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Self-consistent GW calculations and the solution of the Bethe-Salpeter equation are to date the best available
approaches to simulate electronic excitations in a vast class of materials, ranging from molecules to solids.
However, up to now numerical instabilities made it impossible to use these techniques to calculate optical
absorption spectra of the best-known thin-film absorbers for solar cells: Cu(In,Ga)(S,Se)2 chalcopyrites and
Cu2ZnSn(S,Se)4 kesterites/stannites. We show here how to solve this problem using a finite-difference method
in k space to evaluate the otherwise diverging dipole matrix elements, obtaining an excellent agreement with
experiments. Having established the validity of this approach, we use it then to calculate the optical response of
the less studied, but promising, Cu2ZnGe(S,Se)4 compounds, opening the way to predictive calculations of still
unknown materials.
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I. INTRODUCTION

Photovoltaics represent one of the most important sustain-
able energy sources today, and are expected to play an essential
role in the future evolution of the world’s energy supply.
The solar cell marketis still dominated by multicrystalline
silicon, despite competition from thin-film solar cells made
of CdTe and Cu(In,Ga)Se2. In 2013, the total thin-film
market share reached only 10%, to be compared with 18%
in 2009 [1], and a further decline of the thin-film market in
2014 is foreseen. These numbers show the urgent need to
find new materials and processes for thin-film photovoltaic
energy conversion, respecting crucial constraints on the costs,
low-energy processing, nontoxicity, and availability of the
constituting elements. An imperative requirement for a thin-
film absorber is an optimal overlap of its absorption spectrum
with the emission spectrum of the sun. The ideal absorber
should possess a band gap of 1.2 to 1.5 eV and display a
strong absorption at the optical edge [2].

The best-known absorber material for thin-film photo-
voltaics is at present CuInxGa1−xSe2, with a record energy
conversion efficiency of 21.7% [3]. Its band gap can be tuned
continuously between 1.04 and 1.65 eV by varying the In/Ga
ratio. [4] In order to further reduce the materials costs of thin-
film solar cells, efforts are being made to replace Cu(In,Ga)Se2
by an indium-free material with similar properties [5]. As
the most representative example, thin-film solar cells with
Cu2ZnSn(S,Se)4 as absorber material have already made their
way into industry [6]. The record efficiency of this family of
thin-film solar cells is presently 12.6% [7]. The optical band
gap of Cu2ZnSn(S,Se)4 can also be tuned between 1.0 and
1.5 eV by varying the S/Se ratio. Another, less intensively
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studied, compound with a potentially suitable band gap is
Cu2ZnGe(S,Se)4 [8,9]. Despite the fact that Ge is not cheaper
than Ga or In, Cu2ZnGeSe4 is however an explored alternative
to Cu(In,Ga)(S,Se)2 due to the nontoxicity of Ge and its
established use in electronics.

Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 compounds have been
investigated intensively both experimentally and theoreti-
cally. There exist two almost isoenergetic crystal phases
of these materials, namely, the kesterite and the stannite
structures, which differ by the distribution of Cu and Zn
atoms. Using neutron diffraction, Schorr clarified that the
ground state is the kesterite crystal structure (in agree-
ment with calculations) [10], and identified at the same
time Cu on Zn and Zn on Cu antisites as the prevailing
intrinsic defects [11]. These defects are indeed those that
transform the kesterite into the stannite structure, and their
low formation energies explain the coexistence of disordered
mixed kesterite/stannite phases in experimental samples. The
scattering of band gap values measured by different groups,
and the lower photovoltaic efficiency of Cu2ZnSn(S,Se)4 cells
with respect to Cu(In,Ga)Se2 cells, are generally ascribed
to the presence of minority phases and/or disorder [12].
Optical gaps and absorption spectra have been measured for
some of the Cu(In,Ga)Se2 [4], Cu2ZnSn(S,Se)4 [12,13], and
Cu2ZnGe(S,Se)4 compounds [14,15].

This picture shows that Cu-based thin-film solar cells are
still progressing; however, there is clearly a need to optimize
existing or to search for novel absorbers for high-efficiency
devices. However, synthesizing a new compound and mea-
suring its optical absorption spectrum are complex tasks; for
example, careful surface preparation is required in order to
obtain a well-resolved optical absorption spectrum [4,13].

The search for novel absorbers for photovoltaics can be
aided by the ability to calculate, from first principles, accurate
optical properties for all possible composing elements, and
more generally for any atomic arrangement, ranging from
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molecules to low-dimensional nanostructures and solids. In
the framework of many-body perturbation theory, the Green’s-
function-based self-consistent (sc) GW method, combined
with the solution of the Bethe-Salpeter equation (BSE), is
to date the most reliable and versatile approach to calculate
optical response functions. Such ab initio calculations of
optical spectra have been performed on a very high level
of accuracy for many materials, and it is acknowledged
that an excellent qualitative and quantitative agreement with
experiment can be obtained with these methods both for
solids [16–23] and finite nano-objects [24–28].

We can find several ab initio calculations on band gaps of
Cu(In,Ga)Se2 and related compounds in the literature: Chen
et al. carried out an extensive computational study on the
ground-state structure and stability of a large number of such
compounds using density-functional theory (DFT) [8]. They
estimated band gaps with an empirical extrapolation scheme,
based on available experimental data. Zhang et al. conducted a
similar study with a hybrid DFT functional in order to include
Hartree-Fock exchange, and in addition obtained quasiparticle
band gaps from many-body methods (GW@PBE+U ) to iden-
tify trends in the band gaps with composition [29]. Botti and
co-workers went a step further and accounted for the effects
of self-consistency in the calculation of GW band structures
of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 compounds [30–32].
However, most of these works focus on the quasiparticle band
gaps rather than the optical ones; in other words, excitonic
effects are neglected. Although for the well-studied materials
Cu(In,Ga)(S,Se)2 and Cu2ZnSn(S,Se)4, there is experimental
evidence that excitonic effects are small [33–36], this is not
the case for simple silicon, whose oscillator strength near the
absorption onset is strongly enhanced by excitonic effects [17],
and in general, this cannot be safely assumed a priori for any
given absorber material.

