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Abstract

This paper considers a project scheduling environment in which
the activities of the project network are partitioned among a set of
agents. Activity durations are controllable, i.e., every agent is allowed
to shorten the duration of its activities, incurring a crashing cost. If
the project makespan is reduced with respect to its normal value, a
reward is offered to the agents and each agent receives a given ratio
of the total reward. Agents want to maximize their profit. Assuming
a complete knowledge of the agents’ parameters and of the activity
network, this problem is modeled as a non-cooperative game and Nash
equilibria are analyzed. We characterize Nash equilibria in terms of
the existence of certain types of cuts on the project network. We show
that finding one Nash equilibrium is easy, while finding a Nash strategy
that minimizes the project makespan is NP-hard in the strong sense.
The particular case where each activity belongs to a different agent
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is also studied and some polynomial-time algorithms are proposed for
this case.

Keywords. multi-agent project scheduling, Nash equilibria, flow networks.

1 Introduction

A project consists of a set of activities, interconnected by precedence rela-
tions, and supposed to reach a particular aim. The project duration, also
called project makespan, is the minimal time required to perform all the ac-
tivities. The problem of minimizing the project duration is a basic problem
solved by the well known Critical Path Method.

In real life contexts, such as building, road trades, aerospace or automo-
tive industry, many large-size projects involve a set of agents (actors, firms,
organizations, etc.), each being in charge of the execution of a part of the
project. The simplest mechanism motivating the agents to complete the
project on time is a reward/penalty for project earlier completion/delay.

Multi-agent scheduling problems have been considered in the literature
of scheduling, in particular with reference to machine scheduling problems
[Agnetis et al., 2004, Leung et al., 2010]. Project scheduling is generally con-
sidered with resource constraints and a lot of algorithms are available for
solving exactly or heuristically this problem, denoted by RCPSP (Resource
Constrained Project Scheduling Problem). In all these views, there is gener-
ally one coordinator, centralizing all the decisions.

In the last decade, some papers in the literature consider that the decision
making process for a project has many local decision makers, and is by na-
ture decentralized. In [Evaristo and van Fenema, 1999], the authors propose
several ways of organization for a project management. Among them, dis-
tributed projects where benefits and costs have to be shared are mentioned
as interesting research directions. In the seminal work of [Knotts et al., 2000]
and [Knotts and Dror, 2003], the authors consider the multi-mode resource
constrained project scheduling problems with several agents. Each agent
has access to the resources according to a given priority rule (there is one
agent per activity). Two types of systems are considered, either with re-
active agents or with deliberative agents. The execution mode of the ac-
tivity is a part of the decision that is let to the agent. Computational ex-
periments are done to test the rules and the different agent systems. The
authors in [Brânzei et al., 2002] study penalty division among agents in de-
layed projects. They propose penalty sharing rules based on cooperative
game theory methods. In [Lau et al., 2005a] and [Lau et al., 2005b], the
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authors consider the Distributed Project Scheduling Problem, where inde-
pendent and autonomous entreprises must collaborate during the configu-
ration phase and the scheduling phase of the project. These papers de-
scribe agent-based approaches, based on negociation between agents (show-
ing the interest of information sharing, possibly partially shared). Following
this model, a negotiation-based mechanism is proposed in [Homberger, 2012]
and evaluated on some benchmark instances. In [Confessore et al., 2007],
the authors consider a resource-constrained “decentralized multi-project sche-
duling problem as a multi-agent system, in which multiple agents – corre-
sponding to the local decision makers collaborate, guided by a market-based
control mechanism which is coordinated by a coordinator agent.” An auc-
tion mechanism is proposed for agent coordination, as well as heuristic al-
gorithms. In [Wang et al., 2011], the authors consider the Decentralized
Project Scheduling Problem. A general framework is proposed, consider-
ing the resource-constrained version of the problem. Several decision making
scenarios are considered (each project being controlled by one project man-
ager, the decision can be associated with an activity, a resource or a coordi-
nator), as well as several organizations (bottom-up, top-down, equivalent).
In [Adhau et al., 2012] the authors consider an RCPSP problem where dis-
tributed projects share a common set of global resources and they propose a
scheduling approach based on a multi-agent system.

In this paper, we do not consider resource constraints. We focus on a
scenario in which the agents have their own decisional autonomy and specific
competencies and perform specific tasks in a single project. In such a context,
project management becomes challenging since each agent naturally pursues
the maximization of its own profit, which in turn depends not only on its
own decision strategy, but also on the strategies of the other agents and
on the satisfaction of the customer. In many practical situations, given a
certain quality level for project outcome, customer satisfaction is related to
how soon the project is completed, i.e., project makespan. In particular, the
shorter the project duration, the greater the customer satisfaction. Hence, if
the project completes earlier than its original deadline, it is assumed that a
reward is established for the agents. We refer to [Estévez-Fernández, 2012] for
a description of a similar context. Notice that this point of view is equivalent
to saying that the customer has contracted a given price for a shorter due date
and that financial penalties are applied in case of tardiness, which is more
commonly considered in the scheduling literature. Moreover, we consider
that the reward sharing mechanism is simple: the total reward is supposed
to be divided among the agents according to a ratio a priori defined in an
agreement.
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These ratios may result from exogenous considerations, based on the
different roles of the agents in accomplishing project activities, and they
can be for instance based on the solution to a related fair division prob-
lem [Li and Zhou, 2012, Brânzei et al., 2002]. As a consequence, each agent
knows the cost or benefit to him/her deriving from increasing/decreasing the
project duration, and each agent’s decision can affect everyone else, as long
as it affects the project duration.

The scenario that we consider can be viewed as a particular non-coope-
rative game where players, corresponding to agents, play together for per-
forming a project. Their strategies correspond to the durations they choose
for carrying out their activities. As in classical project scheduling problems,
we suppose that an agent bears a crashing cost proportional to the amount
an activity duration is reduced, with respect to its normal duration. The
project makespan therefore results from all the agents’ strategies.

The aim of this paper is to analyze the problem and to characterize sta-
ble strategies, i.e., in which no agent has an interest in modifying its own
strategy, if no other strategy is changed. In this study we concentrate on
various complexity issues under the assumption that the project network, as
well as the agents parameters, is known. Even under this strong assumption,
we show that some problems remain difficult to solve from the computa-
tional viewpoint. Moreover, the various concepts and properties analyzed in
this paper may be helpful for designing realistic cooperation mechanisms to
pursue strategy stability.

Even if we will review some results from PERT/CPM problems (Section
3.2), we wish to emphasize that our analysis is aimed at characterizing Nash
equilibria. Its purpose is not to propose an alternative method for solving
classical time-cost/trade-off problems.

