
HAL Id: hal-01231039
https://hal.science/hal-01231039v1

Submitted on 19 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Analysis of Projects Under Interval
Uncertainty

Christian Artigues, Cyril Briand, Thierry Garaix

To cite this version:
Christian Artigues, Cyril Briand, Thierry Garaix. Temporal Analysis of Projects Under Interval Un-
certainty. Christoph Schwindt; Jürgen Zimmermann. Handbook on Project Management and Schedul-
ing, Volume 2, 2, Springer, 2015, 9783319059143. �10.1007/978-3-319-05915-0_11�. �hal-01231039�

https://hal.science/hal-01231039v1
https://hal.archives-ouvertes.fr

Chapter 1
Temporal Analysis of Projects Under Interval
Uncertainty

Christian Artigues, Cyril Briand and Thierry Garaix

Abstract Given an activity-on-node network where every activity has an uncertain
duration represented by an interval, this chapter takes an interest in computing the
minimum and maximum earliest start times, latest start times and floats of all ac-
tivities over all duration scenarios. The basic results from the literature are recalled
and efficient solving algorithms are detailed. A particular focus is put on the com-
putation of minimum float, which remains a N P-hard optimization problem. For
this last case, a recent and efficient branch and bound algorithm is described that
outperforms previously proposed methods.

Key words: Project scheduling, Temporal analysis, Interval uncertainty, Algo-
rithms, Complexity, Branch-and-bound.

1.1 Introduction

In standard deterministic project scheduling, temporal analysis aims at determining
the temporal degree of freedom of activities under simple finish-start precedence
constraints. More precisely, it aims at computing for every activity i its earliest start
and completion times ESi and ECi, its latest start and completion times LSi and LCi
and its total float T Fi. It is well known that these values can be computed via longest
path computation in the project network where each arc (i, j) is evaluated by the
duration of i. More precisely, if di j denotes the length of the longest path from i to j
in this graph, ESi is the longest path from dummy node 0 to node i: ESi = d0i. LSi is
the length of the longest path from dummy node 0 do dummy node n+1 (schedule

Christian Artigues and Cyril Briand
CNRS LAAS, Université de Toulouse, 31400, Toulouse, France, e-mail: {artigues,briand}@laas.fr

Thierry Garaix
CIS ROGI-LIMOS UMR CNRS 6158, École Nationale Supérieure des Mines de Saint-Étienne,
42000, Saint-Étienne, France, e-mail: garaix@emse.fr

1

2 Christian Artigues, Cyril Briand and Thierry Garaix

length or makespan) minus the length of the longest path from node i to node n+1:
LSi = d0n+1−din+1. The total float can be defined as the difference between LSi and
ESi or, equivalently, T Fi = d0n+1− d0i− din+1 = LSi−ESi. Standard longest path
computations in acyclic graph allow to compute all these values in O(|E|) time, E
being the set of precedence constraints.

When problem parameters are ill-known, a common way of modeling uncer-
tainty is to define each such parameter as an interval, as discussed in Chap. ??. In
this chapter, we consider that the duration of each activity i ∈ V is defined as an
interval [pmin

i , pmax
i]. Under such an assumption, temporal analysis now focuses on

the computation of the minimum and maximum values of the earliest start times,
latest start times and total floats.

Let us define the scenario set Σ as the set of possible duration vectors:

Σ = {σ ∈ Rn|pmin
i ≤ pi ≤ pmax

i ,∀i ∈V}

The temporal analysis of a project network under interval uncertainly consists in
computing the following values for each activity i ∈V :

• Best-case (minimum) earliest start time ESmin
i = minσ∈Σ ESi(σ) .

• Worst-case (maximum) earliest start time ESmax
i = maxσ∈Σ ESi(σ) .

• Best-case (maximum) latest start time LSmax
i = maxσ∈Σ LSi(σ) .

• Worst-case (minimum) latest start time LSmin
i = minσ∈Σ LSi(σ) .

• Best-case (maximum) float T Fmax
i = maxσ∈Σ T Fi(σ) .

• Worst-case (minimum) float T Fmin
i = minσ∈Σ T Fi(σ) .

These values are of interest for providing valuable information to the decision-
maker about the level of criticality of the activities despite the uncertain nature of
the processing times. Any activity i such that T Fmax

i = 0 is necessarily critical and
should consequently be carefully monitored independently of the scenario. Any ac-
tivity i such that T Fmin

i = 0 is possibly critical and a special attention should be paid
to it, especially for risk-adverse decision policies. On the contrary, if T Fmin

i > 0, the
information that the activity has flexibility for all scenarios is obtained.

Table 1.1 provides the minimum and maximum earliest start times, latest start
times and floats for the project network displayed in Fig. 1.1.