A few ab initio calculations of optical spectra of
Cu(In,Ga)(S,Se)2 and Cu2ZnSn(S,Se)4 have also been pub-
lished [37,38]. These studies used either time-dependent DFT
(TDDFT) with a hybrid functional [37], or the random-
phase approximation (RPA) starting from GW band struc-
tures [38]. Unfortunately, it is well known that TDDFT, using
a standard approximation for the time-dependent exchange-
correlation functional, fails to correctly account for exci-
tonic effects [20,39]. Using, for example, hybrid functionals,
TDDFT allows for a partial inclusion of the electron-hole
interaction also for solids [37,40], but the quasiparticle band
gaps are usually too small [41], and excitonic peaks remain
generally underestimated. The general accuracy of TDDFT
with hybrid functionals for optical spectra of bulk crystals is
therefore not yet sufficiently established, so that the scGW +
BSE approach is preferable. It has not been applied to this class
of materials yet, a gap which we fill with the present work.
More specifically, we chose to use the self-consistent Coulomb
hole plus screened exchange approximation, followed by a
GW one-shot calculation (G0W0@scCOHSEX), as we explain
in Sec. II.

If one tries to calculate the optical absorption of
bulk chalcopyrite Cu(Ga,In)Se2, using standard implemen-
tations [42,43] of the scGW + BSE approach, the result is
very deceiving. These compounds are in fact computationally
challenging due to the presence of hybridized p-d states close

to the top of the valence band, which are responsible for the
closing of the Kohn-Sham gap in standard DFT calculations. In
the long-wavelength limit, a vanishing Kohn-Sham band gap
causes divergencies in the dipole transition matrix elements
that are used to build up the response function in an RPA,
TDDFT, or BSE calculation. In the standard implementations
for the calculation of optical absorption, this remains true
even when the eigenenergies are properly replaced by hybrid
functional or GW quasiparticle energies, making the whole
spectrum collapse into an enormous unphysical peak at the
absorption edge.

In this article, we propose a general and computationally
efficient solution to this problem, and present as a first
application the calculation of the optical spectra of Cu-based
chalcogenides.

This paper is organized as follows. In Sec. II we describe
the many-body perturbation theory methods that we use,
and we explain how we solve the numerical problems that
arise when the starting DFT Kohn-Sham band gap is closed.
Then, in Sec. III, we present the calculated imaginary part
of the frequency-dependent dielectric permittivity, Im{εM},
for Cu(In,Ga)Se2, Cu2ZnSn(S,Se)4, and Cu2ZnGe(S,Se)4
compounds, considering both kesterite and stannite crystal
structures for Cu2ZnSn(S,Se)4. We discuss the level of
agreement between calculation and available experimental
data in Sec. IV, and close in Sec. V with a summary and
further perspectives.

II. COMPUTATIONAL METHODS

A. DFT and scGW calculations

The chalcopyrite crystal structure of Cu(In,Ga)(S,Se)2
compounds is derived from the zinc blende structure of ZnS
by replacing half the Zn atoms with Cu and the other half with
In (or Ga) atoms, in such a way that every cation has four
S (or analogously Se) neighbors and each anion has two Cu
and two In (or Ga) neighbors. To obtain the conventional unit
cell of Cu(In,Ga)(S,Se)2, the face-centered cubic conventional
unit cell of zinc blende is doubled along c, the c/a ratio
deviates slightly from 2, and the internal coordinate u of
S or Se deviates slightly from u = 1/4. For example, in
CuInS2, S is at (u,u,1/8) with 0.20 < u < 0.23 [44]. To
obtain a quaternary Cu2ZnSn(S,Se)4 crystal with kesterite
or stannite symmetry, the two In (or Ga) atoms in the unit
cell are further replaced by one Zn and one Sn atom (see
Fig. 1). In a similar way, Cu2ZnGe(S,Se)4 is obtained from
Cu(In,Ga)(S,Se)2 by replacing two In or Ga atoms with one Zn
and one Ge atom. For Cu2ZnSn(S,Se)4, we take into account
both kesterite and stannite structures. For Cu2ZnGe(S,Se)4,
we assume the kesterite structure, which is the theoretical
ground-state structure, according to calculations in Ref. [8].

For all crystal structures, first a DFT calculation for the
ground state is performed using the local-density approxima-
tion (LDA) in the parametrization of Perdew and Wang [45] of
the data of Ceperly and Alder [46] for the exchange-correlation
energy. We note that a different choice of semilocal density
functional as a starting point, such as the generalized-gradient
approximation of Perdew, Burke, and Ernzerhof [47], does not
significantly open the Kohn-Sham band gap, which is either
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FIG. 1. (Color online) Crystal structures of Cu2ZnSnSe4

kesterite (left) and stannite (right), after Ref. [11].

negative or very small for all the compounds studied here.
The experimental geometries [48–50] are used. When internal
structural parameters are missing, they are calculated using the
functional of Heyd, Scuseria, and Ernzerhof [51]. More details
have been given in Refs. [30,32].

