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Abstract

Scientists and managers are not the only holders of knowledge
regarding environmental issues: other stakeholders such as farmers
or fishers do have empirical and relevant knowledge. Thus, new ap-
proaches for knowledge representation in the case of multiple knowl-
edge sources, but still enabling reasoning, are needed. Cognitive maps
and Bayesian networks constitute some useful formalisms to address
knowledge representations. Cognitive maps are powerful graphical
models for knowledge gathering or displaying. If they offer an easy
means to express individuals judgments, drawing inferences in cog-
nitive maps remains a difficult task. Bayesian networks are widely
used for decision making processes that face uncertain information
or diagnosis. But they are difficult to elicitate. To take advantage
of each formalism and to overcome their drawbacks, Bayesian causal
maps have been developed. In this approach, cognitive maps are used
to build the network and obtain conditional probability tables. We
propose here a complete framework applied on a real problem. From
the different views of a group of shellfish dredgers about their activ-
ity, we derive a decision facilitating tool, enabling scenarios testing for
fisheries management.

qualitative modelling, cognitive maps, bayesian networks, fisher’s
knowledge, fisheries management, qualitative decision support
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1 Introduction

1.1 Context

Most of environmental issues and management are currently based on sci-
entific and/or technical knowledge. Other sources of knowledge (empirical
or traditional) have been ignored or minimized for a long time. Nowadays,
there is a trend to more incorporate all various perceptions, in particular
coming from end-users like farmers or fishers, taking account of ground re-
alities [Haggan et al. 2007], [Oliver et al. 2012]. In addition, decisions taken
on these grounds should be more easily accepted by stakeholders, within a
more effective management process: public participation is a key ingredient
of good governance [Pita et al. 2010].

In a recent exploratory study regarding farms management decision sup-
port [Daydé et al. 2014], the authors emphasize the need to understand men-
tal choice process because traditional decision support systems assumes ide-
alized situation, with exhaustive knowledge, that does not necessarily exist.
In real world, much processing is done in a qualitative manner.

This paper addresses some management issues related to scallop (Pecten
maximus) dredging in the Bay of Brest (Western France). We aim here at
building a model from fishers statements, considered accurate as a premise,
in order to improve management decisions. The main contribution of this
work is to show how stakeholders’ knowledge can be used for qualitative
decision support, through simple scenarios testing, and hence, to facilitate
the making decision process.

The typical scallop dredging season in this bay runs from mid-October
to late March, with three days of fishing allowed per week. During these
periods, the scallops are sold alive. However, from time to time, an ASP
toxin (amnesic shellfish poisoning) is detected within the bay, which forces all
fishers to freeze their scallops, to be sold at a lower price. Scallop fishers have
been experiencing the evolution of this natural resource and its environment
for many decades. After an increasing fishing effort during the first half
of the 20th century, the stock of scallops fell within a few years from an
annual production of about 2500 tons in early 1960s to hundred tons in
1970s. A nursery program was thus initiated in the 1980s, thanks to the
Tinduff hatchery leading to annual planting operations. Annual catches rose
back to about 350 tons. Furthermore, a ”shellfish fishing license” system
was introduced in order to finance the hatchery program and to maintain a
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limited fishing effort (less than 60 boats).

1.2 Working with and for stakeholders

Stakeholders knowledge is intended here to be used to support stakeholders
decision (fisheries board in the first place).

A recent paper, [Voinov and Bousquet 2010] reminds us that even if stake-
holder collaboration has become part of nearly every modelling effort, their
involvement has often been nominal. The authors nevertheless insist that
decisions are implemented more easily and more successfully when they are
driven by stakeholders. In their panorama of existing techniques, they recog-
nize much promise in integrating cognitive mapping with bayesian networks.

Dealing with decision support, [Pielke 2003] insists on two different is-
sues. First, conventional modeling and prediction approaches cannot simul-
taneously meet the needs of both science and decision making. He also raises
the matter of uncertainty, that decision makers would like to quantify and
reduce. But he advocates that a good model is not necessarily an accurate
one. Here, prediction is part of a management decision process, it does not
pretend to provide numerical or time-accurate prediction.

Whoever they are, using stakeholders knowledge usually means finding
a way to deal with qualitative data, which was already noted 25 years ago:
much ecological knowledge is qualitative and fuzzy, expressed verbally and
diagrammatically [Rykiel 1989].

1.3 Prediction and complex systems

The common challenge of prediction about complex systems is to answer
qualitative questions based on partial knowledge [Kuipers 1994]. Usually,
these questions were answered through formulating and analyzing differen-
tial equations. But ordinary differential equations do not fit to qualitative
reasoning: they assume complete and precise models of dynamic systems,
which is unrealistic and sometimes unnecessary. Hence was advocated the
use of qualitative differential equations.

Other works brought mathematical foundations for qualitative reason-
ning, and with different formalisms: signed algebra and order of magnitude
for example. they have shown how qualitative simulation could be held.
For [Travé-Massuyès et al. 2003] qualitative methods unified with numerical
or statistical modeling approaches can outperform either pure qualitative or
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pure quantitative approaches. Some recent works followed this path, like
[Largouët et al. 2012], who used traditional trophic models relying on dif-
ferential equations in order to build a qualitative model for a fishery. This
model based on timed-automata, was successfully used for scenarios testing
and possible futures querying. In fact, aquatic systems have been repeat-
edly modeled and analysed in a qualitative manner, with various approaches
including loop annalysis [Dambacher et al. 2003], [Dambacher et al. 2009].

