
HAL Id: hal-01230684
https://hal.science/hal-01230684

Submitted on 18 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cognitive Modeling for Automating Learning in
Visually-guided Manipulative Tasks

Hendry Ferreira Chame, Philippe Martinet

To cite this version:
Hendry Ferreira Chame, Philippe Martinet. Cognitive Modeling for Automating Learning in Visually-
guided Manipulative Tasks. Informatics in Control, Automation and Robotics, Lecture Notes
in Electrical Engineering, Springer International Publishing, pp.37-53, 2015, 978-3-319-10890-2.
�10.1007/978-3-319-10891-9_2�. �hal-01230684�

https://hal.science/hal-01230684
https://hal.archives-ouvertes.fr


Cognitive Modeling for Automating Learning in
Visually-guided Manipulative Tasks

Hendry Ferreira Chame1 and Philippe Martinet1

Robotics Team
Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN)

Nantes, France
{Hendry.Ferreira-Chame, Philippe.Martinet}@irccyn.ec-nantes.fr

Abstract. Robot manipulators, as general-purpose machines, can be
used to perform various tasks. Though, adaptations to specific scenar-
ios require of some technical efforts. In particular, the descriptions of the
task result in a robot program which must be modified whenever changes
are introduced. Another source of variations are undesired changes due to
the entropic properties of systems; in effect, robots must be re-calibrated
with certain frequency to produce the desired results. To ensure adapt-
ability, cognitive robotists aim to design systems capable of learning and
decision making. Moreover, control techniques such as visual-servoing al-
low robust control under inaccuracies in the estimates of the system’s pa-
rameters. This paper reports the design of a platform called CRR, which
combines the computational cognition paradigm for decision making and
learning, with the visual-servoing control technique for the automation
of manipulative tasks.

Keywords: Cognitive Robotics, Computational Cognition, Artificial In-
telligence, Visual Servoing.

1 Introduction

In the last decades, with the venue of fields of study such as cybernetics, artificial
intelligence, neuroscience and psychology; remarkable progresses have been made
in the understanding of what is required to create artificial life evolving in real-
world environments [1]. Still, one of the remaining challenges is to create new
cognitive models that would replicate high-level capabilities; such as, perception
and information processing, reasoning, planning, learning, and adaptation to
new situations.

The study of knowledge representation and thinking has led to the proposal of
the concept of Cognitive Architecture (CA). A CA can be conceived as a broadly-
scoped, domain-generic computational cognitive model, which captures essential
structures and processes of the mind, to be used for a broad, multiple-level,
multiple-domain analysis of cognition and behavior [2]. For cognitive science
(i.e., in relation to understanding the human mind) it provides a concrete mech-
aniscist framework for more detailed modeling of cognitive phenomena; through



specifying essential structures, divisions of modules, relations between modules,
and so on [3].

A robot that employs a CA to select its next action, is derived from integrated
models of the cognition of humans or animals. Its control system is designed
using the architecture and is structurally coupled to its underlying mechanisms
[4]. However, there are challenges associated with using these architectures in real
environments; notably, for performing efficient low-level processing [5]. It can be
hard, thus, to generate meaningful and trustful symbols from potentially noisy
sensor measurements, or to exert control over actuators using the representation
of knowledge employed by the CA.

In practice, implementations of cognitive models usually require wide exper-
tise in many other fields (i.e., probabilistic navigation, planning, speech recogni-
tion; among others). Moreover, cognitive models are derived from a large spec-
trum of computational paradigms that are not necessarily compatible when con-
sidering software architecture requirements. Scientists in cognition research, and
actually higher-level robotic applications, develop their programs, models and
experiments in a language grounded in an ontology based on general principles
[6]. Hence, they expect reasonable and scalable performance for general domains
and problem spaces.

On the side of cognitive roboticists, it would not be reasonable to replace al-
ready existing robust mechanisms ensuring sensory-motor control by less efficient
ones. Such is the case of the servo-vision control technique (or visual servoing)
which uses computer vision data to control the motion of the robot’s effector
[7]. This approach has the advantage of allowing the control of the robot from
the error directly measured on the effector’s interaction with the environment;
making it robust to inaccuracies in estimates of the system parameters [8].

