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Abstract—This paper presents a set of improvements for SVM-
based large scale multimedia indexing. The proposed method is
particularly suited for the detection of many target concepts at
once and for highly imbalanced classes (very infrequent concepts).
The method is based on the use of multiple SVMs (MSVM) for
dealing with the class imbalance and on some adaptations of
this approach in order to allow for an efficient implementation
using optimized linear algebra routines. The implementation
also involves hashed structures allowing the factorization of
computations between the multiple SVMs and the multiple target
concepts, and is denoted as Factorized-MSVM. Experiments
were conducted on a large-scale dataset, namely TRECVid 2012
semantic indexing task. Results show that the Factorized-MSVM
performs as well as the original MSVM, but it is significantly
much faster. Speed-ups by factors of several hundreds were
obtained for the simultaneous classification of 346 concepts,
when compared to the original MSVM implementation using the
popular libSVM implementation.

keywords : Multimedia indexing and retrieval, support vector
machine, multi-learner approach, class imbalance.

I. INTRODUCTION

The aim of multimedia indexing is to automatically detect
visual concepts in massive, continuously growing image/ video
collections. In general, the indexing is achieved by supervised
learning approaches for each target concept (binary classifica-
tion). In which, a classifier is trained on positive and negative
samples of the target concept to generate a classification model.
This model is then used to predict the likeliness of new samples
to contain the learnt concept.

Support Vector Machine (SVM) classifiers with RBF ker-
nels [1], [2] are very popular and efficient for supervised
classification, specially, in the case where the learned classes
are not linearly separable. But they are not very well suited
for highly imbalanced datasets. They process multiple con-
cepts independently for training and for predicting. Ensemble
learning extensions like multi-SVM approach (MSVM) [3]
efficiently handles the class-imbalance problem that usually
appears when indexing large-scale multimedia datasets. The
main idea of MSVM is to split the training set into m
balanced subsets and train a SVM classifier on each subset,
thus generates m different models. For each sample in the
test set, these models are used to predict its likelihood to
contain the target concept separately, and a fusion function is
applied on the m predicted scores to generate its final score.
However, a drawback limitations of MSVM are crucial as they

need huge processing times, especially at the prediction phase.
In this paper, we propose some improvements to the MSVM
approach, which makes it faster mainly at the prediction phase
and usable almost in a real time.

The availability of specific and highly optimized mathe-
matical packages like the Netlib BLAS (Basic Linear Algebra
Subprograms [4]) or the Intel VML (Vector Math Library)
and/or of specialized parallel architectures like GPU (Graph-
ical Processing Units) boards can bring huge improvements
in computing speed and partly solve the related scalability
issues. Such speed-up is generally obtained at the price of a
more complex implementation and often requires a significant
redesign effort. Considering their specificities (e.g. some are
more sequential or iterative), not all methods can easily take
advantage of these possibilities.

The proposed work is in the context of methods based on
small to intermediate size descriptors combined with classifiers
using non-linear kernels. It is also more interesting in the
case in which several concepts are annotated for each training
sample; the annotation does not have to be dense however.
This work also addresses the imbalanced data problem and
is designed for taking advantage of optimized mathematical
libraries (BLAS and VML). Though not tested yet, it should
work well too with GPU implementations of such libraries.

We propose the following improvements to the original
MSVM approach in the context of multiple concept classifi-
cation:
• speed-up of the SVM prediction function using matrix

multiplication;
• fusing of SVM models corresponding to a single target

concept and to different splits into a single model, with
a probability normalization (Platt [5]) extension;

• multi-label indexing, based on fusing of SVM models
corresponding to different target concepts into a single
and global model.

All these improvements permit an efficient use of BLAS1/2/3
and VML at many levels yielding a very significant speed-up.

The remainder of this paper is organized as follows: section
II discusses related work; section III presents the proposed
methods for improving the MSVM implementation; section
IV presents experimental evaluation of the proposed contribu-
tions; and section V draws some conclusions and discusses
perspectives.