Afterwards, the many-body wave functions and energies
are obtained with the GW method at the self-consistent
COHSEX level [52]. The energy eigenvalues are further
corrected by a perturbative GW (G0W0) calculation, using
a plasmon-pole model [53] for the frequency dependence
of the dielectric matrix. We note that this procedure al-
lows photoemission band gaps in excellent agreement with
experimental data to be obtained [30–32]. In Ref. [54],
this G0W0@scCOHSEX approach has been compared to
results of the LDA, the G0W0@LDA, and the quasiparticle
self-consistent GW (QPscGW ) method [55], which is self-
consistent on energy eigenvalues and wave functions and de-
livers band gaps in excellent agreement with experiment [56].
Bruneval et al. conclude that G0W0@scCOHSEX improves
strongly over LDA and G0W0@LDA and yields similar
energy eigenvalues and electronic densities as QPscGW ,
at a lower computational cost. Throughout this paper, we
apply this G0W0@scCOHSEX approach [54], which we call
scGW . Monkhorst-Pack k-point meshes between 8 × 8 × 8
and 16 × 16 × 16 points, a plane-wave energy cutoff of 120
hartrees, and norm-conserving pseudopotentials are used. For
Cu, In, Zn, and Sn, semicore states are included in the
valence to properly account for the core-valence exchange
interaction in the calculation of the self-energy [57–59], while
64 to 97 bands (about as many conduction as valence bands)
are included. The scGW calculations are performed on a
coarser k-point mesh (3 × 3 × 3 or 4 × 4 × 4), in order to
reduce the computational costs, and the quasiparticle energies
are interpolated to finer k grids using maximally localized
Wannier functions (MLWFs) [60–63]. All these calculations
are performed with ABINIT [64,65]. All 64 to 97 bands are
retained in the self-consistent COHSEX iterations, except for

the lowest 8 to 20, depending on the system. For the calculation
of the electronic screening, the energy cutoff is set to 50
hartrees for the plane-wave expansion of the wave functions,
and to 15 hartrees for the size of the dielectric matrix. We note
that only 240 to 300 bands are used thanks to the use of the
extrapolar approximation of Bruneval and Gonze [66]. For the
calculation of the self-energy, an energy cutoff of 70 hartrees
is used for the plane-wave expansion of the wave functions and
for the exchange self-energy, while a smaller matrix is needed
for the correlation part of the self-energy, corresponding to
a cutoff of 15 hartrees, consistent with the choice made
for the dielectric matrix. In the final perturbative GW step,
the convergence of the GW corrections with the number
of included unoccupied states is again accelerated using the
extrapolar approximation of Bruneval and Gonze [66]. All
details on GW calculations for these systems can be found in
previous publications [30–32].

B. Optical spectra

Optical spectra can be extracted from the frequency
dependence of the imaginary part of the dielectric permittivity,
Im{εM (ω)}. Here we perform calculations of this tensor within
the scGW RPA and by solving the BSE [67]. In order to
compare with optical absorption experiments, we need the
Fourier-transformed macroscopic dielectric permittivity in the
long-wavelength limit [20],

lim
q→0

εM (q,ω) = lim
q→0

1

ε−1
G=0,G′=0(q,ω)

, (1)

where q is a wave vector in the first Brillouin zone. In
the longitudinal gauge (which in the limit q → 0 becomes
equivalent to the transverse one, with which we work), q is
also parallel to the polarization of the light.

1. Optical spectra in the scGW RPA

The frequency-dependent dielectric permittivity in recip-
rocal space, εGG′(q,ω), is connected to the linear density
response function [20] χ (r,r′,t − t ′) = δ�(r,t)/δVext(r′,t ′)
as [42]

ε−1
GG′(q,ω) = δGG′ + vG(q)χGG′(q,ω), (2)

where � is the electronic density, v is the Coulomb interaction,
and χ can be obtained in the random phase approximation
from the independent-particle response function χ0(r,r′,t −
t ′) from a Dyson equation, which we write using Fourier
transforms in reciprocal and frequency space [42,59]:

χGG′(q,ω) = χ0
GG′(q,ω) +

∑
G′′

χ0
GG′′ (q,ω)vG′′(q)χG′′G′(q,ω).

(3)

Note that in the RPA the Coulomb attraction between electron
and hole is neglected.

The independent-particle response function χ0 is often
calculated using Kohn-Sham eigenvalues and orbitals [59]:

χ0
GG′(q,ω)

= 1

V

∑
knm

(fmk+q − fnk)�̃nmk(q + G)�̃∗
nmk(q + G′)

ω − (Enk − Emk+q) + iηsgn(Enk − Emk+q)
(4)
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with the energy eigenvalues Enk, Fermi occupation numbers
fnk, and oscillator matrix elements [59]

�̃nmk(q + G) = 〈unk|e−i(q+G)r|umk+q〉, (5)

where unk is the cell-periodic part of the Bloch function
ψnk(r) = exp(ik · r)unk(r). However, due to the mentioned
shortcomings of Kohn-Sham DFT for the class of systems
under study, in this work we will use the wave functions from
scCOHSEX, and the energy eigenvalues from the quasiparticle
results of the G0W0@scCOHSEX calculations described
above (scGW RPA).

