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Abstract Slab dip controls the state of stress in an overriding plate and affects mountain building. Analog 

and numerical models have shown variations in tectonic regime induced by slab folding over the 660 km 

depth discontinuity zone in orthogonal convergence. Here using a three-dimensional model of oblique 

subduction (30°) and accounting for free top surfaces, we show how slab folding generates an along-strike 

slab dip segmentation, inducing variations in topography of the overriding plate. When the subducting 

plate begins to curve forward, the elevation height rises inland and varies along the trench from 5 km to 

2 km. The Andes are a suitable natural zone to compare our results with because of its linear margin and 

well-constrained plates kinematics. Thus, we provide a new explanation to the general decrease in elevation 

from the central to southem Andes, which still remains to be combined with other 3-D mechanisms to 

expia in the actual Andean topography. 

1. Introduction

Subduction zones are generally full 3-D systems, and despite advances in 3-D numerical modeling [Stegman 

et al., 2006; Capitanio and Faccenda, 2012; Rodriguez-Gonzalez et al., 2012; Schellart and Moresi, 2013), flaws 

remain in quantifying the relationship between deep processes and surface deformation in the overrid­

ing plate (OP). Analog models help in assessing this relationship [Chemenda et al., 2000; Espurt et al., 2008; 

Martinod et al., 2013), but the general limitations in geometry and in parametric space challenge the devel­

opment of such modeling studies. 

Many 3-D subduction models are based on the free-subduction hypothesis which sustains the idea of a pre­

dominant role of the slab pull and often leads to the extreme point of view in which the overriding plate 

is neglected. However, the overriding plate does play an important role in subduction dynamics. Observa­

tional studies of present-day subduction zones have shown a relationship between the state of stresses in 

the back-arc reg ion and OP kinematics [Jarrard, 1986; Heuret and Lallemand, 2005). Such observations have 

been reproduced by ana log models of kinematically driven plates where advancing OP (displacement toward 

the trench) generate back-arc compression, whereas fast retreating OP is associated with extension [Heuret 

et al., 2007). Moreover, depending on the combination of plate velocities in these models, the subducting 

plate (SP) displays different shapes (or subduction styles) upon interaction with the 660 km discontinuity. 

ln these models, evolutions of slab geometry and tectonic regime corroborate statistical studies [Lallemand 

et al., 2005). Nevertheless, the link between variations in overriding plate tectonic regime and slab dynamics 

remains poorly constrained. 

Two-dimensional numerical models have explored the dynamics of subduction systems driven by plate 

motions where the subducting plate anchors at 660 km depth. Results from these experiments have shown 

that within a given range of applied far-field plate motion, the SP is forced to fold [Gibert et al., 2012; Cerpa 

et al., 2014). Slab folding generates variations in time of the subduction dip, changing the state of stresses 

in the overriding plate and consequently also the surface topography. ln 2-D models, Gibert et al. [2012) and 

Cerpa et al. [2014) showed that periods of low slab dip generate periods ofcompression in the overriding plate, 

consistent with observations in natural subduction zones [Lallemand et al., 2005). ln contrast, the OP stretches 

when the slab sinks before its first contact with the 660 km discontinuity, and during periods of slab rollback. 



H_=660km 

Figure 1. Physical model at initial time. The upper mantle/lower mande boundary is modeled as an impermeable and 
frictional barrier. Plate boundary velocities are expressed in reference to this base, with positive v

0P and v,p 
corresponding to trenchward motion. We draw an idealized north (N*) for comparison with the Andean margin in the 
oblique experiment. 

While 3-D mantle flow has also been proposed to explain episodic variations in back-arc dynamics in the 
frame of free-subduction models [Stegman et al., 2006; Schellart and Moresi, 20131, here we will not expose 
the influence of this mantle flow, and it is left for a future contribution. 

ln the modeling approach used here we make the assumption of a subduction system controlled by 
plate kinematics so that plates converge toward the trench, a situation representative of about half of the 
present-day natural subductions zones [Heuret and Lallemand, 2005]. Furthermore, we assume a specific 
trench geometry and a rigid 660 km bottom boundary (as in Cerpa et al. [2014]), and we shall test two con­
vergence regimes (orthogonal and oblique) to study the dynamical effects of cyclic slab folding within a 
3-D setting.