The paper is organized as follows. In Section 2, the multi-agent project
scheduling problem that we consider is formally defined and notations are
introduced. In Section 3, we introduce some definitions, illustrated by an
example, and some basic notions in the case of a single agent, that will be
used in the general case. Section 4 deals with comlexity issues. We show that
deciding if a strategy is a Nash equilibrium is in NP , finding a Nash equilib-
rium can be solved in polynomial time and finding a Nash equilibrium with
bounded makespan is NP-complete. Finally, some conclusions and future
research directions are presented in Section 5.
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2 Problem statement and notations

The multi-agent project scheduling problem that we consider is defined by a
tuple < G,A, P , P , C, π, w >, where:

• G = (N,U) is an activity-on-arc graph that defines the activity net-
work, where N is the set of nodes (N = {0, 1, . . . , n − 1} representing
project events), and U is the set of arcs, which is split into subsets UR
and UD, corresponding to real and dummy project activities, respec-
tively. Nodes 0 and (n − 1) represent the project beginning and end,
respectively.

• A = {A1, . . . , Am} is the set of m agents. The set of mu activities
assigned to agent Au is denoted by Tu, and Tu ∩ Tv = ∅, ∀(u, v), u 6= v,
and ∪mu=1(Tu) = UR. With each activity (i, j) ∈ Tu is associated a
duration, denoted by pi,j, and decided by agent Au according to its
strategy. Without loss of generality, activity durations are assumed to
be integer values.

• P = {p
i,j
}(i,j)∈U and P = {pi,j}(i,j)∈U denote the vectors of crash and

normal durations, respectively. For any activity (i, j) ∈ UR, we have:

p
i,j
≤ pi,j ≤ pi,j

For any activity (i, j) ∈ UD, we have: p
i,j

= pi,j = 0.

• C = {ci,j}(i,j)∈U is the vector of unit crashing costs. The cost incurred
for shortening the duration of activity (i, j) from pi,j to pi,j is equal to
ci,j(pi,j − pi,j) (with ci,j ≥ 0). We set ci,j = 0, ∀(i, j) ∈ UD.

• π is a scalar representing the daily reward given by the project customer
for shortening the total project duration. The total reward, given by
the project customer for shortening the project duration from D to D,
is equal to:

π(D −D).

• w = {wu}1≤u≤m is a vector specifying how the reward is shared by the
agents. Agent Au receives a fraction wu of the total reward (wu ≥ 0,
∀u, 1 ≤ u ≤ m and

∑m
u=1wu = 1).

A choice for the duration of the activities in Tu is an individual strategy for
agent Au, denoted by Pu. We denote as P u and P u the particular strategies
in which pi,j = pi,j and pi,j = p

i,j
respectively, ∀(i, j) ∈ Tu. We have P u ≤
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Pu ≤ P u. Cu denotes the vector of crashing costs of activities in Tu. The
cost associated to agent Au for the strategy Pu is:

Cu(P u − Pu) =
∑

(i,j)∈Tu

ci,j(pi,j − pi,j).

An overall strategy profile, denoted by S, is an m-vector that gathers all
individual strategies: S = (P1, . . . , Pm). We denote by S−u the (m − 1)-
vector of strategies played by all the agents except agent Au, i.e., S−u =
(P1, P2, . . . , Pu−1, Pu+1, . . . Pm). Then, focusing on a particular agent Au, we
have S = (S−u, Pu). We also define S = (P 1, . . . , Pm) and S = (P 1, . . . , Pm).
For the sake of simplicity, except in case of ambiguity, an overall strategy
profile S will be simply referred to as a strategy in the sequel of the text.

Given a strategy S, a path on G having the longest duration is called a
critical path. This path can be multiple and its length is the project makespan,
denoted by D(S). All the arcs of a critical path are critical activities. It is
well known that delaying one of the critical activities increases the overall
project makespan. We call critical graph the subgraph G(S) ⊆ G(S) con-
taining only the critical activities. We denote by D = D(S) and D = D(S)
the makespan values corresponding to strategies S and S, respectively.

This paper considers a payment scheme where the customer gives a total
reward to the agents, if they are able to shorten the overall project makespan,
with respect to its maximal value D. We consider that the reward is spec-
ified by daily reward π. Given a strategy S, (D − D(S)) is the makespan
reduction and π(D − D(S)) is the total reward associated with strategy S.
Each agent Au receives a fixed ratio wu of the total reward for one unit of
project makespan reduction, i.e., agent Au receives πwu. Therefore, for a
strategy S, agent Au receives:

wuπ(D −D(S)).

Given a strategy S, the profit of agent Au, denoted by Zu(S) (or equiva-
lently by Zu(S−u, Pu)) is given by:

Zu(S) = wuπ(D −D(S))− Cu(P u − Pu).

We denote by Z(S) = (Z1(S), . . . , Zm(S)) the overall profit vector.

Since every agent aims at maximizing its profit, and assuming without
loss of generality that the project starts at time t0 = 0, the multi-agent
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project scheduling problem that we consider is a multi-objective optimization
problem:

Find S, MAX (Z1(S), Z2(S), . . . , Zm(S)) (1)

s.t

tj − ti − pi,j ≥ 0,∀(i, j) ∈ U (2)

p
i,j
≤ pi,j ≤ pi,j,∀(i, j) ∈ U (3)

ti ≥ 0,∀i ∈ N, (4)

where ti is the start time of activity (i, j) ∈ U .
Notice that if A contains a single agent, the problem reduces to the classi-

cal time/cost tradeoff project scheduling problem [Phillips and Dessouky, 1977].

3 Definitions and properties

In this section we introduce the main definitions and concepts. Also, we
will review some elementary properties from the classical time/cost trade-off
problem single-agent case.

3.1 Definitions and example

Definition 1. (Nash equilibrium). A strategy S = (P1, . . . , Pm) is a Nash
equilibrium if for all agents Au and each individual strategy P ′u 6= Pu, we
have:

Zu(S−u, Pu) ≥ Zu(S−u, P
′
u). (5)

We further refer to SN as the set of Nash equilibria.

Inequality (5) expresses that no agent Au has interest in changing its
strategy from Pu to P ′u, assuming that all other agents keep their own strate-
gies unchanged (remember that Zu has to be maximized). So, the notion of
Nash equilibrium is related to strategy stability, which is a desired property
in a multi-agent environment.

