
HAL Id: hal-01230681
https://hal.science/hal-01230681

Submitted on 18 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Meta-Problem for Conservative Mal’tsev
Constraints

Clément Carbonnel

To cite this version:
Clément Carbonnel. The Meta-Problem for Conservative Mal’tsev Constraints. Thirtieth AAAI
Conference on Artificial Intelligence (AAAI-16), Feb 2016, Phoenix, Arizona, United States. �hal-
01230681�

https://hal.science/hal-01230681
https://hal.archives-ouvertes.fr

The Meta-Problem for Conservative Mal’tsev Constraints

Clément Carbonnel∗

LAAS-CNRS
University of Toulouse, INP Toulouse, France

carbonnel@laas.fr

Abstract

In the algebraic approach to CSP (Constraint Sat-
isfaction Problem), the complexity of constraint lan-
guages is studied using closure operations called poly-
morphisms. Many of these operations are known to
induce tractability of any language they preserve. We
focus on the meta-problem: given a language Γ, decide
if Γ has a polymorphism with nice properties. We de-
sign an algorithm that decides in polynomial-time if a
constraint language has a conservative Mal’tsev poly-
morphism, and outputs one if one exists. As a corollary
we obtain that the class of conservative Mal’tsev con-
straints is uniformly tractable, and we conjecture that
this result remains true in the non-conservative case.

1 Introduction
The complexity of constraint satisfaction problems is
a very active and fruitful research area. In particu-
lar, the study of CSP over fixed constraint languages
has attracted considerable interest since it was con-
jectured that for every finite constraint language Γ,
CSP(Γ) is either in P or NP-hard (the Feder-Vardi Di-
chotomy Conjecture) (Feder and Vardi 1998). The most
remarkable achievements to date include a characteri-
zation of languages that can be solved by local consis-
tency methods (Barto and Kozik 2014) or Gaussian-
like algorithms (Idziak et al. 2007), and a proof of the
Dichotomy Conjecture for conservative languages (lan-
guages with all possible unary relations over the do-
main) (Bulatov 2003). These results use the algebraic
approach to CSP: every language Γ can be associated
with a set of closure operations, called polymorphisms,
which have been shown to entirely determine the com-
plexity of CSP(Γ) (Jeavons, Cohen, and Gyssens 1997).

Given an operation f : Dk → D, a language Γ over
the domain D admits f as a polymorphism if every
constraint relation R ∈ Γ is closed under componen-
twise application of f . For example, the affine rela-
tion x + y + z = c is closed under the polymorphism
f(x1, x2, x3) = x1 − x2 + x3, since x1 + y1 + z1 = c,
x2 + y2 + z2 = c, x3 + y3 + z3 = c imply that
f(x1, x2, x3) + f(y1, y2, y3) + f(x3, y3, z3) = (x1 − x2 +

∗supported by ANR Project ANR-10-BLAN-0210.

x3)+(y1−y2+y3)+(z1−z2+z3) = c. A number of suffi-
cient conditions for tractability have been identified this
way; for instance, CSP(Γ) is solved by enforcing gener-
alized arc-consistency (GAC) if Γ has a semilattice poly-
morphism (Jeavons, Cohen, and Gyssens 1997). Each
sufficient condition defines a tractable class, that is, a
set T of languages such that ∀Γ ∈ T, CSP(Γ) is in P.

There are some desirable properties that good
tractable classes can be expected to have. First, we
know that there exists a polynomial-time algorithm for
each fixed Γ ∈ T, but there is no guarantee that there
exists one polynomial-time algorithm that solves every
CSP(Γ), Γ ∈ T. This can be formalized as a promise
problem: if CSP(T) is CSP together with the promise
that the instance is over a language in T, is it true
that CSP(T) ∈ P? If the answer is yes, we say that
T is uniformly tractable (or equivalently that T uni-
formizes (Kolaitis and Vardi 2000)).

We shall illustrate this notion with an example. Con-
sider the tractable class Tc of all languages Γ such that
CSP(Γ) can be solved by enforcing strong k-consistency,
where k only depends on Γ. Since there is no bound
on k in the definition of Tc, it is not clear that Tc
is uniformly tractable. However, a powerful result by
Bulatov implies that enforcing a form of consistency
called (2, 3)-minimality suffices to solve CSP(Γ) for each
Γ ∈ Tc (Bulatov 2010). Enforcing (2, 3)-minimality is
polynomial-time, so Tc is uniformly tractable.

Even if the class is uniformly tractable, one problem
remains: how hard is it to decide if a given language
Γ is in T? This is the meta-problem for T. In its full
generality, the meta-problem has no restriction on the
input language. In particular, the domain size is not
assumed to be bounded. In the worst case the meta-
problem is not necessarily decidable, but in practice it
is often in NP. If the class is defined by the existence
of polymorphisms satisfying a certain set of identities
(which is usually the case), the meta-problem is a poly-
morphism detection problem. For instance, the class
of languages that admit a semilattice polymorphism is
uniformly tractable since it is solved by GAC, but the
meta-problem is NP-complete (Green and Cohen 2008).