This research seeks to contribute to the debate standing from the point of
view of cognitive roboticists. It can be conceived as an effort to assess to what
extent it is feasible to build cognitive systems making use of the benefits of a
psychologically-oriented CA; without leaving behind efficient control strategies
such as visual servoing. The aim is to verify the potential benefits of creating
an interactive platform under these technologies; and to analyze the resulting
flexibility in automating manipulative tasks.

2 Cognitive Architectures

According to [9], two key design properties that underlie the development of any
CA are memory and learning. Various types of memory serve as a repository for
background knowledge about the world, the current episode, the activity, and
oneself; while learning is the main process that shapes this knowledge. Based
on these two features, different approaches can be gathered in three groups:
symbolic, non-symbolic, and hybrid models.

A symbolic CA has the ability to input, output, store and alter symbolic
entities; executing appropriate actions in order to reach goals [2]. The major-
ity of these architectures employ a centralized control over the information flow



from sensory inputs, through memory; to motor outputs. This approach stresses
the working memory executive functions, with an access to semantic memory;
where knowledge generally has a graph-based representation. Rule-based repre-
sentations of perceptions/actions in the procedural memory, embody the logical
reasoning of human experts.

Inspired by connectionist ideas, a sub-symbolic CA is composed by a net-
work of processing nodes [3]. These nodes interact with each other in specific
ways changing the internal state of the system. As a result, interesting emergent
properties are revealed. There are two complementary approaches to memory
organization, globalist and localist. In these architectures, the generalization of
learned responses to novel stimuli is usually good, but learning new items may
lead to problematic interference with existent knowledge [10].

A hybrid CA combines the relative strengths of the first two paradigms [9]. In
this sense, symbolic systems are good approaches to process and executing high-
level cognitive tasks; such as, planning and deliberative reasoning, resembling
human expertise. But they are not the best approach to represent low-level
information. Sub-symbolic systems are better suited for capturing the context-
specificity and handling low-level information and uncertainties. Yet, their main
shortcoming are difficulties for representing and handling higher-order cognitive
tasks.

3 Visual Servoing

The task in visual servoing (VS) is to use visual features, extracted from an
image, to control the pose of the robot’s end-effector in relation to a target. The
camera may be carried by the end-effector (a configuration known by eye-in-
hand) or fixed in (eye-to-hand) [7]. The aim of all vision-based control schemes
is to minimize an error e(t), which is typically defined by

e(t) = s(m(t), a)− s∗ . (1)

The vector m(t) is a set of image measurements used to compute a vector of k
visual features s(m(t), a), based on a set of parameters a representing potential
additional knowledge about the system (i.e., the camera intrinsic parameters,
or a 3-D model of the target). The vector s∗ contains the desired values of the
features.

Depending on the characteristics of the task, a fixed goal can be considered
where changes in s depend only on the camera’s motion. A more general situation
can also be modeled, where the target is moving and the resulting image depends
both on the camera’s and the target’s motion. In any case, VS schemes mainly
differ in the way s is designed. For image-based visual servo control (IBVS), s
consists of a set of features that are immediately available in the image data. For
position-based visual servo control (PBVS), s consists of a set of 3D parameters,
which must be estimated from image measurements. Once s is selected, a velocity
controller relating its time variation to the camera velocity is given by



ṡ = LsVc . (2)

The spatial velocity of the camera is denoted by Vc = (vc, ωc), with vc the
instantaneous linear velocity of the origin of the camera frame and ωc the instan-
taneous angular velocity of the camera frame. Ls ∈ R6×k is named the interaction
matrix related to s. Using (1) and (2), the relation between the camera velocity
and the time variation of e can be defined by

ė = LeVc . (3)

Considering Vc as the input to the controller, if an exponential decoupled
decrease of e is desired, from (3) the velocity of the camera can be expressed by

Vc = −λLe
+e , (4)

where L+ ∈ R6×k is chosen as the Moore-Penrose pseudoinverse of Le, that is

Le
+ = (Le

tLe)
−1
Le

t when Le is of full rank 6. In case k = 6 and det(Le) 6= 0, it
is possible to invert Le giving the control Vc = −λLe

−1e.
Following (4), the six components of Vc are given as input to the controller.