Definition 2. (Poor strategy). A strategy S = (P1, . . . , Pm) with project
duration D(S) is a poor strategy if and only if there exists an agent Au and
an alternative strategy P ′u such that Zu(S) < Zu(S

′) and D(S ′) = D(S),
with S ′ = (S−u, P

′
u).

In other words, S is a poor strategy if and only if there is at least one agent
who can individually increase its profit (e.g. by modifying the duration of
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some of its activities), without increasing the makespan (and hence without
affecting the profit of the other agents). A strategy which is not poor will be
called non-poor. We denote by Ŝ the set of non-poor strategies.

Corollary 1. Checking whether a strategy is poor can be done in polynomial
time.

Proof. Considering one particular agent Au and one particular strategy S
with makespan D(S), it is easy to derive a linear program (LP) that seeks to
test the existence of a strategy S ′, which maximizes Zu(S

′) − Zu(S), under
the constraints that: i) D(S ′) = D(S) and, ii) only the duration of activities
belonging to Au can change (i.e., S ′ = (S−u, P

′
u)). If the optimal objective

value of such an LP is strictly greater than 0 then S is obviously a poor
strategy. This can be done for every agent.

Example 1. Consider the project displayed in Fig. 1, with 5 activities
and p0,1 ∈ [2, 3], p0,2 ∈ [3, 5], p1,2 ∈ [1, 2], p1,3 ∈ [4, 5] and p2,3 ∈ [1, 3],
c0,1 = c1,2 = c1,3 = c2,3 = 1 and c0,2 = 2. We consider 3 agents A1, A2

and A3 (their assigned activities are represented with plain, bold and dotted
arcs, respectively). The strategy S = (2, 1, 4, 3, 3) represented in Fig. 2 has
makespan D(S) = 6. This strategy is poor since agent A3, instead of re-
ducing the length of activity (0, 2) with respect to normal duration, should
have better reduced the length of (2, 3), which has a lower crashing cost. This
would lead to a strategy S ′ = (2, 1, 4, 5, 1). However, by doing this, activity
(1, 2) is no longer critical, and hence does not need to be shortened. Strategy
S ′′ = (2, 2, 4, 5, 1) is non-poor.

���
3

?
s

s

3
0

���

���

���
1

2

3

c0,1 = 1
[2, 3]

[4, 5]

[1, 3]
[3, 5]

c1,3 = 1

c0,2 = 2

c1,2 = 1

[1, 2]

c2,3 = 1

T1 = {(0, 1), (1, 2)}
T2 = {(1, 3)}

T3 = {(0, 2), (2, 3)}

Figure 1: Problem description in Example 1.

Clearly, poor strategies are not interesting since, in particular, a poor
strategy cannot be a Nash equilibrium (i.e., SN ⊆ Ŝ).
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p0,1 = 2 p1,3 = 4

p2,3 = 3p0,2 = 3

p1,2 = 1

T1 = {(0, 1), (1, 2)}
T2 = {(1, 3)}

T3 = {(0, 2), (2, 3)}
S = (2, 1, 4, 3, 3)

Figure 2: Illustration of a poor strategy.
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T1 = {(0, 1), (1, 2)}
T2 = {(1, 3)}

T3 = {(0, 2), (2, 3)}
S ′′ = (2, 2, 4, 5, 1)

Figure 3: Illustration of a non-poor strategy.

3.2 Project crashing and project extension in the single-
agent case

In this section we review a number of classical (hence, single-agent) CPM or
PERT concepts.

Notice that if all activities belong to a single agent, a non-poor strategy
for a given makespan value is a strategy that minimizes the overall cost.

Given a non-poor strategy S (for a given makespan), a key issue for the
agent is to see if there exists a more interesting (non-poor) strategy. Such
a strategy can be obtained either by decreasing the makespan – which leads
to an increase of the total reward despite an increase of the crashing costs,
or by increasing the makespan – which leads to a reduction of the crashing
costs despite a reduction of the total reward.

Given a non-poor strategy S, let G(S) = (NG(S), UG(S)) ⊆ G(S) be the
subgraph containing only the activities that are critical in strategy S. We
call it the critical graph. Possible modifications to project makespan can
be characterized in terms of some specific cuts in the critical graph G(S)
[Demeulemeester and Herroelen, 2002].

Definition 3. (Cut in G(S)) Given a partition (X,N \ X) of the set of
activities N such that 0 ∈ X and n− 1 ∈ N \X, a cut ω(X) of G(S) is the
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subset of arcs across X and N \X. The arcs (i, j) ∈ ω(X) with i ∈ X and
j ∈ N \X are called forward arcs, denoted by ω+(X). The arcs (i, j) ∈ ω(X)
with i ∈ N \X and j ∈ X are called backward arcs, denoted by ω−(X). We
have ω(X) = ω+(X) ∪ ω−(X).

We are particularly interested in two types of cuts on G(S), depending
on which action is done on project makespan.

Reduction of project makespan

Given a strategy S and the corresponding critical graph G(S), we consider
the problem of decreasing the makespan of the project at minimum cost. We
introduce the definition of a decreasing cut.

Definition 4. (Decreasing cut) A cut ω(X) of G(S) is a decreasing cut if

∀(i, j) ∈ ω+(X), pi,j > p
i,j
.

The rationale behind this definition is that the makespan of the project
can only decrease if the durations of all forward arcs of the cut decrease. If
an activity is already at crash duration, the cut cannot be used. Therefore,
only a decreasing cut can be used for decreasing project makespan. In con-
clusion, the most profitable project makespan reduction is achieved finding
the most profitable decreasing cut in G(S), decreasing its forward activities,
and increasing those backward activities that are not at normal duration, if
any (so that the obtained strategy is still non-poor). Note that, when using
such a cut, the makespan can be reduced gradually until either a new activ-
ity not in G(S) becomes critical in its turn or one of the activities of the cut
reaches its minimum value p

i,j
.

Increase of project makespan

On the contrary, consider the problem of increasing the makespan. We in-
troduce the definition of an increasing cut as follows.

Definition 5. (Increasing cut) A cut ω(X) in G(S) is an increasing cut if:

∃(i, j) ∈ ω+(X) and pi,j < pi,j

∀(i, j) ∈ ω−(X), pi,j > p
i,j
.
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The rationale behind this definition is the following. Because strategy S
is supposed to be non-poor, all the activities that are not in G(S) are already
at their normal durations. Therefore, the only possibility for increasing the
makespan is to increase the duration of a critical activity. In conclusion, it
must be possible to increase the duration of at least one forward activity of
the cut, and it must be possible to decrease the duration of all backward
activities.