Beyond pure academic interest, the main reason for
investigating the complexity of meta-problems concerns

general-purpose solvers. It is great to know that lan-
guages with a nice polymorphism can be solved effi-
ciently, but this information is virtually useless for prac-
tical constraint solvers if they cannot decide quickly if
the language of the instance they are trying to solve
has the desired polymorphism. Furthermore, it was ob-
served that constraint solvers may perform poorly even
on instances that are theoretically very easy (Petke and
Jeavons 2009), which suggests that spending some time
analyzing the instance before starting search could be
beneficial. Beyond preprocessing uses, a very efficient
detection algorithm could be exploited in the frame-
work of backdoors, which aims to provide performance
improvements even if only a fraction of the constraints
have a nice polymorphism (Williams, Gomes, and Sel-
man 2003). In this setting, conservative polymorphisms
are of special interest (Bessiere et al. 2013).

Sometimes, the complexity of the meta-problem is
strongly related to the uniform tractability question.
This is true for the tractable class TMal of all lan-
guages that admit a Mal’tsev polymorphism, which in-
clude as particular cases the languages whose relations
are linear equations over a field (Bulatov 2002). The
solution algorithm resembles Gaussian elimination, in
that it starts from an instance without any constraint
and then adds the constraints one by one while main-
taining at all times a polynomial-sized representation of
the solution set (Bulatov and Dalmau 2006)(Dyer and
Richerby 2013). This algorithm remains polynomial
time even if the domain size or the number of tuples
are not fixed, but it does not entail uniform tractability
because it assumes that the Mal’tsev polymorphism is

known. Since there are roughly dd
3

possible Mal’tsev
operations over a domain of size d and it is possible
that only one of them is a polymorphism of the lan-
guage, an exhaustive approach is not satisfying. How-
ever, should a polynomial-time algorithm that outputs
a Mal’tsev polymorphism if one exists be engineered,
we could interface it with the state-of-the-art solution
algorithm and prove uniform tractability of TMal . But
then, this polymorphism detection algorithm would also
prove that the meta-problem is in P.

This paper builds around the observation that TMal

is likely to have an easy meta-problem and be uni-
formly tractable. Although we cannot prove this claim
in its full generality, we present a proof for the re-
stricted case of conservative Mal’tsev polymorphisms.
This extends previous results showing that conservative
Mal’tsev polymorphisms can be detected in polynomial
time in digraphs (Carvalho et al. 2011) and binary rela-
tional structures (Bessiere et al. 2013). As a byproduct,
we obtain a greatly improved algorithm for detecting
conservative majority polymorphisms, which generalise
2SAT and connected row-convex constraints.

Besides being a first step towards proving the uni-
form tractability of Mal’tsev constraints, our result for
the conservative case is interesting in its own right.
The tractable class of languages having a conservative
Mal’tsev polymorphism has seen little pratical use, but

is of great theoretical importance. For instance, conser-
vative Mal’tsev polymorphisms are one of the main in-
gredients in Libor Barto’s proof of the conservative Di-
chotomy Conjecture (Barto 2011). Moreover, the exis-
tence of a conservative Mal’tsev polymorphism is a nec-
essary condition for the tractability of CCSP(Γ), a vari-
ant of CSP(Γ) in which global cardinality constraints
are allowed in addition to the relations of Γ (Bulatov
and Marx 2010). Examples of conservative Mal’tsev
operations include extreme value functions, which map
any triplet {x, y, z} of natural numbers to α ∈ {x, y, z}
such that |α−median(x, y, z)| is maximum.

2 Preliminaries

CSP. A Constraint Satisfaction Problem (CSP) is a
triple (X ,D,C) where X is a set of variables, D is a finite
set of values, and C is a set of constraints. A constraint
C of arity r is a pair (S(C),R(C)) where S(C) ∈ X r
is the scope of C and R(C) ⊆ Dr is the relation of
C. Note that R(.) and S(.) can be seen as operators
that return the relation and scope of a constraint. A
solution of I is an assignment φ : X → D such that
∀C ∈ C, φ(S(C)) ∈ R(C), and the goal is to decide
if I has a solution. A constraint language is a set of
relations, and the language of a CSP instance I is the
set ΓI = {R(C) | C ∈ C}. Given a fixed constraint
language Γ, CSP(Γ) is the set of all instances I such
that ΓI ⊆ Γ. We assume that all relations are given in
extension (i.e. as lists of tuples).
Polymorphisms. An operation f : D → Dk is a poly-
morphism of a language Γ over D if for all R ∈ Γ of
arity r and t1, . . . , tk ∈ R, < f(t1[1], . . . , tk[1]), . . .,
f(t1[r], . . . , tk[r]) > ∈ R. The set of all polymorphisms
of Γ is denoted by Pol(Γ) and constitutes an operational
clone, that is, a set of operations closed under composi-
tion that contains all projections (Jeavons, Cohen, and
Gyssens 1997). It has been shown that the complexity
of CSP(Γ) is entirely determined by Pol(Γ) (Jeavons,
Cohen, and Gyssens 1997). An operation f : D → Dk
is conservative if f(x1, . . . , xk) ∈ {x1, . . . , xk} for all
x1, . . . , xk ∈ D, Mal’tsev if it is ternary and ∀x, y ∈ D,
f(x, x, y) = f(y, x, x) = y, and majority if it is ternary
and ∀x, y ∈ D, f(x, x, y) = f(x, y, x) = f(y, x, x) = x.
Tools. The most useful tool used to design poly-
morphism detection algorithms is the indicator prob-
lem. Formally, given an integer k and a finite con-
straint language Γ, the indicator problem of order
k of Γ is a CSP instance IP k(Γ) with one variable
xv1,...,vk for every k-tuple (v1, . . . , vk) of elements from
D. Then, for each R ∈ Γ of arity r and t1, . . . , tk ∈
R, IP k(Γ) contains a constraint CRt1,...,tk with scope
(xt1[1],...tk[1], . . . , xt1[r],...,tk[r]) and relation R. Going
back to the definition of a polymorphism, it follows that
an operation f of arity k is a polymorphism of Γ if and
only if xv1,...,vk ← f(v1, . . . , vk) is a solution of IP k(Γ).