0

[0,0]

3

[19,22]

1

[10,10]

2

[3,4]

4

[1,4]

5

[2,3]

6
[2,3]

7

[2,6]

8

[1,3]

9

[0,0]

Fig. 1.1 Project network with interval uncertainty

1 Temporal Analysis of Projects Under Interval Uncertainty 3

Table 1.1 Minimum and maximum earliest start times, latest start times and floats
i 1 2 3 4 5 6 7 8 9

[ESmin
i ,ESmax

i] [0,0] [0,0] [0,0] [3,4] [10,10] [4,8] [12,13] [19,22] [20,25]
[LSmin

i ,LSmax
i] [0,8] [2,14] [0,0] [6,17] [10,18] [17,23] [13,20] [19,22] [20,25]

[T Fmin
i ,T Fmax

i] [0,8] [2,14] [0,0] [2,14] [0,8] [9,19] [0,8] [0,0] [0,0]

We see in Table 1.1 that some non-dummy activities are necessarily critical
(activities 3 and 8) while others are possibly critical (activities 1, 5 and 7). We
also remark that intuition does not necessarily work to obtain the minimum total
float. In fact we have some cases where T Fmax

i 6= LSmax
i −ESmin

i and others where
T Fmin

i 6= LSmin
i −ESmax

i .
Several authors have studied these temporal analysis problems. The chapter is

based on the results obtained by Chanas et al. (2001, 2002), Chanas and Zieliński
(2002), Chanas and Zielinski (2003), Dubois et al. (2003, 2005), Fargier et al.
(2000), Fortin et al. (2010), Kasperski and Zieliński (2010), Zieliński (2003, 2005,
2006), Garaix et al. (2013). Among these works we refer in particular to the sur-
vey by Fortin et al. (2010) in which it is also remarked that the interval problems
are particular cases of fuzzy project scheduling problems (see Chaps. ??). Sect. 1.2
summarizes the main structural properties complexity results and proposed solution
algorithms detailed by Fortin et al. (2010). Sect. 1.3 focuses on algorithms for the
minimum and maximum latest start time problems. Sect. 1.4 presents the algorithms
for solving the minimum and maximum float problems. Finally, Sect. 1.5 provides
concluding remarks and direction for future work in connection with related prob-
lems, such as controlability of simple temporal networks with uncertainty.

Let us precise that in this chapter, in contrast with some of the above-cited papers,
the formalism on Activity-On-Node graph is used instead of the one of Activity-On-
Arc (AOA).

1.2 Basic Properties, General Algorithms and Complexity
Results (Fortin et al. 2010)

1.2.1 Extreme Scenarios

Let us define the notion of extreme scenario induced by an activity subset. Let
σmax(Q), with Q ⊆ V , the extreme scenario such that each activity i ∈ Q is set
to pmax

i while each activity of i ∈V \Q is set to pmin
i . Remark that the minimum and

maximum earliest start times of each activity i∈V are attained on extreme scenarios
induced by the empty set and V , respectively:

ESmin
i = ESi (σ

max(/0))

ESmax
i = ESi (σ

max(V))

4 Christian Artigues, Cyril Briand and Thierry Garaix

For determining the latest start times and floats, the solution is not so trivial.
However Dubois et al. (2003) showed that the searched minimum and maximum
values are attained for extreme scenarios.

Theorem 1.1 (Dubois et al. 2003). For every activity i ∈V :

LSmax
i = max

Q⊆V
LSi (σ

max(Q))

LSmin
i = min

Q⊆V
LSi (σ

max(Q))

T Fmax
i = max

Q⊆V
T Fi (σ

max(Q))

T Fmin
i = min

Q⊆V
T Fi (σ

max(Q))

Proof. To understand these properties, let us illustrate them on the minimum float
case. Suppose that the minimum float of an activity i is reached on a scenario σ

that is not extreme. Let P denote the longest path passing through i on scenario
σ . Suppose in addition that among all scenarios yielding the minimum float for
i, σ is such that the position on P of the first activity j not set to its largest or
smallest duration is minimum. First, let us change scenario σ in scenario σ ′ by
modifying the duration of all activities – except those located on P– by switching
them to their minimum duration. Obviously the longest path in the network cannot
be increased by this operation and P remains one of the longest path passing through
i. It follows that the float of i cannot be increased by this modification of σ . We
further modify σ ′ by increasing j to its maximum duration so as to obtain scenario
σ ′′. This obviously increases the longest path passing through i by p′j− pmin

j . This
also potentially increases the longest path in the network, but at most by p′j− pmin

j .
Hence the float of i cannot be decreased by this last change, which contradicts the
minimality of the position of j in P. ut

A purely enumerative algorithm would then enumerate all 2n extreme scenarios
and, for each of them, compute the required longest paths. In the 8 non-dummy ac-
tivities example of Fig. 1.1, these would yield to 256×2 longest path computations.

1.2.2 Path-induced Extreme Scenarios

Dubois et al. (2005) further restricted the search space by establishing the following
properties on extreme scenarios induced by paths. They first show that the minimum
and maximum floats, as well as the maximum latest start time of any activity are
always attained for an extreme scenario induced by the activities located on a (0–
n+1) path. Let Pi j denote the set of paths from activity i to activity j. By a slight
abuse of notation, we identify the set of activities located on a path P by the path
itself.

1 Temporal Analysis of Projects Under Interval Uncertainty 5

Theorem 1.2 (Dubois et al. 2005). For every activity i ∈V :

LSmax
i = max

P∈P0n+1
LSi (σ

max(P))

T Fmax
i = max

P∈P0n+1
T Fi (σ

max(P))

T Fmin
i = min

P∈P0n+1
T Fi (σ

max(P))

Proof. Observing the proof of Theorem 1.1, we can only change the definition of σ

as an optimal extreme scenario not induced by a path and of j as the activity located
in P with minimal position such that p j 6= pmax

j . Then the modifications change P
into an optimal path where j is set to pmax

j . ut

Then to compute the maximum latest start times, the minimum and the maximum
float, one could enumerate all paths in P0n+1, and for each of them, obtain the
induced extreme scenario and compute the longest path lengths.