For a given S, the cost of activity (i, j) ∈ ω(X) related to the unitary
change of the makespan can be expressed using two parameters `i,j and ui,j.
Both express unit crashing cost while `i,j is considered when (i, j) ∈ ω+(X)
and ui,j for (i, j) ∈ ω−(X). The following example illustrates the concept of
increasing cut.

���
3

0

���

��� ���
1

3

2p0,1 = 1

p1,2 = 4

p4,5 = 2p0,3 = 7

p2,5 = 9

���
4

���
5

s

-

-
=

s

3

p2,3 = 2

p3,4 = 5

c1,2 = 6

c2,5 = 3c0,1 = 5

c2,3 = 9

c4,5 = 1c0,3 = 4

c3,4 = 5

Figure 4: Increasing cuts.

Example 2. Fig. 4 depicts a strategy S and the corresponding critical graph
G(S), composed by 7 activities. Processing times and crashing costs are in-
dicated in the figure. The makespan is equal to D(S) = 14. In order to
profitably increase the duration of the project by 1, it would be sufficient to
increase the duration of any activity by 1, e.g., activity (1, 2) (supposing
p1,2 < p1,2), which allows to save `1,2 = c1,2 = 6. However, since crash-
ing costs are positive, one may observe that, if we increase the duration of
(1, 2), we can also increase the duration of (0, 3) (supposing p0,3 < p0,3),
since it generates an additional saving, without further makespan increase.
This leads to a unit saving of `1,2 + `0,3 = c1,2 + c0,3 = 10. In fact, (1, 2)
and (0, 3) form an increasing cut ω(X) = {(0, 3), (1, 2)}. Notice that if
p0,3 = p0,3, ω(X) is still an increasing cut, but the saving would be given
by c1,2 = 6 only, since `0,3 = 0. Suppose now that one decides to in-
crease (1, 2) and (3, 4) (instead of (1, 2) and (0, 3)) by 1. In this case, be-
cause these latter activities do not form a cut, we observe that the critical
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path {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)} would receive a double increase, so the
makespan would grow by 2. In fact, in order to increase the makespan exactly
by one, the duration of (1, 2) and (3, 4) is increased only if activity (2, 3) can
be decreased, i.e., we must use the increasing cut ω′ = {(1, 2), (3, 4), (2, 3)}
to get the saving `1,2+`3,4−u2,3 = c1,2+c3,4−c2,3 = 2. Note that if p2,3 = p

2,3
,

this would not be possible (u2,3 = −∞).

In the following, we show that, given a strategy S, we only need these
two types of cuts to find a more profitable non-poor strategy.

Perturbation of project makespan

Given a non-poor strategy S with makespan D(S), we first consider the prob-
lem of finding the most profitable set of activity durations to be increased
or decreased, given that the project makespan is minimally perturbed. Since
we assume that all values pi,j in S are integer, the minimal makespan per-
turbation is either +1 or −1.

In what follows, for each activity (i, j), let αi,j and βi,j denote its decrease
and, respectively, its increase with respect to pi,j. Moreover, let the costs
ui,j and `i,j be defined as indicated in Table 1.

Table 1: Upper and lower capacities of arcs for finding an optimal set of
activities to be modified.

Status of the critical arc (i, j) Values of `i,j and ui,j
pi,j = pi,j `i,j = 0; ui,j = ci,j
pi,j = p

i,j
`i,j = ci,j; ui,j =∞

p
i,j
< pi,j < pi,j `i,j = ci,j; ui,j = ci,j

With these positions, originally devised in [Phillips and Dessouky, 1977],
the problem of optimally changing the project makespan can be formulated
as a minimum cut problem:

minW (S) =
∑

(i,j)∈G(S)

ui,jαi,j −
∑

(i,j)∈G(S)

`i,jβi,j (6)

τj − τi ≥ βi,j − αi,j ∀(i, j) ∈ UG(S) (7)

τn−1 − τ0 = ±1 (8)

αi,j ≥ 0 ∀(i, j) ∈ UG(S) (9)

βi,j ≥ 0 ∀(i, j) ∈ UG(S) (10)
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If ti is the start time of activities outgoing node i under S, here τi rep-
resents the variation in the value of ti when project duration is increased
by 1 unit (+1 in the rhs of (8)) or, respectively, decreased by 1 unit (-1 in
the rhs of (8)). Setting with no loss of generality τ0 = 0, in the two cases
one has, for all i, τi ∈ {0, 1} and, respectively, τi ∈ {−1, 0}. The objective
function (6) is the total cost from activity crashing, minus the total saving
from activity increase. We will denote in the following W+(S) and W−(S)
the optimal value of the objective function for a unit makespan increase and
a unit makespan decrease respectively. Note that one cannot decrease an
activity (i, j) having crash duration (ui,j = +∞). Also, setting `i,j = 0 when
an activity (i, j) has normal duration ensures that, in the optimal solution,
one has βi,j = 1 only if (i, j) belongs to an optimal decreasing cut (since
there is no convenience to increase an activity which does not bring profit).
The meaning of (7) is analogous to that of (2) in (1)–(4), while in (8) we set
τn−1 = −1 to decrease the project makespan by 1, and τn−1 = 1 to increase
it by 1. Hence, the optimal solution of (6)–(10) specifies a feasible set of
duration changes that minimizes overall costs (if τn−1 = −1) or maximizes
the savings (if τn−1 = 1). We denote as (τ ∗, α∗, β∗) an optimal solution to
(6)–(10).

We observe that problem (6)–(10) only makes sense if the optimal solution
exists. In fact, consider a strategy S, and suppose that the problem (6)–(10)
is unbounded. Then, there exists a feasible solution such that, for a subset
X of activities, it holds αi,j = α0

i,j + ᾱi,jM and βi,j = β0
i,j + β̄i,jM , for an

arbitrarily large M , and∑
(i,j)∈X

ui,jᾱi,j −
∑

(i,j)∈X

`i,jβ̄i,j < 0. (11)

Moreover, even if some τj takes an arbitrarily large value, since τn−1 − τ0 =
±1, for each path P from 0 to n− 1 one has∑

(i,j)∈X∩P

ᾱi,j −
∑

(i,j)∈X∩P

β̄i,j = 0. (12)

Now, consider the strategy Sε obtained by letting αi,j = ᾱi,jε and βi,j = β̄i,jε
for each (i, j) ∈ X for some small ε > 0. Due to (11), Sε is strictly better
than S, and due to (12), D(Sε) = D(S). But this implies that S is a poor
strategy. Hence, one has:

