
HAL Id: hal-01230767
https://hal.science/hal-01230767

Submitted on 19 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Proactive Approach for Coping with Uncertain
Resource Availabilities on Desktop Grids

Louis-Claude Canon, Adel Essafi, Denis Trystram

To cite this version:
Louis-Claude Canon, Adel Essafi, Denis Trystram. A Proactive Approach for Coping with Uncertain
Resource Availabilities on Desktop Grids. HiPC’14, IEEE Int. Conf. on High Performance Computing,
2014, Goa, India. pp.1-9. �hal-01230767�

https://hal.science/hal-01230767
https://hal.archives-ouvertes.fr

INSTITUT FEMTO-ST

UMR CNRS 6174

A Proactive Approach for Coping with Uncertain
Resource Availabilities on Desktop Grids

Louis-Claude CANON — Adel ESSAFI — Denis TRYSTRAM

Rapport de Recherche n° RRDISC2014-1

DÉPARTEMENT DISC – March 3, 2014

A Proactive Approach for Coping with Uncertain Resource Availabilities on
Desktop Grids

Louis-Claude CANON , Adel ESSAFI , Denis TRYSTRAM

Département DISC

March 3, 2014 (28 pages)

Abstract: Uncertainties stemming from multiple sources affect distributed systems and jeopardize
their efficient utilization. Desktop grids are especially concerned by this issue as volunteers lending
their resources may have irregular and unpredictable behaviors. Efficiently exploiting the power of
such systems raises theoretical issues that received little attention in the literature. In this paper, we
assume that there exist predictions on the intervals during which machines are available. When these
predictions have a limited error, it is possible to schedule a set of jobs such that the effective total
execution time will not be higher than the predicted one. We formally prove it is the case when
scheduling jobs only in large intervals and when provisioning sufficient slacks to absorb uncertainties.
We present multiple heuristics with various efficiencies and costs that are empirically assessed through
simulations.

Key-words: Scheduling; Desktop grids; Uncertainties; Availabilities.

FEMTO-ST Institute, DISC research department
UFR Sciences - Route de Gray - F-25030 BESANÇON cedex FRANCE

Tél : (33 3) 81 66 64 00 – Fax : (33 3) 81 66 64 23 – e-mail : brigitte.bataillard@univ-fcomte.fr

Coping with Uncertain Resource Availabilities 5

1 Introduction

Harnessing the power of modern parallel platforms is compromised by many
uncertainties coming from their high scales and resources volatility. In this
work, we focus on desktop grids, which gather idle computing resources of
common desktops distributed over the Internet for running massively parallel
computations. Such systems provide a very large computing power for many
applications issued from a wide range of scientific domains [14, 19]. Most of
these parallel applications are composed of workflows of sequential jobs that
are submitted by successive batches to a particular user interface machine.
Then, the corresponding jobs are transferred and executed on the distributed
available resources according to some scheduling policy.

Usually the resources are not continuously available over time since users
give their idle CPU time only for some periods when they are not using their
desktops. Moreover, even if the dates of unavailability periods can easily be
estimated in advance, they are subject to uncertainties. This may drastically
impact the global performances by delaying the completion of the whole
application.

In this paper, we study how to schedule efficiently a set of jobs under the
constraints of unavailability periods. At the same time, we are interested
in reducing the effect of disturbances on the unavailabilities by maximizing
the stability that measures the ratio between the maximum completion time
(makespan) of the disturbed instance over a predicted completion time [2].

To the best of our knowledge, there is no related work studying scheduling
with unavailability under uncertainties except our previous contribution [3]
which provided a preliminary analysis for restricted disturbance patterns.
Our proposed approach relies on a slack-based proactive approach (with
temporal protection). The uncertainties are taken into account before job
executions such that the execution of the generated schedule is robust to
variations in the environment characteristics. As the execution of some jobs
may be interrupted, we introduce slacks just before each unavailability period.
The problem consists then in assigning each job to an availability (like in a
classical bin packing) while preserving enough idle time in the slack whose
lengths depends on the allocated jobs.

The first contribution is to investigate the problem of scheduling with
unavailabilities from the view point of studying the effect of uncertainties on
the availability periods. We characterize general conditions that any schedule
must verify to obtain an optimal stability (i.e., with a disturbed completion
time not worse than the predicted one). The processors are assumed to be
uniform whereas they were identical in our previous work [3]. Moreover, we

RR 2014–1

6 L.-C. Canon – A. Essafi – D. Trystram

consider that unavailabilities can start not only earlier than expected but also
later. Our main contribution is the design of a complete set of algorithms and
their analysis. The proposed bounds on the stability outperform our previous
one. Additionally, the algorithmic scheme relies on global procedures that
use either greedy or dual approximation paradigms. Each of these procedure
uses a local procedure, including a novel dynamic programming, for assigning
jobs to a given availability. Then, the good behaviour of the algorithms is
assessed by running simulations derived from actual workflows of BOINC [1].

The paper is organized as follows. We start by briefly recalling the most
significant studies on scheduling under availability constraints in Section 2.
Section 3 is devoted to the description of the computation model and the
formal presentation of the problem. Section 4 provides a structural analysis
of the proposed slack-based mechanism in terms of stability. Then, Section 5
describes the various algorithms and their combinations. Before concluding,
Section 6 presents some experiments based on simulations on actual workflows
and availability constraints.

2 Related Work

In this section, we recall briefly the most significant works related to the
problem of scheduling under unavailability constraints.