If we are only looking for polymorphisms with spe-
cial properties, sometimes the solution set of IPk(Γ) can
be restricted to exactly those polymorphisms. For in-

stance, if k = 3 adding the unary constraints xv1,v1,v2 ∈
{v1}, xv1,v2,v1 ∈ {v1}, xv2,v1,v1 ∈ {v1} for every
v1, v2 ∈ D will ensure that every solution of this modi-
fied indicator problem IPmaj(Γ) is a majority polymor-
phism. This type of restriction is sometimes not pos-
sible without increasing exponentially the size of the
indicator problem (e.g. semilattices). It was first ob-
served in (Feder and Vardi 1998) that the language
of IPmaj(Γ) is Γ plus unary relations with a single
tuple, and thus has a majority polymorphism if and
only if IPmaj(Γ) has a solution. Furthermore, by
the properties of majority polymorphisms it follows
that if IPmaj(Γ) has a solution, then it can be solved
backtrack-free by applying singleton arc-consistency at
each node of the search tree (Chen, Dalmau, and
Grußien 2013). The standard algorithm for detecting
majority polymorphisms starts by building IPmaj(Γ)
and then solves it by a standard search, maintaining
SAC at each node. If the algorithm backtracks, we
can conclude that Γ has no majority polymorphism, so
the whole procedure is polynomial-time. This approach
has been used for several other tractable classes (Barto
2015)(Feder and Vardi 1998). However, this kind of
detection algorithm requires the existence of a uni-
form algorithm for the tractable class, which is not
known for several polymorphisms including (conserva-
tive) Mal’tsev polymorphisms. In this paper we intro-
duce a different technique, based on a detailed analysis
of the structure of the indicator problem.

3 First observation

Recall that the existence of a uniform algorithm for
Mal’tsev constraints is equivalent to the tractability
of the problem CSP(TMal), where we only have the
promise that the language of the instance has a Mal’tsev
polymorphism. The complexity of this problem is open,
but is it easy to see that the following is true.

Observation 1. CSP(TMal) ∈ NP ∩ coNP.

Proof. Membership in NP follows from that of the gen-
eral CSP. For membership in coNP, a Mal’tsev poly-
morphism f of the constraint language is a certificate:
with the knowledge of f , the algorithm from (Dyer and
Richerby 2013) provides a way to check in polynomial
time that the instance has no solution.

Unless NP = coNP, this observation rules out the pos-
sibility that this problem is NP-hard (Goldreich 2010).
Besides, examples of NP ∩ coNP problems that are
not believed to be in P are quite rare, so we regard
this observation as evidence that Mal’tsev constraints
may have a uniform algorithm. Using the same kind
of reasoning as for majority polymorphisms, it would
follow that Mal’tsev polymorphisms can be detected in
polynomial time. The next section will provide addi-
tional evidence by proving that conservative Mal’tsev
constraints are uniformly tractable.

We note that this observation also applies to the
larger tractable class of languages having a k-edge poly-
morphism (for a fixed k) by using the algorithm of
(Idziak et al. 2007) for membership in coNP. However,
for the sake of simplicity we shall focus on the case
k = 2, which corresponds to Mal’tsev polymorphisms.

4 Conservative Mal’tsev constraints
In this section, we show that the existence of a con-
servative Mal’tsev polymorphism can be decided in
polynomial time. The outline of the proof is as fol-
lows. We first reduce the problem to that of find-
ing a conservative minority polymorphism (i.e. a
ternary polymorphism m such that ∀x, y, m(x, x, y) =
m(x, y, x) = m(y, x, x) = y). Then, we show that en-
forcing arc-consistency on the indicator problem associ-
ated with conservative minority polymorphisms leaves
an extremely well-structured instance, and a simple re-
duction rule allows us to eliminate every variable whose
domain contains more than two values. The residual
instance is then shown to be equivalent to a system
of linear equations over GF (2), and can be solved by
Gaussian elimination.