Theorem 1. Given a strategy S, if problem (6)–(10) is unbounded, then S
is poor.
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In view of Theorem 1, we are ensured that if S is non-poor, problem
(6)–(10) has a finite optimal solution. In this case, so does its dual, in which
variables xij are associated with constraints (7) and v with (8):

max±v (13)∑
(h,j)∈δ+(j)

xh,j −
∑

(i,h)∈δ−(j)

xi,h = 0 ∀h ∈ NG(S) \ {0, n− 1} (14)

v +
∑

(0,j)∈δ+(0)

x0,j = 0 (15)

v +
∑

(i,n−1)∈δ−(n−1)

xi,n−1 = 0 (16)

`i,j ≤ xi,j ≤ ui,j. (17)

This is a flow problem on a network isomorphic to G(S), in which arcs
have lower and upper capacities `i,j and ui,j respectively. Precisely, if we
are interested in reducing the makespan at minimum cost, the dual objec-
tive function (13) is +v, and hence the problem is a max flow problem. If
we are interested in increasing the makespan maximizing the saving, then
(13) is −v, i.e., the problem is indeed to find the minimum flow that has
to be sent from 0 to n − 1. Such minimum flow problem can be efficiently
solved via either standard max-flow algorithms [Ahuja et al., 1993, p.202],
or via flow algorithms which are the symmetrical of classical max-flow algo-
rithms [Ciurea and Ciupalâ, 2004].

Let us illustrate the previous notions with Example 3.

Example 3. The left side of Fig. 5 shows a project network having 2 ac-
tivities with p0,1 ∈ [1, 3], p1,2 ∈ [1, 3], c0,1 = 1 and c1,2 = 2. The strategy
S1 = (2, 2), illustrated in the middle of the figure, is poor. In fact, the corre-
sponding minimum flow problem is infeasible (i.e., there cannot exist a flow
such that x0,1 = x1,2 and x0,1 ≤ 1 and x1,2 ≥ 2). On the other hand, the min-
imum flow problem on the right side, for the non-poor strategy S2 = (1, 3)
having makespan D(S2) = D(S1) = 4, is feasible (x0,1 = x1,2 = 2) .

Since (6)–(10) is the dual of a max- or min-flow problem, it is well known
that an optimal solution (τ ∗, α∗, β∗) has a very precise structure.

Consider first the case of makespan reduction, i.e., τn−1 = −1. Then, if
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Figure 5: Poorness and flow feasibility.

S is non-poor, there exists a cut ω(X∗) such that:

τ ∗i = 0 if i ∈ X∗

τ ∗i = −1 if i ∈ N \X∗

α∗i,j = 1 if (i, j) ∈ ω+(X∗)

β∗i,j = 1 if (i, j) ∈ ω−(X∗)

α∗i,j = β∗i,j = 0 if (i, j) 6∈ ω(X∗).

In this case, ω(X∗) is a decreasing cut. In fact, since α∗i,j = 1 for all forward
arcs, it means that pi,j > p

i,j
for all of these arcs. Also, note that if (i, j) ∈

ω−(X∗), but (i, j) cannot be extended, then (i, j) becomes non critical after
modification.

Suppose now τn−1 = 1 (i.e., we want to increase the makespan maximizing
the saving). Then, there exists a cut ω(X∗) such that:

τ ∗i = 0 if i ∈ X∗

τ ∗i = 1 if i ∈ N \X∗

β∗i,j = 1 if (i, j) ∈ ω+(X∗), pi,j < pi,j
β∗i,j = 0 if (i, j) ∈ ω+(X∗), pi,j = pi,j
α∗i,j = 1 if (i, j) ∈ ω−(X∗)

α∗i,j = β∗i,j = 0 if (i, j) 6∈ ω(X∗).

In this case, ω(X∗) is an increasing cut. In fact, since α∗i,j = 1 for all (i, j) ∈
ω−(X∗), it means that pi,j > p

i,j
for all of these arcs. Also, there is at least

one (i, j) ∈ ω+(X∗) such that β∗i,j = 1 (otherwise the makespan cannot be
extended). Again, note that if (i, j) ∈ ω+(X∗), but (i, j) cannot be extended,
then (i, j) becomes non critical after modification. On the other hand, all
backward activities have to be decreased (so all have finite uij).

In conclusion, given a non-poor strategy S, the most profitable set of
activities to be modified is either an optimal decreasing cut with W−(S) < π
(the cost of decreasing the makespan is less than the reward) or an optimal
increasing cut with W+(S) > π (in this case, the reward loss is less than the
saving from crashing cost decrease).
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3.3 Multi-agent case

We consider here the multi-agent context. In this case, it is of interest to
characterize situations in which a single agent can individually decrease or
increase the makespan of the project. Hence, definitions 4 and 5 of decreasing
and increasing cuts must be suitably modified.

Reduction of project makespan

Let us first consider the problem of makespan decrease. An agent Au can
decrease project makespan only if it owns all forward activities of a decreasing
cut in G(S) (there is no need to own backward activities).

Definition 6. Au-decreasing cut. A cut ω(X) in G(S) is an Au-decreasing
cut iff

ω+(X) ⊆ Tu
∀(i, j) ∈ ω+(X), pi,j > p

i,j
.

Given a strategy S and an agent Au, the problem is to find a subset
of activities of Au in G(S) that have to be modified, in order to optimally
decrease the makespan by one time unit. We can use the same approach of
Section 3.2 using formulation (6)–(10), but we must now take into account
that the duration of activity (i, j) cannot be modified if (i, j) /∈ Au. Other
agents’ activities can be backward arcs, but not forward arcs. To this aim,
one simply can set `i,j = 0, ui,j = ∞ for these activities (Table 2). We
denote by W−

u (S) the optimal value of the objective function (positive if it is
a gain and negative if it is a cost) for agent Au for a decrease of the project
makespan of one time unit.

Increase of project makespan

Let us now consider the problem of makespan increase. An agent Au can
individually increase the makespan only if it owns some forward activities of
an increasing cut in G(S) and all backward activities. In fact, since Au cannot
modify it, a backward activity belonging to another agent would invalidate
the computation of the makespan increase.