Most of the existing approaches that addressed the problem of scheduling
with unavailabilities are based on the well-known LPT rule (Largest Process-
ing Times) for which many assumptions have been explored. For instance,
Lee [15, 16] introduced the problem of scheduling independent jobs with
several availability patterns. He showed that the problem is not polynomi-
ally approximable if no restrictions are done on the availabilities. This is a
commonly accepted result which shows that without specific assumptions the
problem may lead to an non-feasible solution. Hwang and Chang [9] have
analyzed the problem when no more than half of the machines are unavailable
simultaneously. Liao et al. [18] studied the restriction of the problem on two
machines where each machine has one fixed unavailability period. A variant
of this particular problem was studied in [20] where the first machine is always
available whereas periodic unavailabilities are scheduled on the second. The
problem where one machine is always available and with an arbitrary number
of unavailabilities on the other processors was analyzed in [5]. Although this
problem does not admit Fully Polynomial Time Approximation Scheme (FP-
TAS), a costly PTAS based on the multiple knapsack was designed [8]. While
all the previous approaches are related to sequential jobs, Eyraud et al. [6]
studied the problem of scheduling with unavailabilities for parallel rigid jobs.

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 7

aki uk
i

ek−1
i ekiski

machine i

Figure 1: Representation of interval k on machine i, which contains an
availability period followed by an unavailability period.

They proved that there is no approximation algorithm in the general case, and
they proposed an approximation algorithm for non-increasing unavailability
patterns.

We developed a preliminary study of scheduling under unavailability
constraints with uncertainties in [3]. Each interrupted job was restarted from
the beginning, without migration, but the unavailability constraints were only
allowed to advance forward.

The solution proposed here is much more general. It is based on the
introduction of a slack mechanism before the unavailability intervals. Several
studies used the same idea and proposed proactive heuristics based on slacks
in different contexts. In [7], the authors investigate the use of preemption.
In [12, 13], the authors explored stochastic resource breakdown.

3 Description of the Problem

3.0.1 Execution Model

The target parallel platform is composed of m uniform machines (also called
processors) that are indexed by i in the rest of the paper. The cycle time of
processor i is denoted by bi, which is the inverse of its speed. The workload
consists of n independent jobs that are indexed by j. The processing amount
of job j is denoted by pj . Hence, the duration of job j executed on processor i
is bipj . Moreover, each machine is subject to a set of unavailability constraints.
An interval is defined as an availability followed by an unavailability. The
intervals are indexed by k and the start date of unavailability period k on
processor i is denoted by si(k). As depicted in Figure 1, the availability
(resp. unavailability) has a duration of ai(k) (resp. ui(k)). Hence, this period
ends at ei(k) , si(k) + ui(k) and we also have si(k) , ai(k) + ei(k − 1). To
be consistent, the first availability on processor i starts at ei(0) (by default,
si(0) = −∞ and no job is scheduled on the 0th interval) and there are Ki

intervals on machine i.

RR 2014–1

8 L.-C. Canon – A. Essafi – D. Trystram

ski eki

δkiδki

machine i

Figure 2: Unavailability k may start and end earlier or later due to the
disturbance δi(k).

The job durations are assumed to be bounded such that 2pmax ≤ amin

where pmax is the maximum job duration (i.e., max1≤i≤m,1≤j≤n bipj) and amin

is the shortest availability (i.e., min1≤i≤m,1≤k≤Ki
ai(k)).

3.0.2 Disturbance Model

Solving scheduling problems with uncertain data has received recently a great
attention. There exist several possible approaches depending on the target
problem and the desired objectives. The survey of Billaut et al. [2] discusses
several complementary approaches from pure proactive methods (sensitivity
analysis), pure online strategies and semi online methods (flexibility). We
focus here on this last approach which consists in building an efficient solution
on estimated data followed by correction mechanisms at runtime.

Let δi(k) be the disturbance that impacts the kth unavailability period
on processor i. The disturbed start date of this unavailability is si(k) + δi(k)
and its disturbed end date is ei(k) + δi(k).

As shown in Figure 2, the start and end dates are disturbed, but not
the unavailability durations (i.e., ui(k) remains constant). Moreover, the
disturbances are limited to a restricted interval to limit prediction errors, i.e.,
−ai(k) ≤ δi(k) ≤ ai(k + 1). This assumption ensures that there are at most
two interruptions per interval.

3.0.3 Problem Definition

The objective is to generate a schedule given a set of jobs and a set of machines
with their unavailability constraints. A schedule is specified by an allocation
function πi(k) that provides the set of jobs to be executed during each kth
interval on each ith processor. We restrict this study to feasible schedules,
i.e., schedules for which the availability periods are long enough for any job
execution. Assessing the quality of a schedule is done through two objectives:
the efficiency and the ability to cope with uncertainties.

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 9

The first objective is the horizon λ, which measures the performance
and is specified while building the schedule. Since jobs allocated to any
interval must fit in the availability, the horizon is then greater than or equal
to the makespan without uncertainties (Cmax , max1≤j≤nCj where Cj is the
completion time of job j in a given schedule [17]). In [3], we have considered
the makespan instead of an horizon. As a consequence, we assumed that at
least one processor did not have any unavailability which is unrealistic and
not required anymore. Using an horizon provides thus more flexibility and is
more general as it may be equal to the makespan as a special case.

The second objective is the stability. It is defined as the ratio between
the highest disturbed makespan C̃max among all possible disturbed scenarios

and the specified horizon λ, i.e., σ , C̃max

λ
. It represents the insensitivity of a

schedule to disturbances. A schedule is stable if σ ≤ 1 (values strictly lower
than one are not necessary and may impair the efficiency). The problem
consists in determining a schedule with minimum values of horizon and
stability.

3.0.4 Discussion

The proposed models rely on some assumptions that are briefly discussed
below.

The 2pmax ≤ amin assumption has been confronted to actual data from
the Failure Trace Archive [11]. Among a sample of five millions availabilities,
95% of the computing time is distributed in availabilities longer than two
hours, which is much greater than the duration of common desktop grid jobs.
Moreover, the assumption could be relaxed by considering each processor
separately (i.e., by assuming that for each processor, twice its longest allocated
job must be lower than its shortest availability). Theoretically, this assumption
avoids interruptions to occur in cascade indefinitely (the same job being
interrupted by every unavailability).