II. RELATED WORK

A. Optimizing the prediction of SVM

In the last decade, the optimization methods for SVM
training has been intensively studied, including kernel approx-
imation approaches [6], [7], greedy basis selection [8], and
online SVM solvers [9]. Recently, Jose et al. [10] proposed an
approximate solver to reduce the prediction time of SVM, by
reformulating the problem or by using derivatives of the SVM.
However, in this paper we focus on reducing the prediction
time of the SVM approaches based on RBF-kernel. We propose
an algorithm for speeding up the SVM prediction function and
apply it with the MSVM approach, as it is mostly used as a
solution for indexing imbalanced datasets [3].

B. Class-imbalance problem

The most widely used approaches for handling the class-
imbalance problem are the re-sampling methods, which are
used for balancing the datasets before SVM training. Re-
sampling methods have been successfully applied for train-
ing SVMs with class-imbalanced datasets in different do-
mains [11], [12], [13], [14], [3].

The alternative approach presented in [12], which mainly
works by selecting randomly a subset from the negative
(i.e. majority) samples with a size comparable to that of all
positive (i.e. minority) ones, then train a classifier on this
subset. Support cluster machines (SCMs) method [11] can
be viewed as another focused re-sampling method for SVMs.
This method first partitions the negative examples into disjoint
clusters by using the kernel-k-means clustering method. Then
it trains an initial SVM model using the positive examples
and the representatives of the negative clusters (i.e. the data
examples representing the cluster centers). These approaches
may lead to loss of information, especially when the dataset is
of large-scale and the learnt concepts are sparse, since many
informative majority class samples may be ignored. Thus, it
is possible to balance this loss by making several selections
on the majority class set, and merging the outputs of different
classifiers built from these subsets.

Ensemble learning has also been applied as a solution
for training classifiers with imbalanced datasets [13], [14],
[3]. Among the state-of-the-art methods in this scenario, we
are interested in the multi-learner approach based on SVM
(denoted as MSVM) presented in [3]. The authors have showed
the ability of MSVM to increase the classification performance
of the video indexing system. They gave a full evaluation
and comparison of their approach versus several single- and
multi-learner approaches (e.g. logistic regression and SVM)
for the concept indexing task in video documents. They have
compared their method with different approaches, such as
[12], [14], and concluded that multi-learner approach based
on SVM is designed to address best the problem of sparse
concepts in large-scale multimedia datasets.

Most of the reviewed multi-learner approaches are based
on fusing the classification scores; this needs a prediction step
of all test samples with each learnt model. In large-scale data
sets, this is crucial since the prediction time of the all samples
may be larger than the time for learning the models themselves.

In this paper, we propose an efficient multi-learner approach
based on a factorization of SVM models.

III. THE PROPOSED METHOD

A. Accelerating the SVM prediction function

When using SVM for multimedia indexing with large-
scale data sets, the prediction step is computationally the most
expensive step. In this section, an implementation of SVM
prediction for n test samples (Z = (zj)(1≤j≤n)) against a
SVM model with m SVs (X = (xi)(1≤i≤m)) is proposed. Let
the test set length to be n× d, and the SVM-model length for
a learnt concept to be m× d, where d is the size of the used
descriptor. The prediction function requires the computation of
the full (m × n) distance matrix between all descriptors and
SVs. Then, a merging function is applied on the m distances
of each sample to assign a prediction score or a probability for
the sample to contain the learnt concept. The computation of
the distance matrix is the most expensive computational step
in the SVM prediction function.

Basically, the square Euclidean distance, between two
vectors used in the RBF kernel, is computed as follows:
‖xi − zj‖2 =

∑k=d

k=1
(xik − zjk)2. This can be rewritten as:

‖xi − zj‖2 =

(
k=d∑
k=1

x2
ik

)
+

(
k=d∑
k=1

z2
jk

)
− 2

(
k=d∑
k=1

xikzjk

)
(1)

The advantage of this form of the Euclidean distance is that
it decomposes the computation of a distance matrix between
sets of vectors into smaller steps which are faster to compute.
The first two sums have to be computed respectively m and
n times only for the m × n distances and this can be done
efficiently by calling the BLAS1 scalar product routine. The
second sum has to be computed m×n but all the values can be
computed at once and very efficiently using the BLAS3 matrix-
matrix multiplication routine. These are simply the elements
of the X.ZT matrix. Once the set of distances are computed
and multiplied by the γ value (i.e. the free parameter of the
Gaussian radial basis function), the kernel K(xi, zj) values
can be obtained as a Kij matrix by applying a vectorized
exponentiation operator (such as the one available in the Intel
VML library) on its m× n elements.