In the example from Fig. 1.1, the number of longest path computations boils
down to |P09| × 2 = 8. Although the number of paths from 0 to n+ 1 is always
smaller than 2n and can be small for sparse graphs, it can also be unfortunately
exponential in n, as illustrated in the network given in Fig. 1.2 where the number of
paths from 0 to n+1 is equal to 2

n
2 .

0
1

2

3

4

...

...

n−1

n
n+1

Fig. 1.2 Project network with an exponential number of paths

The reader may have noticed that the minimum latest start time was excluded
from Theorem 1.2. For this value, Dubois et al. (2005) show that one can restrict the
search to scenarios induced by a path from i to n+1.

Theorem 1.3 (Dubois et al. 2005). For every activity i ∈V :

LSmin
i = min

P∈Pin+1
LSi (σ

max(P))

Proof. The proof proceeds the same way as for Theorems 1.1 and 1.2. Suppose σ

is an optimal extreme scenario not induced by a (i–n+1) path and let P denote the
longest path from i to n+ 1 for scenario σ . Setting all activities in V \P to their
minimum duration cannot increase the latest start time. Setting then all activities
duration of P to their maximum duration can only decrease or leave unchanged the
latest start time. ut

There can still be an exponential number of paths in Pin+1. However Fortin et al.
(2010) provided a dynamic programming recursion allowing to compute the optimal

6 Christian Artigues, Cyril Briand and Thierry Garaix

path of an activity i in a polynomial time (see Sect. 1.3.2), given the optimal paths
of its direct successors.

Can we obtain the same positive complexity results for the maximum latest start
time, the minimum and maximum floats?

1.2.3 Complexity Results

Actually, asserting the necessary criticality of an activity requires O(|E||V |) time
using the algorithm proposed in Fortin et al. (2010), while the asserting the possibly
criticality is strongly N P-Complete (Chanas and Zieliński 2002). However, both
problems were shown to be polynomial by Zieliński (2005) in O(|E|+ |V |) time,
when durations of the predecessors of the activities are precisely known (Zieliński
2005).

Even if the minimum float problem is polynomial for series-parallel graphs
(Fargier et al. 2000, Zieliński 2006), these positive complexity results cannot be
extended to this problem for general graphs. The minimum float problem was in-
deed proven to be strongly N P-hard and even has no polynomial approximation
(Chanas et al. 2002, Chanas and Zieliński 2002, Zieliński 2005).

1.2.4 Link with Min Max Regret Longest Path Problems

Let us point out that the minimum float problem can be linked to the min max regret
longest path problem in acyclic graphs. Let P be a path between 0 and n+1. Given a
scenario σ , the regret of P is the difference between the length of the longest path in
the network for scenario σ and the length of P for scenario σ . The min max regret
longest path problems amounts to find a path P∗ from 0 to n+1 that minimizes this
maximum regret.

If there exists a scenario for which the min max regret is zero, we have found
a scenario for which P is critical, which amounts to find a set of possibly critical
activities, with a zero minimum float. Conversely if we have a path of necessarily
critical activities (of zero maximum floats), we have found a critical path for all
scenarios and consequently a path of zero min max regret.

In the remaining of this chapter, we describe the polynomial algorithms for com-
puting the minimum and maximum latest start times. We also describe a branch and
bound algorithm that performs remarkably well, compared to the path algorithm,
for the minimum float problem.

1 Temporal Analysis of Projects Under Interval Uncertainty 7

1.3 Maximum and Minimum Latest Start Time

In Zieliński (2005), two similar polynomial algorithms are given to compute the
minimum and maximum latest start times of an activity. They are respectively linked
to two underlying problems; asserting on possibly and necessary criticality of an
activity when durations of its predecessors are fixed. For the case of minimum latest
start time, another recursive algorithm is proposed in Fortin et al. (2010). In this
section, we propose a slightly different description of these algorithms, for the sake
of clarity and concision.

1.3.1 Maximum Latest Start Time

Theorem 1.4 allows to restrict the number of scenarios to consider during the search
of the maximum latest start time of an activity i. We refer to Succ(i) (Pred(i)) as the
set of all immediate and transitive successors (predecessors, respectively) of each
activity i.

Theorem 1.4. The set of scenarios Σ i,max = {σ ∈ Σ |p j(σ) = pmax
j , ∀ j /∈ Succ(i)∪

{i}} is dominant when the maximum latest start time of activity i ∈V is seek.

Proof. The proof is straightforward as the latest start time of an activity LSi, i ∈V ,
is defined by the gap between d0n+1 and din+1. Transformations of a scenario by
switches from pmin

j to pmax
j on activities j /∈ Succ(i)∪{i} can only increase this gap

and, finally, reach a scenario of Σ i,max. ut

In order to describe the algorithm of Zieliński (2005), it is necessary to link
the maximum latest start time of an activity to its the necessary criticality. Let
Σ i,max(pi = v) the subset of scenarios of Σ i,max where in addition pi = v, v being
any value in [pmin

i , pmax
i].

Theorem 1.5. LSmax
i = ESmax

i +∆ , where ∆ = min{δ ∈ R|i is necessary critical in
{σ ∈ Σ i,max(pi = pmin

i +δ)}}, ∀i ∈V .