Lemma 1. Let F be an operational clone. F contains a
conservative Mal’tsev operation if and only if it contains
a conservative minority operation.

Proof. Every minority operation is a Mal’tsev opera-
tion, hence one implication is trivial. Suppose that F
contains a conservative Mal’tsev operation m, and let

f(x, y, z) = m(z,m(y,m(x, z, y), x),m(x, z, y))

This operation belongs to F because F is a clone, and
is conservative since m is conservative. Furthermore,
for every a, b we have

f(a, b, a) = m(a,m(b,m(a, a, b), a),m(a, a, b)) = b

f(b, a, a) = m(a,m(a,m(b, a, a), b),m(b, a, a)) = b

and it is fairly straightforward to see that f(a, a, b) =
m(b,m(a,m(a, b, a), a),m(a, b, a)) is always equal to b,
whether m(a, b, a) = b or m(a, b, a) = a. Hence, f is a
minority operation of F .

Although this lemma may be known to some, it ap-
pears to have never been pointed out in the literature.
The closest results we could find were that digraphs
with a conservative Mal’tsev polymorphisms also have
a conservative minority polymorphism (Carvalho et al.
2011) and constraint languages with both a conservative
majority and a conservative Mal’tsev polymorphism
also have a conservative minority polymorphism (Bula-
tov and Marx 2010). In our case, this lemma is crucial,
since the indicator problem corresponding to conserva-
tive minority polymorphisms has interesting (i.e., algo-
rithmically exploitable) properties that its counterpart
for Mal’tsev polymorphisms does not have.

Given a language Γ, we denote by IPcmin(Γ) the indi-
cator problem of order 3 of Γ with the additional con-
straints xv1,v1,v2 ∈ {v2}, xv1,v2,v1 ∈ {v2}, xv2,v1,v1 ∈

{v2} for every v1, v2 ∈ D and xv1,v2,v3 ∈ {v1, v2, v3} for
every v1, v2, v3 ∈ D. By construction, the solutions of
IPcmin(Γ) are exactly the conservative minority poly-
morphisms of Γ. Given a constraint C = (S,R) and
S′ ⊆ S, we denote by C[S′] the projection of C onto S′.
For our structural analysis we will assume that for every
R∗ ∈ Γ, IPcmin(Γ) also contains a constraint CR

′

t′1,t
′
2,t
′
3

for every projection R′ of R∗ and t′1, t
′
2, t
′
3 ∈ R′. These

additional constraints are only needed to facilitate our
analysis and will not be required by the algorithm.

In a generalized arc-consistent instance, the domain
D(x) of a variable x is the set of values for x that have
supports in every constraint whose scope contains x.
For the remainder of the paper, we will assume that
GAC has been enforced on IPcmin(Γ). The following
observation describes an immediate but very important
property that will be used repeatedly in our proofs.

Observation 2. If CR
∗

t1,t2,t3 = (R,S) is a constraint in

IPcmin(Γ) and t, t′, t′′ ∈ R, then R(CR
∗

t,t′,t′′) ⊆ R.

Proof. Let CR
∗

t,t′,t′′ = (R′, S′), and |S| = |S′| = r.

Before GAC was enforced, both CR
∗

t1,t2,t3 and CR
∗

t,t′,t′′

had R∗ as relation. Thus, by definition of generalized
arc-consistency, we have R = R∗ ∩ (πx∈SD(x)) and
R′ = R∗∩(πx∈S′D(x)). However, since t, t′, t′′ ∈ R, the
conservativity constraints ensure that for each i = 1..r,
D(S′[i]) ⊆ D(S[i]). Therefore, R′ ⊆ R.

Throughout the paper we will treat elements of a
scope S as occurences of variables, and not simply vari-
ables. For example, given x ∈ S, the restricted scope
S\x removes the occurence x from S, but not every oc-
curence of the variable represented by x. A constraint
C = (S,R) is functional in x ∈ S if for every valid
assignment t of S\x there is at most one value d ∈ D
such that (S\x← t, x← d) is an assignment to S that
satisfies C. Finally, if two relations R and R′ differ only
by a permutation of their columns, we write R ≈ R′.
The proof of the next lemma gives a simple example of
the use we will make of Observation 2.

We remind the reader that if C = CR
∗

t1,t2,t3 is a con-

straint of IPcmin(Γ), the kth variable in its scope is
xt1[k],t2[k],t3[k]. Therefore, if t1[k] = t2[k], the unary
constraints will ensure that xt1[k],t2[k],t3[k] is ground
(i.e. has a singleton domain) with value t3[k].

Lemma 2. Let C = (R,S) be a constraint in
IPcmin(Γ), and let x ∈ S. Either C is functional in
x, or R ≈ R(C[S\x])×D(x).