Definition 7. Au-increasing cut. A cut ω(X) in G(S) is Au-increasing iff

ω+(X) ∩ Tu 6= ∅

ω−(X) ⊆ Tu
∃(i, j) ∈ ω+(X) ∩ Tu, pi,j < pi,j
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Table 2: Upper and lower capacities to find an optimal set of activities of
agent Au to be modified.
status of the arc `i,j and ui,j
(i, j) ∈ Au is critical and pi,j = pi,j `i,j = 0, ui,j = ci,j
(i, j) ∈ Au is critical and pi,j = p

i,j
`i,j = ci,j, ui,j =∞

(i, j) ∈ Au is critical and p
i,j
< pi,j < pi,j `i,j = ci,j, ui,j = ci,j

(i, j) 6∈ Au `i,j = 0, ui,j =∞

∀(i, j) ∈ ω−(X), pi,j > p
i,j

Again, given a strategy S and an agent Au, one can face the problem
of finding the activities of Au to be modified, in order to optimally increase
the makespan by one time unit. We can use the same approach of Section
3.2 using formulation (6)–(10), but we must now take into account that the
duration of activity (i, j) cannot be modified if (i, j) /∈ Au. Other agents’
activities can be forward arcs, but not backward arcs. This can still be taken
into consideration by setting `i,j = 0, ui,j =∞ for the activities not belonging
to Au (Table 2). We denote by W+

u (S) the optimal value of the objective
function (positive if it is a gain and negative if it is a cost) for agent Au for
an increase of the makespan by one time unit.

4 Complexity issues

4.1 Deciding if a strategy is a Nash equilibrium

We now want to exploit the concepts presented in the previous section to
decide whether or not a given strategy S is a Nash equilibrium. A new
element has to be considered, namely the reward wuπ that agent Au earns
for each unit of decrease, with respect to D.

Proposition 1. If the strategy S is poor, it is not a Nash equilibrium.

Proof. By definition of a poor strategy.

Proposition 2. S is a Nash equilibrium if and only if, for each agent Au,
u = 1, . . . ,m:

W+
u (S) < wuπ (18)

W−
u (S) ≥ wuπ. (19)

17



Proof. Consider a strategy S and an agent Au. If S is non-poor, Au can
improve its situation only by decreasing or increasing the project makespan.
In the former case, for a unit reduction of the makespan, Au receives wuπ.
Hence, such reduction is profitable to Au if and only if W−

u (S) < wuπ. In
the latter case, for a unit increase in the makespan, Au gives up wuπ, so that
it is profitable if and only if W+

u (S) ≥ wuπ. If one of these conditions holds
for one agent, then S is not a Nash equilibrium. Therefore, if and only if
conditions (18) and (19) hold for all agents, S is a Nash equilibrium.

Corollary 2. Deciding if a strategy is a Nash equilibrium is in NP.

Proof. The condition given in Proposition 2 can be checked in polynomial
time, since, as shown in Section 3.2, W+

u (S) and W−
u (S) can be found in poly-

nomial time via max flow algorithms. Therefore we conclude that deciding
if a strategy is a Nash equilibrium is in NP .

4.2 Finding a Nash equilibrium

Next we prove that finding a Nash equilibrium can be done in polynomial
time. The idea is the following.

Let us start from strategy S in which all activities have normal duration.
Then, agent A1 determines the duration of its own activities in order to
maximize its profit, while the durations of the activities of agents A2, . . . , Am
remain unchanged. This can be done by solving a linear program of the type
(20) – (23) in which the objective function is Z1 and pi,j = pi,j, ∀(i, j) 6∈ T1.

Find P1, MAX Z1(S−1, P1) (20)

s.t

tj − ti − pi,j ≥ 0,∀(i, j) ∈ T1 (21)

p
i,j
≤ pi,j ≤ pi,j,∀(i, j) ∈ T1 (22)

ti ≥ 0,∀i ∈ N (23)

The returned individual strategy, denoted by P ∗1 , is the best response of
A1 to P−1 = {P 2, . . . , Pm}. Notice that S1 = (P ∗1 , P 2, . . . , Pm) is such that
D(S1) ≤ D(S). Notice that the durations of the activities of agent A1 can
only decrease, possibly leading to a makespan decrease.

Next, it is the turn of agent A2 to compute its optimal individual strategy,
denoted by P ∗2 , while keeping P1 fixed to P ∗1 and P3, . . . , Pm still fixed to
{P 3, . . . , Pm}. We obtain strategy S2 = (P ∗1 , P

∗
2 , P 3, . . . , Pm). Again, notice
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that the durations of the activities of agent A2 can only decrease, and hence
the makespan can only be unchanged or decreased.

Let consider agent A1 again. It is possible that:

(i) in G(S2), some new critical path appears which was not present in
G(S1), involving activities of A1,

(ii) some activities of A1 which were critical for S1 are no more critical for
S2 (as it happens to the activities on critical paths that have undergone
multiple reductions).

Notice that case (i) does not affect the strategy of agent A1. In fact, any
further makespan reduction due to A1 would lead to a change of the duration
of activities which were already optimally crashed in the previous round. On
the other hand, case (ii) can represent an opportunity for A1 to re-improve
its profit, by increasing the duration of some activities that were previously
shortened. Therefore, the model (20) – (23) can be used again to re-optimize
the strategy of A1. This case is illustrated in the following example.
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Figure 6: Increasing cuts.

Example 4. Consider the example of G(S) in Fig. 6, in which T1 = {(0, 3),
(2, 3), (2, 5)} (plain arcs) and T2 = {(1, 2), (3, 4)} (bold arcs), while activities
(0, 1) and (4, 5) belong to other agents (dotted arcs). The interval displayed
near each arc (i, j) is [p

i,j
, pi,j]. The project makespan when activity durations

are set to their normal value is D(S) = 31 days, any path from 0 to 5 being
critical. Moreover, suppose that the reward is such that w1π > c0,3+c2,3+c2,5
and w2π > c1,2+c3,4. In the first round, A1 can profitably decrease the project
makespan by 2 days, crashing all of its activities. The new makespan is 29
and all the activities remain critical. At this point, A2 can crash (1, 2) and
(3, 4) by 1 day, hence decreasing the makespan to 28. As a consequence,
activity (2, 3) is no more critical and A1 can profitably increase its duration
by 1 day, thus saving c2,3. Notice that increasing the duration of (2, 3) has
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no effect on A2, since it does not change the makespan. Therefore, there is
no need to re-optimize the strategy of A2.

This line of reasoning leads to Algorithm 1 called FindNash. This algo-
rithm uses the routine Opt(Zk|β) based on the model (20) – (23), to compute
the individual strategy Pk that maximizes Zk (profit of agent Ak), for fixed
strategies of other agents (specified in the field β).

