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The solution of the Stokes problem with a punctual force in source term is not H 1 ˆL2 and therefore the approximation by a finite element method is suboptimal. In the case of Poisson problem with a Dirac mass in the right-hand side, an optimal convergence for the Lagrange finite elements has been shown on a subdomain which excludes the singularity in L 2 -norm by Köppl and Wohlmuth, and, independently, Bertoluzza and co-authors have proved a quasi-optimal convergence in H s -norm, for s ě 1. Here we show a quasi-optimal local convergence in H 1 ˆL2norm for a P k {P k´1 -finite element method, k ě 2, and for the P 1 b{P 1 . The error is still analysed on a subdomain which does not contain the singularity. The proof is based on local Arnold and Liu error estimates, a weak version of Aubin-Nitsche duality lemma applied to the Stokes problem and discrete inf-sup conditions. These theoretical results are generalized to a wide class of finite element methods, before being illustrated by numerical simulations.

Introduction.

This paper is about the accuracy of the finite element method to solve the Stokes problem with a punctual force in source term. Let us consider this following problem

$ & % ´△u `∇p " δ x 0 F in Ω, divpuq " 0 in Ω, u " 0 on BΩ, (1) 
where Ω Ă R 2 is a square, and δ x 0 F denotes the punctual force F located at x 0 P Ω such that distpx 0 , Ωq ą 0. Our interest in Problem (1) is motivated by the modeling of the movement of thin structures in a viscous fluid, such as flagella connected to bacteria or cilia involved in the muco-ciliary transport in the lung [START_REF] Fulford | Muco-ciliary transport in the lung[END_REF]. Indeed, for instance in the lung, the cilium is very thin and a direct simulation with a graded mesh would be too expensive. In the asymptotics of a zero diameter cilium and an infinite velocity, the cilium is thus replaced by a line Dirac of forces in source term. In order to ease the computations, the line Dirac of forces is approached by a sum of punctual forces distributed along the cilium [START_REF] Lacouture | A numerical method to solve the Stokes problem with a punctual force in source term[END_REF]. Finally, by linearity of the Stokes problem, the analysis of the subsequent problem reduces to Problem [START_REF] Araya | A posteriori error estimates for elliptic problems with Dirac delta source terms[END_REF].

In dimension 2, Problem [START_REF] Araya | A posteriori error estimates for elliptic problems with Dirac delta source terms[END_REF] has no H 1 pΩq 2 ˆL2 pΩq-solution. Although the numerical solution can be defined in this case, the H 1 pΩq-error (respectively L 2 pΩq-error) for the velocity (respectively the pressure) has no sense, and the L 2 -estimates of the velocity cannot be derived like in the regular case without suitable modifications.

Let us notice that the scalar version of this problem, the Poisson Problem with a Dirac mass in right-hand side, has already been widely studied. It occurs in many applications from different areas like in optimal control of elliptic problems with state contraints [START_REF] Casas | Control of an elliptic problem with pointwise state constraints[END_REF] or in the mathematical modeling of electromagnetic fields [START_REF] Jackson | Classical electrodynamics[END_REF]. Problems of this type are found in controllability for elliptic parabolic equations [START_REF] Casas | Parabolic control problems in measure spaces with sparse solutions[END_REF][START_REF] Casas | Spike controls for elliptic and parabolic PDEs[END_REF][START_REF] Leykekhman | Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints[END_REF] and in parameter identification problems with pointwise measurements [START_REF] Rannacher | A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements[END_REF]. In this case, Babuska proved in [START_REF] Babuška | Error-bounds for finite element method[END_REF] for two-dimension smooth domain an L 2 pΩq-convergence of order h 1´ε , ε ą 0, where h is the mesh size, and Scott has shown in [START_REF] Scott | Finite element convergence for singular data[END_REF] an a priori error estimates of order 2 ´d 2 , where the dimension d is 2 or 3. Casas has got the same result in [START_REF] Casas | L 2 estimates for the finite element method for the Dirichlet problem with singular data[END_REF] for general Borel measures on the right-hand side.

To the best of our knowledge, there is no finite element method convergence result for the Stokes problem with a punctual force in source term. Moreover, in applications, the punctual force (or the Dirac measure) at the point x 0 is often a model reduction approach and the finite element solution does not need to approximate precisely the exact solution at the point x 0 . Thus, it is interesting to estimate the error on a fixed subdomain which does not contain the singularity. In the case of the Poisson problem, Köppl and Wohlmuth recently showed in [START_REF] Köppl | Optimal a priori error estimates for an elliptic problem with Dirac right-hand side[END_REF] a quasi-optimal local convergence for low order in L 2 -norm for Lagrange finite elements and optimal local convergence for higher orders. A quasi-optimal local convergence in H s -norm, s ě 1 and an optimal local convergence in the case of low order have been proved in dimension 2 in [START_REF] Bertoluzza | Local error estimates of the finite element method for an elliptic problem with a dirac source term[END_REF]. In this paper, we establish still in dimension 2 local error estimates for the Stokes problem with a punctual force in source term, Problem (1), and show a quasi-optimal convergence in H 1 ˆL2 -norm. The proof is based on the Arnold and Liu Theorem [START_REF] Arnold | Local error estimates for finite element discretizations of the Stokes equations[END_REF] that establishes local error estimates for finite element discretizations of the Stokes equations with regular source term. It is written in the case of the P k {P k´1 elements for k ě 2, and the MINI finite element method P 1 b{P 1 if k " 1. No graded meshes are required for these results and they imply that there is no pollution effects far from the singularity.