In our paper, we focus on qualitative models within decision-aid contexts,
dealing with trends rather than precise output values.

1.4 From causal maps to bayesian networks

Causal Maps (known also as Cognitive Maps, CMs for short) have often
been used to model influences between heterogeneous elements of a given sys-
tem. They have been used for ecosystems management [Hobbs et al. 2002],
[Özesmi 2004], agro-systems [Papageorgiou 2009], coastal fishing manage-
ment [Prigent et al. 2008] or farmers’ risk assesment [Winsena 2013].

Causal maps, displayed as directed graphs, are generally defined as the be-
liefs of a person, for a particular domain [Axelrod 1976]. They represent vari-
ables and causal relations among variables within a decision problem, which
enables to describe and capture a certain knowledge in a more comprehensive
and less time-consuming manner than other methods [Sucheta et al. 2004].
The graphical construction of causal maps is usually easy, even when working
with actors not familiarized with such approaches. Even people reluctant to
any mathematical formalism can express their views in a qualitative manner.

However, our study main goal is to provide tools to facilitate decision
making processes. Drawing inferences in CMs (i.e. obtaining new facts or
conclusions from other information) is not an easy task [Laukkanen 1996].
Simple CMs allow a deductive reasoning that predicts an effect from a given
cause. Thus, we can get responses about the effects of a given cause, try
different scenarios and simulate their effects [Eden et al. 1992]. However, the
task becomes very difficult when a CM contains loops, feedbacks or multiple
paths. Moreover, even if deductive reasoning can be achieved, we cannot
answer why an observed effect is produced. A second limitation in CMs
comes from the impossibility to model the uncertainty within the variables.

Bayesian Networks (BN) are a well-established method for reasoning un-
der uncertainty and making inferences [Pearl 1988] and [Pearl 2009]. They
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allow to compute the probability of any variable given the state of some ob-
served ones. They can be used either to perform abductive reasoning (i.e.
diagnosing a cause given an effect), or for deductive reasoning (i.e. predicting
an effect given a cause). Hence, they provide an efficient tool, used within
a wide range of subjects, from ecological forecasting [Borsuk et al 2003] to
criminal scenarios testing [Vlek et al. 2013]. However, the elicitation of the
structure and parameters of a network in complex domains can be a tedious
and time-consuming task.

Despite the limitations of each model, their combination called Bayesian
Causal Map (BCM) offers a powerful tool [Shenoy and Nadkarni 2001]. This
approach uses the initial CM in order to construct the structure of the BCM,
but still define local probabilities from experts’ knowledge. This might be
impractical, because the notion of probability would not be well understood
by domain experts. For the structure of the BCM, we follow the procedure
described in [Shenoy and Nadkarni 2001]. Concerning the parameters of the
BCM, we propose an automatic procedure, relying on the causal values as-
sociated to the relations in the CM.

After a short description of the modeling formalisms used in our study
and a presentation of the detailed procedure (from fishers’ interviews to BCM
construction), we will then display our results for this specific study. Finally,
we will discuss this approach by emphasizing some of its advantages and
drawbacks.

2 Modeling formalism

2.1 Cognitive maps

Cognitive or causal maps (CM) are directed graphs representing experts’
knowledge. A map expresses individuals judgments, thinking or beliefs about
a given situation. It is displayed by a network of causalities or influences
among concepts [Chaib-draa 2002] and [Eden 1988], (Figure 1).

Three different components constitute a CM:

1. Concepts: in a cognitive map, a node represents a concept correspond-
ing to a variable of the studied problem.

2. Causal relations: An arc between two concepts depicts a cause-effect (or
cause-consequence) relation. If we have a causal relation from concept
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ASP

shellfish
catches

[-]

number
of fishers

[+]

shellfish
imports

[-]

Figure 1: Example of a simple causal map related to our study (three rela-
tions between four concepts).

A towards a concept B (the arrow pointing on B), then A is called a
causal concept and B is called an effect concept. In the simplest maps,
two kinds of causal relations can be distinguished:

• a positive relation indicates that an increase in the causal concept
leads to an increase in the effect concept;

• a negative relation indicates that an increase in the causal concept
leads to a decrease in the effect concept;

3. Causal values: Each positive or negative relation can be associated to
a numerical value. For example, in fuzzy cognitive maps [Kosko 1986],
continuous values in [1,+1] are used. These values represent the rela-
tive strength of causal relations.

For example (Figure 1), the causal relation between the number of fishers
and the shellfish catches is positive: the more numerous they are, the higher
the catches will be. The negative relation between shellfish imports and
shellfish catches, means that the higher the imports are the lower the catches
will be.