Algorithm 1 FindNash

1: (P1, P2, . . . , Pm)← (P 1, P 2, . . . , Pm)
2: for u = 1 to m do
3: Compute P ∗u = Opt(Zu|P1, . . . , Pu−1, Pu+1, . . . , Pm)
4: (P1, P2, . . . , Pu, . . . , Pm)← (P1, P2, . . . , P

∗
u , . . . , Pm)

5: for v = 1 to u− 1 do
6: // readjustment phase
7: P ∗v ← Update of Pv by increasing previously crashed, non-critical

activities so that they reach their normal duration or become critical.
8: (P1, P2, . . . , Pv, . . . , Pm)← (P1, P2, . . . , P

∗
v , . . . , Pm)

9: end for
10: end for
11: return SN = (P1, P2, . . . , Pm)

The agents are considered in the increasing order of their index. When
Opt is called with objective Zu, strategies P ∗1 , P

∗
2 , . . . , P

∗
u−1 have already

been computed, while the activities of agents Au+1, . . . , Am are still at normal
duration. Such call produces a strategy P ∗u , which is therefore the currently
best outcome Au can reach by its own. Notice that in this phase, the project
makespan can be reduced thanks to Au (it cannot increase since so far all
activities of Au were at normal duration).

After Opt is run on Zu, some activities of the first u − 1 agents may
have become non-critical. Therefore, if these activities have been shortened
in a previous stage, their duration can be increased, bringing some profit to
the agents who own them, and hence updating the corresponding strategies.
This can be done by simply increasing the duration of these activities, until
either the activity reaches normal duration or becomes critical again. Note
that such a readjustment does not affect the makespan, and hence the other
agents.

We want to point out that even though the above procedure indicates
how each agent can act individually to reach a stable strategy profile, it does
not pretend to actually mimic the agents’ behavior in a real setting. Indeed,
in a real context, in general agents will not share their information, unless
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they agree to do so. Here we only intend to show that, assuming complete
knowledge, a Nash equilibrium can be found in polynomial time.

Proposition 3. A Nash strategy can be found in polynomial time.

Proof. Consider the strategy SN returned by algorithm FindNash. First, it
is obviously a non-poor strategy since the readjustment phase (Alg. 1 lines
7–8) ensures that no agent is able to make more profit without changing the
makespan. Moreover, in the critical graph G(SN) there cannot be any Au-
increasing cut, since the forward activities of such cut would not have been
shortened during the call to Opt on Zu. Similarly, an Au-decreasing cut in
G would contain a cut that existed when Opt was called on Zu. If it was not
profitable for Opt to use this cut, it cannot be profitable now. Then, from
Property 2, SN is a Nash equilibrium.

Since it focuses on a single agent profit, Opt can be implemented in
polynomial time, using linear programming for instance. The readjustment
phase can be done in linear time (in the number of activities), since each
activity can be expanded independently from the others. In conclusion, Al-
gorithm FindNash runs in polynomial time since it involves the solution of
1
2
m(m+ 1) linear programs.

Let us note that since algorithm FindNash always yields a strategy,
there always exists at least one Nash strategy.

Notice also that the quality of a Nash equilibrium can be arbitrarily bad,
as illustrated by Example 5.

Example 5. In the example illustrated by Fig. 7, there are two agents and
one activity per agent with durations in [1, 1000]. Each activity has a crashing
cost of 1, and a reward of 2 is obtained by each agent in case of makespan
decrease of 1 time unit. It is clear that the interest of each agent is to fix
the duration to 1 time unit. However, strategy SN = (1000, 1000) is a Nash
equilibrium (obtained by Algorithm FindNash).
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Figure 7: Nash equilibrium of bad quality
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Next, we consider the problem of finding a Nash equilibrium with bounded
makespan.

4.3 Finding a Nash equilibrium with bounded makespan

We consider the problem of determining whether a strategy which is a Nash
equilibrium, and having a makespan not greater than a given value, exists.
Indeed, the stability of a strategy is important since it ensures that agents can
trust each other, none of them having incentive to modify its own strategy.
Moreover, the project customer is certainly interested in determining the
minimum makespan that can be reached, provided the organization remains
stable.

The decision version of the problem can be written as follows.

NE-BoundedMakespan
Instance: a tuple < G,A, P , P , C, π, w > as defined in Section 2,

an integer λ.
Question: Is it possible to find a strategy S such that S is a Nash

equilibrium and D(S) ≤ λ?

Proposition 4. Problem NE-BoundedMakespan is strongly NP-complete.

Proof. Given a strategy S, it can be checked in polynomial time if it is a Nash
equilibrium (see Section 4.1). Furthermore, it can be checked in polynomial
time whether or not the makespan exceeds λ. Therefore, the problem belongs
to NP .

In order to prove the NP-completeness, we show that 3-Partition prob-
lem [Garey and Johnson, 1979] reduces to NE-BoundedMakespan.

3-PARTITION
Instance: a set ζ = {a1, . . . , aK} of K = 3k positive integers, such

that
∑3k

j=1 aj = kB and B/4 < aj < B/2 for each j.

Question: Can ζ be partitioned into k subsets ζ1, ζ2, . . . , ζk so that
the sum of the integers in each subset is equal to B?

Consider an arbitrary instance of 3-Partition. We construct an instance
of the multi-agent project scheduling problem as follows. The activity-on-
arc graph G has 3k parallel paths, each consisting of k activities, plus two
dummy nodes 0 and 3k(k+1)+1 (see Fig. 8). The activities on the first path
are (1, 2), (2, 3), . . . , (k, k+1), those on the second path are (k+2, k+3), (k+
3, k + 4), . . . , (2k + 1, 2k + 2), and so on, the last path containing activities
(3k(k+1)−k, 3k(k+1)−k+1), (3k(k+1)−k+1, 3k(k+1)−k+2), . . . , (3k(k+
1)− 1, 3k(k + 1)). Vertices 0 and 3k(k + 1) + 1 represent the start time and
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the finish time of the project respectively, and there are dummy activities
from the start node (0, 1), (0, k + 2), . . . and dummy activities to the ending
node (k + 1, 3k(k + 1) + 1), (2k + 2, 3k(k + 1) + 1), . . .
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Figure 8: Reduction from 3-Partition with k = 3.

There are k agents. Agent Au owns the uth activity of each path, u =
1, . . . ,m. All real (non-dummy) activities have p

i,j
= 0 and pi,j = 1. Also,

the crashing cost of each activity on the i-th path is ai, i = 1, . . . , 3k. Each
agent’s unit reward is wuπ = B + ε, identical for all agents, ε being an
arbitrarily small positive value. We aim at determining whether it exists a
Nash strategy S such that D(S) < k.