The paper is organized as follows. Our main result is formulated in Section 2 followed by the Arnold and Liu Theorem [START_REF] Arnold | Local error estimates for finite element discretizations of the Stokes equations[END_REF], an important tool for the proof presented in Section 3. Our theoretical results are generalized in Section 4, before being illustrated in Section 5 by some numerical simulations.

Main results.

In this section, we first set all the notations used in this paper. Then, we formulate our main result and give an important tool for the proof: the Arnold and Liu Theorem. For the sake of clarity, this result is first set and proved in the particular case of the P k {P k´1 finite elements (k ě 2) and the P 1 b{P 1 elements. It will be generalized in Section 4.

Notations.

For a domain D, we will denote by } ¨}s,q,D (respectively | ¨|s,q,D ) the norm (respectively semi-norm) of the Sobolev space W s,q pDq, and by } ¨}s,D (respectively | ¨|s,D ) the norm (respectively semi-norm) of the Sobolev space H s pΩq. Letters in bold refer to a vector of R 2 or a function with values in R 2 .

For the numerical solution, let us introduce a family of quasi-uniform simplical triangulations T h of Ω, where h is the meshsize. For the approximation spaces V k h and W k h , we will use the

P k {P k´1 x 0 Ω Ω 0 Ω 1 BΩ 0 BΩ 1 mesh Figure 1: Domains Ω 0 and Ω 1 .
finite elements, for k ě 2, defined as

V k h " v h P C p Ωq 2 ˇˇv h| T P P k rT s, @T P T h ( , W k h " ! p h P C p Ωq ˇˇp h| T P P k´1 rT s, @T P T h ) ,
and if k " 1, we will use the MINI finite element method P 1 b{P 1 , where P 1 b denotes the continous piecewise linear and bubble functions. For a finite element T , the bubble function b is defined by bpxq "

# λ T 1 pxqλ T 2 pxqλ T 3 pxq if x P T, 0 else,
where λ T 1 , λ T 2 and λ T 3 are the barycentric coordinates of x in relation to the triangle T . We fix two subdomains of Ω, called Ω 0 and Ω 1 , such that Ω 0 ĂĂ Ω 1 ĂĂ Ω and x 0 R Ω 1 (see Figure 1). We consider a mesh which satisfies the following condition: Assumption 1. For some h 0 , we have for all 0 ă h ď h 0 (see Figure 1),

Ω m 0 Ş Ω c 1 " H, where Ω m 0 " ď T PT h T Ş Ω 0 ‰H T.

Statement of our main results.

Our main result is given by Theorem 1. The rest of the paper is mostly concerned by the proof, the generalization and the illustration of this theorem.

Theorem 1. Consider Ω 0 ĂĂ Ω 1 ĂĂ Ω satisfying Assumption 1, k ě 1, 1 ď q ă 2, let pu, pq P W 1,q 0 pΩq ˆLq 0 pΩq be the solution of Problem (1) and pu h , p h q its Galerkin projection onto V k h ˆW k h satisfying ş Ω p h " 0 and ż Ω ∇pu ´uh q :: ∇η ´żΩ pp ´ph qdivpηq " 0 for all η P V k h , ż Ω divpu ´uh qξ " 0 for all ξ P W k h .

(

) 2 
Under the assumption that pu, pq P H k`1 pΩ 1 q 2 ˆHk pΩ 1 q, there exists h 1 such that if 0 ă h ď h 1 , we have,

}u ´uh } 1,Ω 0 `}p ´ph } 0,Ω 0 ď CpΩ 0 , Ω 1 , Ωqh k a | ln h|.
2.3 Regularity of the solution pu, pq.

In this subsection, we focus on the singularity of the solution, which is the main difficulty in the study of this kind of problems. In dimension 2, Problem (1) has a unique weak solution pu, pq P W 1,q pΩq 2 ˆLq 0 pΩq for all q P r1, 2r. Indeed, the 2d Stokeslet denoting pu δ , p δ q is defined as (see for instance [START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF])

u δ pxq " 1 4π ˆ´ln }x}I 2 `x ¨tx }x} 2 ˙F, p δ pxq " x ¨F 2π}x} 2 .
(3)

The Stokeslet pu δ , p δ q satisfies in D 1 pR 2 q " ´△u δ `∇p δ " δ 0 F, divpu δ q " 0, so that the Stokeslet pu δ p¨´x 0 q, p δ p¨´x 0 qq contains the singular part of pu, pq, the solution of Problem [START_REF] Araya | A posteriori error estimates for elliptic problems with Dirac delta source terms[END_REF]. As it is done in [START_REF] Araya | A posteriori error estimates for elliptic problems with Dirac delta source terms[END_REF] in the case of the Poisson problem, the solution pu, pq can be built by using a suitable lift procedure which consists in adding to pu δ , p δ q a corrector term pw, πq P H 1 pΩq 2 ˆL2 0 pΩq, which satisfies the following problem:

$ & % ´△w `∇π " 0 in Ω, divpwq " 0 in Ω, w " ´uδ p¨´x 0 q on BΩ.
Then, the solution is given by: upxq " u δ pxq `wpxq "

1 4π ˆ´ln }x}I 2 `x ¨tx }x} 2 ˙F `wpxq, ppxq " p δ pxq `πpxq " x ¨F 2π}x} 2 `πpxq.
Moreover, it is easy to show that u δ R H 1 0 pΩq 2 and p δ R L 2 pΩq. Actually, we can specify how the quantity |u δ | 1,q,Ω goes to infinity when q goes to 2, with q ă 2 (which will be noted q Ñ ă 2).

