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Poincaré's equations for Cosserat media :
application to shells

Frederic Boyer1 Federico Renda2

Abstract In 1901 Henri Poincaré discovered a new set of equations for mechan-
ics. These equations are a generalization of Lagrange's equations for a system
whose con�guration space is a Lie group which is not necessarily commutative.
Since then, this result has been extensively re�ned through the Lagrangian re-
duction theory. In the present contribution, we apply an extended version of these
equations to continuous Cosserat media, i.e. media in which the usual point par-
ticles are replaced by small rigid bodies, called micro-structures. In particular,
we will see how the Shell balance equations used in nonlinear structural dynam-
ics, can be easily deduced from this extension of the Poincaré's result. In future,
these results will be used as foundations for the study of squid locomotion, which
is an emerging topic relevant to soft robotics.
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Nomenclature

t time
E 3-dimensional geometric space of classical mechanics
B 3-dimensional material space of a classical continuous medium
D Material (p−dimensional, p < 3) reference subspace
M Rigid microstructure
B = D ×M Material space of a Cosserat medium
(O,E1, E2, E3) Material frame attached to B
(o, e1, e2, e3) Spatial frame attached to E
x = xiei Points of geometric space
X = XiEi Material points of B
X = XαEα Material points of D
Φt Transformation at time t from material to geometric space
Φt(B) Deformed con�guration of B
Φo(B) Reference con�guration of B
(Φt ◦ e)(D) Deformed con�guration of D
(Φo ◦ e)(D) Reference con�guration of D
r(X) Position of (Φt ◦ e)(X)
R(X) ∈ SO(3) Rotation tensor mapping (E1, E2, E3) onto (t1, t2, t3)(X)
(g1, g2, g3)(X) Convected basis on Φt(B) at Φt(X)
(h1, ...hp)(X) Convected basis on (Φt ◦ e)(D) at r(X)
(t1, t2, t3)(X) Orthonormal spatial basis attached to the X-microstructure
(gijg

i ⊗ gj)(X) Euclidean metric tensor in the convected basis of Φt(B)
(hαβh

α ⊗ hβ)(X) Euclidean metric induced on (Φt ◦e)(D) in its convected basis
ν, νo, νt Oriented unit normal vector to the material, reference and deformed

surface element of D
dS, dSo, dSt Area of the material, reference and deformed surface element of D
C Con�guration space of a Cosserat medium D ×M
G and g Group of transformation and transformation of microstructure
g, g∗ Lie algebra of G and its dual
Ad and Ad∗ Adjoint and coadjoint action map of G on g and g∗

ad and ad∗ Adjoint and coadjoint action map of g on g and g∗

η and ξα Left invariant �elds along time and space-variables
L, Lo and Lt Density of left-reduced Lagrangian of a Cosserat medium per unit

of its material, reference and deformed volume
∂L
∂η ,

∂Lo
∂η and ∂Lt

∂η Densities of material t-conjugate (kinetic) momentum, per unit
of material, reference and deformed volume

∂L
∂ξα

, ∂Lo∂ξα
and

[
∂L
∂ξα

]
t
Densities of material Xα-conjugate (stress) momentum,

per unit of material, reference and deformed volume
Fext, Fext,o and Fext,t Densities of material external forces per unit of material,

reference and deformed volume
F ext, F ext,o and F ext,t Densities of external forces per unit of material, refer-

ence, deformed boundary volume



D × R+ Space-time of a p−dimensional Cosserat medium
X0 ∂

∂t +Xα ∂
∂Xα Point in space-time with t = X0

Υ Space-time 1-form �eld with value in g
Λ, Λo and Λt Density of a space-time vector �eld with value in g∗, per unit of

material, reference, deformed volume
< ., . > and (., .) Duality product in g and space-time

Ad∗
g−1

(√
|h|
(
∂Lt
∂η

))
Densities of spatial (in the �xed frame) kinetic wrench, per

unit of deformed volume
Ad∗

g−1

(√
|h|
(
∂Lt
∂ξα

))
Densities of spatial (in the �xed frame) stress wrench, per

unit of deformed volume
SE(3) Special Euclidean Group in R3 with Lie algebra se(3)
(R, r) Transformation of SE(3)
(ΩT , V T )T ∈ se(3) Material time-rate of transformation (velocity) of the mi-

crostructure frames
(ωT , vT )T ∈ se(3) Spatial time-rate of transformation (velocity) of the microstruc-

ture frames
(ΣT

t , P
T
t )T ∈ se(3)∗ Density of material kinetic wrench per unit of deformed
volume

(σTt , p
T
t )
T ∈ se(3)∗ Density of spatial (in the microstructure frame) kinetic wrench
per unit of deformed volume

(KT
α , Γ

T
α )T ∈ se(3) Material Xα-rate of transformation of the microstructure
frames

(kTα , γ
T
α )

T ∈ se(3) SpatialXα-rate of transformation of the microstructure frames
(MT

α,t, N
T
α,t)

T ∈ se(3)∗ Density of material stress wrench per unit of deformed
volume

(mT
α,t, n

T
α,t)

T ∈ se(3)∗ Density of spatial stress wrench per unit of deformed vol-
ume

(ρ, ρo, ρt) and (J, Jo, J t) Densities of mass and of material angular inertia tensor
per unit of material, reference, deformed volume

(I, Io, It) Densities of spatial inertia tensor per unit of material, reference, de-
formed volume

εαβ , ραβ , τα E�ective strain measures (stretching, bending, transverse shearing)
of a classical shell

Nαβ
t ,Mαβ

t ,Qαt Densities of e�ective stress of a classical shell per unit of de-
formed volume

1 Introduction

In contrast to classical continuous media where the basic constitutive element
of matter is the point particle, Cosserat media are de�ned by small rigid bod-
ies, called micro-structures, continuously stacked along material dimensions [1].
This fundamental di�erence has strong consequences on the two theories (clas-
sical vs Cosserat). In the classical theory, the geometric model of �nite rotations
disappears from the model, only re-appearing as a kinematic consequence of
the translations (e.g. through the curl of the linear velocity �eld), while in the



Cosserat model the rotations have a status similar to that of translations from
the beginning to the end of the dynamic formulation. As a result, the Lie group
structure naturally appears in the intrinsic de�nition of the con�guration space
of a Cosserat medium through the rigid transformations (in SO(3), and more
generally SE(3)) undergone by its constitutive micro-structures. Thus, the model
of Cosserat media should be recoverable from the abstract variational calculus
developed by Henri Poincaré [2], known today as the Poincaré or Euler-Poincaré
equations [3], [4]. These equations can be considered as a generalization of La-
grange's equations to systems whose con�guration space is de�ned as a non
commutative Lie group. As Poincaré remarked himself, they are particularly rel-
evant when the Lagrangian of the system is left (or right) invariant by the group
transformations, a property which is related to the symmetry of space (left in-
variance) and matter (right invariance) as Arnold and Marsden discovered later
through the Lagrangian reduction theory [3], [4]. In this context, the right invari-
ance has been shown to be a key concept to include the Eulerian point of view of
�uid mechanics within the Euler-Poincaré's approach [5]. Arnold demonstrated
that the ideal �uid is the in�nite (right invariant) counterpart of the �nite (left
invariant) Euler and Poincaré's rigid body [6]. Another case that motivates us
to shift from the �nite to the in�nite dimensional case is that of Cosserat media
[7]. While in the case of the ideal �uid, the transformations live in an in�nite
dimensional group, in the case of Cosserat media the transition toward in�nite
dimension is dramatically di�erent. In this other case, in each point of a contin-
uous material medium D, a �nite dimensional group G acts on a microstructure
M, i.e., a rigid body of in�nitesimal size. Applying Poincaré's variational calcu-
lus to this context requires a shift from the basic picture of ordinary di�erential
Poincaré equations of classical mechanical systems, to a set of partial di�erential
equations in a �eld theoretical approach as it has been developed in the seminal
works [8] and [9]. Going back to the original aim of the Cosserat brothers [7], in
[8], the �elds equations of an unbounded Cosserat medium are derived in the con-
text of the abstract formal theory of systems of partial di�erential equations [10],
with no reference to the Poincaré picture. From a more geometrical viewpoint, in
[9], the original variational calculus of Poincaré is extended from a con�guration
Lie group to a principal �ber bundle to derive a set of covariant Euler-Poincaré
equations but with no relation to Cosserat media. In [11], both �elds equations
and boundary conditions of a bounded multidimensional Cosserat medium are
derived in the context of Euler-Poincaré reduction. In this approach, the dynam-
ics of the Cosserat medium are deduced from a unique Lagrangian density left
invariant by the transformations of G, the transformations being parameterized
by the time and the material coordinates (Lagrangian labels) of the medium D.
Though it may seem abstract at �rst, this variational calculus, which generalises
Poincaré's calculus from one parametric dimension (the time axis) to several
(space-time), is in fact a powerful alternative tool to Newton's laws and Euler's
theorems for deriving in a blind manner the balance equations of Cosserat me-
dia. Furthermore, revealing the intrinsic geometric nature of these media, the
approach can assist in the development of numerical methods able to cope with



�nite rotations. In this later context, Cosserat media have been promoted in the
�eld of the Finite Element Method, under the name of the "geometrically exact
approach" by J.C. Simo and co-authors [12], [13] but with no reference to the
Euler-Poincaré reduction theory. In particular, though the Hamiltonian struc-
ture of the geometrically exact balance equations of rods and plates is revealed
in [14] through the derivation of an appropriate bracket, these equations are
considered as a starting point in [14], and derived from Newton's laws and Eu-
ler's theorems. More recently, the relations between Lagrangian reduction and
geometrically exact beam theory, have been established and exploited in [11],
[15] and [16], with further extension to the case of molecular strands [17], [18].
In [18], several sets of reduced motion equations, ranging from Euler-Poincaré
to Lagrange-Poincaré equations, are developed for modelling molecular strands
subjected to nonlocal electrostatic forces, while in the same reference, the case
of multidimensional media (in this case, molecular membranes), is evoked as
a further perspective by the authors. In the robotics community, the Poincaré
equations for Cosserat beams have also raised a growing interest by proving that
they are an e�cient tool to model the locomotion of novel continuous (hyper-
redundant) and soft robots inspired from �sh [19], snakes and worms [20], as
well as the manipulation by soft robots inspired from octopus arm [21]. More
recently, cephalopods have drawn the attention of bioroboticists with the long
term aim of designing squid-like swimming robots able to propel by cyclically
contracting a soft shell cavity inspired from the mantle of these animals [22].