Consider the strategy S where all activities have normal duration, pi,j = 1.
The project makespan for S is clearly D(S) = k. With respect to S, we
observe that an agent may decrease the makespan by δ ∈ (0, 1], crashing all
its activities by the same amount δ. However, by doing this, the agent would
pay kBδ and would only gain (B+ε)δ. Hence, the new strategy would not be
a Nash equilibrium, since the agent would rather get back to S. In order to
obtain a Nash equilibrium, for each agent the total unit crashing cost of the
activities involved must not exceed B. As a consequence, no more than three
activities per agent can be involved in the decrease. Due to the topology of
the graph, in order to decrease the makespan, exactly 3k activities must be
crashed, and therefore, for a Nash equilibrium with makespan smaller than k
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to exist, there must be a cut ω containing exactly three activities per agent,
inducing an Au-decreasing cut for each agent, i.e., ω must have exactly one
activity per path. The total crashing cost of such a set of activities is kB,
so in order to get a Nash equilibrium, the total cost of the three activities
selected for each agent must be exactly B. Clearly, this is possible if and
only if a partition in the 3-partition instance exists.

Fig.8 illustrates the construction of the project network from a 3-Partition
instance characterized by k = 3, ζ = {7, 8, 7, 7, 7, 8, 9, 10, 9} and B = 24. The
problem is to determine, if it exists, a Nash strategy such that the project
makespan is less than k = 3. If the activities of the cut ω are decreased by
δ = 1, we get a Nash equilibrium, which shows that the original instance of
3-Partition was a yes-instance.

4.4 The special case |Tu| = 1, ∀u
In this section, we consider the special case where each agent owns exactly one
activity, so in the sequel we use u to indicate the activity of agent Au. For this
special case, we show that finding a minimum-makespan Nash equilibrium is
easy.

By definition, a unit time of makespan decrease brings Au the reward
wuπ. Since Au only manages a single activity u, this quantity can be easily
compared with the unit crashing cost cu of u. The set A of agents can be
partitioned into two subsets A+ and A− as follows.

A+ = {Au, 1 ≤ u ≤ m|cu < wuπ} (24)

A− = {Au, 1 ≤ u ≤ m|cu ≥ wuπ} (25)

For an agent Au ∈ A+, it is profitable to crash its activity if it also
reduces the project duration (the profit wuπ − cu > 0), while if Au ∈ A−, it
is systematically not interesting for Au to crash the duration of its activity.

Now, consider the initial strategy Ŝ = (P̂1, . . . , P̂m) defined by

P̂u = p
u
, Au ∈ A+ (26)

P̂u = pu, Au ∈ A−. (27)

Note that Ŝ can be a poor strategy, since the activities of A+ have crash
duration even if they do not belong to the critical path G(Ŝ). Therefore, we
can consider these activities one by one (in an arbitrary order), increasing
their durations until either the activity becomes critical or reaches its normal
duration. By doing so, a non-poor strategy S̃ is obtained, with D(S̃) = D(Ŝ).
Notice that, since at least one path in G(S̃) was present in G(Ŝ) as well, the
following property holds.
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Proposition 5. In G(S̃), there is at least one path P (therefore critical) such
that, ∀u ∈ P:

• if Au ∈ A+, pu = p
u

• if Au ∈ A−, pu = pu.

Notice that S̃ may not be unique, since different non-poor strategies can
be reached, depending on the order in which noncritical activities in A+ are
processed.

Theorem 2. Strategy S̃ is a Nash equilibrium, and there is no Nash equilib-
rium with a smaller makespan.

Proof. Let us first prove that S̃ is a Nash equilibrium. Consider the critical
paths on G(S̃), and let consider Au ∈ A−. Since the activities of A− are at
their crash duration in G(S̃), they can improve their situation only through
an Au-decreasing cut. Such a cut exists if it contains only u, and hence the
value of the cut is cu. Since Au ∈ A−, cu > wuπ, so no agent Au ∈ A− has
convenience in shortening its activity.

Now let consider Au ∈ A+. If pu = p
u

in S̃, Au can improve its situation
only through an Au-increasing cut. However, in this case cu ≤ wuπ, so there
is no interest for Au in increasing the makespan. If pu > p

u
, Au might search

for an Au-decreasing cut. However, a cut can be Au-decreasing only if all its
forward arcs belong to Au, and this is not possible since, due to Proposition
5, there is at least another critical path which does not include u.

In conclusion, the conditions of Proposition 2 are verified, and S̃ is a Nash
equilibrium.

Concerning the second part, again Proposition 5 implies that any strategy
S having D(S) < D(S̃) requires that at least one activity u with Au ∈ A−
must be crashed with respect to S̃. However, since in this case cu > wuπ,
agent Au would be willing to get back to S̃, so S would not be a Nash
equilibrium.

5 Conclusion and future research directions

In this paper we have introduced a noncooperative game-theoretic model for a
multi-agent project scheduling problem. In the problem considered, a reward
is given by the project customer depending on the project makespan. Such re-
ward is shared between the agents according to some predefined ratios. Each
agent is responsible for a set of activities, and incurs costs depending on the
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activity durations, as in classical PERT/CPM models. In this paper we fo-
cused on the concept of Nash equlibrium, and we propose a polynomial-time
algorithm to find a Nash equilibrium. We also prove that finding a Nash equi-
librium with bounded makespan is in general NP-hard, but it becomes easy if
each agent has only one activity. We notice also that the results of this work
can be generalized to piecewise linear crashing-cost functions (as proposed in
[Bachelet and Mahey, 2003]).

We next sketch a few possible directions for future research.

• In general, algorithm FINDNASH (Section 4.2) may require the solu-
tion of m(m + 1)/2 linear programs. An open question is whether a
more efficient algorithm can be devised to compute a Nash equilibrium.

• While in this paper we mainly concentrated on the concept of Nash
equilibrium, another relevant concept in a multi-objective setting is
that of Pareto optimal strategies, i.e., those for which no other strategy
exists, which is strictly better for at least one agent and not worse for
all other agents. Future research may address, among other issues, the
characterization of Pareto optimal strategies and its relationship with
Nash equilibria. It is possible to show that in general a strategy can
be both Pareto optimal and a Nash equilibrium, just one of the two,
or neither Pareto optimal neither Nash equilibrium.

• Another research direction is the design of distributed cooperation
mechanisms, aimed at bringing the agents to collectively reach a stable
strategy. Indeed, the study of such mechanisms may be important in
real cooperation contexts, in which a central agent having complete
information on the system does not exist. In such a context, several
important issues should be considered, including partial or uncertain
agents’ knowledge, limited cooperation among the agents, procedural
issues (such as the sequence in which agents make their decisions) etc.

• Enlarging the scope of the model, one might also analyze the scenario
in which the values wu are not predetermined during the design phase,
but are rather another output of the optimization phase.
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