2. Optical spectra in scGW BSE calculations

So far, we have assumed electron and hole to be indepen-
dent. This approximation is known to lead to poor absorption
spectra for wide-gap semiconductors and silicon [20,39], and
therefore we drop it here. First, in order to avoid the matrix
inversion needed in Eq. (1), one writes [20,42]

lim
q→0

εM (q,ω) = 1 − lim
q→0

vG=0(q)χ̄G=0,G′=0(q,ω), (6)

where the modified polarizability χ̄ is connected to χ0 by [20]

χ̄ = χ0 + χ0v̄χ̄ , (7)

with the modified Coulomb potential [20]

v̄G(q) =
{
vG(q) = 4π/(q + G)2 if G �= 0,

0 if G = 0.
(8)

Taking into account electron-hole interaction means including
a vertex correction in Hedin’s equation [52] for the po-
larizability. We define L0(1,2; 3,4) = −iG(1,3)G(4,2), [20]
the four-point polarizability for independent particles. Then,
the modified four-point polarizability L̄ is obtained from the
Bethe-Salpeter equation [68]:

L̄ = L0 + L0 
̄ L̄, (9)

with the Bethe-Salpeter kernel 
̄ = v̄ − W [68]. The RPA
would be retrieved if W were set to 0. The four-point functions
in Eq. (9) are expanded in a basis of products of quasiparticle
conduction and valence states ψckψ

∗
vk [23]. In particular, L0 is

diagonal in this basis [23]:

L0
v1,c1,k1,v2,c2,k2

(ω)

= fc1k1 − fv1k1

Ec1k1 − Ev1k1 − ω − iη
δv1,v2δc1,c2δk1,k2 . (10)

Finally, the two-point polarizability χ̄ needed in Eq. (6) is a
“diagonal” element of the four-point function L̄: [20,59]

χ̄ (1,2) = L̄(1,2; 1,2). (11)

In order to avoid a time-consuming matrix inversion of Eq. (9),
the BSE is solved using a series expansion [23]:

L̄ = (1 − L0
̄)−1L0 =
∑
m

(L0
̄)mL0, (12)

which is truncated at finite m once convergence is reached.
The solution of the BSE is further sped up using a double-grid
technique [23]. The quasiparticle energies from a scGW

calculation are interpolated to a fine k grid (e.g., 24 × 24 × 24
points) using maximally localized Wannier functions. The

rapidly varying independent-particle polarization L0 is cal-
culated on this fine k grid, while the Bethe-Salpeter kernel

̄ is calculated on a coarser grid (8 × 8 × 8 or 10 × 10 × 10
points). The mapping of L0 to the coarser grid, on which the
BSE is finally solved, is performed through the double-grid
technique with a suitably chosen interpolation for the Bethe-
Salpeter kernel (in this case with second-order polynomial
interpolation). The fine k grid usually has three times more
grid points in each direction compared to the coarse k grid, on
which the spectra are obtained. A more detailed description of
the double-grid technique can be found in Ref. [23].

3. Dipole matrix elements

Here we work in the length gauge, where the perturbation
Hamiltonian due to the external electromagnetic field in the
dipole approximation is r · E, where E is the electric field.
Alternatively, one could work in the velocity gauge, where the
perturbation Hamiltonian would take the form A · p, where
p is the momentum operator, and A is the electromagnetic
vector potential. Both for the scGW RPA and for the scGW

BSE calculations, the oscillator matrix elements in Eq. (5) are
needed. For G �= 0, �̃nmk(q + G) can be obtained as a product
in Fourier space. For the G = 0 component of Eq. (5) in the
limit q → 0,

lim
q→0

�̃nmk(q) ≈ −i lim
q→0

q〈unk|r|umk〉, (13)

dipole matrix elements 〈unk|r|umk〉 are usually first obtained
in the basis of Kohn-Sham wave functions |nkKS〉 and |n′kKS〉,
and then rotated into the basis of quasiparticle wave functions
|ik〉 and |jk〉, as in Ref. [69]:

〈ik|r|jk〉 =
∑
n,n′

〈ik|nkKS〉〈nkKS|r|n′kKS〉〈n′kKS|jk〉. (14)

The dipole matrix elements in the Kohn-Sham basis are
typically evaluated as

〈nkKS|r|n′kKS〉 = 〈nkKS|[r,HKS]|n′kKS〉
EKS

n′k − EKS
nk

= 〈nkKS|ip + [r,VNL]|n′kKS〉
EKS

n′k − EKS
nk

, (15)

where EKS
nk is a Kohn-Sham eigenvalue, and VNL is the

nonlocal part of the Kohn-Sham Hamiltonian due to nonlocal
pseudopotentials. Because of the energy differences between
Kohn-Sham states in the denominator, dipole matrix elements
can be obtained from Eq. (15) only if DFT yields a finite
band gap, so that EKS

n′k − EKS
nk �= 0 [69]. In principle, Eq. (15)

could be evaluated in the scGW basis, in which the band gap is
finite. This, however, requires knowledge of the commutator of
the position operator and the nonlocal part of the self-energy,
[r,�GW

NL ], which is more difficult to obtain than its analog
in the Kohn-Sham basis [r,VNL]. For the same reason, using
hybrid functionals to open the band gap is not a simple solution.
Therefore, we follow a different approach here: For transitions
with a vanishing energy difference in DFT, we calculate the
dipole matrix elements as k derivatives, based on the work by
Blount [70]:

〈vkKS|r|ckKS〉 = i
〈
uKS

vk

∣∣∇k
∣∣uKS

ck

〉
, (16)
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using a finite-difference sum in k space,
〈
uKS

vk

∣∣∇k
∣∣uKS

ck

〉 ≈
∑

b

wbb
〈
uKS

vk

∣∣uKS
ck+b

〉
, (17)

where b is a vector to a (nearest-)neighbor k point, and the wb
are weight factors chosen such that the finite-difference sum
is exact in the linear limit. This approach follows the work
of Marzari and Vanderbilt discussed in Ref. [61], where the
representation of the position operator as a k derivative and its
approximation by a finite-difference sum are used in order to
calculate and optimize the localization of Wannier functions. It
is also related to the Berry-phase [71] approach to the electric
polarization in solids [72]. In order to calculate the electric
polarization of a periodic system in the Berry-phase approach,
one needs the diagonal elements (〈vkKS|r|vkKS〉) in Eq. (16),
which are not gauge covariant. However, here we are interested
in the nondiagonal elements, assuming that band mixing by
scGW in Eq. (14) is small. Under a gauge transformation,
which multiplies the Bloch functions by an arbitrary phase
factor for each band and k point,∣∣uKS

nk

〉 → ∣∣ũKS
nk

〉 = eiϕnk
∣∣uKS

nk

〉
, (18)

the matrix elements i〈uKS
vk |∇k|uKS

ck 〉 transform in the same way
as the position matrix elements [70]:〈

uKS
vk

∣∣r∣∣uKS
ck

〉 → ei(ϕck−ϕvk)
〈
uKS

vk

∣∣r∣∣uKS
ck

〉
,

(19)
i
〈
uKS

vk

∣∣∇k
∣∣uKS

ck

〉 → ei(ϕck−ϕvk)i
〈
uKS

vk

∣∣∇k
∣∣uKS

ck

〉
,

whereas the matrix elements in Eq. (17) transform as〈
uKS

vk

∣∣uKS
ck+b

〉 → ei(ϕck−ϕvk)
〈
uKS

vk

∣∣uKS
ck+b

〉
ei(ϕck+b−ϕck).

Equation (17) is therefore not strictly gauge covariant, but it
becomes asymptotically so in the limit of b → 0 for all gauges
which are sufficiently smooth functions of k. The phases can be
chosen arbitrarily, apart from a constraint which results from
the periodicity of the Bloch functions in k, ψnk+G = ψnk [72],
which leads to

unk+G(G′) = unk(G′ + G). (20)

In order to account for the possibility that a DFT program
may output Bloch functions with random phases, for which
Eq. (16) is undefined, we first switch to a gauge for which a
derivative in k exists. A simple solution, which fulfills Eq. (20)
and which we apply here, is a zero-order interpolation of the
phases in each reciprocal lattice cell.

4. Technical details

Optical spectra are calculated using the program
YAMBO [42]. Because of the optical anisotropy related to
the symmetry of chalcopyrite (or kesterite and stannite), we
consider light polarizations parallel and perpendicular to the
crystallographic c axis. A Lorentzian smearing of 0.1 eV
is applied to simulate thermal and other broadening present
in experimental spectra. We include all bands used for the
scCOHSEX calculations in the calculations using the scGW

RPA, and about 20 bands (10 valence and 10 conduction bands)
for the BSE calculations. For the BSE spectra, due to the
small number of bands included, only an energy region of a
few (about 4) eV can be covered. The scGW RPA spectra

are found to be approximately converged with respect to the
k-point density at about 8 × 8 × 8 k points. We observe that
the k-grid convergence is particularly critical for this class of
materials as the lowest conduction band is very dispersive,
and as a result, if we want to obtain a smooth first peak
after the absorption threshold, a very dense sampling of the
Brillouin zone around 
 is required. Furthermore, local-field
effects are included, and the BSE coupling terms are omitted,
i.e., we use the Tamm-Dancoff approximation (TDA). Finally,
the static inverse dielectric matrix is calculated from the
scCOHSEX wave functions and G0W0@scCOHSEX energy
eigenvalues to build W for the BSE. In principle, one could
apply the finite-difference approach throughout, but since its
convergence with k points is slow (see below), we could
not satisfactorily converge the matrix elements for large unit
cells. Therefore we use a “mixed” approach, such that the
commutator expression is used whenever possible. Only if the
energy difference of a transition is smaller than a threshold,
|EKS

n′k − EKS
nk | < δ, is the matrix element calculated with the k

derivative. In order to obtain a suitable value for δ, we first
perform a scGW RPA calculation, using only k derivatives,
on a finer k-point grid (16 × 16 × 16), in order to obtain
the correct shape of the spectrum. Afterwards, another scGW

RPA calculation is performed on a coarser k-point (8 × 8 × 8)
grid with the mixed approach, choosing δ such that the onset
of the spectrum on the coarse grid resembles that of the
calculation on the finer grid (see Sec. III A). For the materials
studied here, δ is of the order of 10−3–10−2 hartrees. Finally,
the BSE calculation is performed with the same δ. In the
following, unless stated otherwise, the mixed approach is used
throughout.

When comparing calculated with experimentally measured
spectra, it is desirable to quantify the level of agreement
in some way. It is straightforward to compare optical gaps,
but for our purpose, the oscillator strength near the onset is
also important. A criterion for “good” agreement between

0
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Photon energy ω (eV)

10x10x10
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48x48x48

[r,H]
i∇k

FIG. 2. (Color online) LDA RPA spectra of silicon using LDA
wave functions and energies for k meshes from 10 × 10 × 10 to
48 × 48 × 48 points, calculated using the commutator expression
[r,H], Eq. (15), and the k derivative i∇k, Eq. (16).
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FIG. 3. (Color online) Imaginary part of εM of CuGaSe2 from
scGW RPA for light polarization || to the c axis, using (a) only
the commutator expression; (b) only the k derivative; and (c), the
combination of both (mixed, δ = 10 millihartrees). The numbers
8 and 16 denote k-point meshes of 8 × 8 × 8 and 16 × 16 × 16 k

points, respectively.

calculation and experiment could be, for example, that for a
given set of materials, the calculated spectra can be assigned to
the correct material and polarization direction by a numerical
formula. In order to quantify the level of agreement between
calculated and experimental spectra, we determine the overlap
oec between normalized experimental (e) and calculated (c)
spectra s as

oeα,cβ = 〈seα|scβ〉
‖seα‖‖scβ‖ , (21)

0.8

0.9

1.0

0.00 0.02 0.04 ∞

o e
c

δ in Ha

w.r.t. 16 i∇k

w.r.t. expt.