The computation of the set of scalar products xi.zj , using
matrix multiplication, can also be used when computing linear
and polynomial kernels. The computation of the first two
sums is not necessary in this case, and vectorized operators
can still be used for the final kernel computations in the
polynomial case. Unfortunately, the RBF kernel with χ2 or
L1 distances still cannot benefit from the matrix multiplication
trick. However, the work presented in [15] concluded that ap-
plying a power transformation on low-level descriptors makes
the Euclidean distance as effective as or even better than χ2

and L1.

Once the matrix of K(xi, zj) values are computed, the de-
cision function values for the set of vectors can be obtained, by
multiplying the transposed Kij matrix by the vector a (yiαi)
of the m values (yi, αi are the target and the contribution of the
ith training example to the model, respectively), which can be



efficiently done using the BLAS2 vector-matrix multiplication,
and adding the bias term ρ:

(f(zj))(1≤j≤n) = f = ρ.1n +KT .a (2)

with 1n being a vector of n elements all equal to 1.

Finally, if probability normalization is required, the appli-
cation of the sigmoid function (on the set of zj vectors) can
also be accelerated using vector operators.

Though all the mentioned linear algebra and vector oper-
ation optimizations lead to some performance improvement,
the most important and significant one is, by far, the use
of matrix multiplication (BLAS3) to accelerate kernel com-
putations. It is particularly efficient when the dimensions of
the considered matrices are large (number of components in
the descriptor, number of support vectors and number of test
samples). For maximum efficiency, a minimum number of
test vectors must be processed at one. If the number of test
vectors is very large, these can be processed by blocks of
this minimum size. In practice, blocks of 1K test vectors are
large enough to optimally benefit of BLAS3 speed-up. Beyond
this, the computation is not significantly faster but it requires
significantly more memory. In the case in which test vectors
have to be processed one by one (this may happen during
the training phase or if prediction is needed for a single test
sample), BLAS2 matrix-vector operations can be used instead
of BLAS3 matrix-matrix ones, leading to a less substantial but
still significant speed-up.

Though the structure of the SVM training algorithm does
not permit a simple use of the matrix multiplication trick
directly within it as for the SVM prediction, optimizing the
prediction function can lead to some acceleration of the train-
ing phase as well since, during it, the SVM algorithms apply
the prediction function for learning the weights of the SVs (i.e.
the α vector), as well as for tuning the Platt’s parameters by
cross-validation.

B. The factorized MSVM Model (FMSVM)

Multiple-SVM [3] approach handles the class imbalance
by building a number of balanced elementary classifiers, and
by fusing their predictions. The elementary classifiers do not
actually need to be perfectly balanced. SVM classifiers do
tolerate a moderate amount of imbalance, and a compromise
can be found between the number of elementary classifiers and
the amount of imbalance left to them.

In the original MSVM approach, the authors fuse the
scores after their normalization as probabilities using a sigmoid
function (Platt’s method). They consider five possible fusion
functions of the score of the elementary classifiers: the mini-
mum, the harmonic mean, the geometric mean, the arithmetic
mean and the maximum. We found out that all of them were
roughly equivalent, except the maximum one that performed
significantly less well (see the experiments section).

The MSVM considers score fusion after probability nor-
malization for practical reasons (these were directly given
by the libsvm tool [16] for each elementary classifier, but
they could have considered as well as the fusion of scores
directly produced by the initial decision functions and then

perform a probability normalization. This would have been
more complicated, however, since the computation of the
global B and A coefficients (i.e. the symmetry point and the
slope at this point in a sigmoid function respectively) by cross-
validation would have require to manage cross-validation sub-
problems’ splits jointly with the multiple classifiers’ splits. We
propose here a simple method for computing global A and
B sigmoid coefficients directly from the Ak and Bk sigmoid
coefficients computed separately for the elementary classifiers
by cross-validation.