Originally driven by the need to model soft robots inspired from squids, the
present article aims at applying the Poincaré picture to the case of multidimen-
sional Cosserat media and especially, the Cosserat shells. To that end, we will
restart from the general construction of [11], and will remind how one can derive
from a Lagrangian density related to the space of material labels of D, a �rst
set of Poincaré equations that will be consequently named "Poincaré equations
of Cosserat media in the space of material labels", or more concisely, "in the
material space D". In this general context, we will consider both the �eld equa-
tions and the boundary conditions of a Cosserat medium (D,M), with D of
arbitrary dimension p, andM a full (non-degenerated) three-dimensional (3D)
microstructure. This �rst set of equations being related to D, i.e., to a space
disconnected from the physical geometric space, it is physically inconsistent and
practically unusable for shells. As a result, we will need to derive two further
sets of Poincaré equations, one related to the reference con�guration, and the
second, related to the deformed (current) con�guration of the medium, both be-
ing embedded in geometric space. To derive these new equations, we will start
from the equations in the material space D of [11]. Then, lying on the concept
of duality, we will identify the intrinsic geometric nature of all the objects they
handle, and establish how they transform from material space D to the reference
and deformed con�guration of the medium. In parallel to this �rst approach of
derivation, we will show that these two sets of equations can be derived straight-
forwardly by extending the variational calculus of [11] to Lagrangian densities



related to reference and deformed con�gurations of the Cosserat medium. Along
derivation of these equations, we will progressively relate the objects naturally
produced by the Poincaré calculus to the physics of the Cosserat media, and will
recover in a pure deductive manner, several of the key concepts of the micropolar
theory [1], as those related to the material objectivity of their constitutive laws,
their kinematic and kinetic models, several models of strain and stress, and their
balance equations in the geometrically exact form. At the end, the approach will
give a structured picture of the model of Cosserat media, while opening promis-
ing perspectives for future.

For the purpose of illustration, we will then show how these further general for-
mulations in geometric space, allow recovering the so called geometrically exact
balance equations of the existing shell theory as they have been developed over
the years by other means in works by Reissner [23], Green and Naghdi [24],
Antman [25], Libai [26] among others. Applying our general equations in the
case p = 2, will give the geometric exact balance equations of a micropolar shell
[26], with several modalities of expression depending on whether they are related
to the reference or current con�guration of D, and, in the material frame or the
spatial frame ofM. Based on these nominal sets of equations, we will shift from
micropolar to classical shell, while stressing the role of the constitutive laws in
a generic reduction process allowing to recover the geometrically exact formu-
lation of classical shells in which the microstructure degenerate into a director
[23],[24],[25],[12]. Following [12], in the resulting reduced dynamic model, the
angular velocity �eld around the directors, referred as the "drilling rotation" in
the shell literature [27], is arbitrarily forced to zero. In a �nal step, we will rein-
corporate the drilling degrees of freedom and derive a further closed formulation
holding for classical Cosserat shells with drilling rotations. While this approach
is inspired of works in �nite-elements [28], it is here stated in a new form which
exploits the state-space form of the Poincaré picture, as a functional space of
surfaces (parameterized by the labels of D) in SE(3)× se(3).

The article is structured as follows. Section 2 introduces all the basic de�nitions
and statements required by the extension of the Poincaré picture to a Cosserat
medium of arbitrary dimension. In section 3, we derive the Poincaré equations
of a Cosserat medium in the space of its material labels. Section 4 reconsider
these �rst equations from the viewpoint of duality and analyses the intrinsic
geometric nature of the objects they handled, and how they transform from the
material to the geometric space. Based on this analysis, in section 5, the Poincaré
equations of p-dimensional Cosserat medium in the reference and deformed con-
�guration are derived, and their underlaying model of stress is detailed in relation
to continuous media mechanics. In section 6, this general picture is applied to
2-dimensional Cosserat media to derive the geometrically exact balance equa-
tions of micropolar shells. From these �rst set of equations, we deduce to other
sets of equations, those of classical shells with no model of the drilling rotations
(section 7), and with a model of the drilling rotations (section 8). For the pur-



pose of illustration, the full Poincaré picture is applied from its beginning to
axisymetric shells in section 9. Section 10 summarizes and opens perspectives
for applications to squid locomotion in the context of soft Robotics.

2 Basic statements and de�nitions

In this section we state the basic de�nitions required for the rest of the arti-
cle. We invite the reader who is familiar with the geometric point of view of
�nite elasticity [29] to go directly to subsection 2.5. The key information of sec-
tions 2.1-4 are essentially: the de�nition of the con�guration space and the basic
kinematics of a Cosserat medium (eq. (3) and (8)), the expressions of the area
element in the deformed con�guration (eq. (12)), along with the �gure 1 which
illustrates the geometric context used in the article.

2.1 De�nition and space of con�guration of a classical medium

According to the mechanics of continuous media, a classical three-dimensional
medium B is a compact set of material points of Euclidean space R3 labelled by
3 parameters {Xi}i=1,2,3 in a Cartesian frame (O,E1, E2, E3) named material
frame. A con�guration of B is the de�nition of the position x = xi(Xj)ei of all the
material points X = XjEj of B in an inertial frame (o, e1, e2, e3) of the ambient
Euclidean space E ∼= R3. Formally, we de�ne such a con�guration as Φ(B) (this
is the set of the x = Φ(X) for X running over B), where Φ is a smooth invertible
map from R3 to R3 which preserves orientation, i.e., an element of Di�(R3). The
space of con�gurations of B in E is thus de�ned as:

C = {Φ(B) ⊂ E ,∀Φ ∈ Di�(R3)}, (1)

and a motion of B in E is de�ned as a curve of con�guration, i.e., a mapping:

t ∈ R+ 7→ Φt(B) ⊂ E , (2)

where Φt denotes a time-parameterized curve of Di�(R3). Among all the pos-
sible con�gurations accessible to B, we distinguish one of them as a reference
con�guration, denoted Φo(B) in which B is internally (energetically) at rest3. In
practise we will assume (O,E1, E2, E3) = (o, e1, e2, e3) and will interchangeably
speak about the "inertial" or "material frame", depending on the context. For
the purpose of computation, one may consider in all subsequent developments
that E1 = (1, 0, 0)T , E2 = (0, 1, 0)T , and E3 = (0, 0, 1)T . Finally, note that these
de�nitions can be extended from three, to two, and one-dimensional classical
media, with a material index i running from 1 to n with n = 2 and n = 1 respec-
tively. Moreover, it is worth noting that {Xi}i=1,...n de�nes a (material) chart

3 Here note that Φ is not a mechanical transformation of the body in the ambient space
but rather a geometric transformation or more exactly a parameterization of B. The
mechanical transformation between the reference and the deformed con�gurations
is in fact de�ned as Φt ◦ Φ−1

o .



on the open set B−∂B, and that for topological reasons, it may be convenient to
provide B with an atlas of several such material charts, even if, in the following,
we will consider only one of them.

2.2 De�nition and space of con�guration of a Cosserat medium

A Cosserat medium (D,M) is a classical p-dimensional (p ≤ 3) medium D, in
each point, noted X, of which, a Lie group G of rigid body mechanics (SO(3),
SE(2), SE(3)...) acts on a rigid solid of small dimensions (a "micro-solid" or
"microstructure"), denoted M, to generate all the possible con�gurations of
(D,M). The con�guration space of a Cosserat medium (D,M) can thus be
de�ned as the following set of parameterized maps in G:

C = {g : X ∈ D 7→ g(X) ∈ G}. (3)

Motions of (D,M) in C are de�ned as the time-parameterized curves of con�g-
uration:

t ∈ R+ 7→ gt(D) = g(D, t) ⊂ G. (4)

where the notation g(D, t) indicates that the space and time variables play sim-
ilar roles. This basic context can be used to describe di�erent physical situ-
ations depending on the meaning we attribute to D and M. For instance, a
non-classical three dimensional (3D) medium constituted of three-dimensional
micro-structures, also called micro-polar medium, obeys this de�nition if we take
M ' D ' R3. In all the article, we will preferentially use the above de�nition
as a reduced model to describe a classical 3D medium B for which B = D ×M
where D is a sub-manifold of B over each point X of which,M is transformed
by an element of G = SE(3), represented by an homogeneous transformation of
the general form:

g(X) =

(
R(X) r(X)
0 1

)
, (5)

with R(X) ∈ SO(3) and r(X) ∈ R3 being the rotation and translation compo-
nents of g respectively. Following section 2.1, the parameterization of B = D×M
is chosen in such a manner that D and M are coordinatized by {Xα}α=1,2..p

and {Xγ}γ=p+1,..3 respectively. Hence, any point in D is intrinsically de�ned
as X = (X1, X2, ...Xp) and the map e : X 7→ e(X) = (X, 03−p), de�nes an
embedding from D to B ' R3. This embedding allows any con�guration of D in
E to be de�ned as the submanifold (Φ ◦ e)(D) of Φ(B). In E , a con�guration of
the microstructureM above X will be denoted as Φ(X,M) (see �gure 1). With
this parametrization the reduction of B into D×M is motivated by considering
material media as beams and shells, having dimensions along D far larger than
the others (alongM), i.e., media for which the 3D con�gurations of (1) can be
expanded into the following Taylor series in which γ = p+ 1, ..3:

Φ(X) = Φ(X, 03−p) +
∂Φ

∂Xγ
⊥
(X, 03−p) X

γ
⊥ + o(||X⊥||2), (6)



with X⊥ = X−e(X) the vector component of X alongM. Based on this expan-
sion, the Cosserat based approach consists in reducing the kinematics (6) to its
�rst order approximation with respect to ||X⊥|| while neglecting the deforma-
tions of the material above each (X, 03−p), a condition which de�nes the rigid
microstructureM. These approximations allow (6) to be rewritten as:

Φ(X) = r(X) + tγ(X) Xγ
⊥ (7)

with X 7→ r(X) = (Φ ◦ e)(X) the �eld of position of the material points of
D in E , and tγ(X) = ((∂Φ/∂Xγ

⊥) ◦ e)(X) a set of vectors lying in Φ(X,M).
Furthermore,M being rigid, it is always possible to choose its parameterization
{Xγ}γ=p+1,..3 such that tγ = R(X).Eγ with R(X) ∈ SO(3), and to rewrite the
reduced kinematics (7) as:

Φ(X) = r(X) + tγ(X) Xγ
⊥ = r(X) +R(X).(Xγ

⊥Eγ) = r(X) +R(X).X⊥, (8)

which explicitly makes the group transformations g(X) ∈ SE(3) of (3-5) appear,
with R(X) de�ned as the two-point tensor [30]: R(X) = ti(X)⊗Ei, and: r(X) =
ri(X)ei. As in rigid-body mechanics, these transformations act on the material
frame (O,E1, E2, E3) considered as rigidly attached toM. However they do not
transform it into a single frame, but into a �eld of orthonormal mobile frames
(t1, t2, t3)(X) = (R(X).E1, R(X).E2, R.(X)E3) based in each point (Φt ◦ e)(X)
as illustrated in �gure 1. In [11], the reduced kinematics (8) are applied to
beams, while in the second part of the article, they are applied to shells with
D ' R2 de�ning the (material) reference shell's mid surface. For a shell, the
microstructure M models a generic rigid �ber across each point of its mid-
surface D, i.e. a degenerated one-dimensional rigid body named "director" in
the shell's literature [24]. This is in contrast with beams, where M stands for
a full 3D rigid body modelling the beam cross-sections. As a result, for shells,
shifting from (7) to (8), i.e. replacing t3 by R in the basic kinematics introduces
an indeterminacy in the model of a classical shell which should be removed by
reducing its con�guration space from (3) to {(r, t3) : X ∈ D 7→ (r(X), t3(X)) ∈
R3 × S2}. However, we will initally ignore this fact and consider shells as full-
Cosserat (2D) media with con�guration space (3), i.e. media for which M is
a full (non-degenerated) rigid body to which a full 3D-orthonormal frame can
be attached. This will allow us to see that X 7→ R(X) is univocally de�ned by
a dynamic model obtained by applying Poincaré's picture on the con�guration
space (3). From a physical point of view, such a model holds for micro-polar
shells, i.e. 2D-media with intrinsic kinetic spin and couple stress along t3 [1].
In a second step, we will see how the model of 2D-full Cosserat media can be
adapted, and the indeterminacy on R can be removed, when considering the
classical model of shell in which the frame attached toM is degenerated into a
single director.

2.3 Convected frame and co-frame

In all the article, we will use convected frames to express the tensor �elds
related to the mechanical state of B and D. A convected frame �eld is de-
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Fig. 1. Left and right bottom: Parameterization of the deformed con�guration Φt(B)
through a transformation of B. Right: Kinematics in E (bottom) and on G (top) of
frames rigidly attached to the micro-structures.

�ned in each point of the current con�guration of B as the natural basis tan-
gent to a set of material coordinate lines drawn on B and advected by its
current deformation. Let us consider a motion as de�ned by (2) with Φo =
Φt=0. At any time t, we may de�ne the �eld of the convected frames cov-
ering the manifold Φt(B) as a map Φt(B) 7→ TΦt(B) which assigns to any
point Φt(X) ∈ E , the frame (g1, g2, g3)(X) = ((∂Φt/∂X

i)(X))i=1,2,3. In this
�eld of frame, the Euclidean metric of E is de�ned as the fundamental tensor
(gi.gj)(g

i⊗ gj) = gij(g
i⊗ gj) of determinant |g|, where Φt(X) 7→ (g1, g2, g3)(X)

de�nes a �eld of co-frame such that gi.gj = δij . Applying the same construction
to the sub-manifold (Φt ◦ e)(D) ⊂ Φt(B) allows to introduce two other �elds
of convected frame and co-frame whose base points lie in (Φt ◦ e)(D) respec-
tively de�ned as (hα)α=1,2..p(X) = ((∂r/∂Xα)(X))α=1,2..p, and (hα)α=1,2..p(X)
such that hα.hβ = δαβ , with h = hαβ(h

α ⊗ hβ) the fundamental metric ten-
sor on (Φt ◦ e)(D) whose determinant is denoted by |h|. Using the expres-
sion of the reduced kinematics (7) in these de�nitions, it is straightforward
to show that (gi(X, 0))i=1,2,3 = (h1, ..hp, tp+1, ..t3)(X). and that, for a one-
dimensional Cosserat medium (beam), h1(X

1) is a tangent vector to the de-
formed line of the beam centroids in its material abscissa X1, while (t2, t3)(X

1)
span the current con�guration of X1-cross-sections, i.e., Φt((X

1),M). For a 2-



dimensional Cosserat medium (a shell), (h1, h2)(X
1, X2) de�nes a basis of the

tangent planes to the shell's mid-surface in the base point of material coordinates
(X1, X2) while (t3)(X

1, X2) span the current con�guration of (X1, X2)-�bers,
i.e., Φt((X

1, X2),M).

2.4 Pull-back and push-forward

Our Cosserat medium is de�ned as B = D×M whereM and D are transformed
through di�erent kinematics. This means that we can de�ne two kinematically
independent push-foward/pull-back processes, one related to the rigid transfor-
mations of M, the second related to the deformations of D. We now present
these two processes and refer the reader to �gures 1 and 2 which provide a
partial illustration of the context.

Pull-back and push-forward by the rigid transformations of M: Due to
the presence of the microstructure in their basic constitutive de�nition, Cosserat
media inherit from the geometric picture of the rigid body [31], in which or-
thonormal frames play a crucial role. In particular, any vector �eld (Φt◦e)(X) 7→
v(X) of T (Φt◦e)(D) can be interpreted as a vector �eld of E , i.e. a "spatial vector
�eld" expressed in the �eld of mobile orthornormed frame according to v = V iti
or pulled-back in the unique material frame of B through V = RT .v = V iEi.
Remarkably, the components of a spatial vector in its mobile frame are those of
its pull-back, named the "material vector", in the material frame. Due to the
orthogonality of R, the same relations apply to co-vector �elds of T ∗(Φt ◦ e(D))
and �nally to any Euclidean tensor �eld tangent to (Φt ◦ e)(D). For the pur-
pose of illustration (see also �gure 2), let us consider the case of shells for which
p = 2, and consider the �eld of frames and co-frames de�ned by (h1, h2)(X)
and (h1, h2)(X). They can be transformed into X 7→ (Γ1, Γ2)(X) = (RT .h1,
RT .h2)(X) and X 7→ (Γ 1, Γ 2)(X) = (RT .h1, RT .h2)(X) , which de�ne mid-
surface convected frame and co-frame �elds respectively, pulled back into the
material frame. Note that the change of space is identical for the two �elds
because R−1 = RT , while duality imposes Γα.Γ

β = δβα.

Pull-back and push-forward by deformations of D: Due to the presence
of the classical medium D in the de�nition of the Cosserat medium D ×M, a
second pull-back/push-forward process holds between T (e(D)) and T (Φt ◦e)(D).
Using the transformation Φt, any tensor �eld on e(D) can be pushed forward onto
(Φt ◦ e)(D), and reciprocally pulled back from (Φt ◦ e)(D) to e(D) by using the

restricted linear tangent maps∇Φt = hα⊗Eα,∇Φ
−1
t = Eα⊗hα,∇Φ

T

t = Eα⊗hα
and ∇Φ−Tt = hα⊗Eα. In particular, the frames and co-frames convected by the
transformation are related to {Eα}α=1,..p and {Eα}α=1,..p through:

hα = ∇Φt.Eα, Eα = ∇ΦTt .hα. (9)
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Fig. 2. Geometric picture of frames and their push-forward/pull-back relations.

However, some geometric tangent objects as the "exterior forms" and "multi-
vectors" also involve

√
|h| in this pull-back/push-forward process. This is par-

ticularly the case when considering the oriented material volume element dX1 ∧
dX2 ∧ ...dXp of D, which is changed into the metric deformed volume of same
orientation

√
|h|dX1 ∧ dX2 ∧ ...dXp by the transformation Φt ◦ e. Similarly,

the oriented material area element in any point X of D is de�ned as the p − 1
form dY 1 ∧ dY 2...∧ dY p−1, where {Y γ}γ=1,2...p−1 is a Cartesian chart, of natu-
ral orthonormal basis {Hγ = ∂/∂Y γ}γ=1,2..p−1, covering a material hyperplane
crossingX. This form is transformed into |h|1/2dY 1∧dY 2∧...dY p−1 by the defor-
mation, with |h| the determinant of the fundamental tensor of E in the convected
basis {hγ = ∇Φt.Hγ = ∂r/∂Y γ}γ=1,2..p−1. Exploiting duality of (p − 1)-forms
and (p − 1)-vectors, we may de�ne the material oriented area element as the
(p − 1)-vector H1 ∧ H2... ∧ Hp−1, which can be represented by the conjugate
true vector of T ∗e(X) [32]:

ν = ναE
α =

1

(p− 1)!
εαα1...αp−2αp−1

∣∣∣∣∂(Xα1 , Xα2 ..., Xαp−1)

∂(Y 1, Y 2, Y 3..., Y p−1)

∣∣∣∣Eα, (10)

which de�nes the unit normal to the element, where
∣∣∣∂( , ,.., )
∂( , ,.., )

∣∣∣ denotes a func-

tional determinant, while for any integer n, εi1i2...in is equal to zero if two indices



are identical, equal to +1 (respectively −1), if (i1, i2, ...in) is an even (respect.
odd) permutation of (1, 2, ...n). Similarly, normalizing the conjugate vector of
h1 ∧ h2... ∧ hp−1, de�nes the unit normal to the oriented deformed element as
the covector:

νt = νt,αh
α =

∣∣∣∣hh
∣∣∣∣1/2 1

(p− 1)!
εαα1...αp−2αp−1

∣∣∣∣∂(Xα1 , Xα2 ..., Xαp−1)

∂(Y 1, Y 2, Y 3..., Y p−1)

∣∣∣∣hα. (11)

Note that the two vectors ν and νt whose components are related by νt,α =
(|h|/|h|)1/2να, contain all the information about the orientation of the original
(p−1)-forms. Moreover, de�ning the measure (area) of the material and deformed
elements as dS = dY 1...dY p−1 and dSt = |h|1/2dY 1...dY p−1 respectively, where
each dY γ represents the components of an in�nitesimal vector dY γHγ (with no
summation on γ = 1, 2...p− 1), we also have the relation between the co-vectors
νtdSt and νdS which will be used in the subsequent developments instead of the
original (p− 1) forms:

νtdSt = (νt,αdSt)h
α = (

√
|h|ναdS)∇Φ

−T
t .Eα =

√
|h|∇Φ−Tt .(νdS). (12)

Taking dS = |H|1/2dY 1...dY p−1, (12) holds for a relation between material
and deformed oriented area elements of any hyper-surface of D parameterically
de�ned by Xα(Y γ), with |H| the determinant of the metric of D in the natural
basis {Hγ}γ=1..p−1 covering the hyper-surface.