According to (3), estimating |u

δ | 1,q,Ω when q Ñ ă 2 is reduced to estimate |u δ | 1,q,B
, where B denotes the ball Bpx 0 , 1q: we can easily show that there exists C ą 0 depending only on F such that @1 ď q ă `8, u δ P L q pΩq and |∇u δ | ď C }x} , and so, using polar coordinates, we get for q ă 2,

|u δ | q 1,q,Ω " ż B |∇u δ pxq| q dx ď ż B C q }x} q dx " C q ż 1 0 ż 2π 0 1 r q´1 dθdr " 2πC q 1 2 ´q .
Finally, there exists C ą 0 independent of q such that, for 1 ď q ă 2,

|u δ | 1,q,Ω ď C ? 2 ´q . (4) 
In the same way, we can easily show that there exists C ą 0 independent of q such that, for 1 ď q ă 2,

|p δ | 0,q,Ω ď C ? 2 ´q . (5) 
2. [START_REF] Bertoluzza | The discrete commutator property of approximation spaces[END_REF] Arnold and Liu Theorem.

Before stating Arnold and Liu Theorem, let us enumerate the assumptions that the finite element spaces V k h and W k h have to satisfy so that the theorem is true. Assumption 2. Given two fixed concentric spheres B 0 and B with B 0 ĂĂ B ĂĂ Ω, there exists an h 0 such that for all 0 ă h ď h 0 , we have for some integers k 1 and k 2 :

B1 For any 1 ď ℓ, for each v P H ℓ pBq 2 , there exists η P V k h such that }v ´η} 1,B ď Ch r 1 ´1}v} ℓ,B , r 1 " minpk 1 `1, ℓq.
For any 0 ď s, for each π P H s pBq, there exists ξ P W k h such that }π ´ξ} 0,B ď Ch r 2 }π} s,B , r 2 " minpk 2 `1, sq.

Moreover, if v P H 1 0 pB 0 q 2 (respectively π vanishes on BzB 0 ) then η (respectively ξ) can be chosen to satisfy η P H 1 0 pBq 2 (respectively ξ vanishes on ΩzB).

B2 Let ϕ P C 8 0 pB 0 q, v h P V k h and π h P W k h , then there exist η P V k h Ş H 1 0 pBq and ξ P W k h with supp ξ Ă B such that }ϕv h ´η} 1,B ď Cpϕ, B, B 0 qh}v h } 1,B , }ϕπ h ´ξ} 0,B ď Cpϕ, B, B 0 qh}π h } 0,B .
B3 For each 0 ă h ď h 0 there exists a domain B h with B 0 ĂĂ B h ĂĂ B such that for any 0 ď ℓ, for all v h P V k h and π h P W k h , we have

}v h } 1,B h ď Ch ´1´ℓ }v h } ´ℓ,B h , }π h } 0,B h ď Ch ´ℓ}π h } ´ℓ,B h .
B4 There exists β ą 0 such that for all 0 ă h ď h 0 , there is a domain B h , with B 0 ĂĂ B h ĂĂ B for which

inf π h PW k h supp π h ĂB h sup v h PV k h supp v h ĂB h ş B h divpv h qπ h |π h | 0,B h |v h | 1,B h ě β ą 0.
We now state the following theorem by Arnold and Liu [START_REF] Arnold | Local error estimates for finite element discretizations of the Stokes equations[END_REF], a key tool in the forthcoming proof of Theorem 1.

Theorem (Arnold and Liu [START_REF] Arnold | Local error estimates for finite element discretizations of the Stokes equations[END_REF]). Consider Ω 0 ĂĂ Ω 1 ĂĂ Ω, V k h and W k h satisfy Assumption 2. Suppose that pv, πq P H 1 pΩq 2 ˆL2 pΩq satisfies pv, πq | Ω 1 P H ℓ pΩ 1 q 2 ˆHℓ´1 pΩ 1 q for some ℓ ą 0. Suppose that pv h , π h q P V k h ˆW k h satisfies ş Ω π ´πh " 0 and ż Ω ∇pv ´vh q :: ∇η ´żΩ pπ ´πh qdivpηq " 0 for all η P V k h , ż Ω divpv ´vh qξ " 0 for all ξ P W k h .

Let t be a nonnegative integer. Then there exist a constant C ą 0 and a real h 1 ą 0 depending only on Ω 1 , Ω 0 , and t, such that if 0 ă h ď h 1 we have

}v ´vh } 1,Ω 0 `}π ´πh } 0,Ω 0 ďCph r 1 ´1}v} ℓ,Ω 1 `hr 2 ´1}π} ℓ´1,Ω 1 `}v ´vh } ´t,Ω 1 `}π ´πh } ´t´1,Ω 1 q,
where r 1 " minpk 1 `1, ℓq, r 2 " minpk 2 `2, ℓq, and k 1 , k 2 as in Assumption B1.

Assumptions B1 and B3 are quite standard and satisfied by a wide class of finite element spaces, including all finite element spaces defined on quasi-uniform meshes [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]. The parameters k 1 and k 2 play respectively the role of the order of approximation of the spaces V k h and W k h . In our paper, for k ě 2, we will have k 1 " k and k 2 " k ´1, and for k " 1, we will have k 1 " k 2 " k " 1. Assumption B2 is less common but also satisfied by a wide variety of approximation spaces, including the P 1 bfinite elements [START_REF] Arnold | Local error estimates for finite element discretizations of the Stokes equations[END_REF]. Actually, for Lagrange finite elements, a stronger property than assumption B2 is shown in [START_REF] Bertoluzza | The discrete commutator property of approximation spaces[END_REF]: let 0 ď s ď ℓ ď k, ϕ P C 8 0 pBq and v h P V k h , then there exists η P V k h such that

}ϕv h ´η} s,B ď Cpϕqh ℓ´s`1 }v h } ℓ,B . (6) 
Applied for s " ℓ " 1, inequality [START_REF] Brezis | Analyse fonctionnelle[END_REF] gives assumption B2. When B h " Ω, Assumption B4 is the standard stability condition or discrete inf-sup condition of the Stokes elements. It usually holds as long as B h is a union of elements.