There is no a priori reason for the score fusion within the
MSVM approach is better before and after sigmoid normal-
ization and experiments show that the overall performance
is also equivalent. This is probably due to the fact that the
SVM approach gives similar distributions to all elementary
classifiers. Less choice is given for the fusion function since
harmonic and geometric means are not suited for values that
can be negative. The minimum and maximum values could also
be used but would be less natural. Finally, only the arithmetic
mean seems meaningful in this case. It is also the only one that
can lead to a simplification of the computation of the global
decision function.

Sigmoid normalization applied after score fusion has no
effect on the ranking of the test samples since the sigmoid
function is always increasing. It does have effect however in
the case of further processing, for instance if the obtained
global scores have to be fused again, considering results com-
ing from different descriptors or from other learning methods
also normalized as probabilities. We again found out that the
method that we propose for the fusion of sigmoid parameters
performed as well as the original one in the case of further
descriptor and classifier fusion.

The fusion method that we propose is defined as follows.
The elementary classifier decision functions are defined as:

fk(z) = ρk +
∑

xi∈Sk

yiαkiK(xi, z) (3)

and the associated probability functions are defined as:

pk(z) =
1

1 + eAk.fk(z)+Bk
(4)

where k ∈ [1, l] is the elementary classifier index and Sk

the set of support vectors associated to the kth elementary
classifier. Without loss of generality, we can consider the global
set of support vectors (S =

⋃l
k=1 Sk) and rewrite equations 3

as:
fk(z) = ρk +

∑
xi∈S

yiαkiK(xi, z) (5)

taking all αki for xi in S \ Sk equal to zero (this requires
a global re-numbering of the support vectors). The arithmetic
mean of the elementary decision functions can then be rewrit-
ten as:

f(z) = ρ+
∑
xi∈S

yiαiK(xi, z) (6)

with ρ and the αi being respectively the arithmetic mean
of the ρk and of the αki for k ∈ [1, l]. This leads to a
decision function, which is exactly of the same type as the
one computed using a single and larger SVM. Though of the



same type, the MSVM fused function is different and though it
does not benefit from a global convex optimization, it performs
better in the case of highly imbalanced classes.

Considering the probability normalization, if needed, the
elementary sigmoid functions can also be fused into a global
one. The elementary sigmoid functions are defined by two
parameters that can be taken as the abscissa of their symmetry
point which is equal to Bk/Ak and the slope at this point
which is equal to Ak. We simply propose to take the average
of the abscissa of the symmetry points and of the slope at
these points for the global sigmoid function. As the data are
normalized before (by the SVM implementation) and after
(by Platt’s method), the elementary sigmoid are already quite
“close” in general and fusing them is not only correct but is
also likely to reduce the noise in their estimation. Finally, the
global probability function is defined as:

p(z) =
1

1 + eA.f(z)+B
(7)

with A and B defined so that A and B/A are respectively the
arithmetic mean of the Ak and of the Bk/Ak for k ∈ [1, l].
Once again, this leads to a formulation which is exactly of
the same type as the one computed using a single and larger
SVM.

Many computations are factorized in this approach. This is
why we call this method factorized MSVM (FMSVM). The
overall form is well suited for an efficient computation using
BLAS routines. In particular, K(xi, z) is computed only once
for all the xi elements of the global set of support vectors while
these may appear several times in the sets of support vectors
of the different elementary classifiers. The factorization of the
elementary classifiers is implemented via an accumulation in a
hashed structure of the Sk, ρk, αki, Ak and Bk/Ak elements.

C. Factorized Model for Multi-Label Classification

The algorithm presented in the previous section can be ex-
tended for computing prediction values for a set of q predefined
and learnt concepts. With slight modifications, the method used
for factorizing computations for multiple elementary learners
can also be applied for factorizing computations for multiple
target concepts.