Proof. It is enough to show that ESmax
i +∆ = ESi(σ)+∆ = LSi(σ) for all scenarios

of Σ i,max(pi = pmin
i +∆). For any σ ∈ Σ i,max(pi = pmin

i +∆), LSi(σ) can not be
strictly greater than ESi(σ)+∆ , by definition of necessary criticality of i. A strictly
lower value of LSi(σ) contradicts the minimality of ∆ . ut

The main idea of Algorithm 1 is to iteratively increment the duration of i until
reaching the minimum value (pmin

i +∆), such that i becomes necessarily critical,
the considered set of scenarios being restricted to Σ i,max. Note that for large enough
values of ∆ , Σ i,max(pi = pmin

i +∆) does not include feasible scenarios since pi can
become greater than pmax

i . The tricky point is to define the increment step at each
iteration. That is done by considering activities j ∈ Succ(i) for which i is not j-
critical, this concept being defined in Theorem 1.6.

8 Christian Artigues, Cyril Briand and Thierry Garaix

Theorem 1.6. Activity i is not necessary critical in σ ∈ Σ i,max(pi(σ) = p̄), if and
only if there exists at least one activity j ∈ Succ(i) on each longest path from i to
n+1 such that δ j(σ) = d0 j(σ)− (d0i(σ)+di j(σ)) > 0, i.e., the longest path from
0 to j traversing i is not a longest path from 0 to j in σ . Activity i is said j-critical
when δ j(σ) = 0.

Proof. The proof is directly derived from the definition of the criticality of an activ-
ity. ut

According to Theorems 1.5 and 1.6, for any duration p̄ < pmin
i +∆ , there exists

at least one scenario σ ∈ Σ i,max(pi(σ) = p̄) and one activity j ∈ Succ(i) such that i
is not j-critical (δ j(σ) > 0). Then an increase of the duration of i by the minimum
δ = min j∈Succ(i) δ j(σ) will decrease by at least one (j itself) the number of activities
for which i is not j-critical in each scenario. The algorithm ends when i becomes
j-critical for all activities of j ∈ Succ(i), and so necessary critical as expected in
Theorem 1.5.

Algorithm 1 Computing LSmax
i

1: ∆ := 0;
2: δ := min j∈Succ(i){δ j(σ)} on Σ i,max(pi = pmin

i +∆);
3: if δ > 0 then
4: ∆ := ∆ +δ and goto Step 2;
5: end if
6: LSmax

i := ESmax
i +∆ ;

At the initialization phase, the maximum earliest start time of i and the min-
imum earliest start times of activities Succ(i) in scenarios Σ i,max(pi = pmin

i) can
be computed, as a preprocessing phase, through a PERT algorithm under extreme
scenario σmax

(
V \ (Succ(i)∪{i})

)
. The procedure called at Step 2 of Algorithm 1,

which computes values δ j(σ), is detailed in Algorithm 2. Since the topological or-
der is followed, the value of δ j(σ) only depends on (predecessor) activities with
fixed durations; initialized at Step 1 and updated at Steps 4-8 of Algorithm 2. By
construction (Steps 4-8), the gap between d0 j(σ) and d0i(σ)+di j(σ), is decreased
as much as possible for next activities k ∈ Succ(j). Thus, each computed value of
δ j(σ) is maximal on Σ i,max(pi = pmin

i +∆). We highlight that δ j(σ) can be viewed
as the total float of activity i, under scenario Σ i,max(pi = pmin

i +∆), in the subgraph
involved by Pred(j) with j ∈ Succ(i). The evaluation of δ j(σ) can be done in con-
stant time as lengths of partial longest paths d0 j(σ) and di j(σ) can be dynamically
updated. Therefore, Algorithm 2 runs in O(|E|) time and Algorithm 1 in O(|V ||E|)
time.

Note that Algorithm 2 allows to assert the necessary criticality of an activity
when durations of its predecessors are precisely known (Zieliński 2005) .

1 Temporal Analysis of Projects Under Interval Uncertainty 9

Algorithm 2 Computing δ j(σ),∀ j ∈ Succ(i) on Σ i,max(pi = pmin
i +∆)

1: Set partial scenario σ ∈ Σ i,max(pi = pmin
i +∆);

2: j := next activity of Succ(i) according to the topological order;
3: δ j(σ) := d0 j(σ)−d0i(σ)−di j(σ);
4: if δ j(σ)> 0 then
5: p j(σ) := pmax

j ;
6: else
7: p j(σ) := pmin

j ;
8: end if
9: if j = n+1 then

10: stop;
11: else
12: goto Step 2;
13: end if

1.3.2 Minimum Latest Start Time

Theorem 1.3 gives graph-topological properties that reduce the search space to
longest paths from i to n+ 1. The recursion procedure of Theorem 1.7 allows to
compute the optimal path from i to n+1.

Theorem 1.7 (Fortin et al. 2010). For each activity i ∈V :

LSmin
i = min

j∈Succ(i)
LSi (σ

max({i}∪Q j)) with Q j ∈Pin+1,LSmin
j = LS j (σ

max(Q j))

From this recursion, as a unique path can be computed for each successor, a poly-
nomial algorithm can be obtained. Fortin et al. (2010) proposed an O((|E|+ |V |)2)
algorithm. This shows that the minimum latest start time computation is polynomial
despite the possibly exponential number of paths in Pin+1.