The goal of the present work is to model a synthetic oblique subduction zone and to relate slab geometries to 
patterns of vertical deformation in the overriding plate. We first present our numerical method and the model 
setup. The results are then presented comparing both orthogonal and oblique cases. Finally, we discuss how 
these results may apply to the Chilean Andes. 

2. Mechanical Modeling, Numerical Strategy, and Model Setup

We assume a Maxwell viscoelastic model of plates [Hassani et al., 1997; Chéry et al., 2001] and an isoviscous 
Newtonian model for the upper mantle. Thermies and chemical transformations are neglected [Bonnardot 

et al., 2008a] (use similar assumptions in a 2-D approach). We employ a Fictitious Domain Method to 
resolve the solid-fluid coupling described in Cerpa etal. [2014]. Detailed equations are recalled in supporting 
information Text 51. 

Figure 1 displays the geometry of the model setup with complementary mechanical parameters in supporting 
information Text 51 and Table 52. The two viscoelastic plates are pushed against each other by far-field veloc­
ities (v0P 

= 1.5 cm/yr and v,p = 3.0 cm/yr). The plates' lateral boundaries are free slip until they penetrate 
into the viscous mantle within which they become coupled with the asthenospheric mantle. The plates' top 
surface remains free. The friction coefficient in between plates is assigned low (µ = 0.015) as in other 
subudction modeling studies [e.g., Sobolev and Babeyko, 2005] . 

ln the fluid, vertical boundaries are open, the bottom base is closed, and the top boundary is free slip. The 
distance between the plates' lateral vertical boundaries and those of the mantle fluid domain is 0

1
.t = 1500 km 

(D
1at

f D
1 
= 1.5) which is evaluated large enough so that boundary effects are negligible [Schellart and 

Moresi, 2013]. 

An orthogonal subduction (a = 0°) and an oblique subduction (a = 30°) are tested. 

Gibert et al. [2012] have determined a kinematic condition that predicts slab folding with 2-D subduction 
models. If 1v0PI < v, (v, = v0P + v,p is the subduction velocity when internai overriding plate deformation is 
neglected), then the subducting plate folds when depositing over the 660 km discontinuity. This condition is 
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Figure 2. (a) Geometry of plates at final time (circa 85 Ma) in the orthogonal subduction experiment. Blue-to-red color scale displays the second invariant of 

deviatoric stresses (J2(s)) in plates, and magenta lines define the streamlines of in-plane horizontal mantle flow at 400 km depth. (b) Sketch of the line along 

which topography is plotted in Figure 2c through time, and of the subducting plate edges for which slab dips are plotted in Figure 2d through time. (c) Evolution 

of topography versus time at 350 km from the trench. (d) Along-strike variations of slab dip through time, averaged between 150 km and 350 km depth (slab dip 

at the two edges of the slab are drawn in brown and magenta). 

valid in case of a large enough plate/mantle viscosity ratio (:2.'.: 1<>4 [Cerpa etal., 2014]). Hence, our model setup 
stands within this range of parameters. 

3. Results

3.1. Orthogonal Convergence 

We first perform a 3-D orthogonal subduction experiment. The system's final state after circa 85 Ma is displayed 
in Figure 2a. 

Comparison between an equivalent 2-D subduction model (not shown here but similar examples are 
described in, e.g., Cerpa et al. [2014]) and the 3-D orthogonal model shows similar plates dynamics. 

After subduction initiation, the slab sinks into the mantle down to the 660 km discontinuity zone. Because 
of the plates/mantle positive density contrast, the trench retreats, resulting in overriding plate stretching. 
The first interaction between the slab tip and the impermeable barrier at 660 km depth can produce a fold 
depending on the slab's dip just before this interaction. Hereafter, we will rather refer to this event as "slab 
anchoring." Once the slab is anchored it then folds periodically. The present work focuses on plates dynamics 
after anchoring and on its expression at the top surface. 

We distinguish four typical stages during a folding cycle: (1) slab rollback before folding; (2) beginning of 
folding du ring which the slab curves forward, i.e., toward the OP; (3) vertical sin king ofthe fold; and (4) closing 
of the fold and reinitiation of slab roll back. 