In this paper, the causal values come from statements from stakeholders,
in a qualitative manner. The following values have been retained: Low (-1
or +1), Medium (-2 or +2) or High (-3 or +3). These qualitative values are
used because they are more intuitive for an elicitation purpose.
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2.2 Enriched causal map formalism

In the original cognitive map formalism, each positive or negative relation is
assigned with only one value. Therefore, both possible changes (upward or
downward) of a variable have opposite effects of the same order of magnitude.
But in some cases, this is completely unrealistic: for instance, an increase
in Amnesic Shellfish Poisonning toxin (ASP for short) will lead to a sharp
decline of shellfish catches, because selling alive scallops will be prohibited.
Instead, a decrease in ASP will have no effect on shellfish catches. Therefore,
as originally proposed in [Sedki and Bonneau 2012], we enrich the formalism
by assigning two values to each causal relation [V1, V2].

• V1 represents the influence degree on the effect concept when the causal
one decreases.

• V2 represents the influence degree on the effect concept when the causal
one increases.

V1 and V2 are numerical values, each one can be either positive, negative
or null: Low (1 or +1), Medium (2 or +2 ), High (3,+3) or Null (0). For
example, if V2 = 3, a small increase in the causal concept will induce a high
increase in the effect concept.

ASP

shellfish
catches

[0,-3]

number
of fishers

[-2,+2]

shellfish
imports

[+1,-1]

Figure 2: An example of the new cognitive map formalism where the influence
of ASP on catches is asymmetric: the rise of ASP will lead to a sharp drop
of catches, as a decrease will have no effect.

2.3 Bayesian networks

Bayesian networks [Jensen and Nielsen 2007] are widely used for decision
making, especially when dealing with uncertain information. They are prob-
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abilistic models relying on two components:

1. A qualitative component that corresponds to the structure of the net-
work which is represented as a directed acyclic graph (DAG). Each node
represents a variable with its possible states, and each arc represents
the conditional dependance between these variables.

2. A quantitative component that corresponds to the probability asso-
ciated to each variable and is represented by Conditional Probability
Tables (CPT). The CPTs quantify the uncertainty of variables within
the context of its parents. Each variable contains the states of the event
that it represents.

The CPT of a given variable includes probabilities of the variable x being in
a specific state i given the states j of its parents P (xi|xaj).

shellfish imports

import dec
import stable
import inc

   0
 100

   0

ASP analysis

asp dec
asp stable
asp inc

   0
 100

   0

number of fishers

men dec
men stable
men inc

   0
   0

 100

shellfish catches

fish dec
fish stable
fish inc

   0
40.0
60.0

Figure 3: Simple bayesian network in which shellfish catches depends on the
other three variables, for which their present state is known: ASP analysis
and shellfish imports are stable and number of fishers is increasing. For this
combination of states, the most probable evolution is a shellfish catches rise.

In Figure 3, we have an example of a Bayesian Network (BN) with three
variables that reflect the three concepts shown in Figure 2. Each variable
displays three possible states: {decreasing, stable, increasing}, respectively
noted {−, ∼,+}. There is no arc between the variables imports and number
of fishers that are independent. On the other side, there is an arc from
imports to catches and from number of fishers to catches, which means that
variable catches depends on the other two. Therefore we need to specify a
conditional probability distribution table.
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shellfish catches

fishers imports - ∼ +

- - 0.33 0.67 0.00

- ∼ 0.67 0.33 0.00

- + 1.00 0.00 0.00

∼ - 0.00 0.67 0.33

∼ ∼ 0.00 1.00 0.00

∼ + 0.33 0.67 0.00

+ - 0.00 0.00 1.00

+ ∼ 0.00 0.33 0.67

+ + 0.00 0.67 0.33

Table 1: Expert given conditionnal probabilities of shellfish catches states
associated to each possible combinations of the states of variables number of
fishers and shellfish imports.

In the Table 1 example, (built from Figure 1) imports and number of
fishers have inverse influences on catches, while imports have a lower effect.
Thus, when imports increases and number of fishers decreases, the most
likely state for catches becomes ”decrease”. With two variables (v) and
three possible states (s) for each one, the usual approach requires an expert
to set the nine (sv) probabilities’ sets. The, eliciting all these probabilities
becomes a tedious work when v rises.

2.4 Ontology

An ontology is a knowledge base that describes the general concepts of a
domain and the relationships that may link these concepts. It is usually
organized through a hierarchy of classes (providing an intuitive organiza-
tion), storing the concepts as individuals, and can be enriched by potential
relationships among them:

• lexical relations (synonym, hyponym, hypernym): ASP is-a desease;

• composition relations (”part of”, ”contains”): stones are-part-of the
seabed;

• logical relations (”cause”, ”consequence”): ASP causes mortality;

• functional relations (”eat”, ”use”, ”live” ... ): starfish eats shellfish;
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animal

starfish

is-a

shellfish

is-a

eats
seabed

lives-on
stones

contains

Figure 4: Small extract of an ontology, depicting different kinds of relations
between concepts.

3 Methods

Causal maps have the advantage to describe and capture the stakeholders
knowledge in a comprehensive manner; hence, the modeling is closer to nat-
ural language. Unfortunately, they do not model uncertainty with variables,
and they only allow limited forms of causal inferences. On the other hand,
defining the conditional probabilities in bayesian network from experts is not
an easy task, especially when the domain of variables is large and when the
combinatory rises. Thus, in order to reduce the complexity of the elicitation
step we propose to use the new cognitive map formalism and to transform it
into a Bayesian Causal Map (BCM) for the reasoning step, as follows:

1. Sampling the experts’ knowledge: causal maps are built to capture
fishers’ judgments and beliefs.

2. Deriving the summarized map. This step requires a merging procedure.

3. Building the structure of the BCM: a directed acyclic graph (DAG).
The structure of the BCM is based on the previously constructed CM.
This step requires to remove any loop or feedback.