Another O((|E|+|V |)2) time algorithm has been previously proposed in Zieliński
(2005). Algorithm 3 is similar to the algorithm that computes the maximum latest
start time of an activity but it is based on the relation between the minimum latest
start time and the possible criticality of an activity.

The dominant set of scenarios is denoted Σ i,min and is defined by setting durations
of activities of V \ {Succ(i)∪{i}} to their respective lower bounds. This result is
justified in the argument of Theorem 1.3.

Here ∆ represents the minimum value to add to the duration of i to make it pos-
sibly critical, i.e., j-critical in at least one scenario. This procedure is given in Algo-
rithms 3 and 4. The main difference with Algorithms 1 and 2, which gives LSmax

i , is
the updating step of partial scenario σ . The gap between d0k(σ) and d0i(σ)+dik(σ)
for next activities k ∈ Succ(i), can only be decreased by Steps 4-8 of Algorithm 4.

Again, one can derive an algorithm, presented in Zieliński (2005), which allows
to assert the possibly criticality of an activity when its predecessors have fixed du-
rations.

10 Christian Artigues, Cyril Briand and Thierry Garaix

Algorithm 3 Computing LSmin
i

1: ∆ := 0;
2: δ := min j∈Succ(i){δ j(σ)} on Σ i,min(pi = pmax

i +∆);
3: if δ > 0 then
4: ∆ := ∆ +δ and goto Step 2;
5: end if
6: LSmin

i := ESmin
i +∆ ;

Algorithm 4 Computing δ j(σ),∀ j ∈ Succ(i) on Σ i,min(pi = pmax
i +∆)

1: Set partial scenario σ ∈ Σ i,min(pi = pmax
i +∆);

2: j := next activity of Succ(i) according to the topological order;
3: δ j(σ) := d0 j(σ)−d0i(σ)−di j(σ);
4: if δ j(σ)> 0 then
5: p j(σ) := pmin

j ;
6: else
7: p j(σ) := pmax

j ;
8: end if
9: if j = n+1 then

10: stop;
11: else
12: goto Step 2;
13: end if

1.4 Minimum and Maximum Floats

1.4.1 Maximum Floats

In Zieliński (2005)), the author proposed a polynomial time algorithm able to de-
termine whether an activity i is critical. It is based on two properties. The first one
states that if i is necessarily critical in a subgraph made of the activities of Succ(j),
for some j ∈ Pred(i), then i is necessarily critical in the general graph if and only
if there exists a scenario σ with p j(σ) = pmin

j such that T Fi(σ) = 0. The second
one claims that if i is not necessarily critical in the subgraph made of the activities
of Succ(j), for some j ∈ Pred(i), then i is necessarily critical in the general graph
if and only if there exists a scenario σ with p j(σ) = pmax

j such that T Fi(σ) = 0.
These properties allow to derive Algorithm 5 that asserts the necessary criticality
of activity i. The algorithm is called with the initial scenario σmin. At the first it-
eration (i.e., j = i), it first calls Algorithm 2 (see Step 2) to determine whether i is
necessarily critical in the graph made of the activities of Succ(i). Thus it is possible
to fix the durations of the activities immediately preceding i, with respect to both
above properties, without modifying the necessary criticality of i (at Steps 3-7). We
can reiterate this processus considering the activities of Pred(i) according to the re-
verse topological order (see Step 1). Once the durations of the activities belonging
to Pred(i) are totally set, i is necessarily critical if and only if, at the last iteration,
T Fi(σ) = 0. Algorithm 5 asserts the necessarily criticality of i in O((|E|+ |V |)2)

1 Temporal Analysis of Projects Under Interval Uncertainty 11

time. Nevertheless, let us highlight that in the case where i is not necessarily critical
the, the value T Fi(σ)> 0 eventually found gives a lower bound of T Fmax

i .

Algorithm 5 Asserting the necessary criticality of activity i
1: j := next activity of {Pred(i)∪{i}} according to the reverse topological order;
2: Compute δ = T Fi(σ) in the subgraph Succ(j) using Algorithm 2;
3: if δ > 0 then
4: p j(σ) := pmax

j ;
5: else
6: p j(σ) := pmin

j ;
7: end if
8: if j 6= 0 then
9: goto Step 1

10: end if;

The algorithm that computes the maximum float of activities is based on the
previous algorithm and uses the following property.

Theorem 1.8 (Zieliński 2005). If ∆ is the smallest positive real value such that
i becomes necessarily critical in scenario σ such that pi(σ) = pmin

i + ∆ , then
T Fmax

i = ∆ .

Proof. The argument is based on the fact that, whatever the consider scenario σ ∈Σ ,
any longest path traversing i remains a longest path if pi is increased by a small
value. If ∆ is the minimum value to add to pi such that i become necessarily critical
(i.e., T Fi(pmin

i +∆) = 0) then, because T Fi(pmin
i +∆) ≤ T Fmax

i , it easy to deduce
the claimed property. ut

The problem is now to find ∆ . The idea is to use a similar approach that the
one used for computing LSmax

i using the property (proved in Zieliński 2003) that
T Fmax

i = LSmax
i −ESmax

i in the case where the durations of the activities belonging
to Pred(i) are known (that property being falsed in the general case). So, it becomes
possible to determine the smallest δ such that i becomes necessarily critical in a
subgraph made by the activities of Succ(j), with j ∈ Pred(i).

