Summary of kernels needed:

• Assembly of M, referred as equations (1

Abstract

Numerous important applications, e.g., high-order FEM simulations, can be expressed through tensors. Examples are computation of FE matrices and SpMV products expressed as generalized tensor contractions. Contractions by the first index can often be represented as tensor index reordering plus gemm, which is a key factor to achieve high-performance. We present ongoing work on the design of a high-performance package in MAGMA for Tensor algebra that includes techniques to organize tensor contractions, data storage, and parametrization related to batched execution of large number of small tensor contractions. We apply auto-tuning and code generation techniques to provide an architecture-aware, user-friendly interface.

Motivation

Numerous important applications can be expressed through tensors:

• High-order FEM simulations

• Signal Processing • Numerical Linear Algebra • Numerical Analysis
The goal is to design a:

• High-performance package for Tensor algebra • Built-in architecture-awareness (GPU, Xeon Phi, multicore) • User-friendly interface

Example cases

Numerical linear algebra:

• A 4-dimensional tensor contraction • rank-k update on matrices in tile format (k can be small, e.g., sub-vector/warp size) • Must determine (in software) if possible to do it through batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J.Sci.Comp.34(5), B606-B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface

To provide various interfaces, including one using C++11.

Top level design to provide features similar to the mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape

If we store tensors as column-wise 1D arrays, , i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or a vector of size nd 2 , without changing the storage. We can define as long as n 1 ...n r = m 1 …m q and for every i 1..r , j 1..q i 1 + n

1 i 2 + … + n 1 n 2 ...n r-1 i r = j 1 + m 1 j 2 + … + m 1 m 2 …m q-1 j q .
Contractions can be implemented as a sequence of pairwise contractions. There is enough complexity here to search for something better: code generation, index reordering, and autotuning will be used, e.g., contractions (3a) -(4f) can be implemented as tensor index-reordering plus gemm A, B -> A T B.

// Our current interface :

// create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data Tensor<2,5,2> ts; // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data Tensor<2,5,5,gpu_> d_ts; // Call a thrust function to set values to 9 thrust::fill(d_ts.begin() , d_ts.end() , 9); // Send back values to the cpu tensor ts = d_ts ; // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views view<2,10> mat = ts ;

• Data Mining

Batched LA

Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA [2] http://icl.cs.utk. edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

Conclusions and Future directions

• High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications • Multidisciplinary effort • Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear algebra kernels, and BLAST from LLNL • This is an ongoing work MAGMA exceeds in performance CUBLAS for "small" sizes, currently tuned for above 32. Current work is concentrated on kernels for fixed smaller (sub-warp) sizes.

 Consider the FE mass matrix ME for an element/zone E with weight ρ, as a 2-dimensional tensor: i, j = 1,..., nd , where Take the nq x nd matrix and Then, , or omitting the E subscript . Using FE of order p, we have nd = O(p d) and nq = O(p d), so B is dense O(p d) x O(p d) matrix. If the FE basis and the quadrature rule have tensor product structure, we can decompose dofs and quadrature point indices in logical coordinate axes i = (i 1 , …, i d), j = (j 1 , …, j d), k = (k 1 , …, k d) so M ij can be viewed as 2d-dimensional tensor M i1, …, id, j1, …, jd .

) & (2) below • Evaluations of M times V, referred as equations (3) & (4) below Towards a High-Performance Tensor Algebra Package for Accelerators M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

[2]

 2 A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt, Germany, July 12-16, 2015.

Figure :

 : Figure:Batched dgemms on K40 GPU. Batch count is 2,000.

workshops/SMC15/ This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL release number LLNL-POST-676632 ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.