Remark 1. The assumption pv, πq P H 1 pΩq 2 ˆL2 pΩq is not necessary, but it ensures that the finite element solution pv h , π h q is well-defined. In the Dirac right-hand side case, as V k h Ă C pΩq, the discrete solution pu h , p h q is well-defined and Arnold and Liu Theorem holds.

Proof of Theorem 1.

This section is devoted to the proof of our main result: Theorem 1. First, we show a weak version of Aubin-Nitsche duality lemma (Lemma 1), then we establish two discrete inf-sup conditions (Lemmas 2 and 3), and finally we use these results to prove Theorem 1.

3.1 Aubin-Nitsche duality lemma with a singular source term.

The proof of Theorem 1 is based on Arnold and Liu Theorem. In order to estimate the quantities }u ´uh } ´t,Ω 1 and }p ´ph } ´t´1,Ω 1 , we will first show a weak version of Aubin-Nitsche Lemma in the case of the Stokes Problem with a singular source term. Lemma 1. Consider f P W ´1,q pΩq 2 " pW 1,q 1 0 pΩq 2 q 1 , 1 ă q ă 2, and let pw, πq P W 1,q 0 pΩq ˆLq pΩq be the unique solution of

$ & % ´△w `∇π " f in Ω, divpwq " 0 in Ω, w " 0 on BΩ.
Let pw h , π h q be the Galerkin projection of pw, πq in

V k h ˆW k h . For any integer 0 ď t ď k ´1, }w´w h } ´t,Ω `}π ´πh } ´t´1,Ω ď Ch 2p1{q 1 ´1{2q h t`1 p|w ´wh | 1,q,Ω `|π ´πh | 0,q,Ω q . ( 7 
)
Proof. We aim at estimating, for t ě 0, the H ´tpΩq-norm and the H ´t´1 pΩq-norm respectively of the errors w ´wh and π ´πh :

}w ´wh } ´t,Ω " sup ϕPC 8 0 pΩq 2 1 }ϕ} t,Ω ˇˇˇż Ω pw ´wh q ¨ϕˇˇˇˇ( 8)
}π ´πh } ´t´1,Ω " sup

ψPC 8 0 pΩq 1 }ψ} t`1,Ω ˇˇˇż Ω pπ ´πh qψ ˇˇˇ( 9)
The Galerkin projection pw h , π h q satisfies ż Ω π ´πh " 0 and ż Ω ∇pw ´wh q :: ∇η ´żΩ pπ ´πh qdivpηq " 0 for all η P V k h , ż Ω divpw ´wh qξ " 0 for all ξ P W k h .

(
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Consider ϕ P C 8 0 pΩq 2 and let pw ϕ , π ϕ q P H t`2 pΩq ˆHt`1 pΩq be the solution of $ & % ´△w ϕ `∇π ϕ " ϕ in Ω, divpw ϕ q " 0 in Ω, w ϕ " 0 on BΩ.

Existence and uniqueness of the solution to this problem are given in [START_REF] Temam | Theory and numerical analysis[END_REF] (see Chapter I, §2), and we have the estimate

}w ϕ } t`2,Ω `}π ϕ } t`1,Ω ď C}ϕ} t,Ω . (11) 
In dimension 2, by the Sobolev injections established for instance in [START_REF] Brezis | Analyse fonctionnelle[END_REF], we have

H t`2 pΩq Ă W 1,q 1 pΩq, H t`1 pΩq Ă L q 1 pΩq, (12) 
for all q 1 in r2, `8r. Thus ż Ω pw ´wh q ¨ϕ " ´żΩ pw ´wh q ¨△w ϕ `żΩ pw ´wh q ¨∇π ϕ " ż Ω ∇pw ´wh q :: ∇w ϕ ´żΩ divpw ´wh qπ ϕ .

By adding [START_REF] Casas | Spike controls for elliptic and parabolic PDEs[END_REF] in the last equality, we get for any η P V k h and any ξ P W k h , ż Ω pw ´wh q ¨ϕ " ż Ω ∇pw ´wh q :: ∇pw ϕ ´ηq ´żΩ divpw ´wh qpπ ϕ ´ξq `żΩ divpηqpπ ´πh q.

By definition of w ϕ , divpw ϕ q " 0 on Ω, so ż Ω pw ´wh q ¨ϕ " ż Ω ∇pw ´wh q :: ∇pw ϕ ´ηq ´żΩ divpw ´wh qpπ ϕ ´ξq `żΩ divpη ´wϕ qpπ ´πh q ď|w ´wh | 1,q,Ω `|w ϕ ´η| 1,q 1 ,Ω `|π ϕ ´ξ| 0,q 1 ,Ω |π ´πh | 0,q,Ω |w ϕ ´η| 1,q 1 ,Ω .

Now let us deal with the pressure estimate. For any ψ P C 8 0 pΩq, we denote by r ψ the function

r ψ " ψ ´1 |Ω| ż Ω ψ.
By definition, it is easy to see that r ψ satisfies ż Ω r ψ " 0 and @t ě 0, } r ψ} t`1,Ω ď CpΩq}ψ} t`1,Ω .