The −ai(k) ≤ δi(k) ≤ ai(k + 1) assumption reflects the precision of the
prediction. Performing a static allocation strategy would be irrelevant if the
prediction error was too high. The disturbance model also supposes that
each unavailability can interrupt only one job and that the unavailability
durations remain constant, which implies that the ratio between availabilities
and unavailabilities remains constant.

RR 2014–1

10 L.-C. Canon – A. Essafi – D. Trystram

4 Dealing with Uncertainties

In this section, we present a mechanism based on the insertion of a slack
inside each availability. The size of each slack that is required to obtain
stable schedules should be carefully determined. Moreover, we assume that
at runtime jobs scheduled in interval k are not started before jobs scheduled
in interval k − 1 has not been completed for any 1 < k ≤ Ki (i.e., the order
between the allocations of each interval is preserved).

Definition 1 (Slack). The slack di(k) is the amount of idle time reserved in
availability k on processor i in a given schedule.

Let Mi(k) , maxj∈πi(k) bipj be the duration of the longest job assigned to

the kth interval on processor i (Mi(k) , 0 if πi(k) = ∅ or if k ≥ Ki).

Definition 2 (Slack rule). A schedule respects the slack rule if and only if
di(k) ≥ max(Mi(k),Mi(k + 1),Mi(k + 2)) for each interval k and for each
machine i.

Proposition 1. When 2pmax ≤ amin and when the jobs are executed without
delay, any schedule respecting the slack rule is stable.

Proof. The proof is by induction on the interval indexes using a single machine
as it is illustrated in Figure 3. The induction hypothesis H(k) is that all jobs
scheduled in the first k intervals have been executed before the following date
(three cases):

1. ei(k) if unavailability k is early (i.e., δi(k) ≤ 0);

2. si(k)− di(k) if unavailability k is late and unavailability k − 1 finishes
before si(k)− di(k);

3. si(k)− di(k)− ui(k − 1)− di(k − 1) otherwise (i.e., if unavailability k
is late and unavailability k − 1 finishes after si(k)− di(k)).

Induction basis for k = 2. Previous cases are enumerated (see Figure 4).
In case 1), unavailability 2 is early. When unavailability 1 starts before si(1)−
di(1) (case a), the worst case occurs when this unavailability interrupts the
longest job of this interval, which size is Mi(1). As the slack rule is respected,
di(1) ≥Mi(1) and the interrupted job can be executed again before ei(1) with
all uninterrupted jobs scheduled in the first interval. Similarly, unavailability 2
interrupts the job of size Mi(2) and the slack is large enough for re-executing
it. When unavailability 1 starts after si(1)− di(1) (case b), all jobs scheduled

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 11

k − 1 k k + 1

di(k − 1) di(k) di(k + 1)

si(k)
ei(k)

si(k + 1)
ei(k + 1)

stable by H(k) induction
step

Figure 3: Induction on the intervals for the proof of Proposition 1.

1 2p1 p2 p3

di(1)
si(1)

ei(1)

di(2)
si(2)

ei(2)

1 21) p1 p1 p2 p3 p3

1 22) p1 p2 p3 p3

1 23) p1 p2 p3

Figure 4: Induction basis for the proof of Proposition 1: initial schedule on
the first line and the three cases on the following lines.

in interval 1 are executed before si(1) − di(1). Then, unavailabilities 1
and 2 interrupt the longest job scheduled in interval 2. As both slacks are
greater than or equal to Mi(2), then this job may be restarted and completed
before ei(2).

In case 2), unavailability 2 is late and unavailability 1 finishes before si(2)−
di(2). In the worst case, unavailability 1 will interrupt the longest job
scheduled in the first two intervals. As the slack rule is respected, di(1) ≥
max(Mi(1),Mi(2)). Then, all jobs scheduled in these intervals terminate
before si(2)− di(2).

Finally, case 3) is when unavailability 2 is late and unavailability 1 finishes
after si(2)− di(2). In this case, all jobs scheduled in the first two intervals are
executed without interruption. Thus, they finish their executions at si(2)−
di(2)− ui(1)− di(1). Therefore, H(2) is true.

Induction step. H(k) is assumed to be true for a given k ≥ 2. We consider
again three cases depending on the date of unavailability k. In case 1),
unavailability k is early and all jobs scheduled in the first k intervals are
executed before ei(k) by induction hypothesis. Given the assumptions on the
online strategy, the jobs scheduled in interval k + 1 may start in interval k

RR 2014–1

12 L.-C. Canon – A. Essafi – D. Trystram

(i.e., before ei(k)). Although these jobs may be interrupted by previous
unavailabilities, they are assumed to be restarted in interval k + 1 (i.e., after
time ei(k)) during which they can only be interrupted by unavailability k + 1.
We show that H(k + 1) is true when unavailability k is early by considering
that unavailability k+1 is either early or late analogously to the induction base
case. In the earliness case (case a), unavailability k + 1 interrupts the longest
job scheduled in interval k + 1 and the slack can absorb it before ei(k + 1).
Otherwise (case b), jobs scheduled in interval k + 1 are not interrupted and
finish thus before si(k + 1)− di(k + 1).