4. Defining the associated parameters: the probability distributions. This
step requires some operations in order to capture the semantic of causal
values into conditional probabilities.

We describe the four steps in the following subsections.
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3.1 Interview process and sample selection

Several studies using cognitive maps, for example [Prigent et al. 2008] have
highlighted the diversity of views held by different actors of a given sys-
tem. In our study, we have kept unchanged the words or terms expressed by
the 17 fishers, all scallop (Pecten maximus) dredgers, encountered in semi-
structured interviews. Each interview led to the construction of one cognitive
map.

These semi-structured interviews addressed predefined themes with pre-
pared open questions, but with flexibility regarding the order of these ques-
tions. This interview guideline addressed topics including several sub-themes.
Each one contains one open question formulated to avoid any biased response.
Three topics were proposed as follows:

• their own appreciation of scallops stocks within the bay,

• their views on the current system of management,

• their perception of the environment of their activity (physical environ-
ment, interactions with others).

The relevance and understanding of all prepared questions were first checked
thanks to the local committee for marine fisheries and to biologist experts.

A sample is representative when additional interviews provide only very
few new themes or concepts. As a consequence, it is impossible to know
its size a priori. In a similar study, [Özesmi 2004], the authors have built
the accumulation curve of new concepts, a posteriori, and showed that a
sample effort between 15 and 20 was acceptable. Beyond this number, the
appearance of new concepts in the additional cognitive maps was uncommon.
Therefore, 17 fishers who represent about one third of all licensed dredgers,
seemed sufficient. We made sure that the sample covered exhaustively some
available criteria depicting the sampled population: age, home harbor, in-
volvement in fishing management.

Furthermore, the bias introduced by the intervention of the investiga-
tor and any transcription errors were minimized by subsequent validation
performed by the fishers.

3.2 Similarity measures for concepts comparison

In order to overcome semantic heterogeneity encountered when examining
all causal maps, an ontology of fishing activities and environmental matters
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in the bay of Brest was built. This approach has already been used with
taxonomy-based ontologies only, as in [Prigent et al. 2008] for fisheries man-
agement. We used here a readily available ontology dealing with the rather
specialized French concepts.

To compute the similarity between two concepts used by fishers to ex-
press their judgments and beliefs, we defined a degree of semantic rela-
tion, or semantic relatedness described by [Budanitsky and Hirst 2001] or
[Resnik 1995]. This measure relies on the ontology, and considers two as-
pects. The first one relies on the shortest path between concepts: it concerns
the minimum number of links connecting two concepts, and the nature of
these links. The second one concerns the accuracy level of each concept.
For example, Pecten maximus, the latin name for the ”great scallop”, is ob-
viously much more accurate than environment. This accuracy level can be
obtained looking at the concept in the ontology (position in the hierarchy,
kind of neighborhood...) or using exogenous information (usually relying on
a frequency analysis).

Let L be the length of a path between two concepts in the ontology. L is
computed by adding the weights ωki associated to each i relations of a kind
k, used to build the path.

Lpath =
∑
i∈path

ωki

A raw similarity (Rsim) between two concepts X and Y can be obtained
from the shortest path length LXY , provided an arbitrary threshold. Let N ,
be the length of the shortest path after which two concepts will be considered
unrelated. {

Rsim(X, Y ) = 0 if LXY > N
Rsim(X, Y ) = 1− LXY /N otherwise

On the ontology example given on figure 4, the shortest path between
starfish and shellfish depends on the weight assigned to each relation. If
lexical relations are shorter (ωl = 1) than functional relations (ωf = 3), the
shortest path will go through animal with a cumulated length L = 2.

With N = 3, Rsim(starfish, shellfish) = 1− 2/3.

Let now ρX and ρY be the accuracy level of X and Y . In our case they
are derived from the position of the concepts in the ontology, the extreme
values being: a concept without children, very accurate (ρ = 1) and a concept

12



without parent, very general (ρ = 0). With ρ ∈ [0, 1], the similarity between
them is caped by their accuracy level gap: Asim = 1− |ρX − ρY |.

In our study, the considered similarity is the weakest one between the
accuracy-based similarity and the shortest-path similarity:

Sim(X, Y ) = Min(Asim(X, Y ), Rsim(X, Y ))

Back to our example, starfish and shellfish are equally accurate, thus:

Asim(starfish, shellfish) = 1

Sim(starfish, shellfish) = 0.33

Rsim relies on parameters (N and ωk) that have been adjusted using
experts statements. For that purpose, a large number of pairs of concepts,
all coming from the ontology, have been built by random selection. Experts
were then asked to label each pair with a similarity value. Parameters were
adjusted by minimizing the cumulative gap between expert’s statements and
computed similarity values.

3.3 Comparison between causal maps

We aim at merging all original causal maps in a single synthetic one. But
before this merging step, we must ensure that building a single knowledge
summary makes sense: we must check that fishers’ points of views are not
contradictory. Or, if they prove to be contradictory, how many groups can
be identified, each one leading ultimately to its own summary.