The control scheme may be expressed in the joint space by

q̇ = −λ(Je
+e+ Pees)− Je+

∂e

∂t
, (5)

where Je is the feature Jacobian matrix associated with the primary task e,

Pe = (I6 − Ĵe
+
Ĵe) is the gradient projection on the null space of the primary

task to accomplish a secondary task es, and ∂̂e
∂t models the motion of the target.

An example of VS is presented in Fig. 1.

4 The CRR Proposal

The Cognitive Reaching Robot (CRR) is a system designed to perform interac-
tive manipulative tasks. When compared to non-cognitive approaches, CRR has
the advantage of being adaptive to variations of the task; since the reinforcement
learning mechanism reduces the need for explicitly reprogramming the behav-
ior of the robot. Furthermore, CRR is robust to changes in the robotic system
due to wear. It is tolerant to calibration errors by employing visual servoing;
where modeling errors are compensated in the control loop (the camera directly
measures the task errors).

The platform presents a modular organization (as shown in Fig. 2) and is
composed by three modules. The cognitive module is responsible for symbolic
decision making and learning. The auditory module processes speech recognition.
The visuomotor module is in charge of applying the VS control. To enable inter-
modular communication, six topics were defined. Topics are named buses over
which modules exchange messages. According to the sensory modalities that
compose CRR, auditory, proprioceptive and visual topics were defined. The aim



Fig. 1: Comparison between three IBVS (Image-base visual servoing) control
schemes [8]. a) Initial and final position of the target on the camera image, and
the trajectory followed by each point and the center of the virtual polygon. b)
Evolution of Vc. From left to right the plots correspond to different calculations
of the interaction matrix: Le

+ (at each iteration), Le
+ = Le∗

+ (at equilibrium),
and Le

+ = (Le
+ + Le∗

+)/2.

of these topics is sending sensory information to the cognitive module. Similarly,
the cognitive module sends commands to the auditory, visual and proprioceptive
modules.

Cognitive
Module

Auditory
Module

Visuomotor
Module

SoarVoce Library ViSP / OpenCV

AUS VIC/PRC

VIS/PRSAUC

Fig. 2: The CRR architecture. The boxes represent modules and the ovals in-
dicate the libraries wrapped inside the modules. The links between modules
indicate topics. AUS: auditory sensory, PRS: proprioceptive sensory, VIS: visual
sensory, AUC: Auditory command, VIC: Visual command, PRC: Proprioceptive
command.



Hardware Components. The design of CRR aimed to praise the reusability
of equipments, so its hardware components were chosen according to a criteria
of accessibility in the robotic lab. The project considered a Stäubli TX-40 robot
manipulator, an AVT MARLIN F-131C camera, and a DELL Vostro 1500 laptop
(Intel Core 2 Duo 1.8 GHz 800 Mhz FSB, 4.0 GB DDR2 667 MHz RAM, 256
MB NVIDIA GeForce 8600M GT).

Software Components. Three criteria grounded the choice for software tech-
nologies: source availability, efficiency and continuity of the development commu-
nity. The sole exception was the use of SYMORO+ [11], a proprietary automatic
symbolic modeling tool for robots. CRR was developed under Ubuntu Oneiric
Ocelot and relied on Voce Library V0.9.1, ViSP V2.6.2, the symbolic CA Soar
V9.3.2, and ROS Electric. Eclipse Juno V4.2 was used for cording and testing
the algorithms.

5 Case Study

The experimental situation designed, consisted in a reaching, grasping, and re-
leasing task, involving reinforcement learning. From the inputs received, and
based on the rewards or punishments obtained, the robot must learn the opti-
mal sequence policy π : S → A to execute the task, and thus, to maximize the
reward obtained.