We can now establish the result for the pressure: consider ψ P C 8 0 pΩq and let pw ψ , π ψ q P H t`2 pΩq Ĥt`1 pΩq be the solution of $ & % ´△w ψ `∇π ψ " 0 in Ω, divpw ψ q " r ψ in Ω, w ψ " 0 on BΩ, See [START_REF] Temam | Theory and numerical analysis[END_REF] (Chapter I, §2) for the existence and the uniqueness, and the following estimate

}w ψ } t`2,Ω `}π ψ } t`1,Ω ď C} r ψ} t`1,Ω ď C}ψ} t`1,Ω . (13) 
Moreover,

ż Ω π ´πh " 0, so that ż Ω pπ ´πh qψ " ż Ω pπ ´πh q r ψ `1 |Ω| ż Ω ψ ż Ω π ´πh " ż Ω pπ ´πh q r ψ.
By the Sobolev injections recalled in [START_REF] Fulford | Muco-ciliary transport in the lung[END_REF], and the Galerkin projection property [START_REF] Casas | Spike controls for elliptic and parabolic PDEs[END_REF], we can write for all η P V k h , ż Ω pπ ´πh qψ " ż Ω pπ ´πh q r ψ " ż Ω pπ ´πh qdivpw ψ q " ż Ω pπ ´πh qdivpw ψ ´ηq `żΩ ∇pw ´wh q :: ∇η.

Then, for all v P W 1,q 0 pΩq ż Ω ∇w ψ :: ∇v ´żΩ π ψ divpvq " 0, so, with v " w ´wh , and for any ξ P W k h , ż Ω pπ ´πh qψ " ż Ω pπ ´πh qdivpw ψ ´ηq `żΩ ∇pw ´wh q :: ∇pη ´wψ q `żΩ π ψ divpw ´wh q " ż Ω pπ ´πh qdivpw ψ ´ηq `żΩ ∇pw ´wh q :: ∇pη ´wψ q `żΩ pπ ψ ´ξqdivpw ´wh q ď|π ´πh | 0,q,Ω |w ψ ´η| 1,q 1 ,Ω `|w ´wh | 1,q,Ω ´|w ψ ´η| 1,q 1 ,Ω `|π ψ ´ξ| 0,q 1 ,Ω ¯.

Finally, for any pη 1 , ξ

1 q P V k h ˆW k h , ż Ω pw ´wh q ¨ϕ ď|w ´wh | 1,q,Ω `|w ϕ ´η1 | 1,q 1 ,Ω `|π ϕ ´ξ1 | 0,q 1 ,Ω |π ´πh | 0,q,Ω |w ϕ ´η1 | 1,q 1 ,Ω , (14) 
and for any pη 2 , ξ

2 q P V k h ˆW k h , ż Ω pπ ´πh qψ ď|π ´πh | 0,q,Ω |w ψ ´η2 | 1,q 1 ,Ω `|w ´wh | 1,q,Ω ´|w ψ ´η2 | 1,q 1 ,Ω `|π ψ ´ξ2 | 0,q 1 ,Ω ¯. ( 15 
)
In order to estimate

|w ϕ ´η1 | 1,q 1 ,Ω , |w ψ ´η2 | 1,q 1 ,Ω , |π ϕ ´ξ1 | 0,q 1
,Ω and |π ψ ´ξ2 | 0,q 1 ,Ω , we will need the following result: Proposition 1 (Girault, Raviart, Corollary A.2, page 97 [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF]). Let T h be a family of quasi-uniform simplicial triangulations of Ω Ă R 2 , where h is the meshsize. For any 0 ď m ď t `1 ď k, for any mesh element T in the family, for any v P W k`1,q 1 pΩq, q 1 ě 2 real,

|v ´Πh v| m,q 1 ,T ď Ch 2p1{q 1 ´1{2q h t`2´m |v| t`2,2,T , (16) 
where Π h v is the P k -interpolant of the function v.

Up to now and until the end of this proof, we will take

η 1 " Π h w ϕ and η 2 " Π h w ψ P V k h , ξ 1 " r Π h π ϕ and ξ 2 " r Π h π ψ P W k h ,
where Π h v is the P k -interpolant of the function v and r Π h v is the P k´1 -interpolant of the function v. By [START_REF] Lacouture | A numerical method to solve the Stokes problem with a punctual force in source term[END_REF], with m " 1, 0 ď t ď k ´1, for all T finite element in the family,

|w ϕ ´η1 | 1,q 1 ,T ď Ch 2p1{q 1 ´1{2q h t`1 |w ϕ | t`2,2,T , (17) 
|w ψ ´η2 | 1,q 1 ,T ď Ch 2p1{q 1 ´1{2q h t`1 |w ψ | t`2,2,T ,
and with m " 0,

|π ϕ ´ξ1 | 0,q 1 ,T ď Ch 2p1{q 1 ´1{2q h t`1 |π ϕ | t`1,2,T , |π ψ ´ξ2 | 0,q 1 ,T ď Ch 2p1{q 1 ´1{2q h t`1 |π ψ | t`1,2,T .
We denote the triangles of the mesh by tT i u i"1,¨¨¨,N , and we set a " pa i q i and b " pb i q i , where a i " |w ϕ ´η1 | 1,q 1 ,T i and b i " |w ϕ | t`2,2,T i .