First a consistency checking can help spoting differences between points
of view. In order not avoid miss understated relations, we have built the
transitive closure of all causal maps. That is: the set of relations for each
causal map is enriched with other relations that can be obtained by transi-
tivity, as described in [Chauvin et al. 2008]: for example, if we know that
import reduces market price and that market price reduces shellfish stock, we
can assert that import rises shellfish stock. Then, we have looked for logical
contradiction, that is relations between two similar concepts with the same
direction but with an opposite sign. A few emerged and almost all of them
could be explained by:

• different time-frame considerations,
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• different physical or biological underlying processes.

These seemingly contradictory relations were therefore not retained as evi-
dence of opposite points of view between fishers.

In a second time, we searched for significant similarity between causal
maps.

Many classical comparison approaches [Markóczy and Goldberg 1995] were
not appropriate because they rely on specific data sampling rules, or require
exogenous information (not available for this study). The retained measure
is inspired by [Lin 1998] with a formula relying on information content (IC).
The general similarity between any two sets A and B, noted sim(A,B), is
computed as follows:

sim(A,B) =
2× IC(A ∩B)

IC(A) + IC(B)

Figure 5 gives an example of the computation detailed below.

• The information content of a single causal map A, noted IC(A), can
be computed as the cardinality of its own concepts |{CA}| and rela-
tions |{RA}|, that is the sum of its number of concepts and number of
relations: IC(A) = |{CA}|+ |{RA}|
• The A∩B part reflects how often the two fishers responsible for drawing

causal maps A and B, are talking about the same subjects, and to what
extent their views are similar on these subjects. When comparing two
causal maps, the common part includes the commun concepts and the
commun relations, for which the following rules were retained:

1. Two similar relations (SR) have the same direction and the same
sign (similar view).

2. Two opposed relations (OR) have the same direction but opposite
signs (opposite view).

3. Two relations between the same concepts but having opposite
directions are unrelated.

Thus, IC(A ∩ B) is the number of commun concepts and relations
between A and B minus the number of opposite relations.
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Therefore, between two causal maps A and B:

sim(A,B) =
2× (|{CAB}|+ |{SRAB}| − |{ORAB}|)
|{CA}|+ |{RA}|+ |{CB}|+ |{RB}|

map A map B

control

shellfish
catches

[1,-1]

shellfish
stock

[1,-2]

control

shellfish
catches

[1,-2]

market
price

[2,-2]

shellfish
stock

[2,-2]

number
of fishers

[1,-2]

Figure 5: Example of similarity computation between map A of size 5 (3
concepts, 2 relations) and map B of size 9. They have three commun concepts
(control, shellfish catches, shellfish stock), they have two similar relations
(control − > shellfish catches, shellfish catches − > shellfish stock) and no
opposed relation. Therefore sim(A,B) = 2 ∗ (3 + 2− 0)/(5 + 9) = 0.71.

The similarities between all causal maps have been computed, to show
typically small similarity values. It does not mean that fishers disagree:
without contradiction, it shows that they just have different concerns.

3.4 Automatic clustering of causal maps

Once a similarity metric is available, we can build a distance matrix, and try
an automatic clustering of causal maps, in order to search for any regroupe-
ments in our sample.
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We were able to use the k-medoids algorithm to automatically build clus-
ters [Kaufman and Rousseeuw 1990]. This algorithm1 constructs a given
number of clusters (K), by using only the original similarity (or distance)
matrix and, unlike k-means, without making assumption about it. It relies
on the notion of ”medoid”, which is:

• a cluster’s member (here a causal map),

• the closest neighbor to all clusters’ members.

For a given number of clusters, all possible combinations of members are
built. From them, is kept the one that displays the minimal sum of intra-
cluster cumulated distances. K-medoids clustering was tried for k between
2 and 5 (i.e. tried with 2 to 5 clusters). None of these attempts gave clear
results, isolation between clusters was poor: showing important clusters over-
laping. Moreover, we tried to compare the obtained clusters with exogenous
modal variables about fishers (age, home harbor, involvement in the fisheries
management...). But we failed to find evidence of correlation (chi-squared
statistical tests failed).

Hence, scallop dredgers own a consistent view of their business and en-
vironment. There is no apparent cleavage among them. Therefore a single
causal map can be proposed to summarize their general views.

3.5 Maps synthesis

Once we have decided to draw a single synthetized map, we still have to
define what a synthesis is. The most simple synthesis may be:

• the sum, that is the sum of all concepts and relations, even if they are
contradictory;

• the majority, obtained from the sum by applying threshold on occur-
rences of concepts or relations;

• the consensus, containing elements shared by all.

The amount of information in the sum contradicts the simplicity of the
graphical formalism, while the consensus is meaningless because empty.

As stated by [Le Dorze et al. 2012] the synthetized map can ben seen
as an agreement between fishers while offering a readable aggregation of

1Easily available through free statistical computing software [R].
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predation hatchery
policy

shellfish
stock

[1,-1]

fishing
license

shellfish
imports

number
of fishers

[-3,3]

water
bailiff

control

[-2,2]

quotas

[2,-2]

market
price

[2,-2]

ASP
analysis

hatchery
activity

[-2,2] [0,-1]

shellfish
catches

  [0,-3]

[-2,3]

[-1,1]

[2,-2] [1,-2]

[-2,2]

[-2,2]

[-2,2]

[-3,2] [1,-2]

Figure 6: Synthesis map displaying fishers’ majority points of view.

information. Sticking to this definition, we choose to work with the simple
majority only applied to relations (but relations rely on pairs of concepts).