As the SP folds over the 660 km depth boundary its dip varies in time, generating variations in stress regime 
of the OP. These variations generate cyclic vertical displacement of the overriding plate's free surface. We 
represent in Figure 2c the temporal evolution of topography after slab anchoring and du ring two slab folding 
cycles, a long a fixed line located 350 km away from the trench (see Figure 2b). Topography varies between a 
negative low (-3 km) and a positive high (4 km) depending on the folding stage. 



Lateral variations in slab dip are displayed through time (Figure 2d). No significant differences appear. There 

are also negligible variations in plate deformation (i.e., no slab nor trench incurvation) and in topography 

a long strike (in the direction parallel to the trench; Figure 2c). Note that maximum elevation at the top surface 

is reached during the compressional event that precedes the minimum slab dip. 

3.2. Oblique Convergence 

We present now the results from the oblique subduction experiment. The general system behavior is similar 

to that of the orthogonal case. Until the slab tip reaches the impermeable barrier at 660 km depth, the OP 

stretches. Once the slab is anchored, it folds periodically as in the orthogonal case. The final state is displayed 

Figure 3a. 

Du ring the experiment and because of the obliquity, the slab dip varies a long strike. Thus, the stress field and 

topography in the OP also vary in this direction, as described below. 

Figures 3b-3e display the slab dip, the orientation of principal deviatoric stresses at the surface of the OP, 

and the topography at four moments corresponding to the four stages cited above. We shall rather focus on 

the description of the tectonic regime and topography far from the trench (> 150 km). Closer than 150 km, 

the OP's surface is complex in detail but remains at first order under compression and subsidence due to the 

plates' density contrast [Bonnardot et al., 2008b). 

Du ring stage 1 characterized by roll back at time 34 Ma (Figure 3b), the slab is nearly vertical and its dip exceeds 

70° over a broad width (parallel to axis y). The OP is in extension, and little topography is observed. Far from 

the trench principal stresses are oriented parallel to the plate axis (x axis) and their magnitude is low. Seven 

hundred kilometers inland, stresses progressively rotate subparallel to the trench direction and increase 

slightly in intensity when approaching the trench. This rotation pattern is similar in the following stages except 

for stage 3. 

At 43 Ma, a slab fold initiates (stage 2, Figure 3c). At this moment the slab curves forward and its dip decreases. 

Because of the obliquity, folding does not start at the same moment a long the margin and thus the slab dip 

at a given moment varies a long strike. Near one lateral boundary of the slab, the dip is lower than 30° up to 

200 km depth, whereas at the same moment the other lateral boundary displays a dip close to 50° down to 

400 km depth. Folding triggers a compressional event in the overriding plate, and an important topography 

develops reaching a height of 4-5 km about 200 km wide a long the lateral plate boundary and is associated 

with a shallowly dipping slab. As the slab dip increases to the other end of the plate boundary (e.g., southward), 

compressional stresses vanish and topography narrows and decreases to a height of 2 km. 

After forward slab incurvation, the slab sinks again vertically (stage 3). We represent this stage at 45 Ma 

(Figure 3d). The obliquity generates a delay in this sin king a long the margin, and thus, another segmentation 

of the slab dip occurs. Vertical sinking generates in the OP a tensile stress regime parallel to the plate axis, 

and the positive topography built in the previous stage disappears. The highest relief shifts inland to about 

700 km and reduces down to an amplitude of about 1 km. 

The folding cycle ends around 53 Ma when the fold closes over itself and the slab starts to rollback again 

(stage 4, Figure 3e). The slab dip increases (> 70
°

) and becomes more homogeneous a long strike. Du ring this 

period, no significant topography develops in the overriding plate since it is subjected to a tensile regime of 

greater intensity compared to previous moments (300 MPa at 500-600 km away from the trench). 

Figure 4b displays the temporal evolution of topography, 350 km in land from the trench (see Figure 4a). After 

slab anchoring, the topography varies between a negative low (-3 km) and a positive high (2-5 km) depend­

ing on the folding stage. Two stages of high elevation correspond to two episodes of slab folding at about 

25 Myr interval. This elevation exceeds 5 km along one lateral boundary, whereas it reaches only 2 km along 

the other boundary at the same moment. 