The multi-label classification method that we propose is
defined as follows. The per concept classifier decision func-
tions are learnt separately for each concept c, and defined as:

fc(z) = ρc +
∑

xi∈Sc

yciαciK(xi, z) (8)

where c ∈ [1, q] is the concept index and Sc the set of support
vectors associated to the classifier trained for the cth concept.
For each concept, the fc(z) values can come, either directly
from a classical SVM or from a FMSVM as presented in the
previous section. The main difference with equation 3 is that a
c index has to be added to the y labels but this has no practical
implication in the computations. The associated probability
functions are defined as:

pc(z) =
1

1 + eAc.fc(z)+Bc
(9)

Again, without loss of generality, we can consider the global
set of support vectors: (S =

⋃q
c=1 Sc) and rewrite equations 3

as:
fc(z) = ρc +

∑
xi∈S

yciαciK(xi, z) (10)

taking all αci for xi in S \Sc equal to zero. So far, the method
is the same as for the MSVM fusion but we do not perform
any fusion operation here. Instead we keep all the per concept
results in parallel and we rewrite equation 2 in a vectorized
form considering the set of concepts as:

(fc(zj))(1≤j≤n)(1≤c≤q) = f = ρT .1n +KT .a (11)

where ρ is the bias vector ρc of the q terms and a is the q×m
matrix of the yciαci values. The BLAS3 matrix multiplication
routine can be used once again for an efficient computation of
the set of fc(zj) values.

Considering the probability normalization, if needed, no
fusion has to be performed and the sigmoid computation has
to be done for each fc(zj) value. These can be efficiently
computed however using VML functions.

As in the MSVM fusion, many computations are factorized
in this approach and the overall form is well suited for
an efficient computation using BLAS routines. Once again,
the implementation involves a hashed structure. The main
difference is that the accumulation of values is replaced by
a vectorization of them. We also refer to this method as
factorized MSVM (FMSVM). The F in FMSVM may refer
either to the factorization of multiple elementary classifiers for
a single concept or to the factorization of multiple classifiers
corresponding to multiple concepts or to the combination of
both.

The proposed optimization requires that the γ parameter is
the same for all concepts while it could in principle be tuned by
cross-validation separately for each one. This is not a problem
since the classification performance is not very sensitive to the
exact value of this parameter and the optimal value is more
related to the descriptor type and collection contents than to the
target concepts. Furthermore, the estimation of this parameter
can be noisy in the case of highly imbalanced classes and
taking a single value for all concepts is a good way to reduce
such noise. In the case one would want to use a separate
γc parameter for each concept, the proposed method could
still bring significant improvement: the factorization of the
Euclidean distance computations could still be used while the
second factorization corresponding to equation 11 could not.
The first one is however the most important for speeding up the
prediction, especially when applied with high dimensionality
descriptors.

Practical implementation may face a problem of memory
space, especially when indexing a large number of concepts
(e.g. when indexing thousands of concepts). However, this
problem can be solved by processing the data by blocks over
the test examples and the concepts to index.

IV. EXPERIMENTS

Experiments were conducted in the context of the TREC-
Vid 2012 semantic indexing task [17]. The data collection



TABLE I. THE MAP VALUES ON THE TRECVID 2012 VALIDATION
SET, USING THE DIFFERENT MSVM METHODS.

Descriptor Size PCA Original Factorized
MSVM MSVM

hg 104 104 0.1155 0.1153
bov2 dsiftSC 8192 512 0.1701 0.1699
labm1x3x1024 3072 384 0.1328 0.1327
vlat hog6s8 dict64 4096 512 0.1637 0.1603
dense sift k1024 1024 256 0.1290 0.1289
vlad 32768 640 0.1720 0.1717
mlhmslbp spyr 26624 768 0.1461 0.1466
superpixel color sift 1064 256 0.1413 0.1409

consists of two large sets: the development and the test sets.
The development set contains 400, 289 annotated video shots,
while the test set contains 145, 634 shots. The evaluations were
conducted on 346 concepts, which were provided by NIST and
Quaero 1. We have divided the development set into two parts:
the training set (train, 197, 185 video shots) and the valida-
tion set (val, 203, 104 video shots). In this paper, we evaluate
and compare the proposed factorized model and the original
MSVM approach. For comparison with other classifiers, we
refer to the work presented in [3], which compares between
different classifiers and shows the effectiveness of the MSVM
approach to handle the class-imbalance problem in large-scale
multimedia datasets.