Proof. Let C = CR
∗

t1,t2,t3 and x = xv1,v2,v3 . With-
out loss of generality, we assume that x occurs last
in S. First, suppose that there exists t ∈ R(C[S\x])
such that (t, vk) ∈ R(C) for every vk ∈ D(x). We
will show that every tuple must have the same prop-
erty as t. Let t′ ∈ R(C[S\x]) be such that (t′, vα) ∈
R(C) but (t′, vβ) /∈ R(C) for some {vα, vβ} ⊆ D(x).
Then, because of the unary constraints, the constraint

CR
∗

(t,vα),(t,vβ),(t′,vα)
has only ground variables in its

scope, and its only possible support is (t′, vβ). By Ob-

servation 2, R(CR
∗

(t,vα),(t,vβ),(t′,vα)
) ⊆ R(C) and hence

(t′, vβ) ∈ R(C), a contradiction. Therefore, such a par-
tial tuple t′ cannot exist and R ≈ R(C[S\x])×D(x).

Now, suppose that D(x) = {v1, v2, v3} and there ex-
ists t ∈ R(C[S\x]) such that (t, vk) ∈ R(C) for exactly
two indices k, say 1 and 2. Since C is arc-consistent,
there exists t′ such that (t′, v3) ∈ R(C). However,
the scope of constraint CR

∗

(t,v1),(t,v2),(t′,v3)
contains only

ground variables and x; therefore R(CR
∗

(t,v1),(t,v2),(t′,v3)
)

contains the tuple (t′, vk) for all k ∈ {1, 2, 3}. By Ob-
servation 2 we have R(CR

∗

(t,v1),(t,v2),(t′,v3)
) ⊆ R(C), and

the partial tuple t′ brings us back to the first case.
If no tuples satisfy either of the above two conditions,

C is functional in x.

The key observation in our proof will be that vari-
ables with domain size 1 or 2 have very limited in-
teractions with variables with domain size 3 once arc-
consistency has been enforced. Given a constraint C in
IPcmin(Γ), we denote by S|1,2(C) the restriction of S
to variables with domain size 1 or 2, and by S|3(C) the
restriction of S to variables with domain size 3.

Lemma 3. Let C be a constraint in IPcmin(Γ) and x ∈
S|3(C). R(C[S|1,2(C) ∪ x]) ≈ R(C[S|1,2(C)])×D(x).

Proof. Let C1 = C[S|1,2(C)] = (R1, S1), C2 =
C[S|1,2(C)∪x] = (R2, S2) and assume that x = xv1,v2,v3
occurs last in the scope of C2. By Lemma 2, either
R2 = R1 ×D(x) or C2 is functional in x. If it is func-
tional, then by GAC there exist t, t′, t′′ ∈ R1 such that
R2 contains (t, v1), (t′, v2) and (t′′, v3). Then, the scope
of C ′ = CR

∗

(t,v1),(t′,v2),(t′′,v3)
has only ground variables

(those corresponding to S|1,2(C)) plus xv1,v2,v3 . There-
fore, there exists t∗ such that R(C ′) contains (t∗, v1),
(t∗, v2) and (t∗, v3). By Observation 2, R(C ′) ⊆ R2

and C2 is not functional in x, a contradiction.

Lemma 3 only deals with constraints whose scope
contains exactly one variable with domain size 3. Un-
fortunately, for k variables it is not completely true
that R(C[S|1,2(C) ∪ {x1, . . . , xk}]) ≈ R(C[S|1,2(C)])×
D(x1) × . . . × D(xk). Let xv11 ,v12 ,v13 , . . . , xvk1 ,vk2 ,vk3 be k

variables of the indicator problem. The index-equality
constraint between these variables has three satisfying
assignments: (v11 , . . . , v

k
1), (v12 , . . . , v

k
2) and (v13 , . . . , v

k
3).

The next Proposition is the keystone of our proof, and
gives the correct generalization of Lemma 3 to an arbi-
trary number of variables with domain size 3.

Proposition 1. Let C be a constraint in IPcmin(Γ).
There exists n ≥ 0 and a set of constraints
C∗, C1, . . . , Cn such that

C = C∗ ∧

(∧
i=1..n

Ci

)

where the scope of C∗ is S(C), the constraints Ci are
(possibly unary) index-equalities whose scope are dis-
joint and cover S|3(C), and

R(C∗) ≈ R(C[S|1,2(C)])×Πx∈S|3(C)D(x)

Proof. We proceed by induction on the size of S|3(C).
Let k > 0 and suppose that Proposition 1 is true for
all constraints C ′ such that |S|3(C ′)| ≤ k. Let C =

CR
∗

t1,t2,t3 = (S,R) be a constraint with |S|3(C)| = k+1,
and x ∈ S|3(C). By Lemma 2, either C is functional
in x or R(C) = R(C[S\x]) ×D(x). In the latter case,
C satisfies Proposition 1 by induction. Therefore, we
shall assume that C is functional in x.

By induction, we know that C[S\x] = C∗
∧
i=1..n Ci.