FIG. 4. (Color online) Overlaps of the normalized, mixed scGW

RPA spectrum of CuGaSe2 with the normalized i∇k spectrum for
16 × 16 × 16 k points and with the experimental one, as a function
of δ for a k-point mesh of 8 × 8 × 8 k points and for light polarization
|| to the c axis.

where the indices α and β denote light polarization direc-
tions perpendicular (⊥) and parallel (||) with respect to the
crystallographic c axis, respectively. We test two criteria: (1)
diagonal dominance of the overlap matrix, and (2) a positive
determinant of the overlap matrix. The first criterion means that
the calculated spectrum is more “similar” to the corresponding
experimental one than to any other one. The second criterion
is weaker; it means that the overall error is minimized if the
spectra are correctly assigned. We normalize the determinant
d = det oec

det oee
so that d ranges roughly from −1 (anticorrelation)

to +1 (perfect correlation).
Optical gaps are extracted from a spectrum with a smaller

broadening (1 meV) as the energy of the first local maximum
(peak) of Im{εM (ω)} with a magnitude above 10−2. The upper
limit for the uncertainty in the peak position is 0.025 eV, the
step between subsequent energies at which εM (ω) is calculated.

III. RESULTS

A. Convergence tests for k derivatives

The finite-difference method, Eq. (17), requires a suffi-
ciently high k-point density. In Fig. 2, the imaginary part of the
frequency-dependent dielectric constant of silicon in the LDA
RPA is depicted for different k-point meshes. Since the purpose
is a convergence test with respect to k points, a correct band gap
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FIG. 5. (Color online) Imaginary part of εM of CuGaSe2 from
scGW RPA and scGW BSE calculations. A k mesh of 8 × 8 × 8
points is used. Experimental data are from Alonso et al. [4]. The
vertical lines indicate the calculated optical gaps using scGW RPA
and scGW BSE (see Sec. III C).
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is not important here, so that LDA wave functions and energy
eigenvalues are used. The spectra obtained with k derivatives
converge to those obtained with the commutator expression,
but only for rather fine k-point grids of at least about
24 × 24 × 24, whereas, at least for solving the BSE, we are
limited to k-point grids of about 8 × 8 × 8. Figure 3 shows the
spectra of CuGaSe2 from experiment [4] and calculated within
the scGW RPA, using (a) only the commutator expression;
(b) only the k derivative; and (c), the combination of both
(mixed). The commutator expression leads to divergence of
the first peak due to the underestimation of the band gap by
DFT. The k derivative is free of such instabilities and yields a
spectrum in qualitative agreement with experiment. However,
since k-point convergence is not reached, the spectrum is too
small, especially for the coarser k-point grid of 8 × 8 × 8
points. At 16 × 16 × 16 k points, the i∇k spectrum is not yet
converged with respect to k points, but comparing the upper,
numerically stable part above 3 eV with the [r,H] spectrum,
one notices that the shapes are already the same, and that
lack of convergence of the i∇k spectrum leads to a systematic
underestimation of oscillator strength. By mixing the two
methods, we take advantage of the numerical robustness of
the k derivatives and the faster k-point convergence of the
commutator expression. The spectrum is not a smooth function
of δ. If δ is too small, divergent dipole matrix elements can
occur. Once δ crosses a material-dependent threshold, the
divergent matrix elements become finite abruptly. If δ is further
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FIG. 6. (Color online) The same as Fig. 5 for CuInSe2. A k mesh
of 10 × 10 × 10 points is used. Experimental data are from Alonso
et al. [4].

increased, more i∇k transitions are included, and the quality of
the spectrum can decrease again, depending on the number of
k points used. In Fig. 4 the experimental spectrum of CuGaSe2

and the i∇k spectrum for 16 × 16 × 16 k points are used as
a reference, and the normalized overlap with the calculated
scGW RPA spectrum is depicted as a function of δ.

B. Spectra of CuGaSe2, CuInSe2, Cu2ZnSn(S,Se)4,
and Cu2ZnGe(S,Se)4

Figure 5 shows the spectra of CuGaSe2 from experiment [4]
and calculated using the scGW RPA and the scGW BSE,
using the mixed approach, as described above. The scGW RPA
and scGW BSE methods yield very similar spectra, but the
peak positions of the BSE spectra are shifted to slightly lower
energies and are therefore in better agreement with experiment.
A small difference between experimental and calculated peak
positions, however, of about 0.1 to 0.2 eV remains, and the peak
heights are apparently underestimated by the calculation in the
region between about 4 and 5 eV (we discuss possible reasons
below). The spectra of CuInSe2 are depicted in Fig. 6. Already
at the scGW RPA level, the agreement with experiment for the
perpendicular polarization direction is excellent, apart from the
first peak, which is much more pronounced in the calculated
spectrum than in the experimental one. Note that if the LDA
states are used in conjunction with a scissor operator to open
the gap, spurious peaks appear in the onset region (not shown).

Figures 7 and 8 depict the spectra of the kesterite structure
of Cu2ZnSnS4 and Cu2ZnSnSe4. In agreement with Refs. [38]
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FIG. 7. (Color online) The same as Fig. 5 for Cu2ZnSnS4

kesterite.