In case 2), unavailability k is late, unavailability k − 1 finishes be-
fore si(k − 1) − di(k − 1) and all jobs scheduled in the first k intervals are
executed before si(k)− di(k) by induction hypothesis. We prove below that if
unavailability k+1 is early (case a), then jobs scheduled in interval k+1 can be
executed between si(k)−di(k) and ei(k+ 1). This duration comprises enough
slack to tolerate the longest job to be interrupted twice, by unavailability k,
which is late, and by unavailability k + 1, which is early: di(k) ≥Mi(k + 1)
and di(k + 1) ≥Mi(k + 1). In the case when unavailability k + 1 is late (case
b), unavailability k finishes either before or after si(k + 1)− di(k + 1). In the
first case (case b.1), unavailability k can interrupt the longest job scheduled in
interval k + 1, which can be absorbed by slack di(k) ≥Mi(k + 1). Thus, jobs
scheduled in the first k+ 1 intervals are completed before si(k+ 1)− di(k+ 1).
In the second case (case b.2), no job is interrupted in interval k+ 1 and these
jobs are completed before si(k + 1)− di(k + 1)− ui(k)− di(k).

In case 3), unavailability k is late, unavailability k− 1 finishes after si(k−
1) − di(k − 1) and all jobs scheduled in the first k intervals are executed
before si(k)−di(k)−ui(k−1)−di(k−1) by induction hypothesis. Thus, jobs
scheduled in interval k+1 are executed after this date. Since 2pmax ≤ amin and
δi(k − 2) ≤ ai(k − 1), unavailability k − 2 (for k ≥ 3) cannot interrupt any of
these jobs. Remark that this is true even when shifting the first unavailability
that finishes after the horizon makes the last availability shorter than amin

because 2pmax needs to be lower than or equal to the availability duration
of an interval k that is never the last one. If unavailability k + 1 is early
(case a), then the longest job among the jobs scheduled in interval k + 1 can
be interrupted by unavailabilities k − 1 to k + 1. As di(k − 1), di(k) and
di(k + 1) are all greater than or equal to Mi(k + 1), there is enough duration
between si(k)−di(k)−ui(k−1)−di(k−1) and ei(k+1) to absorb these three
interruptions. The last two cases (b.1 and b.2) can be derived analogously.

In every cases, the induction hypothesis H(k + 1) is true when H(k) is
supposed to be true, which concludes the proof in the general case.

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 13

The previous proof does not require any information on the platform
characteristics because each machine is considered independently. Thus,
Proposition 1 holds for any kind of parallel platforms (identical, uniform and
unrelated). Additionally, the problem of generating a schedule that respects
the slack rule with an optimal makespan can be proven to be NP-Hard using
the same proof as in [3].

5 Algorithms

5.1 Preliminary

We propose several heuristics and present them using the following notation:
Si(k) =

∑
j∈πi(k) bipj (i.e., the sum of the duration of the jobs scheduled on

the kth interval of machine j). Moreover, we assume that di(k) =∞ for each
k ≤ 0 (i.e., there is an infinite amount of idle time on non-existing intervals).

The proposed heuristics are based on a global method that prepares the
intervals by shifting and sorting them. A local scheduling policy then assigns
the jobs to the intervals. Each local method relies on a common mechanism for
identifying the longest job that can be scheduled on a given interval. Before
covering the different local methods, this mechanism is described below. This
section ends with the description of the two global methods that can both
use any local methods.

Algorithm 1 computes the duration of the longest job that can be scheduled
on one interval. The current slack must account for the longest jobs scheduled
on the three next intervals (this corresponds to the base case of Proposition 1).
Moreover, any candidate job must also fit in the previous slacks due to the
slack rule when applied to the previous intervals.

Algorithm 1 Procedure longestJob(i, k)

Input: the slack of intervals k − 2 to k (di(k − 2), di(k − 1) and di(k)) and
the length of the longest jobs scheduled on intervals k to k + 2 (Mi(k),
Mi(k + 1) and Mi(k + 2))

Output: the length of the longest job that can be allocated on interval k of
machine i

1: prev← min(di(k − 2), di(k − 1)) {The candidate job must fit in previous
slacks}

2: curr← di(k)
2

{The candidate job must fit in the current slack}
3: next← di(k)−max(Mi(k),Mi(k + 1),Mi(k + 2)) {Slack rule base case}
4: return min(prev, curr, next)

RR 2014–1

14 L.-C. Canon – A. Essafi – D. Trystram

5.2 Local Scheduling Policies

Local scheduling policies consider intervals as bins that are successively
considered for allocating jobs. These policies are then used with higher-level
heuristics that select the intervals and the order in which they are visited.
Local policies assume therefore that they are given an ordered set of intervals
to which a set of jobs have to be allocated. The output is an allocation
function π that provides the set of jobs to be executed during each kth
interval on each processor.

The first scheduling policies are the classical LPT (Longest Processing
Time) and SPT (Shortest Processing Time). These strategies ignore the
order between the intervals and schedules jobs according to their finishing
times. This finishing times include the slack to ensure that any disturbed
makespan is never larger than the horizon. The only difference between
LPT [4, Algorithm 2] and SPT is that the first algorithm considers jobs in
non-increasing order of their processing costs, while it is non-decreasing for
the second.

Algorithm 2 Longest Processing Time (LPT)

Input: a set of n jobs, a set of m machines with unavailabilities
Output: an allocation function π
1: J ← {j1, j2, . . .} such that pjl ≥ pjl+1

{Sort jobs by non-increasing
processing cost}

2: for all j ∈ J do {Consider each job in given order}
3: Emin ←∞
4: for all 1 ≤ i ≤ m do {Consider each machine i candidate for allocation}
5: k ← 1
6: while bipj > longestJob(i, k) do {Search for the first unavailability}
7: k ← k + 1
8: end while
9: E ← ei(k− 1) +Si(k) + bipj + max(bipj,Mi(k),Mi(k+ 1),Mi(k+ 2))

10: if E < Emin then {Earliest end date of job j on machine i, slack
included}

11: Emin ← E
12: (i′, k′)← (i, k)
13: end if
14: end for
15: πi′(k

′)← πi′(k
′) ∪ {j} {Schedule job j in interval k′ on machine i′}

16: end for
17: return π

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 15

For clarity, we ignore the time taken to sort the jobs, O(n log(n)), when
characterizing the complexity of local scheduling policies. The complexity
of LPT is O(nK), which is the number of jobs times the total number of
reservations (K =

∑m
i=1Ki). For SPT, it is O(nm+K) because when a job

does not fit into an interval, any subsequent jobs will not fit either.
We also use two well-known bin-packing heuristics, namely First Fit

Decreasing (FFD) and First Fit Increasing (FFI). With FFD [4, Algorithm 3],
jobs are considered in non-increasing order and each one is allocated to the
first interval for which the slack rule is respected. While FFD shares the same
complexity with LPT, FFI has time complexity of O(n+K) (plus the time
for sorting the jobs).