Let y ∈ {1..n} and Y = S(Cy). Let vi, i = 1, 2, 3
be the three possible assignments to Y . We assume
without loss of generality that x = xu1,u2,u3

(hence,
D(x) = {u1, u2, u3}) and (Y, x) are the last variables in
S. Let t ∈ R(C[S\{Y, x}]), and define φt : D(Y) →
D(x) such that φt(v) = {u ∈ D(x) | (t,v, u) ∈ R(C)}.
We distinguish three cases.

1. φt has range {ui, uj} for some i 6= j. One of these
two values, say ui, has a preimage of size 2. Let
{vp,vs} = φ−1t ({ui}), vl /∈ {vp,vs}, and ty1 , t

y
2 , t

y
3

be the permutation of (t,vp, ui), (t,vs, ui), (t,vl, uj)

such that tyh[Y] = vh. The constraint CR
∗

ty1 ,t
y
2 ,t

y
3

has only the variables in Y as active variables,
and by arc consistency its relation must contain
(t,vp, uj), (t,vs, uj), (t,vl, uj). By Observation 2, R
must contain these tuples, a contradiction.

2. φt is bijective. Suppose that there exist i, j such that
i 6= j and φt(vi) = uj . Let us /∈ {uj , ui}, t′ =

(t,vi, uj) and t′′ = (t, φ−1t (us), us). Let tx1, t
x
2, t

x
3

be the permutation of the tuples ti, t
′, t′′ such that

txh[x] = uh. Recall that ti is one of the three tu-

ples associated with the constraint C = CR
∗

t1,t2,t3 , and
hence ti ∈ R∗, ti[Y] = vi and ti[x] = ui. Then,
the constraint CR

∗

tx1,t
x
2,t

x
3

has x as the only active vari-

able in its scope, and for every u ∈ D(x) its relation
must contain the tuple tu such that tu[l] = ti[l] if
l /∈ Y ∪ {x}, tu[Y] = φ−1(us), and tu[x] = u. Note
that at this point, Observation 2 cannot be applied
because ti may not belong to R(C). Let ta1, t

a
2, t

a
3

be the permutation of ti, t
s, t′ such that tah[x] = uh.

The constraint CR
∗

ta1,t
a
2,t

a
3

has only ground variables in

its scope except x, and its relation R′ must contain
the tuple tf such that tf [x] = uj and tf [l] = t′′[l]
otherwise. However, since R′ ⊆ R we have tf ∈ R,
a contradiction. Therefore, if φt is bijective then it
must map every vi to ui.
Now, suppose that there exists a partial tuple t′ such
that φt′ is not equal to φt. By Case 1 and the rea-
soning above, φt′ must map every vi to the same

value up. Let {vi,vj} = D(Y)\vp. If we denote by
tb1 , t

b
2 , t

b
3 the permutation of (t′,vj, up), (t′,vp, up)

and (t,vi, ui) such that tbh[Y] = vh, the constraint

CR
∗

tb1 ,t
b
2 ,t

b
3

has only the variables in Y as active vari-

ables in its scope, and by arc consistency its relation
must contain the tuple (t,vp, ui). By Observation 2,
this tuple must belong to R, a contradiction.
Finally, in this case every tuple must induce an index-
equality between Y and x. Therefore, we can add x
to the scope of Cy and continue the induction.

3. φt has range {u}. By Cases 1 and 2, we know that
the only situation where the induction may not hold
is when φt′ is in this case for every partial tuple t′

and every choice of Y . For each t′ ∈ R(C[S\x])
and index-equality constrained set of variables Y ′,
we define JY ′(t′) to be t′ plus the set of all tuples
that differ from t′ only on the assignment to Y ′. By
functionality, for each t′ ∈ R(C[S\x]) we can de-
fine ψ(t′) to be the sole value u ∈ D(x) such that
(t′, u) ∈ R. It is immediate that ψ(tα) = ψ(tβ)
for each tα, tβ ∈ JY ′(t′), for any fixed Y ′, t′. Fur-
thermore, for any two tuples tα, tβ ∈ R(C[S\x])
such that tα[S|1,2(C)] = tβ [S|1,2(C)], there exists

tY1 , . . . , tYn such that tY1 ∈ JY1(tα), tβ ∈ JYh(tYn)
and for each i, tYi+1

∈ JYi(tYi
). Unformally, start-

ing from tα one can obtain tβ by changing the as-
signments to each Yi one by one. By transitivity of
the equality, this means that ψ(tα) = ψ(tβ). Since
this is true for any pair tα, tβ that share the same
values for S|1,2(C), it follows that C[S|1,2(C) ∪ x] is
functional in x, a contradiction with Lemma 3.

Theorem 1. There exists an algorithm that decides
in polynomial time if a constraint language Γ admits a
conservative Mal’tsev polymorphism, and outputs one if
one exists.