The above idea is implemented in Algorithm 6, which works as follows. A first
assignment of the durations of the activities Pred(i) is made by Algorithm 5 in
Step 3. If T Fi(σ) = 0 then i is necessarily critical. Otherwise, for every j ∈ Pred(i)
and for the scenario σ determined by Algorithm 5 (i.e., the durations of Pred(i)
are known), the lower bound of the maximum float LSmax

i (σ)−d0i(σ) is computed
in the graph Succ(j) using Algorithm 1 (see Step 7). The value δ of the small-
est positive lower bound is then memorized (see Steps 8-10). Finally, ∆ and pi are
incremented by δ in Steps 14-15 and the value of T Fi(σ) is recomputed. The algo-
rithm ends when i becomes critical in σ and T Fmax

i = ∆ . This algorithm works in
O((|E|+ |V |)4).

12 Christian Artigues, Cyril Briand and Thierry Garaix

Algorithm 6 Computing T Fmax
i = ∆

1: p j(σ) := pmin
j , ∀ j ∈V \{Pred(i)∪Succ(i)};

2: ∆ := 0;
3: Compute T Fi(σ) and update σ with respect to decisions made in Algorithm 5;
4: while T Fi(σ)> 0 do
5: δ :=+∞;
6: j := previous activity of Pred(i) according to the reverse topological order;
7: Compute LSmax

i (σ) in the subgraph Succ(j) using Algorithm 1;
8: if LSmax

i (σ)−d0,i(σ)> 0 then
9: δ j(σ) := min(δ ,LSmax

i (σ)−d0,i(σ));
10: end if
11: if j 6= 0 then
12: goto Step 6
13: end if;
14: ∆ := ∆ +δ ;
15: pi(σ) := pmin

i +∆ ;
16: Compute T Fi(σ) and update σ with respect to decisions made in Algorithm 5;
17: end while

1.4.2 Minimum Floats

This subsection focuses on the computation of the minimum float T Fmin
i of every

activity i, which is an N P-hard problem (Chanas et al. 2002, Chanas and Zieliński
2002, Zieliński 2005). From Theorem 1.2, we know that any optimum is obtained
for a particular scenario σmax(P) with P ∈P0n+1. Note that P is also the longest
path from 0 to n+1 traversing i. Using this property, Dubois et al. (2005) and Fortin
et al. (2010) proposed a first exact algorithm based on path enumeration, the float
of activities being computed for every generated path using standard PERT method.
Typically, this algorithm is able to compute in a few seconds the minimum float
T Fmin

i of an activity on medium-density graph with 100 activities. However, its
performance gets worse on high density graph since the number of paths to explore
grows exponentially.

A faster branch-and-bound procedure was recently proposed in Garaix et al.
(2013). It takes benefits from other problem properties. This procedure is able to
compute minimum floats within few milliseconds for 100-activity graph, this CPU-
time remaining rather insensitive to graph density variation. We review in this sec-
tion the basic ingredients of the Garaix et al. (2013) procedure: a dominance prop-
erty and a bounding rule.

Let us first take an interest in the structure of the longest path obtained for a
path-induced extreme scenario σmax(P).

The dominance Theorem 1.9 below states that the longest path P′ ∈P0n+1 in
any optimal scenario σmax(P) differs from P only by a subpath P′a→b, a being a
predecessor of i in P, and b a successor of i in P. Moreover, in the particular case
where T Fmin

i = 0 then, since P and P′ are identical, a = b = i. This property is
illustrated in Fig. 1.3 where the arcs in bold define the longest path P traversing i
inducing the extreme scenario. The thin arc P′a→b represents the deviation from P

1 Temporal Analysis of Projects Under Interval Uncertainty 13

Fig. 1.3 Dominant path structures for float computation

of the longest path P′ that results from the concatenation of three partial paths (i.e.,
P′ = (P0→a,P′a→b,Pb→n+1)). Furthermore, the length of P′a→b equals the length of
the longest path from a to b in the scenario σmin(V), plus pmax

a − pmin
a (the duration

of activity a being set to pmax
a as it belongs to P).

Theorem 1.9 (Garaix et al. 2013).
For any activity i ∈ V , there exists an optimal path P with scenario σmax(P)

and a pair of activities a,b ∈ P such that the longest path P′ in this scenario is
P′ = (P0→a,P′a→b,Pb→n+1) verifying

T Fmin
i = dab(σ

min(V))+ pmax
a − pmin

a − ∑
k∈Pa→b\{b}

pmax
k

Proof. The proof of this theorem goes by showing that if P0→a is not a longest path
from 0 to a then there exists an alternative path P′0→a such that T Fi(σ

max(P)) ≥
T Fi(σ

max(P′0→a,Pa→b,Pb→n+1)). Similarly, if Pb→n+1 is not a longest path from b
to n+1 then there exists another scenario path-induced scenario leading to a lower
float for i. ut

A major interest of Theorem 1.9 is to formalize the intuitive fact that any path-
induced scenario σmax(P) such that the subpath from 0 to a is not also a longest
path from 0 to a can be discarded (since it is dominated with respect to the mini-
mization of T Fi). Symmetrically, any path P ∈P whose subpath from b to n+1 is
not also a longest path from b to n+ 1 under scenario σmax(P), is also dominated.
In the sequel, any path which cannot be discarded in this way will be said valid with
respect to the minimization of T Fi.