2.5 Lagrangian of a Cosserat medium

On the de�nition (3) of the con�guration space, the Lagrangian of a Cosserat
medium B = D ×M at current time t is de�ned as the following functional:

L =

∫
D
Lt
(
g,
∂g

∂t
,
∂g

∂Xα

)√
|h|dX1 ∧ dX2 ∧ ... ∧ dXp, (13)

where Lt
√
|h|dX1 ∧ ... ∧ dXp is the Lagrangian volume-form of the Cosserat

medium, and Lt is the density of Lagrangian per unit of metric volume
√
|h|dX1∧

dX2 ∧ ...∧ dXp of the current deformed con�guration (Φt ◦ e)(D). Alternatively,
L can be related to the volume of reference con�guration (Φo ◦ e)(D) as:

L =

∫
D
Lo
(
g,
∂g

∂t
,
∂g

∂Xα

)√
|ho|dX1 ∧ dX2 ∧ ... ∧ dXp, (14)

or directly to the volume of parametric (material) space D:

L =

∫
D
L
(
g,
∂g

∂t
,
∂g

∂Xα

)
dX1 ∧ dX2 ∧ ... ∧ dXp. (15)

In (14) (respectively (15)) Lo, (respect. L), is the density of the Lagrangian of
B per unit of metric volume

√
|ho|dX1 ∧ dX2 ∧ ... ∧ dXp (respect. non-metric

volume dX1 ∧ dX2 ∧ ... ∧ dXp) of (Φo ◦ e)(D) (respect., of D).



2.6 Reduction of the Lagrangian

Physically, the Lagrangian L depends on ∂g/∂t through the kinetic energy of
B, and on ∂g/∂Xα through the internal strain energy of its material that is
assumed to be hyperelastic. The three Lagrangian densities L, Lo and Lt are
left invariant in the sense that substituting g by kg, in any of them (with k

a constant transformation in G over each point of space-time D × R+), does
not change its value. Physically, this re�ects the fact that both the densities of
kinetic and internal strain energy are the same when observed from any frame of
geometric space. The �rst property is a key result of rigid body mechanics [31],
while the second is a consequence of the material frame indi�erence of mechanics
of continuous media [33]. As a result, taking k = g−1, allows the transformation
of the above three Lagrangian into a unique reduced Lagrangian, which can be
written, if, for instance, we start from (13), as:

Lr =

∫
D
Lt (η, ξα)

√
|h|dX1 ∧ dX2 ∧ ... ∧ dXp, (16)

where we introduced the following left invariant vector �elds leaving in the Lie
algebra g of G (considered as a group of matrices):

η = g−1
∂g

∂t
, ξα = g−1

∂g

∂Xα
, α = 1, 2...p (17)

In (16), Lt de�nes the reduced Lagrangian volume density per unit of metric
volume of deformed con�guration (Φt◦e)(D), while |h| is by de�nition, the deter-
minant of the matrix hαβ = hα.hβ = (RT .(∂r/∂Xα)).(RT .(∂r/∂Xβ)) = Γα.Γβ .
Then, using (5) in (17), shows that Γα is the linear (opposed to angular) com-
ponent of ξα. Thus

√
|h| only depends on the left invariant �elds ξα, and (16)

does de�ne, as a whole, a reduced Lagrangian Lr in the Lie algebra g.

Alternatively, applying the same reduction process to (14) or (15) instead of (13),
permits the reduced Lagrangian densities to be de�ned per unit of metric volume
of reference con�guration (Φo ◦ e)(D) and per unit of non-metric (material)
volume D, denoted Lo and L respectively. As Lt, these two further densities
only depend on (η, ξα). Moreover, in each of these two other cases, the volume
element does not depend on the current con�guration and the corresponding
Lagrangian is left invariant too. Finally equating the reduced versions of (13),
(14) and (15), allows stating the following relations between the three reduced
Lagrangian densities:

L = Lo
√
|ho| = Lt

√
|h|, (18)

In the following, we start from the density L related to the material space and
will introduce later the case of densities Lo and Lt.



3 Poincaré's equations of Cosserat media in the material

space

In this section we quickly remind the construction of [11] leading to the balance
equations of multi-dimensional Cosserat in the material space, i.e., in the space
of the labels of the micro-structures. These equations will be a �rst step toward
their extension to the geometric space, namely in the reference and deformed
con�guration, in which they will take the consistent form required by their prac-
tical use. Following Poincaré's approach [2], a Cosserat medium B = D ×M
subjected to a set of external forces is governed by the extended Hamilton prin-
ciple, which can be stated directly on the de�nition (3) of C (α running from 1
to p), as:

δ

∫ t2

t1

∫
D
L (η, ξα) dX

1 ∧ dX2 ∧ ... ∧ dXpdt = −
∫ t2

t1

δWextdt, (19)

for any δg = gδζ where δζ ∈ g is a �eld of material variation of g achieved
while t and all the Xα are kept �xed. In (19), δWext models the virtual work of
external forces and can be detailed as:

δWext =

∫
D
< Fext, δζ > dX1 ∧ dX2 ∧ ... ∧ dXp +∫

∂D
< F ext, δζ > |H|1/2dY 1 ∧ dY 2 ∧ ... ∧ dY p−1, (20)

with < ., . > the duality product in the Lie algebra g, (Y γ)γ=1,2..p−1, a set
of material coordinates covering the boundary ∂D. Finally, Fext and F ext are
densities of external forces in g∗ per unit of volume of D and ∂D respectively.
Note that we consider boundaries subjected to external forces only, the case of
imposed motions being easily modelled by de�ning two types of boundaries. Also
note that for beams, i.e. one-dimensional Cosserat media, one has to take:

|H|1/2 = δirac(∂D), (21)

where δirac is the Dirac distribution, and (20) has to be integrated within the
meaning of distributions. Now, let us invoke the constraints of variation at �xed
time and material labels:

δ
∂g

∂t
=
∂δg

∂t
, δ

∂g

∂Xα
=

∂δg

∂Xα
, for α = 1, 2..p. (22)

Then inserting "δg = gδζ" into (22) gives the following relations, as �rst derived
by Poincaré [2], which play a key role in the variational calculus on Lie groups
[34]:

δη =
∂δζ

∂t
+ adη(δζ) , δξα =

∂δζ

∂Xα
+ adξα(δζ), (23)

with ad the adjoint map of g on itself. As detailed in [11], applying the standard
variational calculus to (19) with (23) running before the usual by part integration



in time, and the divergence theorem, gives the Poincaré equations of a Cosserat
medium in the material frame (we use summation convention on repeated indices
α):

∂

∂t

(
∂L

∂η

)
− ad∗η

(
∂L

∂η

)
+

∂

∂Xα

(
∂L

∂ξα

)
− ad∗ξα

(
∂L

∂ξα

)
= Fext, (24a)

∂L

∂ξα
να = −F ext, (24b)

where ad∗ is the co-adjoint map of g on g∗, while ν = ναE
α is the unit outward

normal to e(D), and ∂L/∂η, and ∂L/∂ξα de�ne some conjugate generalized mo-
ments that will be detailed in the following.

These equations represent the dynamics of a Cosserat medium reduced in the
dual of its Lie algebra here identi�ed as the space of in�nitesimal material (right)
transformations of G. They govern the time-evolution of the material velocities
η and when the external forces are left invariant, they can be time-integrated
separately to compute the velocity �eld in a �rst step. In a second step, the
motion of the medium can be reconstructed by using the so-called reconstruction
equation, which can be simply stated as:

∀X ∈ D :
∂g

∂t
(X, t) = (gη)(X, t). (25)

In all cases (symmetric or not), (25) supplements (24), to give a set of time-
evolution equations in the following de�nition of a Cosserat medium's state
space:

S = {(g, η) : X ∈ D 7→ (g, η)(X) ∈ G× g}. (26)

Remark 3.1: Unfortunately, these equations are not directly exploitable in prac-
tise since they are stated in the material space of microstructure labels D, i.e.,
in a non metric space a priori disconnected from the geometric (physical) space.
The purpose of what follows is to give them the physical consistency required
by their application. This will be done by reexpressing the medium dynamics in
terms of the metric densities Lo and Lt. At the end, we will obtain two new sets
of equations holding for the Poincaré equations of Cosserat media in the refer-
ence and deformed con�guration (Φo ◦ e)(D) and (Φt ◦ e)(D) respectively. These
further equations stated in section 5 will allow recovering several geometrically
exact formulations for shells in sections 6, 7, 8. To derive them, we need to enter
further into the geometric model underlaid by (24-25).

4 Geometric model of Cosserat media

The variational calculus leading to (24) handles velocity-type vectors (η, ξα)
and force-type vectors (∂L/∂η, ∂L/∂ξα, Fext, F ext) of g and g∗ respectively,
which are dual of each other through the duality product < ., . >. However, this



calculus hides a further dimensionality involving the space-time base-manifold
D × R+ [8]. Though not readily apparent, this further aspect of the theory
strongly structures the geometric model of Cosserat-media and especially that
of internal stress. The purpose of this section is to introduce this aspect and
to use it to prepare the ground for the model of Cosserat shells as it will be
discussed in the further sections. To introduce this important point, we will �rst
build on the concept of duality.