075134-7
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FIG. 8. (Color online) The same as Fig. 5 for Cu2ZnSnSe4

kesterite. Experimental data are from Choi et al. for an unknown
polarization direction [13].

and [37], we obtain spectra that are nearly isotropic in the
onset region. The onset of the spectrum is shifted to a lower
energy if S is replaced by Se, in agreement with experiment.
For the experimental spectrum of Cu2ZnSnSe4 kesterite,
the polarization direction with respect to the c axis is not
known. For both polarization directions, the calculated and
experimental peak positions are compatible, due to the small
anisotropy. The computed optical spectra of Cu2ZnSnS4 and
Cu2ZnSnSe4 stannite are much more anisotropic than those
of the other compounds studied here (see Figs. 9 and 10),
in agreement with calculation results of Persson [38] and
Paier [37]. For Cu2ZnGeS4 and Cu2ZnGeSe4, again almost
isotropic spectra are obtained (see Figs. 11 and 12). As for
CuGaSe2, the peak positions calculated for Cu2ZnGeS4 are at
slightly higher energies than the experimental ones. The BSE
improves slightly over the RPA.

Using the criterion that the overlap matrix be diagonally
dominant, the RPA can correctly assign the spectra to the
right material, but fails to correctly distinguish between the
polarization directions. Since the two materials are almost
isotropic, this is not surprising. However, if we use the criterion
of the determinant of the overlap matrix (see Table I), we obtain
a positive normalized determinant d = 0.50 for CuGaSe2and
d = 0.27 for CuInSe2, if we use the BSE (the RPA gives
d = 0.38 and d = −0.03, respectively), which means that
the BSE assigns the polarization directions correctly if the
determinant is used for the distinction. Figure 13 shows the
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FIG. 9. (Color online) The same as Fig. 5 for Cu2ZnSnS4 stannite.
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FIG. 11. (Color online) The same as Fig. 5 for Cu2ZnGeS4

kesterite. Experimental data are from León et al. [14] for the stannite
structure for an unknown polarization direction.

overlap matrix between the experimental and BSE spectra of
CuGaSe2 and CuInSe2. The results for the RPA look very
similar (not shown).

C. Optical gaps

Quasiparticle band gaps from scGW calculations at the 


point, and optical gaps from the scGW RPA and from the
scGW BSE, for light polarization directions perpendicular
(⊥) and parallel (||) to the c axis, are presented for CuGaSe2

(CGSe), CuInSe2 (CISe), Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4

(CZTSe), Cu2ZnGeS4 (CZGS), and Cu2ZnGeSe4 (CZGSe),
for the kesterite (KES) and stannite (ST) structures of the
quaternary compounds. The optical gaps are compiled in
Table II and depicted in Fig. 14. The experimental gaps and
those from scGW are not direction resolved. MAE stands for
mean absolute error with respect to experiment. Experimental
values are from Ref. [4] for CuGaSe2 and CuInSe2, from
Refs. [12] and [32] and references therein for Cu2ZnSnS4

and Cu2ZnSnSe4, and from Ref. [15] for Cu2ZnGeS4 and
Cu2ZnGeSe4. The MAE is below 0.2 eV for all three methods;
it is smallest for scGW (0.1 eV).

IV. DISCUSSION

We observe the following: First, with our computational
setup we obtain good overall agreement between calculated
and experimental spectra. Second, this agreement is achieved
already at the scGW RPA level, and the spectra obtained
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FIG. 12. (Color online) The same as Fig. 5 for Cu2ZnGeSe4

kesterite.

with the scGW BSE are very similar. In other words, for
this family of compounds, excitonic effects on the spectra are
small. Third, the scGW correction of the band structure and
the wave functions yields better agreement with experiment
than simply using a scissor operator (not shown). Fourth,
the level of agreement with experiment is not uniform. For
CuGaSe2, CuInSe2, and Cu2ZnGeS4, the peaks in the RPA
spectra are shifted to higher energies compared to experiment.
The shift is diminished, but not removed, by the use of the BSE
in the TDA made here. In addition, the calculated oscillator
strengths are smaller than the experimental ones in the region
between about 4 and 5 eV for CuGaSe2 and to some extent
also for CuInSe2, especially for light polarization parallel to
the c axis. Although for molecules, carbon nanotubes, and
organic semiconductors, the use of the TDA can affect the
optical gap or peaks above the gap by up to several tenths of
an eV [73–77], for inorganic semiconductors with a similar
crystal structure to the ones studied here, namely, Si and
GaAs, the TDA already yields an excellent agreement with
experiment [17,19]. Therefore the use of the TDA is probably

TABLE I. Normalized determinant of the overlap matrix, as
defined in Eq. (21).