Algorithm 3 First Fit Decreasing (FFD)

Input: a set of n jobs, a sequence of intervals I = {(i1, k1), (i2, k2), . . .}
Output: an allocation function π
1: J ← {j1, j2, . . .} such that pjl ≥ pjl+1

{Sort jobs by non-increasing
processing cost}

2: for all (i, k) ∈ I do {Consider each interval k on machine i in given order}
3: for all j ∈ J do {Consider each job in given order}
4: if bipj ≤ longestJob(i, j) then
5: πi(k)← πi(k) ∪ {j} {Schedule job j in interval k on machine i}
6: J ← J \ {j}
7: end if
8: end for
9: end for

10: return π

We also propose a new algorithm based on the dynamic programming
paradigm, DPslack [4, Algorithm 4], that is derived from the classical knapsack
dynamic programming solution. First, jobs are sorted by non-decreasing
processing cost. Then, for each interval (in the given order), we compute
recursively the value Ps(m, ai(k)), which is the maximum duration during
which a subset of the first m jobs can be executed in the first ai(k) time units
of this interval (which is distinct from ai(k) due to the slack rule and the fact
that jobs may not fit perfectly in the interval). The recurrence relation is

Ps(j, l) = max(Ps(j − 1, l), P (j − 1, l − bipj −max(bipj ,Mi(k + 1),Mi(k + 2))) + bipj)

P (j, l) = max(P (j − 1, l), P (j − 1, l − bipj) + bipj)

with the initialization Ps(j, l) = P (j, l) = 0 for 0 ≤ j ≤ m, 1 ≤ l ≤ ai(k) and
with P (j, l) corresponding to the related knapsack problem without the slack
constraint. As the jobs are ordered, the removed quantity due to the slack if
job j is selected is done only for the last added job (i.e., bipj instead of Mi(k)),

RR 2014–1

16 L.-C. Canon – A. Essafi – D. Trystram

which is indeed the longest. The complexity of DPslack is O(namaxK) where
amax = max1≤i≤m,1≤k≤Ki

ai(k) is the maximum availability duration.

Algorithm 4 DPslack (Dynamic Programming)

Input: a set of n jobs, a sequence of intervals I = {(i1, k1), (i2, k2), . . .}
Output: the allocated set of jobs πi(k)
1: J ← {j1, j2, . . .} such that pjl ≤ pjl+1

{Sort jobs by non-decreasing
processing cost}

2: for all (i, k) ∈ I do {Consider each interval k on machine i in given order}
3: Initialize each element of matrices P and Ps to 0
4: for all j ∈ J do {Consider each job in given order}
5: if bipj ≤ longestJob(i, k) then
6: for all 1 ≤ l ≤ ai(k) do {Consider a sub-interval}
7: P [j][l]← P [j − 1][l]
8: Ps[j][l]← Ps[j − 1][l]
9: if bipj ≤ l then {Check if the job fits}

10: P [j][l]← max(P [j][l], P [j − 1][l − bipj] + bipj)
11: d← max(bipj,Mi(k + 1),Mi(k + 2))
12: if bipj + d ≤ l then {Check if the job and its slack fits}
13: Ps[j][l]← max(Ps[j][l], P [j − 1][l − bipj − d] + bipj)
14: end if
15: end if
16: end for
17: end if
18: end for
19: l← ai(k) {Initialize the backtracking of the solution}
20: s← true {Start with the slack memoization matrix}
21: for all j ∈ J do {Consider each job in reverse order}
22: if (Ps[j][l] 6= Ps[j − 1][l] or not s) and (P [j][l] 6= P [j − 1][l] or s)

then
23: πi(k)← πi(k) ∪ {j}
24: l← l − bipj
25: if s then
26: l← l −max(bipj,Mi(k + 1),Mi(k + 2))
27: s← false {Switch to the other matrix}
28: end if
29: end if
30: end for
31: end for
32: return π

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 17

5.3 Global Scheduling Policies

The global scheduling policies prepare the instance by shifting and sorting
the intervals before calling local ones for scheduling each job. Any scheduling
policy can then be used (FFI, FFD, SPT, LPT, DPslack) with both following
strategies.

First, we present a greedy strategy, GreedySlack [4, Algorithm 5], in which
availabilities are sorted by non-decreasing end date of unavailability. Intervals
are shifted by advancing their unavailabilities as much as possible, which
corresponds to the worst case. The horizon is the end date of the last allocated
job plus the associated slack. The complexity of this strategy is O(K log(K))
and it calls a local policy only once. While LPT and SPT are only affected
by the shifting of the intervals and not their order, it is the contrary for
bin-based heuristics (FFI, FFD and DPslack).