4.1 Duality in the material space

We consider in this section a material Lagrangian density L in the form L(η, ξα) =
T(η)− U(ξα), with T and U, the density of kinetic and internal elastic potential
energy per unit of material volume respectively. Let us �rst remark that in the
Poincaré-Cosserat picture, η and ξα=1,2...p are not only vector �elds in the Lie
algebra but also the components of a unique �eld of 1-form on space-time, with
value in the Lie algebra g of G [11]. Endowing g with a basis {l1, l2...ln}, such a
�eld, here generically noted as Υ , is de�ned as Υ : (X, t) ∈ D×R+ 7→ Υ (X, t) ∈
g⊗ ∧T ∗(D × R+), and may be detailed as:

Υ (X, t) = Υ j0 lj ⊗ dt+ Υ jβ lj ⊗ dX
β , (27)

where 0 denotes the coordinate-index along time axis, i.e., X0 = t, while in the
case of the left-invariant �elds of (17), Υ j0 lj = η and Υ jβ lj = ξβ . Similarly, the
generalized momenta ∂L/∂η and ∂L/∂ξα=1,2..p. geometrically de�ne the compo-
nents of a �eld in the dual of the space of Υ , i.e. a unique vector �eld on space-
time with components in the dual of the Lie algebra of G of basis {ω1, ω2, ...ωn}.
Such a �eld, generically de�ned as Λ : (X, t) ∈ D × R+ 7→ g∗ ⊗ T (D × R+) is
detailed as:

Λ(X, t) = Λ0
iω

i ⊗ ∂/∂t+ Λαi ω
i ⊗ ∂/∂Xα, (28)

where in the case of our generalized momenta, we have Λ0
iω

i = ∂L/∂η = ∂T/∂η
and Λαi ω

i = −∂L/∂ξα = ∂U/∂ξα. With these de�nitions, in each point of space-
time, any Λ linearly acts on any Υ according to the following (double) duality
product denoted (< ., . >):

(< Λ, Υ >) = Λ0
iΥ

j
0 < ωi, lj > (∂/∂t, dt) + Λαi Υ

j
β < ωi, lj > (∂/∂Xα, dXβ),

with < ωi, lj >= δij , while (., .) is another duality product requiring considering
vectors v of T (D ×R+) as linear functional acting on 1-forms ω of T ∗(D ×R+)
according to v(ω) = ω(v) = (ω, v) = (v, ω). With these considerations, and since
(∂./∂Xi, dXj) = δji (with X

0 = t), we simply have:

(< Λ, Υ >) = Λ0
iΥ

i
0 + Λαi Υ

i
α =< Λ0, Υ0 > + < Λα, Υα >= (Λi, Υ

i), (29)

which appears at the very beginning of the above variational calculus in the
virtual work of the inertial and internal forces and in all its consequences. In the
subsequent developments, the vectors Υ0 = Υ i0li and Υα = Υ iαli are velocity-type



vectors, or in rigid body mechanics' terminology, are "twists" of g. On the dual
side, Λ0 = Λ0

iω
i and Λα = Λαi ω

i are force-type vectors or "wrenches" of g∗.
Moreover, from the above context, the components of the two �elds (27) and
(28) in their respective basis of g and g∗, can be written as: Υ i = Υ i0dt+Υ iαdX

α

and Λi = Λ0
i ∂/∂t + Λαi ∂/∂X

α which de�ne 1-forms acting on T (D × R+) and
T ∗(D × R+) respectively. Kinematically, the Υ i twist components model the
space-time variations of the rigid microstructureM-con�guration (in G) in any
point of D×R+ when shifting along any direction of D×R+, while the Λi wrench
components model the kinetic momentum of each copy ofM above D and the
stress exerted on it. We will detail further these relationships in section 4.5 after
shifting this context to the reference and deformed con�guration in subsection
4.2 and introducing the role of densities and volume forms in subsection 4.3.

4.2 Duality in the reference and deformed con�guration

The above context can be shifted to the reference and deformed con�guration
by using the push-forward and pull-back operations in the convected frame and
co-frame �elds tangent to (Φo ◦ e)(D) and (Φt ◦ e)(D) introduced in section 2.3
and 2.4. In this context, the �eld Υ = Υ0dt+ ΥβdX

β transforms into:

Υo = Υ0dt+ Υβh
β
o , (30a)

Υt = Υ0dt+ Υβh
β , (30b)

on the reference con�guration (30a), and the deformed (30b). On the dual side,
the �eld Λ = Λ0∂/∂t+ Λαo ∂/∂X

α transforms into:

Λo = Λ0∂/∂t+ Λαo ho,α, (31a)

Λt = Λ0∂/∂t+ Λαt hα, (31b)

on the reference and deformed con�guration. Note that in (31), the transfor-
mation does not only a�ect the basis vectors of Λ (by pull-back) but also its
components, since as we will see in the next section, Λ is not a true tensor but
a volume density (and its transformation involves

√
|h| as mentioned in section

2.4). With these further convected �elds, the duality product (29) still holds, but
between the convected frame and co-frame �elds (hα)α=1,2..p and (hα)α=1,2...p,
and we have:

(< Λ, Υ >) = (< Λo, Υo >) = (< Λt, Υt >). (32)

Following the remark at the end of the previous sub-section, Υo and Υt still model
the space-time variations of the microstructure con�guration (in G), but when
shifting along the metric coordinates lines drawn on the reference and deformed
con�gurations by the convection of the material chart. Similarly, Λo and Λt
model the kinetic momentum of the micro-structures and the stress exerted on
them, but related to the reference and deformed con�guration in a way we will
detail in the next section after introducing the role of densities and volume forms
in the next subsection.



4.3 Volume forms and densities

All the terms of the equilibrium described in (24) de�ne densities of wrench in
g∗ related to the metric volume of D (24a), and ∂D (24b). In particular, the
external volume forces involved in (20), are intrinsically de�ned as the volume-
form �eld on D with values in g∗: Fext dX

1 ∧ dX2 ∧ ... ∧ dXp which transforms
into:

Fext,o
√
|ho| dX1 ∧ dX2 ∧ ... ∧ dXp , Fext,t

√
|h| dX1 ∧ dX2 ∧ ... ∧ dXp, (33)

in the reference and current deformed con�guration. In the same way, the exter-
nal boundary forces (exerted on ∂D) are de�ned by volume-form �elds on the
boundaries of D with value in g∗ of the type F extdY

1∧dY 2∧ ...∧dY p−1, which
transform into:

F ext,o|ho|1/2 dY 1∧dY 2∧ ...∧dY p−1 , F ext,t|h|1/2 dY 1∧dY 2∧ ...∧dY p−1. (34)

on the reference and deformed con�guration. Similarly, any space-time material
conjugate momentum of the type Λ de�ned in (28) is in fact the unique compo-
nent of a volume-form �eld Λ ⊗ dX1 ∧ dX2 ∧ ... ∧ dXp = (Λ0∂/∂t + ΛαEα) ⊗
dX1 ∧ dX2 ∧ ... ∧ dXp, with values in g∗ ⊗ T (D × R+) which transforms into:

Λo
√
|ho| ⊗ dX1 ∧ dX2 ∧ ... ∧ dXp =

(Λ0
o

√
|ho|∂/∂t+ Λαo

√
|ho|hoα)⊗ dX1 ∧ dX2 ∧ ... ∧ dXp, (35)

on the reference con�guration, and into:

Λt
√
|h| ⊗ dX1 ∧ dX2 ∧ ... ∧ dXp =

(Λ0
t

√
|h|∂/∂t+ Λαt

√
|h|hα)⊗ dX1 ∧ dX2 ∧ ... ∧ dXp, (36)

on the deformed con�guration. The three volume densities Λ, Λo and Λt are
related to the material volume element, the metric reference and the metric de-
formed volume element respectively, and are apparent in the following functional
duality product between �elds:∫
D
(< Λ, Υ >) dD =

∫
D
(< Λo, Υo >)

√
|ho|dD =

∫
D
(< Λt, Υt >)

√
|h|dD, (37)

which completes the intrinsic model of conjugate momenta of (24).

5 Poincaré's equations of Cosserat media in the reference

and deformed con�guration

Based on the above geometric model, this section aims at deducing from the
Poincaré equations in the material space (24), two other sets of equations enjoy-
ing more physical insights: one related to the reference con�guration, the other



related to the deformed con�guration. To derive these two further sets of equa-
tions, let us �rst remark that from the previous section, the external forces (33)
and the space-time generalized momenta (35), and (36) are volume-densities
which behave like the Lagrangian densities L, Lo and Lt, i.e. obey the following
relations, similar to (18), when shifting from the material to the reference and
current con�guration:

Fext = Fext,o
√
|ho| = Fext,t

√
|h| , (38a)

Λ =
√
|ho|Λo =

√
|h|Λt. (38b)

In the same way, the external surface forces (34) de�ne volume-densities on the
boundaries of D which behave as:

F ext|H|1/2 = F ext,o|ho|1/2 = F ext,t|h|1/2. (39)

In (38) and (39), (Fext,o, F ext,o) and (Fext,t, F ext,t) denote the densities of the
external wrenches exerted on B, per unit of metric-volume of ((Φo ◦e)(D), ∂(Φo ◦
e)(∂D)), and per unit of metric volume of ((Φt ◦ e)(D), ∂(Φt ◦ e)(∂D)) respec-
tively. Similarly, as this will be detailed in the next section, the Λαo and Λαt
(respectively Λ0

o and Λ
0
t ) de�ne some densities of internal stress wrench (respec-

tively the densities of kinetic momentum wrench) per unit of metric volume of
(Φo ◦ e)(D) and of metric volume of (Φt ◦ e)(D).