Fig. 1.4 Partial path structure for float computation

Let us take an interest now in the computation of lower bounds for T Fmin
i . For

that purpose, let us consider a valid partial path Px→y with i ∈ Px→y (see Fig. 1.4).
We highlight that Px→y = (Px→a,Pa→i,Pi→b,Pb→y) is said valid in the sense that P′ =
(Px→a,P′a→b,Pb→y) is the longest path in the scenario σmax(Px→y) between x and y.

14 Christian Artigues, Cyril Briand and Thierry Garaix

From the optimality principle of Bellman it is easy to show that the following
theorem holds:

Theorem 1.10 (Garaix et al. 2013).
Considering a valid partial path Px→y with i ∈ Px→y, if there exists a valid path

P0→n+1 extending Px→y towards activities 0 and n+1, it satisfies:

T Fi(σ
max(P))≥ LBi(Px→y),

with

LBi(Px→y) = dab(σ
min(V))+ pmax

a − pmin
a − ∑

k∈Pa→b\{b}
pmax

k .

Proof. Considering a valid path extension P0→n+1 of a partial path Px→y, we know
from Theorem 1.9 that there exists a∗ and b∗ ∈ V such that T Fi(σ

max(P)) =
da∗b∗(σ

min(V)) + pmax
a∗ − pmin

a∗ − ∑k∈Pa∗→b∗\{b∗} pmax
k . From Bellman’s optimality

principle, any path from 0 to n+ 1 diverging from P from an activity a 6= a∗ and
converging back to P on an activity b 6= b∗ has a length lower or equal to the longest
one passing through a∗ and b∗. From this latter property, it is easy to deduce the
inequality claimed in Theorem 1.10. ut

In other words, whatever the considered possible valid extension P of Px→y, The-
orem 1.10 ensures that T Fi(σ

max(P)) will never be lower than LBi(Px→y). This value
actually corresponds to the float of i under the scenario σmax(Px→y) when only the
activities belonging to (Px→y∪P′a→b) are considered.

Theorems 1.9 and 1.10 allow to design an efficient branch-and-bound procedure
for the computation of the minimum floats. In this procedure, the nodes of the search
tree correspond to valid partial paths related to a given activity i, which are stored
inside a stack Q for depth-first search. Given a valid partial path Px→y with i ∈
Px→y, the branching scheme consists in alternatively extending the path to the left
or to the right, by considering either all the immediate predecessors of x, or all the
immediate successors of y, discarding the non-valid path extensions (with respect to
the dominance rule). Thus, considering a given path-extension direction δ , a node
has always as many children as immediate valid path-extensions. Each node of the
search tree also memorizes the direction δ (δ ∈ {left, right}) to consider for the next
path extension. A leaf of the search tree corresponds to a valid path P from 0 to n+1
and is evaluated by T Fi(σ

max(P)). Classically, a partial path Px→y is deleted only if
its current evaluation, LBi(Px→y), is greater than the best float T Fi already found.

Let us comment on Algorithm 7. We remark first that the longest path values
di j(σ

min(V)) are precomputed using the variant of Bellman-Ford’s algorithm for
DAGs. Computing the minimum float of all activities requires running the branch-
and-bound procedure n times (see Step 1). At the beginning of each run (Steps 2-
3), T Fi is set to ∞, stack Q only contains a single partial path Px→y = i, and the
path-extension direction is set to left by default. The branch-and-bound procedure
is implemented in Steps 4-34. While stack Q is not empty, a partial path Px→y is
taken from the stack, with its path-extension direction δ (Step 5). Preliminarily, the

1 Temporal Analysis of Projects Under Interval Uncertainty 15

Algorithm 7 Branch-and-bound
1: for all i ∈V \{0,n+1} do
2: T Fi := ∞;
3: push(P,(i, left));
4: while P 6= /0 do
5: (px→y,δ) :=pop(P);
6: (a,b) := argmax

{u∈px→i,v∈pi→y}
du,v(σ

min(V))+ pmax
u − pmin

u −∑k∈Pu→v\{v} pmax
k ;

7: if da,b(σ
min(V))+ pmax

a − pmin
a −∑k∈Pa→b\{b} pmax

k < T Fi then
8: if x = 0 AND y = n+1 then
9: T Fi := da,b(σ

min(V))+ pmax
a − pmin

a −∑k∈Pa→b\{b} pmax
k ;

10: else if δ =left then
11: for all x′ ∈ Γ−1(x) do
12: if pmax

x′ +∑k∈Px→u\{u} pmax
k ≥ dx′,u(σ

min(V))+ pmax
x′ − pmin

x′ , ∀u ∈ Px→i then
13: if y 6= n+1 then
14: δ :=right;
15: else
16: δ :=left;
17: end if
18: push(P,((x′,Px→y),δ));
19: end if
20: end for
21: else if δ =right then
22: for all y′ ∈ Γ (y) do
23: if pmax

y′ +∑k∈Pv→y\{v} pmax
k ≥ dv,y′ (σ

min(V))+ pmax
v − pmin

v , ∀v ∈ pi→y then
24: if x 6= 0 then
25: δ :=left;
26: else
27: δ :=right;
28: end if
29: push(P,((Px→y,y′),δ));
30: end if
31: end for
32: end if
33: end if
34: end while
35: end for

activities (a,b) for which the longest path from x to y differs from px→y are updated
(see Step 6). Note that this can be done incrementally in linear time: if x (y) is the
last activity toward which the path has been extended, only pairs (u,v) such that
u = x (v = y) and v ∈ Pi→y (u ∈ Px→i) are considered, respectively.