Material scGW RPA scGW BSE

CuGaSe2 0.38 0.50
CuInSe2 −0.03 0.27
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SABINE KÖRBEL et al. PHYSICAL REVIEW B 91, 075134 (2015)

CGSe ⊥

CGSe ||

CISe ⊥

CISe ||

C
G

Se
⊥

C
G

Se
||

C
ISe

⊥

C
ISe

||

C
al

cu
la

te
d

(B
SE

)

Experiment

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

FIG. 13. (Color online) Overlap between experimental and
scGW BSE spectra of CuGaSe2 (“CGSe”) and CuInSe2 (“CISe”).

appropriate here, and it is more likely that the observed
discrepancies with respect to experiment arise already at the
DFT or scGW level. The band-structure interpolation of the
scGW energies from the coarse k grid used in the scGW

calculations (usually 3 × 3 × 3) may cause inaccuracies in
the curvature of the bands, and therefore also in the width
and position of spectral peaks. Finally, and perhaps most
importantly, the band gaps of this type of compound, and
probably also other parts of the band structure, depend very
sensitively on the anion displacement parameter u [30,32,44],
which is close to, but not equal to, 1/4 (in the parent structure
ZnS it is exactly 1/4). CuGaSe2, for which our calculated
spectra are in less good agreement with experimental ones,
is also the compound for which there is more uncertainty
in the experimental u (it is either u = 0.25 or u = 0.2431),
whereas the calculated one is u = 0.264 [44]. Here we have
set u = 0.25, which may differ from the one in the sample
for which the spectrum was recorded experimentally. Since
the band gap depends very sensitively on u (in CuInS2, the
band gap changes by almost 2 eV if u changes from 0.20 to
0.25) [30], the same can be expected to be true for the position

TABLE II. Optical gaps from experiment, noninterpolated quasi-
particle gaps from scGW calculations, and optical gaps from the
scGW -RPA and from the scGW BSE (defined as the energy of
the absorption onset; see Sec. II), for light polarization directions
perpendicular (⊥) and parallel (||) to the c axis.

scGW

Expt. scGW RPA scGW
Material ⊥ ‖ ⊥ ‖ BSE

CuGaSe2 1.65 1.71 1.79 1.81 1.66 1.69
CuInSe2 1.04 0.96 0.91 0.91 0.83 0.83
Cu2ZnSnS4 KES 1.50 1.64 1.71 1.71 1.64 1.61
Cu2ZnSnS4 ST 1.45 1.33 1.38 1.33 1.28 1.23
Cu2ZnSnSe4 KES 1.00 1.02 1.08 1.08 1.03 1.03
Cu2ZnSnSe4 ST 0.90 0.87 0.95 0.95 0.81 0.91
Cu2ZnGeS4 KES 1.905 2.24 2.29 2.29 2.19 2.19
Cu2ZnGeSe4 KES 1.415 1.44 1.18 1.21 1.13 1.21
MAE 0.10 0.16 0.17 0.15 0.14
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FIG. 14. (Color online) Optical band gaps from experiment,
compared with the noninterpolated photoemission gaps calculated
using the scGW method, and the optical gaps calculated using
scGW -RPA and scGW -BSE, for CuGaSe2 (CGSe), CuInSe2 (CISe),
Cu2ZnSnS4(S,Se) [CZTS, CZTSe], and Cu2ZnGeS4(S,Se) [CZGS,
CZGSe] (see also Table II). KES and ST stand for kesterite and
stannite structures, respectively.

and strength of absorption peaks. Although we have used
comparatively few (64) bands for CuGaSe2, which may lead
to underestimation of oscillator strength at higher transition
energies (mainly above 4 to 5 eV), the spectrum onset is
converged with respect to the number of included bands. We
emphasize that the discrepancies with experiment discussed
here are nevertheless quite small, compared to differences
between experimental spectra measured by different groups
on different samples [31]. The gaps obtained with scGW ,
scGW RPA, and scGW BSE are in excellent agreement with
experiment (MAE below 0.2 eV). Although here the scGW

method gives the smallest error (MAE of 0.1 eV), in cases
where excitonic effects may be important, or where the lowest
transitions may be dipole forbidden, optical gaps should be
extracted from the scGW RPA or the scGW BSE instead. We
notice that the Wannier interpolation of the scGW bands leads
to a very small underestimation of the quasiparticle gap (not
visible in the plotted spectra), compared to the interpolated
one, which slightly affects the optical gaps on both the scGW

RPA and the scGW BSE levels. As a consequence, and also
due to the fact that exciton binding energies are negligible, the
best agreement with experimental optical gaps is found for the
noninterpolated scGW photoemission gaps. Since the exciton
binding energies are tiny, the precision of our calculations does
not allow us to determine them.

V. SUMMARY AND CONCLUSION

Optical spectra and optical gaps of Cu(In,Ga)Se2,
Cu2ZnSn(S,Se)4, and Cu2ZnGe(S,Se)4 have been calculated
with ab initio many-body methods, namely, using the RPA
and the BSE on top of the self-consistent COHSEX +
G0W0 method, employing a numerically efficient double-grid
technique. The level of agreement between calculation and
experiment is better than 0.2 eV on average for the optical
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gaps. In the materials studied here, excitonic effects are
apparently very small, but in the cases of CuGaSe2, CuInSe2,
and Cu2ZnSn(S,Se)4, they bring the positions of the main
peaks into closer agreement with experiment. In this work,
we have used a full state-of-the-art ab initio many-body
methodology (self-consistent GW combined with the solution
of the Bethe-Salpeter equation) for “pathological” materials,
for which the calculation of optical spectra is difficult due
to their vanishing Kohn-Sham band gap using a (semi)local
exchange-correlation functional. This approach allows repro-
duction of experimental spectra up to subtle features such
as the optical anisotropy of CuGaSe2 and CuInSe2. The
remaining small differences between measured and calculated
spectra are most likely related to differences in crystal
structure between experiment and calculation. The approach
taken here is free of empirical parameters, independent of
the DFT functional used for the underlying ground-state

calculation, and equally applicable to materials with weakly
and strongly bound excitons. A further development of the
method, which involves an interpolation of the k derivatives
to accelerate k-point convergence, is currently under way. In
this way, it may become possible to obtain optical spectra of
problematic materials directly for moderately dense k-point
meshes, instead of first performing a calculation on a finer
k-point mesh, as was necessary for this work.
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