A. Video description

We have used several descriptors of different types and
sizes, which have been produced and shared by various part-
ners of the IRIM project of GDR-ISIS [18]. Most of the
selected descriptors are based on the color histograms or on
the bag of words approaches. In practice, we have used eight
descriptors whose size and performance are given in table I.
The performance is evaluated using the inferred Mean Average
Precision on the 346 evaluated concepts.

All the used descriptors were optimized by applying a
power law normalization and a dimensionality reduction using
the principle component analysis (PCA) followed by a second
power law normalization. The use of this optimization is
motivated, as it makes the Euclidean distance outperform the
χ2 distance with RBF kernels [15]. The optimization of the
hyper-parameter, the α exponents for the power laws and the
k values for PCA, were tuned by cross-validation separately
for each descriptor.

B. Effectiveness of the Factorized MSVM

In this section, we compare the performance of the indexing
system using the original MSVM and the new proposed
method (Factorized-MSVM). Both methods were applied with
the Euclidean distance and the RBF-kernel. The performances
of the systems were measured as the MAP value over the
346 concepts of TRECVid 2012, calculated on the validation
set. Table I shows the system performance with the MSVM
and Factorized-MSVM with the eight descriptors considered
in this work. As the table shows, for each descriptor, the MAP
values are not significantly different between both methods. We
believe that the small difference comes from the floating point
rounding (single precision was used) when fusing the scores in
the original approach. Final scores for the test samples using
the MSVM were produced by applying the arithmetic mean

1http://www.quaero.org/

as a fusion function on the m predicted scores while in the
Factorized-MSVM, the scores were computed only once.

This is a very interesting result. It validates that the
proposed Factorized-MSVM method performs as well as or
very close to the original MSVM. Thus, factorizing the models
leads to similar results than fusing predicted scores.

C. The efficiency of Factorized-MSVM

All the experiments were done on a machine which has two
quad-core processors running at 2.66 GHz and 32 Gbytes of
Ram. The execution time depends upon the descriptor size. In
table II, we report and compare the training and prediction
times of the original MSVM approach (based on libsvm
prediction) and of the proposed Factorized-MSVM approach.
The table shows the processing times in hours for the semantic
indexing task of 346 concepts on the validation set using the
considered descriptors. Furthermore, it presents the processing
times of the multi-class prediction function of the 346 concepts
with each of the considered descriptors. A very significant
improvement in efficiency of the proposed prediction method
has been observed.
TABLE II. PROCESSING TIMES (IN HOURS FOR THE 346 CONCEPTS),
ON THE val SET OF TRECVID 2012. G INDICATES THE SPEEDUP RATES

OF FMSVM OVER MSVM.
MSVM FMSVM multi-class

Descriptor train predict train (Gt) predict (Gp) predict (Gm)
hg 13.3 42.1 05.3 (2.5) 1.6 (26) 0.10 (421)
bov2 dsift* 53.7 255.1 17.0 (3) 2.9 (88) 0.17 (1500)
labm* 76.1 274.1 26.0 (3.0) 1.9 (141) 0.16 (1713)
vlat hog* 55.9 232.3 18.3 (3) 3.1 (75) 0.16 (1451)
dense sift* 20.1 96.5 07.9 (2.5) 1.7 (54) 0.18 (536)
vlad 39.8 222.5 22.0 (1.8) 2.3 (99) 0.12 (1854)
mlhmslbp* 101.0 390.7 27.3 (3.7) 3.2 (124) 0.15 (2604)
superpixel* 31.4 95.5 11.4 (3) 1.5 (64) 0.11 (868)

With the original MSVM, the training times for all the
concepts are smaller than the prediction times, with each
descriptor. The training times range from 13 hours to 101
hours, while the predicting times it go from 42 hours up to
390 hours. This depends upon the descriptor size and upon
the number of SVs found for each concept. However, the
learning process using the Factorized-MSVM (which applies
the new prediction algorithm), are between 5.3 to 27.3 hours,
which are almost 3 times faster than the original MSVM. The
improvement of the training process are due to the prediction
that the libsvm does while training, since the training algo-
rithm applies a cross-validation method (prediction included)
while training. Furthermore, the prediction times are less than
learning times and much faster than the prediction times with
the original MSVM, between 1.5 and 3.2 hours. Finally, using
the multi-class prediction (applied once for the 346 concepts),
the prediction time decreases to only a few minutes, which
is almost negligible when compared to the original prediction
times and also to the descriptors’ computation time.