If T Fi ≤ LBi(Px→y), the path is deleted (see Step 7). Otherwise, if Px→y ∈P0n+1,
the new T Fi value is memorized (see Steps 8-9). If Px→y /∈P0n+1, it is extended with
respect to direction δ . Below, only the case δ=left is commented on (see Steps 10-
20), the case δ =right (see Steps 21-32) being symmetrical.

All the immediate predecessors x′ of x are first considered for possible path ex-
tension (x′,Px→y) (see Step 11). With respect to Theorem 1.9 , Step 12 verifies that it
does not exist any activity u ∈ Px→i such that the path (x′,Px→u) has a smaller length
than the one of the longest path between x′ and u, otherwise the path extension is

16 Christian Artigues, Cyril Briand and Thierry Garaix

not valid. We underline that the validity of a path extension can be checked in linear
time since all longest path at minimum duration have been precomputed. Once a
new left-path-extension is found, the next extension direction is set to right unless
y = n+1 (see Steps 13-18).

1.5 Conclusions

Computing the minimum and maximum values for the starting times and floats of
project activities is a major concern of project managers. This assertion remains
particularly valid when activity durations are modelled as intervals. Indeed, uncer-
tain durations bring the concepts of possible and necessary activity criticality. This
chapter showed how the necessary criticality can be checked in polynomial time,
while the possible criticality remains N P-hard to assert in general. An effective
branch-and-bound procedure is proposed to cope with this last problem, which is
able to compute the minimum float of the project activities.

It has already been pointed out by Fortin et al. (2010) the close connections of
the criticality analysis presented in this chapter with fuzzy PERT scheduling prob-
lems on the one hand and min-max regret longest ath problems on the other hand.
We also mention here that a closely related model, the simple temporal networks
under uncertainty (STNU) have also been studied in the artificial intelligence com-
munity, see e.g. Morris et al (2001). Actually STNUs can be seen as a generalization
of the activity network with uncertain interval duration to generalized precedence
constraints, i.e., where arcs can have negative value representing a maximum time
lag between two time points. The research that is mainly done in STNU is to as-
sert dynamic controlability, which is roughly the ability of defining a schedule for
any uncertain scenario. The criticality analysis presented in this chapter could be of
interest to provide additional information on STNUs. A step towards such general-
izations has recently been made by Yakhchali and Ghodsipour (2010).

References

Chanas S, Dubois D, Zieliński P (2001) Criticality analysis in activity networks
under incomplete information. In: Proceedings of 2nd Int Conf Eur Soc of Fuzzy
Logic and Applications, pp 233–236

Chanas S, Dubois D, Zieliński P (2002) On the sure criticality of tasks in activity
networks with imprecise durations. IEEE T Syst Man Cy B 32(4):393–407

Chanas S, Zieliński P (2002) The computational complexity of the criticality prob-
lems in a network with interval activity times. Eur J Oper Res 136(3):541–550

Chanas S, Zieliński P (2003) On the hardness of evaluating criticality of activities
in a planar network with duration intervals. Oper Res Lett 31(1):53–59

1 Temporal Analysis of Projects Under Interval Uncertainty 17

Dubois D, Fargier H, Galvagnon V (2003) On latest starting times and floats in
activity networks with ill-known durations. Eur J Oper Res 147:266–280

Dubois D, Fargier H, Fortin J (2005) Computational methods for determining the
latest starting times and floats of tasks in interval-valued activity networks. J Int
Man 16(4–5):07–421

Fortin J, Zieliński P, Dubois D, Fargier H (2010) Criticality analysis of activity
networks under interval uncertainty. J Sched 13(6):609–627

Fargier H, Galvagnon V, Dubois D (2000) Fuzzy PERT in series-parallel graphs. In
9th IEEE int conf on fuzzy syst, San Antonio, pp 717–722

Garaix T, Artigues C, Briand C (2013) Fast minimum float computation in activity
networks under interval uncertainty. J Sched 16(1):93–103

Kasperski A, Zieliński P (2010) Minmax regret approach and optimality evaluation
in combinatorial optimization problems with interval and fuzzy weights. Eur J
Oper Res 200:680–687

Morris P, Muscettola N, Vidal T (2001) Dynamic control of plans with temporal
uncertainty. In Nebel B. (ed) Proceedings of 17th Int Joint Conf Artificial Intelli-
gence, Seattle, pp 494–499

Yakhchali S, Ghodsipour S (2010). Computing latest starting times of activities in
interval-valued networks with minimal time lags. Eur J Oper Res, 200(3):874–
880

Zieliński P (2003) Latest starting times and floats of activities in network with uncer-
tain durations. 3rd Int Conf Eur Soc of Fuzzy Logic and Applications (EUSFLAT
2003), pp 586–591

Zieliński P (2005) On computing the latest starting times and floats of activities in
a network with imprecise durations. Fuzzy Set Syst 150(1):53–76

Zieliński P. (2006) Efficient computation of project characteristics in a series-
parallel activity network with interval durations. In Della Riccia G, Dubois D,
Kruse R, Lenz HJ (ed), CISM courses and lectures: vol. 482. Decision theory and
multi-agent planning. Springer, New York, pp 111–130