5.1 Task Definition

The experimenter is positioned in front of the robot for every trial and presents
it an object accompanied by a verbal auditory cue (”wait” or ”go”). The robot
has to choose between sleeping or reaching the object. If the object is reached
after a ”wait” or the robot goes sleeping after a ”go”, the experimenter sends an
auditory verbal cue representing punishment (”stop”) and the trial ends. On the
contrary, if the robot goes sleeping after getting a ”wait”or follows the object
after a ”go”, it receives an auditory verbal cue representing reward (”great”).
After being rewarded for following the object, the experiment enters the releasing
phase. If the robot alternated the location for dropping the object it is rewarded,
otherwise it is punished. Figure 3 presents the reinforcement algorithm.

The robot has two main goals in the experiment. It is required to learn when
reaching or sleeping in the presence of the object; and if the object is grasped, to
learn to drop it alternatively in one of two containers. Summarizing, the robot is
required of perceptive abilities (recognizing the object and speech), visuomotor
coordination, and decision making (while remembering events).

5.2 Perception

Object Recognition. The recognition of the object was accomplished using
the OpenCV library. The partition of the image into meaningful regions was



Initial
Object
location

Speech
recognition

Go to sleep

Reward Punishment
Object

grasping

Reach the
object

Punishment

Where
to

release?
Reward Punishment

wait

go go

wait

alternates
location

repeats
location

Fig. 3: Task reinforcement algorithm.

achievement in two steps. The classification steps includes a decision process
applied to each pixel assigning it to one of C ∈ {0 ... C−1} classes. For CRR a
particular case using C = 2 known as binarization [12] was used. Formally, it is
conceived as a monadic operation taking an image of size IW×H as input, and
producing an image OW×H as output; such as

O[u, v] = f(I[u, v]), ∀(u, v) ∈ I . (6)

The color image I is processed in HSV color space, and the f function used
was

f(I[u, v]) =

{
1 if εi < I[u, v] < εf
0 otherwise

. (7)

The choice of f was based on simplicity and ease of implementation; however,
it assumes constant illumination conditions throughout the experiment (which
is the case since the environment is illuminated artificially). The thresholds ε
were set to recognize red objects.

In the description phase the represented sets S are characterized in terms of
scalar or vector-valued features such as size, location and shape. A particularly
useful class of image features are moments [7], which are easy to compute and
can be used to find the location of an object (centroid). For a binary image
B[x, y] the (p+ q)th order moment is defined by

mpq =

ymax∑
y=0

xmax∑
x=0

xpyqB(x, y) . (8)



Moments can be given a physical interpretation by regarding the image func-
tion as a mass distribution. Thus m00 is the total mass of the region, and the
centroid of the region is given by

xc =
m10

m00
, yc =

m01

m00
. (9)

After the centroid is obtained, the last step consisted in proportionally defin-
ing two points beside it, forming an imaginary line of −45◦ slope. These two
points are the output of the object recognition algorithm, later entered to ViSP
to define 2D features and performing the VS control.

Speech Recognition. CRR used the Voce Library to process speech. It re-
quired no additional efforts than changing the grammar configuration file to
include the vocabulary to be recognized.

5.3 Visuomotor Control

In order to perform visuomotor coordination to reach the object, an IBVS strat-
egy was chosen given its robustness to modeling uncertainties [8]. The camera
was located in the effector of the robot (eye-in-hand), thus the Je component of
(5) is defined by

Je = Le
cVn

nJ(q) . (10)

Two visuomotor subtasks were defined: reaching the object and avoiding joint
limits.

Primary task. The subtask e consisted in positioning the end-effector in front
of the object for grasping it. The final orientation of the effector was not im-
portant (assuming a spherical object), therefore, only 3 DOF were required to
perform the task. Two 2D point features were used given its simplicity, each
of them allowing to control 2 DOF. The resulting interaction matrix Lei was
defined by

Lei =

[
−1/Zei 0 xei/Zei xeiyei −(1 + x2ei) yei

0 −1/Zei yei/Zei (1 + y2ei) −xeiyei −xei

]
. (11)

The error vector for the primary task can be expressed by

ei =
[
(xsi − xsi∗) (ysi − ysi∗)

]
t . (12)

Since two points are being tracked, the resulting components dimension where
L4×6
e and e4×1.