By [START_REF] Leykekhman | Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints[END_REF], we have, for all i in rr1, N ss,

a i ď Ch 2p1{q 1 ´1{2q h t`1 b i .
We recall the norm equivalence in R N for 0 ă r ă s,

}x} ℓ s ď }x} ℓ r ď N 1{r´1{s }x} ℓ s ,
with here N " Ch ´2. As 2 ă q 1 , we have }b} ℓ q 1 ď }b} ℓ 2 . Then, we can write

|w ϕ ´η1 | 1,q 1 ,Ω " }a} ℓ q 1 ď Ch t`1 h 2p1{q 1 ´1{2q }b} ℓ q 1 ď Ch t`1 h 2p1{q 1 ´1{2q }b} ℓ 2 ď Ch t`1 h 2p1{q 1 ´1{2q |w ϕ | t`2,2,Ω .
Similarly, we get

|w ψ ´η2 | 1,q 1 ,Ω ď Ch t`1 h 2p1{q 1 ´1{2q |w ψ | t`2,2,Ω , |π ϕ ´ξ1 | 0,q 1 ,Ω ď Ch t`1 h 2p1{q 1 ´1{2q |π ϕ | t`1,2,Ω , |π ψ ´ξ2 | 0,q 1 ,Ω ď Ch t`1 h 2p1{q 1 ´1{2q |π ψ | t`1,2,Ω ,
and by ( 11) and ( 13), we get

|w ϕ ´η1 | 1,q 1 ,Ω ď Ch t`1 h 2p1{q 1 ´1{2q }ϕ} t,2,Ω , |w ψ ´η2 | 1,q 1 ,Ω ď Ch t`1 h 2p1{q 1 ´1{2q }ψ} t`1,2,Ω , |π ϕ ´ξ1 | 0,q 1 ,Ω ď Ch t`1 h 2p1{q 1 ´1{2q }ϕ} t,2,Ω , |π ψ ´ξ2 | 0,q 1 ,Ω ď Ch t`1 h 2p1{q 1 ´1{2q }ψ} t`1,2,Ω ,
Finally, the proof is ended by combining ( 8), ( 9), ( 14), [START_REF] Köppl | Optimal a priori error estimates for an elliptic problem with Dirac right-hand side[END_REF], and the last inequalities.

Corollary 1. Let pu h , p h q P V k h ˆW k h be the Galerkin projection of the solution pu, pq of Problem (1), for any 0 ă ε ă 1,

}u´u h } ´k`1,Ω `}p ´ph } ´k,Ω ď Ch ´εh k p|u ´uh | 1,qε,Ω `|p ´ph | 0,qε,Ω q ,
where q ε P r1, 2r is defined by

q ε " 2 1 `ε ˆand so q 1 ε " 2 1 ´ε ˙. (18) 
Proof. We will apply Lemma 1 with F " δ x 0 F, w " u, π " p and t " k ´1. We can explicit inequality (7):

2 ˆ1 q 1 ε ´1 2 ˙" 2 ˆ1 ´ε 2 ´1 2 ˙" ´ε, (19) 
and so, it follows

}u´u h } ´k`1,Ω `}p ´ph } ´k,Ω ď Ch ´εh k p|u ´uh | 1,qε,Ω `|p ´ph | 0,qε,Ω q .
3.2 Discrete inf-sup conditions in L qε -norm.

Section 3.3 is devoted to estimate of |u ´uh | 1,qε,Ω and |p ´ph | 0,qε,Ω . In that prospect, we need to establish two discrete inf-sup conditions.

Lemma 2. With q ε and q 1 ε defined in [START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF], the approximation space V k h defined by

V k h " " v h P V k h ˇˇˇż Ω divpv h qp h " 0, @p h P W k h * ,
satisfies the following discrete inf-sup condition:

inf u h P V k h sup v h P V k h ş Ω ∇u h :: ∇v h |u h | 1,qε,Ω |v h | 1,q 1 ε ,Ω ě Ch ε .
Proof. The bilinear form apu, vq " ż Ω ∇u :: ∇v is continuous and coercive on H 1 0 pΩq, so for V k h vector subspace of H 1 0 pΩq, we have the inf-sup condition: inf

u h P V k h sup v h P V k h ş Ω ∇u h :: ∇v h |u h | 1,Ω |v h | 1,Ω ě α ą 0,
where α only depends on Ω. We recall the following inverse inequality:

Proposition 2 (Ciarlet, Theorem 3.2.6, page 140 [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]). Let T h a family of quasi-uniform simplicial triangulations of Ω Ă R d , where h is the meshsize. For

v h P V k h , 1 ď r, s ă `8, 0 ď ℓ ď m, ˜ÿ T PT h |v h | r m,r,T ¸1{r ď Ch ´drmaxt0,1{s´1{rus h ´pm´ℓq ˜ÿ T PT h |v h | s ℓ,s,T ¸1{s 
.

We will apply this to any v h P V k h Ă C pΩq, with d " 2, m " l " 1, s " 2 and r " q 1 ε to get:

|v h | 1,q 1 ε ,Ω ď Ch ´2p1{2´1{q 1 ε q |v h | 1,2,Ω " Ch ´ε|v h | 1,2,Ω ,
using equality [START_REF] Rannacher | A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements[END_REF]. Moreover, for any

u h P V k h , |u h | 1,qε,Ω ď C|u h | 1,2,Ω ď C sup v h P V k h ş Ω ∇u h :: ∇v h |v h | 1,2,Ω ď Ch ´ε sup v h P V k h ş Ω ∇u h :: ∇v h |v h | 1,q 1 ε ,Ω Finally, inf u h P V k h sup v h P V k h ş Ω ∇u h :: ∇v h |u h | 1,qε,Ω |v h | 1,q 1 ε ,Ω ě Ch ε .
The second discrete inf-sup condition we need is given by the following lemma: Lemma 3. With q ε and q 1 ε defined in [START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF], the approximations spaces V k h and W k h satisfy the following discrete inf-sup condition:

inf p h PW k h sup v h PV k h ş Ω divpv h qp h |p h | 0,qε,Ω |v h | 1,q 1 ε ,Ω ě Ch ε .
Proof. The proof is similar to the proof of Lemma 2. According to Assumption B4,

inf p h PW k h sup v h PV k h ş Ω divpv h qp h |p h | 0,Ω |v h | 1,Ω ě β ą 0.
According to Proposition 2, for any

v h P V k h , |v h | 1,q 1 ε ,Ω ď Ch ´ε|v h | 1,2
,Ω . So, we have, for any p h P W k h and q ε ă 2,

|p h | 0,qε,Ω ď C|p h | 0,Ω ď C sup v h PV k h ş Ω divpv h qp h |v h | 1,2,Ω ď Ch ´ε sup v h PV k h ş Ω divpv h qp h |v h | 1,q 1 ε ,Ω
Finally, we get inf Proof. First, we will estimate |u h | 1,qε,Ω in terms of |u| 1,qε,Ω . As we have divpuq " 0 on Ω, by [START_REF] Arnold | Local error estimates for finite element discretizations of the Stokes equations[END_REF] we have ż Ω divpu h qq h " 0, @q h P W k h , and so, u h P V k h . According to Lemma 2, there exists v h P V k h such as |v h | 1,q 1 ε ,Ω " 1, and We can now estimate |p ´ph | 0,qε,Ω .

p h PW k h sup v h PV k h ş Ω divpv h qp h |p h | 0,qε,Ω |v h | 1,q 1 ε ,Ω ě Ch ε .
|u h | 1,
Lemma 5. Let pu h , p h q P V k h ˆW k h be the Galerkin projection of the solution pu, pq of Problem (1), for any small enough real ε ą 0, |p ´ph | 1,qε,Ω ď Ch ´2ε p|u| 1,qε,Ω `|p| 0,qε,Ω q .

Proof. The proof is similar to the velocity case: according to Lemma 3, there exists

v h P V k h such as |v h | 1,q 1 ε ,Ω " 1 and |p h | 0,qε,Ω ď Ch ´ε ż Ω divpv h qp h .
By (2), we have ż Ω divpv h qp h " ´żΩ ∇pu ´uh q :: ∇v h `żΩ divpv h qp.

By applying Lemma 4, as |v

h | 1,q 1 ε ,Ω " 1, we get |p h | 0,qε,Ω ď Ch ´ε ˆ´ż Ω ∇pu ´uh q :: ∇v h `żΩ divpv h qp ˙, ď Ch ´ε p|u ´uh | 1,qε,Ω `|p| 0,qε,Ω q ,
ď Ch ´2ε p|u| 1,qε,Ω `|p| 0,qε,Ω q .

3.4 Proof of Theorem 1.

We can now prove Theorem 1.

Proof. The functions u and p are analytic on Ω 1 , so the quantities }u} k`1,Ω 1 and }p} k,Ω 1 are bounded.

Let us note that in this case pu, pq R H 1 0 pΩq 2 ˆL2 0 pΩq, but Remark 1 allows us to apply Arnold and Liu Theorem. For k 1 " k and

k 2 " " 1 if k " 1, k ´1 if k ě 2,
and l " k `1 and t " k ´1, we have

}u ´uh } 1,Ω 0 `}p ´ph } 0,Ω 0 ď Cph k `}u ´uh } ´k`1,Ω 1 `}p ´ph } ´k,Ω 1 q.
By combining Corollary 1, Lemmas 4 and 5, and inequalities (4) and ( 5), we get

}u ´uh } ´k`1,Ω 1 `}p ´ph } ´k,Ω 1 ď Ch k h ´3ε ? 2 ´qε .
According to [START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF], with ε ď 1,

1 ? 2 ´qε " ? 1 `ε ? 2ε ď 1 ? ε , therefore, taking ε " | ln h| ´1, }u ´uh } 1,Ω 0 `}p ´ph } 0,Ω 0 ď Ch k a | ln h|,
which ends the proof of Theorem 1.

4 General case.

Theorem 1 and its proof have been written in the particular case of the P k {P k´1 finite element method, k ě 2, and the P 1 b{P 1 elements (which corresponds to the case k " 1). But we can state a more general result.

First, let us focus on the assumptions: let T h be a family of quasi-uniform simplicial triangulations of Ω, let V k 1 h and W k 2 h be two approximation spaces satisfying Assumption 2. We will also assume that V k 1 h P C pΩq: this assumption ensures that the finite element solution is well-defined. Moreover, we will need two more assumptions, they will play the role of Propositions 1 and 2: Assumption 3. Given B Ă Ω, consider q 1 ě 2, there exists an h 0 such that for all 0 ă h ď h 0 , we have for some positive integers k 1 and k 2 : r B1 For any 1 ď ℓ, for each v P H ℓ pBq 2 , there exists η P V k 1 h such that, for any mesh element T Ă B, |v ´η| 1,q 1 ,T ď Ch dp1{q 1 ´1{2q h r 1 ´1|v| ℓ,2,T , r 1 " minpk 1 `1, ℓq.

For any 0 ď s, for each π P H s pBq, there exists ξ P W k 2 h such that, for any mesh element T Ă B, |π ´ξ| 0,q 1 ,T ď Ch dp1{q 1 ´1{2q h r 2 |π| s,2,T , r 2 " minpk 2 `1, sq.

r B3 For all v h P V k 1 h , for any mesh element T P T h , we have }v h } 1,q 1 ,T ď Ch 2p1{q 1 ´1{2q }v h } 1,2,T .