For the time being, let us remark that introducing L = Lo
√
|ho| = Lt

√
|h| into

the conjugate momentums ∂L/∂η and ∂L/∂ξα of the material Poincaré equations
(24), and using the identities (38b), allows the following relations between the
densities Λ, Λo and Λt and the Lagrangian densities L, Lo and Lt to be stated:

Λ0 =
∂L

∂η
, Λ0

o =
∂Lo
∂η

, Λ0
t =

∂Lt
∂η

, (40)

Λα = − ∂L

∂ξα
, Λαo = −∂Lo

∂ξα
, Λαt = −∂Lt

∂ξα
− 1√

|h|
∂
√
|h|

∂ξα
Lt. (41)

where we used the fact that |ho| is independent of η and the ξα's, while |h|
depends on the ξα's only. For the purpose of concision, we will write the last
relation of (41), as:

Λαt = −∂Lt
∂ξα
− 1√

|h|
∂
√
|h|

∂ξα
Lt , −

[
∂L

∂ξα

]
t

. (42)

Now, introducing all these relations (from (38) to (42)) in the original material
Poincaré equations (24) allows to state:



• The Poincaré-equations of Cosserat media in the reference con�guration:

1√
|ho|

(
∂

∂t

(√
|ho|

(
∂Lo
∂η

))
− ad∗η

(√
|ho|

(
∂Lo
∂η

)))
+

1√
|ho|

(
∂

∂Xα

(√
|ho|

(
∂Lo
∂ξα

))
− ad∗ξα

(√
|ho|

(
∂Lo
∂ξα

)))
= Fext,o,(

|ho|
|ho|

)1/2(
∂Lo
∂ξα

)
να = −F ext,o, (43)

• The Poincaré-equations of Cosserat media in the deformed con�guration:

1√
|h|

(
∂

∂t

(√
|h|
(
∂Lt
∂η

))
− ad∗η

(√
|h|
(
∂Lt
∂η

)))
+

1√
|h|

(
∂

∂Xα

( √
|h|
[
∂L

∂ξα

]
t

)
− ad∗ξα

( √
|h|
[
∂L

∂ξα

]
t

))
= Fext,t,(

|h|
|h|

)1/2 [
∂L

∂ξα

]
t

να = −F ext,t, (44)

Let us do several remarks after these two sets of equations.

Remark 5.1: The new equations (43) and (44) prolong to the physical space,
the equations (24) of [11], which were related to the material non-metric space
D. As expected, they have the physical insights that were missing in the mate-
rial ones (24). This will become more apparent in the subsequent sections where
they will be related to continuous media mechanics, and especially, shell theory.

Remark 5.2: Equations (43) and (44) can be directly derived by re-starting
the variational calculus leading to (24), but with Lagrangian and external forces
densities per unit of metric-volume of reference and deformed con�guration re-
spectively. This calculation is done in Appendix 1 in the deformed con�guration.

Remark 5.3:While in the reference con�guration the density of space-conjugate
momentum Λαo directly derives from the Lagrangian density Lo, this is not the
case in the deformed con�guration for which Λαt is related to Lt through:

Λαt = −
[
∂L

∂ξα

]
t

= −
(
∂Lt
∂ξα

)
−
(

0
Γα

)
Lt, (45)

where we used the fact that ∂
√
|h|/∂Γα =

√
|h|Γα. Note that (45) makes appear

a convective term (induced by the current deformation of D while the Lagrangian
density Lt is kept constant). Referring to three-dimensional hyperelasticity, this
corresponds to the well known fact that an Eulerian stress tensor, as the Cauchy
stress tensor, has no conjugate strain �eld, and that consequently there is no
pure Eulerian hyperelastic constitutive law. Note that this context can be easily
circumvented, and the convective term of (45) removed, if instead of taking a



density of strain energy Ut, we use a Uo related to the reference con�guration,
and the mixed (Lagrangian-Eulerian) constitutive law:

Λαt = −
[
∂L

∂ξα

]
t

=

∣∣∣∣hoh
∣∣∣∣ 12 (∂Uo∂ξα

)
, (46)

which has to be inserted into equations (44).

Remark 5.4: In (43), since |ho| is time-independent, we can remove it from
the top line related to the time dimension. This elimination cannot be applied
to the �rst line of (44). However, invoking the conservation of mass, allows this
expression to be simpli�ed in a way we will detail in section 7, when we will
apply these equations to classical Cosserat shells.

Remark 5.5: We recognize in (24), (43) and (44) the divergence of the �elds
ΛαEα, Λ

α
o hoα and Λαt hα in the material chart of D and in its curvilinear defor-

mation by Φo ◦ e and Φt ◦ e respectively, i.e.:

DIV

((
∂L

∂ξα

)
⊗ Eα

)
=

∂

∂Xα

(
∂L

∂ξα

)
, (47)

DIV

((
∂Lo
∂ξα

)
⊗ hoα

)
=

1√
|ho|

∂

∂Xα

( √
|ho|

(
∂Lo
∂ξα

))
, (48)

DIV

([
∂L

∂ξα

]
t

⊗ hα
)

=
1√
|h|

∂

∂Xα

( √
|h|
[
∂L

∂ξα

]
t

)
. (49)

Similarly, using the de�nitions of the unit normals to a material, reference, and
deformed area element, as they are introduced in section 2.4, the boundary
conditions of (24), (43) and (44) can be rewritten in the alternative forms, which
handle �uxes of stress: ((

∂L

∂ξα

)
⊗ Eα

)
. ν = −F ext, (50)

((
∂Lo
∂ξα

)
⊗ hoα

)
. νo = −F ext,o, (51)([

∂L

∂ξα

]
t

⊗ hα
)
. νt = −F ext,t. (52)

Note that from top to bottom, the three divergence operators of (47-49) and
the corresponding boundary conditions (50-52) naturally appear through the
application of the divergence theorem, when deriving (24), (43) and (44) from
the Hamilton principle (see remark 5.2 and Appendix 1). Note also that these
three operators can be extended to space-time by taking the metric gij(g

i⊗ gj),
i, j = 0, 1, 2..p, with g00 = 1, g0α = 0, gαβ = hαβ , α, β = 1, 2...p. Finally, these
operators and the associated boundary conditions underly a model of stress for



Cosserat media which is detailed in the next section.

Remark 5.6: Equations (44), as (43) and (24), represent the reduced dynam-
ics of a Cosserat medium in the material frame. When Fext,t is g-independent
(i.e., when the external forces are left invariant), these equations are �rst-order
partial di�erential equations governing the material velocity �eld of the medium
that can be integrated separately from the reconstruction of its con�guration.
This decoupling between dynamics and kinematics is the consequence of the
symmetry properties (left invariance) of the Lagrangian density in the material
setting. Alternatively, we knows from Noether theorem that symmetries are also
associated with conservation laws. This second point of view on the above re-
duction appears if one chooses to express (44) (or (24), (43)) in the �xed frame
(o, e1, e2, e3) of space. To perform this change from the material to the spatial
setting, it su�ces to exploit the properties of the co-adjoint action of G on g∗,
and to rewrite (44) in the equivalent form:

∂

∂t

(
Ad∗

g−1

(√
|h|
(
∂Lt
∂η

)))
+

∂

∂Xα

(
Ad∗

g−1

(√
|h|
[
∂L

∂ξα

]
t

))
= Ad∗

g−1(
√
|h|Fext,t), (53)

where we introduced the further densities of spatial kinetic, stress, and external
wrenches per unit of deformed volume, all the wrenches being related to the
�xed frame (o, e1, e2, e3):

Ad∗
g−1

(
∂Lt
∂η

)
, Ad∗

g−1

[
∂L

∂ξα

]
t

, Ad∗
g−1Fext,t. (54)

Physically, equation (53) (which has its counterpart on D and (Φo◦e)(D)) stands
for the spatial Poincaré equations of a Cosserat medium in the "conservation
form". In particular, if the volume external forces are zero (i.e. Fext,t = 0), (53)
can be interpreted as a zero-divergence condition in D×R+ (with the extended
metric mentioned by remark 5.5), as it is expected from Noether theorem in the
context of �eld theory. In the language of gauge theory, this is the local conserva-
tion law (or continuity equation) of the generalized momentums in space-time.
Using divergence theorem, this zero-divergence condition can be changed into
a zero-�ux condition, which when stated on the boundaries of D × [0, t] with
F ext,t = 0, leads to the global conservation law:(∫

D
Ad∗

g−1

(
∂Lt
∂η

)√
|h|dD

)
(t) =

(∫
D
Ad∗

g−1

(
∂Lt
∂η

)√
|h|dD

)
(t = 0), (55)

which mechanically stands for the conservation of the total kinetic wrench of the
Cosserat medium along time. Note that being based on a zero-�ux condition, this
conservation law holds for any compact manifold (Φo ◦ e)(D) without boundary.
In particular, for mono-dimensional media (i.e. p = 1), (55) can be interpreted
as the conservation of the circulation of the spatial angular momentum along
any Cosserat beam closed in a loop [18]. In this alternative formulation, (55)



becomes a consequence of the more general Kelvin-Noether theorem which also
holds for the ideal �uid [34].