Secondary task. The remaining 3 DOF were used to perform the secondary
task of avoiding joint limits. The strategy adopted was activation thresholds [13].
The secondary task is required only if one (or several) joint is in the vicinity of
a joint limit. Thus, thresholds can be defined by

q̃imin = qimin + ρ(qimax − qimin) , (13)

and
q̃imax

= qimax
− ρ(qimax

− qimin
) , (14)

with 0 < ρ < 1/2.
The vector es had 6 components, each defined by

esi =


β(qi−q̃imax )
qimax−qimin

if qi > q̃imax

β(qi−q̃imin
)

qimax−qimin
if qi < q̃imin

0 otherwise

, (15)

with the scalar constant β regulating the amplitude of the control law due to
the secondary task.

5.4 Decision Making

Markov Decision Process (MDP) provided the mathematical framework for mod-
eling decision making. The task space was represented by a set of S = {S0, ..., S10}
states, A = {a0, ..., a8} actions and Pa(s, s′) = {α0, ..., α14} action-transition
probabilities. The simplified MDP representation of the agent is given in Fig. 4.

Procedural Knowledge Modeling. Cognitive models in Soar 9.3.2 are stored
in long-term production memory as productions. A production has a set of con-
ditions and actions. If the conditions match the current state of working memory
(WM), the production fires and the actions are performed. Some attributes of
the state are defined by Soar (i.e., io, input-link and name) ensuring the opera-
tion of the architecture. The modeler has the choice to define custom attributes,
which derives in a great control over the state.

The procedural knowledge implementation in Soar can be conceived as a
mapping between an input to an output semantic structure. To develop the
case study, it was necessary to define three types of productions: maintenance,
action and learning rules. The first category includes rules that process inputs
and outputs to maintain a consistent state in WM; a typical task is clearing or
putting data into the slots in order to access the modules functionalities. The
second category includes rules related to the robot’s task, such as, managing the
MDP state transitions. The last group involves rules that guarantee the correct
functioning of RL; it includes tasks like maintaining the operators’ Q-values, or
registering rewards and punishments. Figure 5 presents a qualitative view of the
contents of the procedural memory. For modeling the case study, a total of 57
productions were defined.



S0

init

S1

locate

S2

reach

S3

sleep

S4

restart

grasp

S5

rLoc1

think

rLoc2

S8

rLoc1

rLoc2

S9

restart

S10

restart

S7

restart

S6

restart

∗ ∗ ∗

∗∗

∗

∗

∗

∗∗
∗

∗

∗
∗
∗

Fig. 4: The MDP task model. ∗ = (α, ρ), where α is the transition probability
from s to s′ when taking the action, and ρ is the reward associated with the
state. From all actions there is a link to S0 (omitted for clarity) modeling errors
on the process with probability 1−α. The states are: S0: Started, S1: Initialized,
S2: Object located, S3: Object reached, S4: Sleeping, S5: Object grasped, S6:
Object released in location 1, S7: Object released in location 2, S8: Thinking, S9:
Object released in location 1 after thinking, S10: Object released in location 2
after thinking. The action a0 initializes the system, a1 signals the localization of
the object, a2 signals the robot to reach the object, a3 puts the robot in sleeping
mode, a4 signals the robot to close the gripper, a5 explores past events, a6 and
a7 signal the robot to release the object at location 1 or 2 respectively, and a8
restarts the system. If a state receives a negative feedback from the user ρi = −4
(punishment). In case of positive feedback, ρi = 2 (reward).

Procedural
memory

RL rulesM rules MDP rules

Fig. 5: Procedural memory. M: Maintenance, RL: Reinforcement Learning, MDP:
Markof Decision Process.