The prediction times are also reduced to a single SVM.
For instance, in the case of indexing the data set for a concept
Person, the data is almost balanced. Thus, the system required
only one learner according to the MSVM approach. It has been
observed that FMSVM significantly reduced the processing
times with all descriptors. The learning time was reduced about
3 to 5 times, depending on the descriptor type. The prediction
times was reduced about 32 to 245 times, and became less
than two minutes for each descriptor.



D. Performance on the TRECVid 2012 test set

The same experiments were conducted on the full collec-
tion of TRECVid 2012, in which we used the full development
set for training set and made predictions on all the samples
of the test set. These data sets are more challenging; they
are larger, and thus they need more processing time. The
improvement in efficiency of the proposed method is shown
in table III. The reported results validate the efficiency of the
proposed method when indexing large-scale collections, such
as TRECVid 2012.

TABLE III. PROCESSING TIMES (IN HOURS FOR THE 346 CONCEPTS)
ON THE TEST SET OF TRECVID 2012. G INDICATES THE SPEEDUP RATES

OF FMSVM OVER MSVM.
MSVM FMSVM multi-class

Descriptor train predict train (Gt) predict (Gp) predict (Gm)
hg 48.4 58.1 21.2 (2.3) 1.5 (39) 0.13 (445)
bov2* 195.4 289.8 67.6 (2.9) 2.5 (116) 0.17(1705)
labm* 274.0 395.5 90.5 (3.0) 3.3 (122) 0.25 (1643)
vlat* 311.7 364.1 73.0 (4.7) 3.3 (109) 0.24 (1518)
dense sift* 87.5 145.6 30.3 (2.9) 1.5 (94) 0.14 (1051)
vlad 173.7 231.0 77.5 (2.2) 3.6 (64) 0.28 (805)
mlhmslbp* 388.2 569.7 122.0 (3.2) 3.9 (145) 0.18 (3074)
superpixel* 119.3 134.3 42.3 (2.8) 2.0 (67) 0.15 (861)

V. CONCLUSION AND FUTURE WORK

We have proposed and evaluated a new algorithm for
content-based multimedia indexing on large-scale dataset. The
algorithm is an extension to the multi-learner based on SVM
approach and is denoted as Factorized-MSVM. The approach
is designed for taking advantage of optimized mathematical
libraries (BLAS and VML). Moreover, the approach involves
hashed structures allowing the factorization of computations
between the multiple SVMs and the multiple target concepts.
The method has been validated and evaluated using several
descriptors in the context of the TRECVid 2012 semantic
indexing task. Experimental results show that the Factorized-
MSVM performs as well as the original MSVM, but it is much
faster. It is about 39 − 145 times faster than the prediction
made using the original libsvm separately for each concept.
By applying the multi-class prediction method, the prediction
times over all the concepts reduces to a few minutes instead of
several hours with the original MSVM. The learning time was
accelerated as well. Furthermore, the method was validated in
the single-learner case.

A released software package of our proposed
Factorized-MSVM implementation can be found on
’http://mrim.imag.fr/FMSVM’. In future work, we plan
to compare the Factorized-MSVM with the methods based
on fisher-vector with linear classifier [19] and the Deep
Convolutional Neural Networks approaches [20], [21].

ACKNOWLEDGEMENTS

This work was partly realized as part of the Quaero Pro-
gram funded by OSEO, French State agency for innovation.

REFERENCES

[1] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995. [Online]. Available:
citeseer.ist.psu.edu/cortes95supportvector.html

[2] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.
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