Algorithm 5 GreedySlack

Input: a set of n jobs, a set of m machines with unavailabilities
Output: an allocation function π
1: for all 1 ≤ i ≤ m do {For all machines}
2: for all 0 ≤ k < Ki do {For all unavailabilities}
3: si(k)← ei(k) {Move unavailabilities at the start of the intervals}
4: ei(k)← ei(k) + ui(k + 1)
5: end for
6: Ki ← Ki − 1
7: end for
8: I ← {(i1, k1), (i2, k2), . . .} such that sil(kl) ≤ sil+1

(kl+1) {Sort intervals by
non-decreasing availability end date}

9: Call a scheduling policy with I and the jobs to obtain π
10: return π

The second solution, DAslack ([4, Algorithm 6]), uses the dual approxima-
tion paradigm that consists in scheduling all jobs within various horizons until
the minimum one is reached (by binary search) [8]. For each horizon, the avail-
abilities are sorted by non-decreasing duration because we assume it is easier
to fill small availabilities first. The complexity of this strategy is O(K log(K))
for sorting the intervals. It calls a local strategy O(log(M)) times where M
is an upper bound on the horizon and it takes O(log(K)) steps to adapt the
intervals each time. For instance, the complete complexity of the combination
DPslack and DAslack is O(K log(K) + n log(n) + log(M)(log(K) + namaxK))
(sorting the jobs has to be done only once).

RR 2014–1

18 L.-C. Canon – A. Essafi – D. Trystram

Algorithm 6 DAslack (Dual Approximation)

Input: a set of n jobs, a set of m machines with unavailabilities
Output: an allocation function π
1: u← upper bound on λ (e.g., max1≤i≤m,1≤k≤Ki

ei(k))
2: l← lower bound on λ (e.g., 0)
3: while u− l > 1 do
4: λ← u+l

2

5: for all 1 ≤ i ≤ m do {All machines}
6: for all 0 < k ≤ Ki do {All unavailabilities}
7: if ei(k) > λ then {Move last interval}
8: si(k)← max(λ− ui(k), ei(k − 1))
9: ei(k)← λ

10: end if
11: if ei(k) = λ then {Discard the next intervals}
12: Ki ← k
13: end if
14: end for
15: end for
16: I ← {(i1, k1), (i2, k2), . . .} such that ail(kl) ≤ ail+1

(kl+1) {Sort intervals
by non-decreasing availability duration}

17: Call a scheduling policy with I and the jobs to obtain π
18: if π is invalid then
19: u← λ
20: else
21: l← λ
22: end if
23: end while
24: return last valid schedule

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 19

6 Experiments

We evaluated the proposed algorithms by simulating the execution of a set
of jobs on a set of availabilities issued from an actual trace gathered from
BOINC using the scheduling algorithms proposed in Section 5 in order to
observe the impact of the slack on their stability.

6.1 Settings

6.1.1 Availabilities

The traces of the hosts were gathered by BOINC clients that were installed on
volunteer hosts between April 1, 2007 and January 1, 2009 for the SETI@home
project [10]. In total, about 230,000 hosts were involved and provided over
57,800 years of CPU availability spread on 102,416,434 intervals continuous
intervals. We selected 10 arbitrarily subsets of 500 processors in the middle
of the trace and only processors for which the speed is known were selected.

6.1.2 Workload

The traces of the jobs were collected from Docking@Home project1 and
provided over 150,000 jobs. We selected 10 subsets of 10,000 jobs. Each
execution duration is rounded to the closest integer in second.

6.1.3 Disturbed Instance Generation

In order to generate disturbed instances, we modified the start and end times
of the availabilities following a uniform law. Unavailabilities that overlap
following this process were merged.

6.2 Methodology

We performed three sets of simulations to study the main characteristics of
the proposed algorithms:

Performance In order to compare the performance of the proposed algo-
rithms in terms of schedule length, we run all the algorithms and
measured the horizon. For each instance, we computed the ratios
between the horizons obtained with all heuristics and the minimum
horizon among this set.

1The traces were provided by Michella Taufer.

RR 2014–1

20 L.-C. Canon – A. Essafi – D. Trystram

Stability Following the adopted proactive scheme, the execution scenarios are
run in two phases: each schedule algorithm is first run using the predicted
non-disturbed dates before being run on 30 disturbed instances.

Execution time We measured the execution time to build any schedule.

6.3 Analysis

As a baseline, we included a version of each algorithm that ignores the slack
rule (denoted without slack rule in Figures 5 to 7). These figures depict
values using boxplots in which the bold line is the median, the box shows the
quartiles, the bars show the whiskers (1.5 times the interquartile range from
the box) and additional points are outliers.

6.3.1 Performance Comparison

Figure 5 show the horizon ratios for each heuristic. For instance, the horizon
obtained with LPT are about 1.5 times the minimum horizon that can be
obtained with any other heuristic.

We first observe that any heuristic that ignores the slack rule is significantly
better than its counterpart (respecting the slack rule incurs at least a 50%
degradation). Additionally, those that use DAslack are among the best ones.

We can also see that DAslack leads to better results than GreedySlack
except for SPT and LPT, which do not benefit from the binary search.
Moreover, with GreedySlack, LPT outperforms bin-based heuristics (FFI,
FFD and DPslack) due to the last bins that are filled even though the jobs
could finish earlier on other machines. Using DAslack limits this problem as
the last bins are cut.

Overall, the best heuristic is LPT (with both general policies), followed
by FFD combined with DAslack.

6.3.2 Impact of the Slack on the Stability

The boxplots in Figure 6 represent the ratios between the disturbed values
of the makespan and the predicted horizons. Schedules are always stable
(stability below one) with heuristics that respect the slack rule, which is
consistent with Proposition 1. The least stable strategies (those that do not
respect the slack rule) lead also to the most compact schedule as suggested by
Figure 5. Inversely, the most stable ones (FFI, SPT and DPslack combined
with GreedySlack) are also the least efficient ones. This emphasizes, as
expected, the antagonism between the efficiency and the stability.