Proof. By Lemma 1, we can look for a conservative
minority polymorphism instead. The algorithm builds
IPcmin(Γ) in time O(rlt3), where l is the number of re-
lations and t, r are respectively the maximum number of
tuples and the maximum arity of a relation. IPcmin(Γ)
has O(lt3 + d3) constraints and O(d3) variables. Then,
we enforce GAC in time O(rlt4). By Proposition 1, as-
signing every variable xv1,v2,v3 with domain size 3 to v1
does not violate any constraint (since it respects index-
equalities) and is consistent with every satisfying as-
signment to the remaining variables. Therefore, we can
eliminate every variable with domain size 3.

We are left with an instance whose active variables
have domain size 2, and if it has a solution its language
must have a conservative minority polymorphism (con-
servative polymorphisms are preserved by GAC). Note
that all minority operations coincide on 2-elements do-
mains; therefore, we can rename each domain by {0, 1}
(arbitrarily) and obtain a CSP instance whose lan-
guage has the unique Boolean minority polymorphism

m(x, y, z) = x − y + z mod 2. This instance is equiva-
lent to a system of linear equations over GF(2), and any
such instance with n variables and m constraints can be
solved in time O(n2m) by Gaussian elimination. In our
case, the running time is O(rlt3d6), and hence the com-
plexity of the whole algorithm is O(rlt3d6 + rlt4).

If we interface our detection algorithm with the al-
gorithm of (Dyer and Richerby 2013), we obtain the
following corollary.

Corollary. The class of constraint languages with
a conservative Mal’tsev polymorphism is uniformly
tractable.

5 Conservative majority constraints
Unlike conservative Mal’tsev polymorphisms, it is al-
ready known that conservative majority polymorphisms
can be detected in polynomial time (Feder and Vardi
1998). The state-of-the-art algorithm, described in Sec-
tion 2, has O(rd6lt4) time complexity (Bessiere et al.
2013). In the section, we will show that this algo-
rithm can be greatly improved using the approach we
described for conservative Mal’tsev polymorphisms.

As seen in Section 4, analyzing the structure of
the indicator problem for languages of large arities
can be tedious. Fortunately we need not do this
twice, as languages with majority polymorphisms are
2-decomposable: each constraint can be replaced by its
binary projections without altering the solution set of
the instance (Jeavons, Cohen, and Cooper 1998).

It is fairly straightforward to see that if a language Γ
has a majority polymorphism, then the indicator prob-
lem of its 2-decomposition Γ2 is equivalent to the 2-
decomposition of the indicator problem of Γ. We de-
note by IPcmaj(Γ2) the indicator problem of order 3
of Γ2 with the additional constraints xv1,v1,v2 ∈ {v1},
xv1,v2,v1 ∈ {v1}, xv2,v1,v1 ∈ {v1} for every v1, v2 ∈ D
and xv1,v2,v3 ∈ {v1, v2, v3} for every v1, v2, v3 ∈ D.

The solutions of IPcmaj(Γ2) are exactly the conserva-
tive majority polymorphisms of Γ2.

Note that Observation 2 can be applied to
IPcmaj(Γ2) since its proof only uses conservativity.

Lemma 4. If IPcmaj(Γ2) is GAC, the assignment

xu1,u2,u3
← (ui ∈ D(xu1,u2,u3

) | i is minimum)

is a solution.

Proof. We start by considering IPcmaj(Γ2) before GAC
is applied. Let CR

∗

t1,t2,t3 = (S,R∗) be a constraint of

IPcmaj(Γ2) with scope (xu1,u2,u3 , xv1,v2,v3) such that
both variables are active (i.e. |{u1, u2, u3}| = 3 and
|{v1, v2, v3}| = 3, as otherwise the unary majority con-
straints would force the variable to be ground). Suppose
that there exists a pair i 6= j such that t = (ui, vj) ∈ R.
Let k be the index such that k /∈ {i, j} and (t′1, t

′
2, t
′
3)

be the permutation of the tuples t, ti, tk such that
t′1[2] = v1, t′2[2] = v2 and t′3[2] = v3. Consider the con-
straint CR

∗

t′1,t
′
2,t
′
3

= (S′, R∗). The second variable in S′ is

xv1,v2,v3 and after arc-consistency the first variable will
be fixed to the value ui. Therefore, by Observation 2,
after arc-consistency the constraint CR

∗

t1,t2,t3 = (S,R)
will contain the tuple (ui, v) for every v ∈ D(xv1,v2,v3).
From this we can deduce that, after arc-consistency, for
every i we have either (ui, vi) ∈ R or (ui, v) ∈ R for
every v in the domain of xv1,v2,v3 . In particular, if i
and j are the minimum indices such that both ui and
vi are in the domains, (ui, vj) always belongs to R.

Theorem 2. Conservative majority polymorphisms
can be detected in time O(rlt4) in constraint languages
with l distinct relations of arity at most r and contain-
ing at most t tuples.

Proof. The algorithm starts by assuming that a con-
servative majority polymorphism exists. We build
IPcmaj(Γ) and enforce GAC in time O(rlt4). Since
IPcmaj(Γ) is equivalent to IPcmaj(Γ2), we can use
Lemma 4 to find a solution of the resulting instance.
If this solution is a majority polymorphism of Γ (which
can be verified in time O(rlt4)) the algorithm returns
YES; otherwise it returns NO. The complexity of the
whole procedure is O(rlt4).