Having no contradiction between causal maps, it was easy to obtain a
sum. Slightly different concepts, such as ”starfish” and ”predators shell”
were merged. Every similar relations were then pooled (and associated with
their mean influence degrees). With 17 causal maps, the retained majority
threshold was 8, which was applied to filter the merged causal relations (figure
6). This synthesis was validated by further exchange with fishers and the
fisheries board.

As presented in [Le Dorze et al. 2014], more elaborate merging methods
exist, making use of preferences or explicit priorities between map makers.

17



3.6 Building a bayesian network

As we construct the BCM from a cognitive map, its structure corresponds to
the structure of the CM with some modifications in order to obtain a directed
acyclic graph. [Shenoy and Nadkarni 2001] proposed a procedure to obtain
the structure of the BCM from a cognitive map, particularly regarding the
following points:

1. Conditional independence: In a CM, the existence of a relation between
two variables induces that these variables are dependent. However,
the absence of a relation between two variables does not imply inde-
pendence (i.e., lack of dependence) between both these variables. In
bayesian network (BN), the absence of a relation between variables im-
plies that these variables are conditionally independent. Thus, causal
relations should not be removed even if they seem redundant and in-
crease the complexity (even if they can be easily obtained using tran-
sitivity).

2. Circular relations: Contrary to BNs that are acyclic graphs (tree like),
CMs usually contain circular relations, depicting feedbacks for exam-
ple. In these cases, the circular relations represent dynamic relations
between variables over time. In such cases, the solution consists in sepa-
rating the variables into two different time frames [Sucheta et al. 2004].
Namely, some relations in the cycle (or loop) belong to the present time
frame while others belong to a future time frame.

Removing circular relations may require arbitrary choices. On the syn-
thesis map (figure 6) three loops can be identified:

• a short feedback on shellfish stock : more spawners and hence more
juveniles.

• another feedback on shellfish stock, through shellfish catches : a higher
stock allows larger catches, but higher catches obviously reduce the
stock.

• a long feedback on shellfish stock, through number of fishers and shell-
fish catches : larger catches make room for more fishers.

Obviously, the shellfish stock is an essential variable. Moreover, disjoint-
ing it on a time basis removes all feedbacks. But one could argue that shellfish
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Figure 7: Proposed tree structure for the BCM. The removal of the feedback
on shellfish stock led to the creation of two new concepts, representing the
temporal dynamic of the stock : from initial shellfish stock to final shellfish
stock.

catches are more valuable for fishers. Clearly, stating what is the target vari-
able will determine the tree structure. In our case, the evolution of shellfish
stock was the most important result the stakeholders were expecting, which
led us to Figure 7.
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The proposed tree structure enables us to follow the evolution of shellfish
stocks from an initial state to a final state. This evolution responds to all
inputs: predation, hatchery policy, quotas...

3.7 Computing combined probability tables

Once defined the structure of the BCM, we must build the conditional prob-
abilities tables (CPT) associated for each variable. In [Sucheta et al. 2004],
the authors ask experts about the elicitation of the CPTs. We propose, as
in [Sedki and Bonneau 2012], to take advantage of the causal values given in
the CM to compute the conditional probabilities. But because we need to
enable stable models (in fact the depicted system has been steady since the
Tinduff hatchery opened in the late 90’ and an annual planting system was
introduced) we have enriched the original proposal. Stability implies that:

• each variable can be in a stable state,

• some variables may not leave a stable state easily.

Figure 8 illustrates the need for explicite inertia modelling, that can be stated
as follows: when dealing with one relation among many important ones, and
when this relation has a limited influence, it cannot lead to a certain change
alone.

market
price

shellfish
catches

[2,-2]

shellfish
imports

[1,-1]

ASP

[0,-3]

control

[1,-2]

shellfish
stock

[-3,2]

number
of fishers

[-2,2]

Figure 8: Market price receives a single, and of little importance, incoming
relation. It might not be enough to ensure a change of its state, because
other non elicited relations might exist (omitted for the sake of simplicity,
or simply forgotten). Shellfish catches receives many incoming relations: in
order to lead to a change of its state (with at least P > 0.5), the cumulated
influences has to reach a minimum threshold, called ”inertia”.
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We therefore wish to ensure that:

• conflicting influences may lead to stability

• a single weak influence will not be enough to escape stability

The probability computation responds to the following constraints:

• The semantic of the causal values should be preserved. For example,
the positive effect of number of fishers (NF in the following formula)
on shellfish catches (SC) is greater than the negative one of shellfish
imports (SI), implying that:

P (SC = + |NF = +) > P (SC = − |SI = +)

• The probability theory requires that:

P (−) + P (∼) + P (+) = 1

Variable without parents must be assigned on an a-priori basis. This has
no impact on the inference process since regarding theses variables, we can
introduce any desired observation (that is, we can assign a specific state to
each variable). For the others, the procedure is described below.