Remembrance of Events. Functionalities in Soar are accessed through testing
the current semantic structure of WM. The same principle applies for querying
data in the long term memory. In order to access the episodic or semantic mem-
ory, the programmer must define rules placing the query attributes and values



on the attribute epmem (for episodic retrieval) or smem (for semantic retrieval).
After each decision cycle, Soar checks the epmem.command node to match con-
ditions for episodic retrieval. A copy of the most recent match (if found) will be
available on the epmem.result for the next decision cycle.

Remembrance of Facts. Facts about the world can be modeled through se-
mantic structures. For the case study, the agent must know what are the stimuli
received, or at least, how it feels like in relation to them. Thus, semantic infor-
mation concerning stimuli was added to the system. The resulting graph was
equivalent to a tree of height two (Fig. 6). A stimulus has a name, a sensory
modality (visual, auditory or proprioceptive) and a valence (positive, negative
or neutral).

stimulus

modality name valence

A V P - 0 +

Fig. 6: Stimulus semantic knowledge. A: Auditory, V : Visual, P : Proprioceptive.

Reinforcement Learning. The learning by reinforcement can be considered
as equivalent to mapping situations to actions, so as to maximize a numerical
reward signal [14]. The learner is not told which actions to take, but instead it
must discover which actions yield the most reward by trying them. The RL mod-
ule of Soar is based on the Q-learning algorithm [14]. In the case study a reward
is applied whenever the state is not neutral. Figure 7 illustrates the processing
of the stimuli. When an input arrives, procedural rules query the semantic mem-
ory to determine the valence associated with the stimulus. Following an analogy
with respect to humans, the agent continues to work if it doesn’t feel happy or
sad about what it has done; if so, it stops to think about it.

6 Results

The implementation of the functionalities of CRR took place incrementally.
Given the independence between the different modules, each component could be



Start Input Analysis

How
does it

feel
like?

Output

Reflection

End

+/-

0

Fig. 7: Stimulus processing and reinforcement.

developed and tested individually. The modules were connected to the platform
through ROS Etectric; a comprehensive simulation was done, and the results
obtained are presented below.

6.1 System Performance

The performance of the visuomotor module is quite acceptable for real-time con-
trol applications. The module was designed to operate in four different modal-
ities. In the VS mode, only visual servoing is available. In the VSI mode, it is
possible to have a real-time view of the camera. In the VSL mode, the system
generates log files for joint positions and velocities, feature errors, and camera
velocities. Finally, a combination of the last three is allowed in the VSIL mode.
As it can be seen in Fig. 8, a Freq. near to 66 Hz (approx. 15 ms per itera-
tion) can be reached. If the camera view is displayed (which can be useful for
debugging but has no importance for execution) the Freq. drops to 20 Hz.

6.2 Joint Limit Avoidance

In order to test the joint limit avoidance property of the system, a simple simu-
lation was designed. The robot was positioned in the configuration displayed in
Fig. 9a. An object is assumed to be presented to the robot, rotated −10◦ in the
z-axis of the camera frame. The simulated camera view is shown in Fig. 9b.

The primary task (moving the robot to the desired view of the features) can
be solved in infinite ways given the current singularity between joint frames 4
and 6. For testing the limit avoidance control law, limits of q6min = −5◦ and
q6max = 5◦ were set to joint 6. As it is shown in Fig. 10, if just the primary task
is performed, the control law generated will mostly operate q6 and the task will
fall in local minima, since q6min

will be reached. On the contrary, as shown in Fig.
11, setting a threshold ρ = 0.5 (which means it will be active when q6 < −2.5◦

or q6 > 2.5◦) solves the problem and the joint limit is avoided.



0 50 100 150 200

20

40

Iteration

T
im

e
in

m
s

Modes execution time

VS VSL VSI VSIL

Fig. 8: Visuomotor module computing time.

(a)

(b)

Fig. 9: Robot configuration for testing joint limits avoidance. a) Joint positions
in deg: q1 = 0, q2 = 90, q3 = −90, q4 = 0, q5 = 0, q6 = 0. b) Simulated view,
dots are the current feature locations and crosses are the desired locations.