This time bound improves on that of (Bessiere et al.
2013) by a factor of d6. Besides, the time complexity
of our algorithm is roughly that of checking if a given
conservative majority operation is a polymorphism of
Γ, so there is little room for improvement.

6 Conclusion

Using a detailed analysis of the indicator problem for
conservative minority polymorphisms, we have designed
a polynomial-time algorithm for detecting conservative
Mal’tsev polymorphisms in arbitrary constraint lan-
guages, and obtained as a side result a greatly improved
algorithm for detecting conservative majority polymor-
phisms.

As noted in the introduction, our results imply a uni-
form algorithm for constraint languages with a conser-
vative Mal’tsev polymorphism. Motivated by Observa-
tion 1, we make the following conjecture.

Conjecture 1. There exists a uniform algorithm for
constraint languages with a Mal’tsev polymorphism, and
the meta-problem is decidable in polynomial-time.

The techniques we have developed in this paper make
essential use of the fact that we are looking for conser-
vative polymorphisms, and are unlikely to be sufficient
to prove Conjecture 1 in its full generality. New ideas
are needed, and it may be interesting to see if the al-
gorithm from (Dyer and Richerby 2013) can be uni-
formized by using a different notion of compact repre-
sentation of solution sets that only requires the promise
that a Mal’tsev polymorphism exists.

References
Barto, L., and Kozik, M. 2014. Constraint satisfac-
tion problems solvable by local consistency methods. J.
ACM 61(1):3.

Barto, L. 2011. The dichotomy for conservative con-
straint satisfaction problems revisited. In LICS, 301–
310. IEEE Computer Society.

Barto, L. 2015. The collapse of the bounded width
hierarchy. Journal of Logic and Computation.

Bessiere, C.; Carbonnel, C.; Hebrard, E.; Katsirelos,
G.; and Walsh, T. 2013. Detecting and exploiting
subproblem tractability. In Proceedings of the Twenty-
Third international joint conference on Artificial Intel-
ligence, 468–474. AAAI Press.

Bulatov, A. A., and Dalmau, V. 2006. A simple al-
gorithm for Mal’tsev constraints. SIAM J. Comput.
36(1):16–27.

Bulatov, A. A., and Marx, D. 2010. The complexity
of global cardinality constraints. Logical Methods in
Computer Science 6:1–27.

Bulatov, A. 2002. Mal’tsev constraints are tractable.
Technical report, Computing Laboratory, University of
Oxford, Oxford, UK.

Bulatov, A. 2003. Tractable conservative constraint
satisfaction problems. In Proceedings 18th IEEE Sym-
posium on Logic in Computer Science, LICS’03, 321–
330.

Bulatov, A. A. 2010. Bounded relational width. Tech-
nical report, School of Computer Science, Simon Fraser
University.

Carvalho, C.; Egri, L.; Jackson, M.; and Niven, T. 2011.
On Maltsev digraphs. In Computer Science–Theory and
Applications. Springer. 181–194.

Chen, H.; Dalmau, V.; and Grußien, B. 2013. Arc
consistency and friends. J. Log. Comput. 23(1):87–108.

Dyer, M., and Richerby, D. 2013. An effective di-
chotomy for the counting constraint satisfaction prob-
lem. SIAM Journal on Computing 42(3):1245–1274.

Feder, T., and Vardi, M. Y. 1998. The computational
structure of monotone monadic SNP and constraint sat-
isfaction: A study through Datalog and group theory.
SIAM Journal of Computing 28(1):57–104.

Goldreich, O. 2010. P, NP, and NP-Completeness: The
basics of computational complexity. Cambridge Univer-
sity Press.

Green, M. J., and Cohen, D. A. 2008. Domain permu-
tation reduction for constraint satisfaction problems.
Artif. Intell. 172(8-9):1094–1118.

Idziak, P. M.; Markovic, P.; McKenzie, R.; Valeriote,
M.; and Willard, R. 2007. Tractability and learnability
arising from algebras with few subpowers. In LICS,
213–224. IEEE Computer Society.

Jeavons, P. G.; Cohen, D. A.; and Cooper, M. C.
1998. Constraints, consistency and closure. Artif. In-
tell. 101(1–2):251–265.

Jeavons, P.; Cohen, D. A.; and Gyssens, M. 1997. Clo-
sure properties of constraints. J. ACM 44(4):527–548.

Kolaitis, P., and Vardi, M. 2000. Conjunctive-query
containment and constraint satisfaction. Journal of
Computer and System Sciences 61:302–332.

Petke, J., and Jeavons, P. 2009. Tractable benchmarks
for constraint programming. Technical report, Techni-
cal Report RR-09-07, Computing Laboratory, Univer-
sity of Oxford.

Williams, R.; Gomes, C. P.; and Selman, B. 2003. Back-
doors to typical case complexity. In Gottlob, G., and
Walsh, T., eds., IJCAI, 1173–1178. Morgan Kaufmann.