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 21

GreedySlack DAslack

●

●

1.0

1.5

2.0

F
F

I

F
F

D

S
P

T

LP
T

D
P

sl
ac

k

F
F

I

F
F

D

S
P

T

LP
T

D
P

sl
ac

k

H
or

iz
on

 r
at

io

without slack rule with slack rule

Figure 5: Horizon ratios of schedules generated with 10 sets of 10,000 jobs
and 10 sets of 500 machines (100 instances). Each combination between a
global and a local policy has an additional version that ignores the slack rule
(left).

RR 2014–1

22 L.-C. Canon – A. Essafi – D. Trystram

GreedySlack DAslack

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●

●●●

●

●

●
●

●

●

●

●●●●●●●●●●

●

●●
●

●

●

●●●●●●●●●●

●

●●●

●
●

●

●

●

●

●

●●●●●●●●●●

●

●●●

●

●

●

●
●

●●
●

●●●●●●●●●●

●

●

●●●●●●●●●●●

●●

●

●

●

●

●

●

●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●

●●
●

●

●

●

●●●●●●●●●●
●●

●●●
●

●

●
●

●

●

●

●●●●●●●●●●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●
●●
●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●

●
●

●

●●●●●●●●●●

●●

●

●●●●●●●●●●
●●

●
●

●●●●●●●●●●
●●●

●●●●

●●●●●●●●●●

●●●●

●●

●●●●●●●●●●

●

●●

●

●

●

●

●

●
●●●
●
●●

●●●●●●●●●●●●
●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●

●●●

●

●

●

●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●

●
●
●

●

●
●

●

●

●

●

●●●●●●●●●●

●

●

●●●

●

●
●

●

●

●
●

●

●

●●●●●●●●●●

●
●

●

●

●

●●●●●●●●●●

●

●
●

●

●

●

●●●●●●●●●●

●

●●●

●

●
●

●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●

●

●
●

●

●

●

●●●●●●●●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●
●
●●
●●●
●●
●●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●●
●
●●

●
●●

●
●

●●

●

●

●
●

●

●
●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

0.8

1.0

1.2

1.4

F
F

I

F
F

D

S
P

T

LP
T

D
P

sl
ac

k

F
F

I

F
F

D

S
P

T

LP
T

D
P

sl
ac

k

S
ta

bi
lit

y

without slack rule with slack rule

Figure 6: Stabilities of schedules generated with 10 sets of 10,000 jobs and 10
sets of 500 machines (100 instances). Each combination between a global and
a local policy has an additional version that ignores the slack rule (left).

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 23

GreedySlack DAslack

●

●●●●●●

●●

●●●● ●●●●●●●●●●●●

●

●●●●

●
●
●●

●

●

●
●●●
●

●
●
●

●
●●
●
●●●
●

●●●●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●●
●
●
●
●●
●
●
●
●

●●●●●●●●●●●●●●●
●●●

●

1

100

10000
F

F
I

F
F

D

S
P

T

LP
T

D
P

sl
ac

k

F
F

I

F
F

D

S
P

T

LP
T

D
P

sl
ac

k

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

without slack rule with slack rule

Figure 7: Execution times for generating the same schedules as in Figures 5
and 6.

6.3.3 Execution Time

Figure 7 depicts the execution times of the heuristics, which are sorted by
their execution times. The ratio between the execution times of GreedySlack
strategies and DAslack is constant as this last strategy repeats each local
policies the same number of times. Overall, the fastest local policy is FFI
while the slowest is DPslack and all other policies have similar costs.

To conclude, the combination of LPT with GreedySlack shows the best
performance both in terms of efficiency and stability for a reasonable cost.
When the cost is an issue, the next fastest strategy with decent performance
is FFI when combined with DAslack (or even GreedySlack if the cost is
particularly critical).

RR 2014–1

24 L.-C. Canon – A. Essafi – D. Trystram

7 Conclusion

This paper focuses on the problem of scheduling jobs under unavailability
constraints that may occur earlier of later than expected. We derived a rule
that a scheduling algorithm must respect to produce stable solutions (i.e.,
schedules for which the effective duration is no longer than the expected one).
A collection of algorithms was proposed and assessed on simulations with
actual traces. Among the studies heuristics, which all achieve stability, LPT
minimizes efficiency degradation the most.

As future works, we could study other complementary mechanisms such
as checkpointing and migration. Also, the stretch is an interesting metric
in the context of desktop grids (where a continuous flow of jobs must be
computed) and has not been considered in this work. Finally, we plan to
extend our empirical investigation to new settings such as testing multiple
levels of disturbance.

8 Acknowledgement

The authors would like to thank Grégory Mounié with whom this work was
initiated.

References

[1] D. P. Anderson. Boinc: A system for public-resource computing and
storage. In 5th International Workshop on Grid Computing (GRID),
pages 4–10, Nov. 2004.

[2] J.-C. Billaut, A. Moukrim, and E. Sanlaville. Flexibility and Robustness
in Scheduling. Wiley Online Library, 2008.

[3] L.-C. Canon, A. Essafi, G. Mounié, and D. Trystram. A Bi-Objective
Scheduling Algorithm for Desktop Grids with Uncertain Resource Avail-
abilities. In Euro-Par, Bordeaux, France, Sept. 2011.

[4] L.-C. Canon, A. Essafi, and D. Trystram. A Proactive Ap-
proach for Coping with Uncertain Resource Availabilities on Desk-
top Grids. Technical Report RRDISC2014-1, FEMTO-ST, Mar. 2014.
http://lifc.univ-fcomte.fr/~lccanon/report2014.html.

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 25

[5] F. Diedrich, K. Jansen, F. Pascual, and D. Trystram. Approximation
Algorithms for Scheduling with Reservations. Algorithmica, 58(2):391–
404, 2010.