We display in Figure 2c along-strike temporal variations in dip angle. Along one edge the slab dip varies from 

30° to 70°, whereas along the other end it varies only from 40° to 60°. The edge with the greatest variation in 

slab dip coïncides with the lowest dip and highest topography during folding. Most important, the slab dip 

reaches its minimum values at both slab edges with a delay of about 8 Ma one with the other, and this means 

that during folding there will be a segmentation of the subduction angle along strike. Therefore, maximum 

topography is not achieved simultaneously (Figure 4b) a long the arc reg ion parallel to the trench. 



a 

\ 
-�----

70] 

60 

50� &. 
: "O 

40

J

-.3 

30 

4.0 

2.4 

0.8 
N 

--0.8 

-2.4 

-4.0 

200 MPa 
(extension) 

b 

1 
1 
1 

T=34Ma 

1 1 t • 

1 
1 1 

I 1 1 

1 ' 

---...... ----..... 0 

0 500 

[km] 

1000 

0 

J
i
(s) [MPa]

1000 2000 3000 
1 1 1 1 t 1 1 1 1., ............ _ ...... 

C 

T=43 Ma 

d 
T=45Ma 

' \ \ 

500 

________ ..... 0 

0 500 

[km) 

1000 0 500 

[km) 

2000 

1500 

1000 

500 

1000 

1 

- 1
1 
1

e 

T= 53 Ma 

1000 

500 

-------..+-,i-+-+-0 

0 500 

[km) 

1000 

Figure 3. (a) Geometry of plates at final time (circa 85 Ma) for the oblique subduction experience. Color scales same as Figure 2a see corresponding figure 

caption. (b-e) (top) Geometry of plates and slab dip (displayed only for depths between 120 and 400 km). (bottom) Topography (color scale) and crosses of the 

principal deviatoric stresses at the surface of the OP, indicating their direction and amplitude. 
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Figure 4. (a) Sketch of the line along which topography is plotted. (b and c) The same as Figures 2c and 2d. 

4. Modeling Discussion

ln the models presented here, we assumed a rigid barrier at 660 km depth. This forced stagnation is a process 

supported by tomographie images in several subduction zones [Fukao and Obayashi, 2013]. lt appears as a 

transitional stage before further slab sinking into the lower mantle and may be a common behavior of natural 

subduction systems [Fukao and Obayashi, 2013]. An interesting future study would be to test a similar setup 

in which the slab cou Id penetrate into the lower mantle. Cyclic slab folding cou Id then turn into slab buckling 

within the transition zone as predicted by semianalytic solutions [Ribe et al., 2007] and 2-D numerical models 

[Lee and King, 2011; Cfikova and Bina, 2013]. 

The assumption of kinematically driven plates, as in previous work [Gibert et al., 2012; Cerpa et al., 2014], is also 

strong. lt is found pertinent in subduction zones like the Andes involving a young subducting plate which is 

close to neutral buoyancy, and thus for which the slab pull cannot be the dominant driving force. 

Three-dimensional models of orthogonal free subduction [e.g., Schellart, 2004; Morra and Regenauer-Lieb, 
2006] have evidenced variations in slab deformation in the direction parallel to the trench (i.e., slab incurva­

tion), in relation to toroïdal mantle flow around its edges. We do not observe this feature in our models, and 

instead, our slab dips and stress field in the OP remain constant a long strike. We attribute this homogeneity 

to the presence of the OP as well as to assumptions of a high-viscosity ratio and a moderate width of plates, in 

contrast to other studies. Because of the similarities of our 3-D orthogonal experiment and 2-D experiments, 

we conclude that a 2-D plane-strain approach is suitable in such a context. 

ln the present contribution the novelty consists in accounting for oblique convergence, which generates an 

along-strike slab dip segmentation, in time and space while the slab folds. On one hand, the folding mech­

anism generates cyclic variations in time of the stress field of the OP similar to the orthogonal setting. On 

the other hand, the spatial rotation of stresses results from the obliquity of the subducting plate, since it is 



also obtained in an alternative model without slab folding (cf. additional model Figure SS). The combination 

of both the folding process and the oblique convergence generates cyclic along-strike variations in slab dip 

that enhance alternating periods of tensile and compressional stress regimes in the OP, at different moments 

along the plate margin. 