6.3 Learning Task

The task designed to run over CRR had two learning phases. In order to assess
the correctness of the cognitive model and the learning algorithm; two experi-
mental sets were defined. In the experimental set one (ES1), the objective was
to teach the robot to identify when reaching the target. The ES1 evaluation
consisted of five test cases varying the order of presentation of the clues ”wait”



0 1,000 2,000 3,000 4,000

−4

−2

0

Time in ms

V
el

o
ci

ty
in

d
eg

/
se

c

Evolution of joints velocities for task 1

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

Fig. 10: Simulation of VS primary task.

0 1,000 2,000 3,000 4,000

−4

−2

0

Time in ms

V
el

o
ci

ty
in

d
eg

/
se

c

Evolution of joints velocities for task 1 and 2.

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

Fig. 11: Simulation of VS avoiding joint limits.

and ”go”. In all conditions the robot started without prior knowledge (the RL
module was reset). The comparison between a RL and a random police is given
in Table 1; as it can be seen, the robot was able to learn the task. The exper-
imental set two (ES2) assumes ES1 was accomplished, so the agent properly
grasped the object and must now learn where to drop it. The ES2 evaluation
showed the agent was able to quickly learn the task using RL, and the resulting
Q-values are presented in Table 2. For each test case of both ES1 and ES2, the
first 20 responses of the robot were registered.



Table 1: ES1 evaluation results. RL-S: number of successes applying a RL policy,
RL-C: RL-S/attempts, R-S: number of successes applying a random policy, R-C:
R-S/attempts.

Test RL-S RL-C R-S R-C

C1 17 0.85 8 0.40
C2 18 0.90 11 0.55
C3 17 0.85 12 0.60
C4 18 0.90 9 0.45
C5 18 0.90 10 0.50

Table 2: ES2 evaluation results. The robot attempted to release the object with-
out remembering 5 times (taking the release-loc-1 and release-loc-2 actions).
However, it learned to maximize the reward by tacking the think-Remember ac-
tion, which was selected 15 times. Finally, after recalling the last location, the
agent learned to alternate between the think-release-loc-2-B and think-release-
loc-1-A actions.

Action Frequency Reward

think-Remember 15 4.9302
think-release-loc-2-A 1 -2.2800
think-release-loc-2-B 7 6.9741
think-release-loc-1-A 7 6.9741
think-release-loc-1-B 0 0.0000
release-loc-2 2 0.6840
release-loc-1 3 0.4332

7 Discussion

Starting from the definition of a platform for executing visually guided tasks;
a case study based on reinforcement learning was designed and required of:
perceptive abilities (such as, recognizing the object and speech); visuomotor co-
ordination, and decision making (while remembering events). Different sections
of the paper were devoted to detail the design criteria and the development of
these components in the CRR platform.

In the contemplated scenario, the recognition of stimuli was accomplished
with relative ease. For the case of visual recognition, the OpenCV library proved
to be a useful tool by offering a comprehensive set of procedures, thus facilitating
the attainment of complex tasks with a reduced number of function calls. For
speech recognition, no further effort was required than specifying the vocabulary
to be recognized.

In order to ensure visuomotor coordination, the technique of IBVS was cho-
sen with the configuration eye-in-hand to avoid occlusions in the scene. Three
DOF of the robot where assigned to the tracking task, while the remaining were
assigned to the secondary task of joint limits avoidance. It was observed that



both tasks efficiently fulfilled their role in the system. The ViSP library showed
to be a valuable tool for implementing real-time visual servoing control laws.
The encapsulation of tracking algorithms abstracts the designer from the robust
handling of image processing, which led to shorter development times.

The development of cognitive models in Soar presented a slow learning curve.
However, the available documentation and resources included in the distribution
(specially the Soar Debugger) are sufficient and allowed to identify the errors;
and gradually, to understand the concepts behind the architecture.

The MDP framework showed to be a valuable tool for treating RL-based
experiments. The integration of the MDP formalism to Soar was a relatively
simple task to do, given that the architecture implements the Q-learning algo-
rithm. This algorithm requires of the definition of rules that generate Q-values
for each state-action pairs. Soar provides mechanisms for generating these rules,
even for problems whose dimensions are not known ahead of time.