Let X be a variable for which we compute the CPT and let Yi be the
parents of X. For a given combination of the Yi states, E− is the sum of
the negative effects, E+ is the sum of the positive effects. E− and E+ are
absolute values and can be seen as ”influence degrees”.

Considering what we have called ”inertia” (I), the Table 2 subsumes the
single parent case (Y− > X).

Where a given variable V has multiple parents, two opposite effects of
the same strength will cancel each other. When these two effects are of
different strength, only the part E∼ = min(E+, E−) will be cancelled, but
still contributing to the stability of V . Moreover, the normalisation value is
now N = max(I, E− + E+), which ensures stability when E− + E+ is small
(when only a small part of all potentially received influence is at work).

Therefore, for each possible combination of parent’s states:
P (X = +) = (E+ − E∼)/N
P (X = −) = (E− − E∼)/N
P (X =∼) = 1− P (X = +)− P (X = −)
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X

Y − ∼ +

− E−/I (I − E−)/I 0

∼ 0 1 0

+ 0 (I − E+)/I E+/I

Table 2: Computed conditional probabilities in the three cases of a single
parent relation, with inertia I equal to the highest influence degree: I =
max(|E−|, |E+|).

This formula leads to the same values as the example given in Table 1
above. For example, with I = 3, if the number of fishers rises while shellfish
imports decreases, we have E+ = 2 and E− = 1, Therefore E∼ = 1 and
N = 3. The resulting conditional probabilities would be:

P (SC = + |FN = +, SI = −) = 1/3
P (SC = − |FN = +, SI = −) = 0
P (SC =∼ |FN = +, SI = −) = 2/3

3.8 Assessing probabilities for input variables

Default probability values for input variables have been set using independant
expert knowledge. However:

• for deductive reasoning purposes or scenarios testing, these probabili-
ties will be replaced by observations (one of the possible states will be
associated with a 1.00 probability value, all the others to 0.00),

• for abductive reasoning, default values have litle interest and equi-
probability can be used.

4 Results

4.1 An homogeneous population

When looking at the Cognitive Maps, the major preoccupation (Figure 10)
is clearly the importance of the hatchery, without distinction of age or home
harbor among fishers.
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Figure 9: Resulting bayesian network built using Netica, from Norsys Soft-
ware [Netica]. The provided Java API was used in order to automatically
build the combined probability tables. In this example, a stability assump-
tion is made in order to set the probability values associated to each states
of input variables.

4.2 Scenarios testing

The objective of building the BCM remains:

• to evaluate the fishing activities by analyzing the state of some variables
(for example the shellfish stocks) regarding observations about some
facts or input variables (ASP, imports, etc.).

• to diagnose causes given an effect.

For example, what are the factors that may cause a decrease in number of
fishers ? (abductive reasoning)

We have devised a simple scenario (Figure 11): how can the shellfish stock
increase, given that predation and licence number are steady. Such a scenario
is obtained, from the bayesian network, by making some observations, that
is by giving a p = 100% to the desired states. The probabilities of the all the
other variables are then updated by propagation in the BCM.

Given a stable predation and number of fishing licence, how do we explain
a rise of shellfish stock ? Here, the most probable explanation should be that
a rise of shellfish imports inducing a drop in the market price finally leads to
a decline of shellfish catches.

23



Figure 10: Major preoccupations expressed by interviewed fishers. The
hatchery comes first with 13 hits out of 17.

4.3 Validation

Usual models validation cover either the validation of the model by itself
and output checking. Synthetized map and bayesian network were validated
by stakeholders (but for obvious reasons, this validation applies more to the
causal structure than to the conditional probability tables).

In a second time, different observations regarding input variables were
applied to the model, in order to test it against qualitative knowledge given
by all our experts (17 dredgers and 2 experts in biology of scallops). No
contradiction was detected.

At last, the model sticks to historical scenarios for which outcomes are
know.

We conclude that the proposed method looks efficient, and allows to easily
analyze and understand the impact of the different variables.
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Figure 11: With stable predation and licence number, how can be explained
an increase in shellfish stock ? The most probable explanation is a shell-
fish imports increase, leading to a market price decrease and therefore lower
shellfish catches.

5 Discussion

5.1 Related work

As noted in [Özesmi 2004], the use of expert systems is increasing in ecologi-
cal modeling, either statistical, empirical or mechanistic models. Qualitative
approaches have the advantage of being robust to data poor situations, and in
many way are more flexible: no restriction on the number of experts, param-
eters of concepts, no required paramaters estimation. But it is important to
state that the proposed method is not to be considered as a substitute. It is a
complement to numerical approaches, and a needed tool when these models
are not designed or serviceable for use by policy-makers [Kouwen et al. 2008].

Different technical approaches aim at working with stakeholders, albeit
with a very broad spectrum of tools: from generic approach like agent-based
modelling (be it a role-playing game or a computerized platform), to very
specific or proprietary langages and systems like Stella R© software. When
requiering an active stakeholders’ involvement, they are branded ”partici-
patory modelling” [Voinov and Bousquet 2010]. These works often aim at
promoting communication and learning between agents, for example by link-
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ing stakeholders and modellers in scenario studies [Vliet et al. 2010], not
necessarily to provide inference tools: for many, the focus is on the process
rather than on the product [Voinov and Bousquet 2010].