5.1 Model of Cosserat stress

To relate the model of stress underlaid by the Poincaré equations (24), (43), (44)
to the stress' model of mechanics of continuous media, we consider G = SE(3)
represented by matrices (5), and identify g = se(3) with R6 endowed with its six
dimensional cross product [35], with basis {(Ei, 0), (0, Ei)}i=1,2,3 where 0 and Ei
are the zero and basis vectors of B ' R3. Moreover, using the metric of R6 allows
us to identify se(3)∗ to se(3) and to rewrite (30b) and (31b) in the equivalent
form:

Υt =

(
ΩiE

i

ViE
i

)
⊗ dt+

(
KiαE

i

ΓiαE
i

)
⊗ hα, (56a)

Λt =

(
Σi
tEi

P itEi

)
⊗ ∂

∂t
+

(
M iα
t Ei

N iα
t Ei

)
⊗ hα. (56b)

The two tensor �elds Υt and Λt not only act on each other through the duality
product (< ., . >), but also operate on T (Φt◦e)(D)×R+ and its dual respectively.
In particular, the time (0)-components of (56) operate as follows on the vectors
and co-vectors of the time axis:(

Ω
V

)
⊗ dt(∂/∂t) =

(
Ω
V

)
, (57a)(

Σt
Pt

)
⊗ (∂/∂t)(dt) =

(
Σt
Pt

)
. (57b)

In the same way, the space (α)-components of (56) operate on the vectors dXβhβ
and the co-vectors dStνt,βh

β = dStνt of (12) respectively, as follows:(
Kα

Γα

)
⊗ hα.(dXβhβ) =

(
Kβ

Γβ

)
dXβ , (58a)(

Mα
t

Nα
t

)
⊗ hα.(dStνt,βhβ) =

(
Mβ
t

Nβ
t

)
νt,βdSt. (58b)

The operations (57a) and (58a), give the rate of rotation RT .dR (of axis) and
displacement RT .dr (of the base point) of the orthonormal mobile spatial frames
(R(X, t).Ei) = (ti)i=1,2,3(X, t) due to a small time variation (57), and a small
displacement dXβhβ along (Φt ◦ e)(D) (58) (see �gure 1). In particular, note
that the vectors Γα are those de�ned in section 2.4 as the pulled back of the
convected basis {hα}α=1,2..p in the material frame. The operation (57b) gives
the density of kinetic wrench per unit of deformed volume of (Φt ◦ e)(D) at time
t. The operation (58b) models the material resultant (dNint), and the material
moment (dMint) of internal contact forces exerted across an oriented deformed



surface element dStνt = dStνt,βh
β of (Φt◦e)(D) by the piece of deformed material

toward which νt points, onto its complement part (see �gure 3 in the case of a
shell). Repeating this context on D and (Φo ◦ e)(D), i.e. by using (27,28) and
(30a, 31a) respectively instead of (30b, 31b), allows us to introduce three tensor
density �elds of Cosserat stress whose components are related to the space (α)-
conjugate momenta of (24), (43) and (44) as follows:(

Mα

Nα

)
⊗ Eα = −

(
∂L

∂ξα

)
⊗ Eα, (59a)(

Mα
o

Nα
o

)
⊗ hoα = −

(
∂Lo
∂ξα

)
⊗ hoα, (59b)(

Mα
t

Nα
t

)
⊗ hα = −

[
∂L

∂ξα

]
t

⊗ hα. (59c)

It is worth noting here that these three densities of tensor are consistent with the
three divergence operators and boundary conditions (47-50), (48-51), (49-52) of
remark 5.5. The �rst (59a) (respectively, second (59b) and third (59c)) of these
three tensor-densities, allows de�ning the density of internal stress wrench Fint =
(MT

int, N
T
int)

T exerted across an oriented material surface element (respectively,
a reference and deformed surface element) of normal ν (respectively, of normal
νo and νt), by the piece of material (respectively, the piece of reference and
deformed con�guration) toward which ν, (respectively νo and νt) points, per
unit of its material (respectively per unit of reference and deformed) area, as
follows:

dFint
dS

=

(
Mβ

Nβ

)
νβ ,

dFint
dSo

=

(
Mβ
o

Nβ
o

)
νo,β ,

dFint
dSt

=

(
Mβ
t

Nβ
t

)
νt,β . (60)

Remark 5.7: The above stress tensors have their left leg in the material frame.
Referring to section 2.4, we can push forward them from the material to the
microstructure frames to de�ne the three spatial tensor �elds:(

m
n

)
=

(
mα

nα

)
⊗ Eα , (61a)(

mo

no

)
=

(
mα
o

nαo

)
⊗ hoα , (61b)(

mt

nt

)
=

(
mα
t

nαt

)
⊗ hα, (61c)

where mα
.,o,t = R.Mα

.,o,t = M iα
.,o,tti and nα.,o,t = R.Nα

.,o,t = N iα
.,o,tti are densities

of spatial forces and couples per unit of material, reference and deformed vol-
ume. These three tensor-densities map a material (61a), a reference (61b), and
a deformed (61c) oriented area element subscripted with ., o, t respectively, onto
the spatial internal wrench dfint = (dmT

int, dn
T
int)

T ∈ g∗ exerted on it. Refer-
ring to elasticity of classical 3D media, the tensor (61b) generalizes the �rst
Piola-Kirchho� since it acts on the reference area element to give the resultant



of internal contact forces and couples on the deformed con�guration. Similarly,
the tensor (61c) de�nes a pure Eulerian tensor stress (as the Cauchy tensor is)
acting on the deformed area element to give the resultant of internal contact
forces and couples exerted on it in the deformed con�guration.

Remark 5.8: In the same line, let us reconsider the space (α)-components
of (58a) as well as their counterparts in the material space and the reference
con�guration, and let us push-forward their left leg from the material to the
microstructure frames, one can introduce the following strain tensors:(

k
γ

)
=

(
kα
γα

)
⊗ Eα ,

(
ko
γo

)
=

(
kα
γα

)
⊗ hαo ,

(
kt
γt

)
=

(
kα
γα

)
⊗ hα,

where γα = Γiαt
i = ∂r/∂Xα and kα = Kiαt

i = ((∂R/∂Xα).RT )∨, with ∨
changing a skew symmetric tensor of R3 ⊗ R3 into its axial vector in R3. We
recognize in Γiαt

i ⊗ hαo the expression of the gradient of the transformation
restricted to (Φo ◦ e)(D), i.e., F , hα ⊗ hαo , while Kiαt

i ⊗ hαo represents the
gradient of the rotation of the microstructures, named wryness tensor in [1]. The
three pairs of tensors: (kt, γt) and (mt, nt), (ko, γo) and (mo, no), and (K,Γ ) and
(Mt, Nt), are dual of each other, as are the �rst Piola-Kirchho� stress tensor and
the gradient of transformation in the case of 3D media [33]. Furthermore for a
classical (not micropolar) medium B, using the general Cosserat Kinematics (8),
we have the following expression of the virtual work of the internal forces exerted
inside B:

δWint =

∫
B
P : δF

√
|go|dB =

∫
D
(Mα

t .δKα +Nα
t .δΓα)

√
|h|dD, (62)

where F and P are the 3D-gradient of transformation and the 3D-�rst Piola
Kirchho� stress tensor between Φo(B) and Φt(B), while

√
|go| is the density of

metric volume on Φo(B). This general expression is derived in Appendix 2.

6 Application to full Cosserat shells: Geometrically exact

model of micropolar shells

In this section we consider the case of shells having an intrinsic spin and couple
stress around their directors, or "micropolar" shells. In this nominal context,
the full Cosserat-Poincaré construction applies. In section 7, we will show how
this model can be adapted to classical shells, i.e. shells with no intrinsic spin nor
couple stress around their directors.

6.1 Full Cosserat shells kinematics

In the case of shells, the Cosserat micro-structure M models rigid �bers (sup-
ported by E3), traversing the shell's material mid surface D (supported by
(E1, E2)). They are labelled by (X1, X2), two parameters which de�ne a set
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Fig. 3. Picture of the stress in Cosserat shells: dmint and dnint de�ne the spatial
wrench of internal contact forces exerted through the element dSt from right to left.

of coordinates on D. The con�guration space of one such rigid microstructure,
say that labelled by (X1, X2), is the set of transformations g(X1, X2) ∈ SE(3),
and the whole con�guration space of the shell is the space of the (X1, X2)-
parameterized surfaces in SE(3) :

C := {g : (X1, X2) ∈ [0, 1]2 7→ g(X1, X2) ∈ SE(3)}. (63)

Here, with no restriction, (X1, X2) are normalized on D. Note that this de�nition
appears in the following Reissner shells kinematics [23], which instantiates the
general kinematics (8) for p = 2:

Φ(X) = r(X1, X2) +R(X1, X2).(X3E3). (64)

Let us recall that (O,E1, E2, E3) interchangeably de�nes the material or inertial
frame, to which r and R are related. With this de�nition of the shell con�guration
space, the left invariant �elds of the general construction are:

η = g−1
∂g

∂t
=

(
Ω V
0 0

)
, ξα = g−1

∂g

∂Xα
=

(
Kα Γα
0 0

)
, α = 1, 2. (65)

where Ω(X1, X2) and V (X1, X2) denote the linear and angular velocities of the
(X1, X2)-rigid �ber pulled back in the material frame. Similarly, (K1,K2) and



(Γ1, Γ2) are in the same frame and stand for the X1 and X2-rates of rotation
and position of the mobile frames (ti)i=1,2,3(X

1, X2). According to (30b), all the
vector �elds of (65) de�ne the components of the unique 1-form:

Υt =

(
Ω
V

)
⊗ dt+

(
Kα

Γα

)
⊗ hα, (66)

which maps vectors of T ((Φt ◦ e)(D)× R+) to space-time rate vectors of g.

6.2 Conservation of mass for shells

The conservation of mass will be used in the following to recover the geomet-
rically exact balances of classical shells in the deformed con�guration from the
Poincaré equations (44). To state it, it is su�cient to note that the mass and
inertia tensor of the microstructures above D de�ne some volume densities which
transform according to [12]:

ρ = ρo
√
|ho| = ρt

√
|h|, J = Jo

√
|ho| = J t

√
|h| (67)

where we introduced the mass-densities ρ, ρo and ρt (respectively, the angular
inertia tensor-densities J , Jo and J t) per unit of material, reference and deformed
volume. The two �rst being function inX, while the third depends on both, space
and time.