The Soar syntax to encode production rules is simple. However, the proce-
dural memory contains more than translations from English of the productions
relative to the task (also modeled using the MDP formalism). That is, the cogni-
tive model requires of the procedural knowledge extracted through the method-
ology of knowledge engineering. But it also requires of rules whose purpose is
to manage WM contents, thus, ensuring coherence during the execution of the
agent while accessing the architecture’s functionalities (i.e., events and facts re-
membrance, or RL). With the purpose to lighten the work of implementation for
the MDP representation of similar task spaces; the proposed method could be
extended with the benefits of an ontology-based methodology. Thus, the system
could be enhanced with a new component in charge of transforming (or map-
ping) the content represented by the ontology to the set of production rules that
will be executed on the CRR platform.

8 Conclusions

This work started from the interest in developing cognitive robotic systems for
executing manipulative tasks. To this purpose, an approach emphasizing multi-
disciplinary theoretical and technical formulations was adopted. A methodolog-
ical proposal for integrating a psychologically-oriented cognitive architecture to
the visual servoing control technique has been presented; and resulted in the
development of a modular system capable of auditory and visual perception, de-
cision making, learning and visuomotor coordination. The evaluation of the case
study, showed that CRR is a system whose operation is adequate for real-time
interactive manipulative applications.

Acknowledgements

This research was accomplished thanks to the founding of the National Agency
of Research through the EQUIPEX ROBOTEX project (ANR-10-EQX-44), of



the European Union through the FEDER ROBOTEX project 2011-2015, and of
the Ecole Centrale of Nantes.

References

1. Arbib, M.A., Metta, G., van der Smagt, P.P.: Neurorobotics: From vision to action.
In: Springer Handbook of Robotics. (2008) 1453–1480

2. Newell, A.: Unified Theories of Cognition. William James Lectures. Harvard
University Press (1994)

3. Duch, W., Oentaryo, R.J., Pasquier, M.: Cognitive architectures: Where do we go
from here? [15] 122–136 22 September, Nice, France.

4. Sun, R.: Multi-agent systems for society. Springer-Verlag, Berlin, Heidelberg (2009)
7–21

5. Hanford, S., Long, L.: A cognitive robotic system based on the Soar cognitive ar-
chitecture for mobile robot navigation, search, and mapping missions. PhD thesis,
Aerospace Engineering, University Park, Pa., USA (2011)

6. Huelse, M., Hild, M.: A brief introduction to current software frameworks in cog-
nitive robotics integrating different computational paradigms. [15] 22 September,
Nice, France.

7. Corke, P.I.: Robotics, Vision & Control: Fundamental Algorithms in Matlab.
Springer (2011)

8. Chaumette, F., Hutchinson, S.: Visual servo control, part i: Basic approaches.
IEEE Robotics and Automation Magazine 13 (2006) 82–90

9. Kelley, T.D.: Symbolic and sub-symbolic representations in computational models
of human cognition: What can be learned from biology? Theory & Psychology
13(6) (2003) 847–860

10. O’Reilly, R., Munakata, Y.: Computational Explorations in Cognitive Neuro-
science: Understanding the Mind by Simulating the Brain. Bradford Books. Mit
Press (2000)

11. Khalil, W., Creusot, D.: Symoro+: A system for the symbolic modelling of robots.
Robotica 15(2) (March 1997) 153–161

12. Pratt, W.: Digital Image Processing: PIKS Scientific Inside. Wiley-Interscience
publication. Wiley (2007)

13. Marchand, E., Chaumette, F., Rizzo, A.: Using the task function approach to avoid
robot joint limits and kinematic singularities in visual servoing. In: IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, IROS’96. Volume 3., Osaka, Japan
(November 1996) 1083–1090

14. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: A survey. Journal
of Artificial Intelligence Research 4 (1996) 237–285

15. Proceedings of the IROS workshop on Current software frameworks in cognitive
robotics integrating different computational paradigms. In: Proceedings of the
IROS workshop on Current software frameworks in cognitive robotics integrating
different computational paradigms. (2008) 22 September, Nice, France.