As a whole, it has been noted that these methods usually produce deci-
sions of high technical quality, while also educating the public, eliciting public
values, resolving conflict, and building trust in agencies [Beierle 2002].

Some have shown successful use of bayesian networks as a tool of pub-
lic participatory modelling for management purpose [Henriksen et al. 2007].
But the authors insist on the need to adequately train the stakeholders (re-
garding probability theory) which is deemed unnecessary with our method.

Finally, a similar approach to ours can be found in [Kouwen et al. 2008],
where qualitative bayesian networks are built, in which inference is enabled
thanks to sign-propagation algorithms. But unfortunatly, sign propagation
does not solve the problem of ambiguity in qualitative diagrams.

5.2 Tedious sampling and lexical modelling process

The proposed sampling method requires an active participation of inter-
viewed people. It might prove to be beyond their capabilities (too long
or too formal). However, in some cases, it can be a by-product of a wider
sampling process.

The interviewer can draw the cognitive maps by himself, from the answers
he gets, or from his own observations. In a second time only, he can ask the
interviewed people for a validation of their maps. The easily understandable
formalism of cognitive mapping enables a smooth post-validation.

An ontology, comprising at least all the concepts (or variables) must be
available. Creating it from scratch might be a tedious work. However, onto-
logical modelling can be avoided or simplified:

• some comparable studies relies on rewritten cognitive maps using a
restricted lexical field [Prigent et al. 2008], implying an easier task,

• suitable ontologies might be readily available, for example through the
Agricultural Information Management Standards program of the FAO
[FAO],

• a huge progress has been made in automatical ontological models’ build-
ing, as shown in this experiment [Küçüka and Arslan 2014],
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• direct similarity assesment methods have been proposed too, using
huge corpus, namely Google [Cilibrasi and Vitányi 2007] or Wikipedia
[Gabrilovich and Markovitch 2007].

5.3 Tricky merging in a wider community

How to handle a less homogeneous population ? How should conflicts between
points of views be handled ? In our view this is the main setback of our
approach.

Keeping all the originally expressed knowledge would be a very desirable
feature. Belief functions, as defined by [Smet 1993], could be used to handle
the associated uncertainties. However this has not been tried in the field
so far, because of the much higher resulting combinatory and the lack of
associated widespread inference software.

5.4 Subjective bayesian structure

Because environnemental issues carry a lot a feedbacks, multiple loops in the
cognitive map might lead to combinatory difficulties when removing them, in
order to build the bayesian network structure. In the other hand, removing
loops remains the only way to enable decision making: the time frame be-
comes explicit (albeit symbolic, in a before / after representation). Therefore
removing the indecision that plagues all efforts of qualitative reasoning on
looped cognitive maps.

number
of fishers

shellfish
stocks[-]

[+]

Figure 12: Qualitative reasoning trap, on a looped cognitive map: given a
initial rise of number of fishers, without an explicit time frame, the changes
in shellfish stocks cannot be predicted.

5.5 Accuracy and uncertainty

Finally, our approach does not provide accuracy nor uncertainty statements
regarding predictions. We understand that it might be a desirable feature,
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and that stakeholders might ask for confidence assesments. But this seems
an unreachable goal without explicit rating of fishers reliability, and without
contradiction in their statements.

Furthermore, if bayesian networks enable uncertainty modeling within
variables’ states, they do not in the causal structure itself, which is by na-
ture deterministic. However, the probabilistic predictions offered here might
help to give a realistic estimate of the chances of achieving desired outcomes
[Borsuk et al 2003].

Because they efficiently apprehend the interactions between management
actions and simple ecological responses, qualitative reasoning techniques started
being advocated for dealing with ecological issues in the 1990s. The model
we propose is not intended to predict future evolutions of the system : many
potentially relevant aspects are not modelled either because they are un-
known for the fishers or because they considered that they have no leverage
on it (one can think of other possible uses of the bay, sewage and indus-
trial wastes...). Nevertheless, it answers what is commonly expected from
decision-support systems as described by [Zitec et al. 2009].

6 Conclusions

Building causal maps from field experts’ knowledge has now a long history.
However, solving a given decision problem using causal maps is not straight-
forward. Bayesian networks are a well established method and they offer
efficient algorithms for applying inferences. Many tools are readily avail-
able. But building bayesian networks requires a lot of expert knowledge and
judgements to determine the variables of the problem and influences between
theses variables. Moreover, it requires this knowledge in a very formal ap-
proach. Therefore, we proposed using a causal map to construct the model
and set the conditional probabilities. Once the common causal map (CM)
built we can transform it into a BCM which combines causal modeling tech-
niques and bayesian probability theory.

The structure of the obtained BCM is derived from the CM with some
modification regarding feedbacks (circular relation). The parameters of the
BCM are obtained from the associated causal values in the CM.

We illustrated the proposed approach on a real decision problem which
concerns the analysis of shellfish dredging in the rade de Brest. We conclude
that using cognitive maps gives access to the raw perception of fishers and
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that the BCM allows to analyze it and offers a simple management tool.
Moreover, the graphic nature of the two used formalism enables an easy
involvement of stakeholders.

A future work concerns the suppression of the first step that leads to
the CM by fusion of individual cognitive maps and therefore leads to an
impoverishment of the model.
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