The difference in slab dip between both edges of the slab (see Figure 4c) reflects a delay in the development 

of folds. At the surface, these folding periods are linked to a maximum elevation (which precedes in time the 

minimum slab dip), which therefore does not occur at the same moment along the trench-parallel direction 

(delay of 10-15 Ma). 

When the slab dip decreases du ring the onset of folding, our model shows maximum elevations in the over­

riding plate varying from about 2 km to more than 4 km from one edge to the other. However, we note that 

the highest elevation is reached above the location where the slab folds over an already deposited portion 

of slab. ln contrast, the fold below the region of lowest elevation deposits directly over the 660 km disconti­

nuity. Thus, slab dip amplitude may increase (or decrease) due to this geometrical feature and thus may also 

enhance the segmentation of topography at identical moments a long the margin. 

We recall briefly how variations in folding periodicity and stress regime are sensitive to several parameters 

[e.g., Gibert et al., 2012, and references therein]: Weaker plates produce steeper slab dips and thus Jess com­

pression in the overriding plate; if the subducting rate increases or the overriding plate velocity decreases, 

then the spacing between two folds decreases; and a relatively lighter (e.g., younger) plate is predicted to 

decrease its subducting dip and thus increases (and/or broadens) OP compression. 

Finally, we recall that the absolute intensity of stresses (and thus mountain building) also depends on 

interplate friction, on plates strength, and on irreversible (e.g., plastic) deformation [e.g., Gerbault et al., 

2009; Capitanio et al., 2011, and references therein], parameters that remain to be analyzed in 3-D slab 

folding models. 

S. Geodynamic Application to the Andes

The Andes is the greatest orogenic system related to the subduction of an oceanic plate and extends over 

8000 km. Although the Cordillera is continuous along the South American margin, it presents latitudinal 

variations in topography, geology, and volcanism related to its complex history [e.g., Ramos, 2009]. Little vari­

ations in plate kinematics in the last 50 Ma [e.g., Somoza and Ghidella, 2012] make the Andes an ideal natural 

oblique subduction zone to study by the means of numerical modeling. Plate kinematics reconstructions for 

the Andes since the Late Cretaceous [Pardo-Casas and Molna,, 1987; Somoza and Ghidella, 2012] indicate a 

stable obliquity of 20-25° since 35 Ma, from North (22°S) to South (40°S) Ch ile [see Haschke et al., 2006, and 

references therein]. ln contrast before in the Eocene (34-50 Ma), the obliquity was about 40°at the same 

locations. Therefore, the obliquity angle of 30° assumed in our oblique model appears comparable to the 

Chilean Andes. 

However, we note that (1) our models have lower imposed convergence velocity than estimates for the Andes 

during the Cenozoic [Pardo-Casas and Molna,, 1987; Somoza and Ghidella, 2012] and that (2) our modeled 

plate width is relatively narrow (1000 km). These discrepancies rise from limitations in computational time. 

Yet as an answer to issue (1 ), Gibert et al. [2012] demonstrated that a faster convergence rate of the overriding 

plate increases its compressional state and decreases the period in between two folding events. And in answer 

to issue (2), alternative 3-D models not presented here show that increasing plates width mainly increases the 

time delay in between slab dip variations along strike. 

ln our oblique model, the principal stresses displayed in Figure 3 show stress partitioning in the overriding 

plate, with a broad reg ion displaying increasing values and rotating directions of the maximum shear stress. 

We expect this shear component to be accommodated by long-term nearly trench-parallel permanent struc­

tures in nature, and this is indeed the case of the Liquii\e-Ofqui Fault Zone in the Southern Andes and the 

Atacama fault zone in Northern Chile [Cembrano etal., 2007]. 

The general extension observed inland in our experiments differs from observations in the Andes. However, 

cyclic periods of compression lasting for about 25 Myr were obtained, and in the Andes, periods of orogenic 

building since 100 Ma were not under a constant regime either [e.g., Ramos, 2009]. The aim of the present 

paper not being to fit exactly the Andes but rather to discuss relative tendencies, we did not seek for most 



appropriate initial conditions. Yet the evolution of topography 300-400 km inland may be compared with 

the Andes as follows. 