Assumptions r B1 and r B3 are also satisfied by a wide class of finite element spaces, including all finite element spaces defined on quasi-uniform meshes [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]. They are actually common generalisations of Assumptions B1 and B3.

We can now state the following result:

Theorem 2. Consider Ω 0 ĂĂ Ω 1 ĂĂ Ω satisfying Assumption 1, 1 ď q ă 2, let pu, pq P W 1,q 0 pΩq Lq 0 pΩq be the solution of Problem (1) and pu h , p h q its Galerkin projection onto V k 1 h ˆW k 2 h satisfying ş Ω p h " 0 and ż Ω ∇pu ´uh q :: ∇η ´żΩ pp ´ph qdivpηq " 0 for all η P V k h , ż Ω divpu ´uh qξ " 0 for all ξ P W k h .

Under the assumption that pu, pq P H k 0 `1pΩ 1 q 2 ˆHk 0 pΩ 1 q, there exists h 1 such that if 0 ă h ď h 1 , we have, }u ´uh } 1,Ω 0 `}p ´ph } 0,Ω 0 ď CpΩ 0 , Ω 1 , Ωqh k 0 a | ln h|,

where k 0 " minpk 1 , k 2 `1q.

About the error in L 2 pΩ 0 q-norm for the velocity, Figure 12 suggests that the P k {P k´1 finite element method (or P 1 b{P 1 if k " 1) converges at the order k `1 on Ω 0 . This result has only been observed numerically but it is still an open question. 

3. 3 Lemma 4 .

 34 Estimates of |u ´uh | 1,qε,Ω and |p ´ph | 0,qε,Ω .Following Corollary 1, the quantities |u ´uh | 1,qε,Ω and |p ´ph | 0,qε,Ω have to be estimated to prove Theorem 1. We will apply the last two results to bound them in terms of |u| 1,qε,Ω and |p| 0,qε,Ω . Let pu h , p h q P V k h ˆW k h be the Galerkin projection of the solution pu, pq of Problem (1), for any small enough real ε ą 0, |u ´uh | 1,qε,Ω ď Ch ´ε p|u| 1,qε,Ω `|p| 0,qε,Ω q .
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 1213210 Figure10: Estimated order of convergence for the H 1 pΩ 0 q-norm of the velocity.

  qε,Ω ď Ch ´ε ż We conclude with the triangulary inequality, |u ´uh | 1,qε,Ω ď |u| 1,qε,Ω `|u h | 1,qε,Ω ď Ch ´ε p|u| 1,qε,Ω `|p| 0,qε,Ω q .

	Moreover, equality (2) gives			
	ż	ż		
		Ω	∇u :: ∇v h	´żΩ	divpv h qpp ´ph q.
	Now, v h P V k h , so	ż		

Ω ∇u h :: ∇v h . Ω ∇u h :: ∇v h " Ω divpv h qp h " 0. Finally, as |v h | 1,q 1 ε ,Ω " 1,

we get |u h | 1,qε,Ω ď Ch ´ε ˆżΩ ∇u :: ∇v h ´żΩ divpv h qp ˙, ď Ch ´ε p|u| 1,qε,Ω `|p| 0,qε,Ω q .

Proof. We will not develop the complete proof here because it is essentially the same as the proof of Theorem 1 (see Section 3). But we will explain two differences between the both proofs:

' the result of Lemma 1 holds in this case, but for 0 ď t ď minpk 1 ´1, k 2 q.

' the result of Corollary 1 becomes

where k 0 " minpk 1 , k 2 `1q.

The end of the proof is the same.

Numerical illustrations.

In this section, we present some computations which illustrate the theoretical results proved in this paper.

Concentration of the error around the singularity. First, we define Ω as the unit square, Ω " r0, 1s 2 . and solve the following Stokes problem with F " t r1, 1s and x 0 " p0.5, 0.5q,

where u δ is the 2d Stokeslet defined in (3). [START_REF] Araya | A posteriori error estimates for elliptic problems with Dirac delta source terms[END_REF], Problem (20) has non homogeneous Dirichlet boundary conditions, but in this case, the exact solution is known: u δ . Thus, it is easier to get some information on the error. Estimated orders of convergence. For this second example, the domain Ω is still the unit square, and Ω 0 is defined as the following portion of Ω, Ω 0 " tx P Ω : }x ´x0 } 2 ą 0.4u , where x 0 " p0.5, 0.5q. We fix F " t r1, 1s and solve Problem 1 for different mesh sizes h with the P 1 b{P 1 , P 2 {P 1 and P 3 {P 2 finite element methods.

Remark 2. Unlike Problem

Figure 10 (respectively Figure 11) presents the estimated orders of convergence for the H 1 pΩ 0 qnorm of the velocity (respectively the L 2 pΩ 0 q-norm of the pressure) for these three methods. The convergence far from the singularity (i.e. on Ω 0 ) is the same as in the regular case: the P k {P k´1 method (or the P 1 b{P 1 method if k " 1) converges at the order k on Ω 0 in H 1 -norm for the velocity and in L 2 -norm for the pressure, as proved in this paper. Let us just note that there is an over-convergence in pressure for the P 1 b{P 1 elements: the estimated order of convergence is approximately 2, greater than the convergence expected by Theorem 1.

Elements P 1 b{P 1 Elements P 2 {P 1 Elements P 3 {P 2 Order = 2.17