[6] L. Eyraud, G. Mounié, and D. Trystram. Analysis of Scheduling Al-
gorithms with Reservations. In 21st IEEE International Parallel &
Distributed Processing Symposium, 2007.

[7] M. Fallah, M. Aryanezhad, and B. Ashtiani. Preemptive resource con-
strained project scheduling problem with uncertain resource availabilities:
Investigate worth of proactive strategies. In IEEE International Confer-
ence on Industrial Engineering and Engineering Management (IEEM),
pages 646 –650, Dec. 2010.

[8] D. S. Hochbaum and D. B. Smoys. Using dual approximation algorithms
for scheduling problems: theoretical and practical results. Journal of
ACM, 34(1):144–162, 1987.

[9] H.-C. Hwang and S. Y. Chang. Parallel Machines Scheduling with Ma-
chine Shutdowns. Computers & Mathematics with Applications, 36(11):21–
31, Aug. 1998.

[10] B. Javadi, D. Kondo, J.-M. Vincent, and D. P. Anderson. Discovering
statistical models of availability in large distributed systems: An empirical
study of seti@home. Parallel and Distributed Systems, IEEE Transactions
on, 22(11):1896–1903, 2011.

[11] D. Kondo, B. Javadi, A. Iosup, and D. H. J. Epema. The failure trace
archive: Enabling comparative analysis of failures in diverse distributed
systems. In CCGrid, pages 398–407. IEEE, 2010.

[12] O. Lambrechts, E. Demeulemeester, and W. Herroelen. Proactive and
reactive strategies for resource-constrained project scheduling with un-
certain resource availabilities. Journal of Scheduling, 11(2):121–136,
2008.

[13] O. Lambrechts, E. Demeulemeester, and W. Herroelen. Time slack-based
techniques for robust project scheduling subject to resource uncertainty.
Annals of Operations Research, pages 1–22, 2010.

[14] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande. Folding@Home
and Genome@Home: Using distributed computing to tackle previously
intractable problems in computational biology. ArXiv e-prints, Jan.
2009.

RR 2014–1

26 L.-C. Canon – A. Essafi – D. Trystram

[15] C.-Y. Lee. Parallel machines scheduling with nonsimultaneous machine
available time. Discrete Applied Mathematics, 30(1):53–61, Jan. 1991.

[16] C.-Y. Lee. Machine scheduling with an availability constraint. Journal
of Global Optimization, 9(3):363–382, 1996.

[17] J. Y.-T. Leung, editor. Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. Chapman & Hall/CCR, 2004.

[18] C.-J. Liao, D.-L. Shyur, and C.-H. Lin. Makespan minimization for two
parallel machines with an availability constraint. European Journal of
Operational Research, 160(2):445–456, June 2005.

[19] LIGO Scientific Collaboration. The Einstein@Home search for periodic
gravitational waves in LIGO S4 data. ArXiv e-prints, Apr. 2008.

[20] D. Xu, Z. Cheng, Y. Yin, and H. Li. Makespan minimization for two
parallel machines scheduling with a periodic availability constraint. Com-
puters & Operation Research, 36(6):1809–1812, June 2009.

FEMTO-ST Institute

Coping with Uncertain Resource Availabilities 27

Annex

Symbol Definition

i index of the machines
j index of the jobs
k index of the intervals
m number of machines
n number of jobs
Ki number of intervals on machine i
K total number of intervals (

∑m
i=1Ki)

bi cycle time of machine i
pj processing cost of job j

ai(k) duration of availability k on machine i
ui(k) duration of unavailability k on machine i
si(k) start date of unavailability k on machine i
ei(k) end date of unavailability k on machine i

pmax maximum execution duration (max1≤i≤m,1≤j≤n bipj)
amin minimum availability duration (min1≤i≤m,1≤k≤Ki

ai(k))
amax maximum availability duration (max1≤i≤m,1≤k≤Ki

ai(k))

δi(k) disturbance on unavailability start date si(k)

πi(k) set of jobs allocated to availability k on machine i
Cj completion time of job j in a given schedule

Cmax makespan (max1≤j≤nCj)

C̃max highest disturbed makespan
λ horizon

σ stability (C̃max

λ
)

Mi(k)
maximum size of the jobs assigned to availability k on
machine i (Mi(k) = maxj∈πi(k) bipj)

Si(k)
sum of the sizes of the jobs assigned to availability k on
machine i (Si(k) =

∑
j∈πi(k) bipj)

di(k) slack preceding unavailability k on machine i (ai(k)− Si(k))

Table 1: Notation summary

RR 2014–1

28 L.-C. Canon – A. Essafi – D. Trystram

FEMTO-ST Institute

FEMTO-ST INSTITUTE, headquarters
32 avenue de l’Observatoire - F-25044 BESANÇON Cedex FRANCE

Tél : (33 3) 81 85 39 99 – Fax : (33 3) 81 85 39 68 – e-mail : contact@femto-st.fr

FEMTO-ST - AS2M : TEMIS, 24 rue Alain Savary, F-25000 Besançon
FEMTO-ST - DISC : UFR Sciences - Route de Gray - F-25030 Besançon cedex France

FEMTO-ST - ENERGIE : Parc Technologique, 2 Av. Jean Moulin, Rue des entrepreneurs, F-90000 Belfort France
FEMTO-ST - MEC’APPLI : 24, chemin de l’épitaphe - F-25000 Besançon France
FEMTO-ST - MN2S : 32, rue de l’Observatoire - F-25044 Besançon cedex France

FEMTO-ST - OPTIQUE : UFR Sciences - Route de Gray - F-25030 Besançon cedex France
FEMTO-ST - TEMPS-FREQUENCE : 26, Chemin de l’Epitaphe - F-25030 Besançon cedex France

http://femto-st.fr