Along the straight margin segment of the central Andes from 18°S to 30°S southward, the mountain belt today 

displays a constant average height of 5 km, but its width diminishes. Along this 1000 km portion of the plate 

margin, the slab dip decreases from 30° beneath southern Peru to less than 20° southward [lsacks, 1988]. Our 

results are in contradiction with these observations, since our model generates an increasing slab dip and a 

decreasing topography from north to south. Therefore, factors other than oblique convergence must control 

mountain building in this area (cf. next paragraph). If we now consider the 1000 km long plate margin far­

ther south from 33.5°S down to ~43°S, surface elevation continues to decrease down to an average of 2 km 

[Ramos, 2005], while the slab dip steepens. This observation is now consistent with our model results, suggest­

ing a role of convergence obliquity. ln turn, variations in eastward arc expansion, discontinuous extensional 

basins, and volcanism may be linked with temporal variations in slab dip within the last 100 Myr [Folguera and 

Ramos, 2011] and thus may reflect slab folding. 

The Andean margin is characterized by two fiat slabs, the Nazca ridge around 15°S in Peru and the Juan 

Fernandez ridge around 33
°

S in (hile. The subduction of buoyant oceanic ridges is now well identified as 

being able to cause horizontal subduction [Gutscher et al., 2000; Van Hunen et al., 2002] and increased uplift 

in the overriding plate [e.g., Espurt et al., 2008]. Ana log models indicate elevations up to approximately 7 km 

during the horizontal subduction of a ridge 250 km large, which was compared to the effect of the Nazca 

ridge [Martinod et al., 2013]. However, the buoyancy of the Juan Fernandez ridge remains problematic [Marot 

et al., 20141, and in a more general frame view, horizontal subduction can also result from other factors 

[Van Hunen et al., 2002; Haschke et al., 2006; Gerbault et al., 2009; O'Drisco/1 et al., 2012; Skinner and C/ayton, 

2013; Cerpa et al., 2014]. 

On the other hand, periods of enhanced compression or extension a long the Chilean margin cannot be solely 

explained by the subduction of oceanic ridges [Cembrano et al., 2007], although variations in subduction dip 

are invoked [Ramos, 2009; Folguera and Ramos, 2011]. Therefore, the segmentation modeled here with slab 

folding may explain such altemations. Unfortunately, tomographie data imaging the behavior of the Nazca 

plate in the mantle transition zone still lack resolution to prove this [e.g., Fukao and Obayashi, 2013; Scire 

et al., 2014]. 

Along strike variations in shortening and mountain height throughout the Andes are also attributed to 

climatic and rheological variations. A dry climate in the north maintains high interplate friction and high 

topography, whereas the humid conditions in the south lubricate the plate interface and diminish gravity 

counterbalance [Lamb and Davis, 2003]. Variations in internai strength ofthe oceanic plate and of the accreted 

terranes composing the South American plate also explain variations in amounts of shortening [e.g., Gerbault 

et al., 2009; Capitanio et al., 2011 ]. ln our models we have assumed a homogeneous intraplate friction and 

homogeneous viscoelastic plates. A numerical study accounting for all the involved parameters in 3-D remains 

to be conducted in order to decipher these effects. 

6. Summary and Conclusion

With a 3-D mechanical approach we have obtained a process of oblique subduction that could partially 

explain the segmentation of topography along the Andes. Since compression events in the overriding plate 

are due to the slab dip evolution, the results point to a strong relationship between along-strike variations in 

slab dip and variations in elevation of the overriding plate. The model also displays deformation partitioning, 

occurring in the arc area along the plate margin. 

Amongst the perspectives regarding modeling of oblique subduction, accounting for variable interplate fric­

tion and for brittle-plastic behavior will allow to study the localization of deformation and its cumulated effects 

over time. Temperature-dependent rheologies, surface processes, and a permeable transition zone shall also 

help in better characterizing the long-terrn evolution of the Andes. A retroaction of internai driving forces 

onto plate boundary motion [e.g., Quinteros and Sobalev, 2013] deserves to be explored further in 3-D. Effects 

of mantle viscosity [e.g., Cerpa et al., 20141, particularly when the plates are large [Schellart et al., 2007], also 

remain to be studied. 
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