6.3 Model of the conjugate momentums for full-Cosserat shells

Based on the previous kinematics and the frame indi�erence of �nite elasticity
[29], we consider a reduced shell's Lagrangian volume form of the form:

(Tt(η)− Ut(ξ1, ξ2))
√
|h| dX1 ∧ dX2 ∈ ∧2T ∗X(D), (68)

where Tt and Ut denote the (left-reduced) kinetic and elastic potential energy
densities, with Lt = Tt−Ut the reduced density of Lagrangian, all these densities
being measured per unit of deformed volume. Introducing (68) in the general
Cosserat equations on the deformed con�guration (44), with p = 2 makes the
�elds of densities of wrenches per unit of metric area of deformed mid-surface
shell appear:

∂Tt
∂η

=

(
∂Tt/∂Ω
∂Tt/∂V

)
=

(
Σt
Pt

)
, (69a)(

∂Ut/∂Kα

∂Ut/∂Γα

)
−
(

0
Γα

)
Lt =

(
Mα
t

Nα
t

)
. (69b)

Note that (69) de�nes a generalized (space-time) constitutive law of the full
Cosserat model of hyperelastic shells. Furthermore, according to (56b), (69) ge-
ometrically de�nes the unique tensor density �eld per unit of deformed volume:

Λt =

(
Σt
Pt

)
⊗ ∂

∂t
+

(
Mα
t

Nα
t

)
⊗ hα. (70)



Assuming that the material mid-surface D crosses the microstructureM in its
geometric center which coincides with its mass center, and positioning the ma-
terial frame in this point, the shell's kinetic energy density per unit of deformed
mid-surface area is:

Tt(η) =
1

2
<

(
Ω
V

)
,

(
J tΩ
ρtV

)
>, (71)

with ρt and J t, the mass and the angular inertia tensor density per unit of
volume of (Φt ◦ e)(D) de�ned as ρt = ρ/

√
h and J t = J/

√
h, with ρ and J =

j⊥(E1⊗E1 +E2⊗E2)+ j‖E3⊗E3 = J⊥+ J‖, the mass and the inertia tensor
of the microstructure M. With (71), the density of kinetic wrench per unit of
current mid-surface area is:

∂Tt
∂η

=

(
Σt
Pt

)
=

(
J tΩ
ρtV

)
. (72)

It is worth noting here thatM is assumed to have an intrinsic spin (j‖/
√
|h|)Ω3

about its axis, an assumption which will be relaxed in the classical shell model
in section 7.

6.4 Model of stress for full Cosserat shells

According to the Cosserat stress picture in section 4, the Xα-terms of Λt, with
Λt detailed as in (70), de�ne two densities of tensors per unit of deformed mid-
surface area: Nt = Nα

t ⊗ hα = N iα
t Ei ⊗ hα and Mt = Mα

t ⊗ hα =M iα
t Ei ⊗ hα,

which operate as follows on co-vectors of T ∗Φt(e(D)), here standing for the
deformed surface elements νtdSt, with νt the unit normal to any convected line
cutting D:

(N iβ
t Ei ⊗ hβ).(νtαhαdSt) = N iα

t EiνtαdSt = Nα
t νtαdSt,

(M iβ
t Ei ⊗ hβ).(νtαhαdSt) =M iα

t EiνtαdSt =Mα
t νtαdSt. (73)

From (60), Nα
t νtαdSt and M

α
t νtαdSt represent the resultant of internal contact

forces and couples exerted on the deformed cross-sectional line of normal νtαh
α

per unit of its metric length. More particularly, in agrement with shell litera-
ture [24], [25], remarking from section 2.4, that νt,α = (|h|/|h|)1/2να, we can
infer that (|h|/|h2|)1/2N1

t and (|h|/|h2|)1/2M1
t (respectively (|h|/|h1|)1/2N2

t and
(|h|/|h1|)1/2M2

t ) represent the resultant and the momentum of internal stress
forces exerted across the deformed shell's transverse section X1 = C (respec-
tively X2 = C), per unit of metric length |h2| along h2 (respectively, per unit of
|h1| along h1), by the piece of material X1 > C (respectively X2 > C), onto the
contiguous piece X1 < C (resp. X2 < C). One can partition them according to:

Nt = N iα
t Ei ⊗ hβ = Nαβ

t Eα ⊗ hβ +N3β
t E3 ⊗ hβ ,

Mt =M iα
t Ei ⊗ hβ =Mαβ

t Eα ⊗ hβ +M3β
t E3 ⊗ hβ . (74)



Physically, N1α
t and N2α

t (resp. M1α
t and M2α

t ) model the resultant stress (re-
spectively couple stress) exerted perpendicularly to the microstructureM, while
N3α
t is the transverse shearing resultant stress aligned with M. Finally, it is

worth noting here that in the classical shell model that will be introduced later,
the microstructure frames are replaced by single vectors or "directors", and the
two components M3α

t , which represent couple stress aligned with M, are zero.
Moreover, in the same model, the stress couples Mα

t are often replaced by the

director stress couples M̃α
t de�ned by Mα

t = E3 × M̃α
t [25].

6.5 Derivation of the geometrically exact dynamic balance of
full-Cosserat shells from Poincaré equations

Introducing (65), (70) and (72) into the Poincaré equations in the deformed
con�guration (44) with the expression of ad∗ on se(3) ∼= R6, gives the dynamic
equations of a Cosserat shell in the deformed con�guration and the material
frame:

1√
|h|

(
∂
√
|h|Pt
∂t

)
+Ω × Pt =

1√
|h|

(
∂
√
|h|Nα

t

∂Xα

)
+Kα ×Nα

t +Next,t, (75)

1√
|h|

(
∂
√
|h|Σt
∂t

)
+Ω×Σt=

1√
|h|

(
∂
√
|h|Mα

t

∂Xα

)
+Kα×Mα

t +Γα×Nα
t +Mext,t.

Pushing forward these equations from the material to the microstructures' frames,
gives:

1√
|h|

(
∂
√
|h| pt
∂t

)
=

1√
|h|

(
∂
√
|h| nαt
∂Xα

)
+ next,t,

1√
|h|

(
∂
√
|h| σt
∂t

)
=

1√
|h|

(
∂
√
|h| mα

t

∂Xα

)
+

∂r

∂Xα
× nαt +mext,t, (76)

where small characters denote spatial tensors, i.e., pt = R.Pt, σt = R.Σt, n
α
t =

R.Mα
t , m

α
t = R.Mα

t , next,t = R.Next,t, and mext,t = R.Mext,t, while ∂r/∂X
α =

R.Γα. Alternatively, if we apply the Poincaré-equations related to the reference
con�guration (43) that we push forward, we obtain the other set of equations:

∂po
∂t

=
1√
|ho|

(
∂
√
|ho| nαo
∂Xα

)
+ next,o,

∂σo
∂t

=
1√
|ho|

(
∂
√
|ho| mα

o

∂Xα

)
+

∂r

∂Xα
× nαo +mext,o, (77)

which handle densities related to the metric volume of the reference con�gura-
tion, especially those of spatial kinetic resultant and momentum σo = R.Σo,
po = R.Po, with Σo and Po, the counterparts of (72), on the reference con-
�guration. Equations (75) and (76) stand for the geometrically exact balance



equations of full-Cosserat shells in the deformed con�guration, in the material
and spatial setting respectively, while (77) are their counterpart in the reference
con�guration, and in the spatial setting. They are known from shell literature
and can be found in some treatise books as [26] where they are derived from Eu-
ler's theorems. All of them represent the left-reduced shell dynamics in the dual
of the Lie algebra of SE(3), and have to be supplemented with a reconstruction
equation. For instance, (75) needs the material reconstruction equation:

∀(X1, X2) ∈ [0, 1]2 :
∂

∂t

(
R r
0 1

)
=

(
R r
0 1

)(
Ω V
0 0

)
, (78)

which stands for a kinematic model supplementing (75) into a set of time-
evolution equations in the state space of the shell initialized withX 7→ (go, ηo)(X)
at t = 0.

Remark 6.1: Referring to Remark 5.6, the Euler-Poincaré equations (75) and
(76) can be alternatively (and equivalently) rewritten as the following local con-
servation law of spatial wrench:

∂

∂t

(
Ad∗

g−1

(√
|h|Σt√
|h|Pt

))
=

∂

∂Xα

(
Ad∗

g−1

(√
|h|Mα

t√
|h|Nα

t

))
+Ad∗

g−1

(√
|h|Mext,t√
|h|Next,t

)
,

(79)
where in contrast to (76), in the above equation, all momentums are related to
a unique �xed point standing for the origin of (o, e1, e2, e3).

To conclude this section, a closed formulation for full-Cosserat shells consists of
the de�nition of strains given by the space-component of (66), the constitutive
law (69b), along with the material balance equations (75) or the spatial ones
(76) (or their counterparts related to the reference con�guration), their bound-
ary conditions, and the reconstruction equation (78) or its spatial counterpart,
depending whether one choose to write the balance equations in the material or
the spatial setting respectively. Alternatively, in the spatial setting, the balance
equations (76) can be replaced by the conservation law (79).

7 Reduction of the full-Cosserat shell model:

Geometrically exact model of classical shells

Despite its elegance, the above construction cannot be directly applied to the
classical shell model. It would hold for a 2-D micropolar medium whose the
micro-structure M has a full rank angular dynamics i.e., has a non negligible
intrinsic spin, external couple and couple stress along M, here modelled re-
spectively by the components Σ3

t = (j‖/
√
h)Ω3, M

3
ext,t, M

31
t and M32

t of (75).
However, the classical shell model has no such features and the full Cosserat
model must be modi�ed to remove these artifacts for classical shells.



7.1 Reduction of the kinematic and kinetic models

To achieve this elimination in the above balance equations, we force j‖ = 0, and
restrict the angular �eld to satisfy ω = t3×∂t3/∂t. Then, as announced in section
6.2, using the conservation of mass (67) in equations (76), allows changing them
into:

ρt
∂v

∂t
=

1√
|h|

(
∂
√
|h| nαt
∂Xα

)
+ next,t,

It.

(
t3 ×

∂2t3
∂t2

)
=

1√
|h|

(
∂
√
|h| mα

t

∂Xα

)
+

∂r

∂Xα
× nαt +mext,t, (80)

Or alternatively, (77) into:

ρo
∂v

∂t
=

1√
|ho|

(
∂
√
|ho| nαo
∂Xα

)
+ next,o,

Io.

(
t3 ×

∂2t3
∂t2

)
=

1√
|ho|

(
∂
√
|ho| mα

o

∂Xα

)
+

∂r

∂Xα
× nαo +mext,o, (81)

where we used the fact that po,t = ρo,tv and σo,t = Io,t.ω with v = R.V ,

ω = R.Ω, and Io,t = R.Jo,t.R
T . Reconsidering (78) with our restricted angular

velocity �eld, equations (80) and (81) have to be supplemented with the spatial
reconstruction equation:

∀(X1, X2) ∈ [0, 1]2 :
∂

∂t

(
R r
0 1

)
=

(
(t3 × ∂t3/∂t)∧ v

0 0

)
.

(
R r
0 1

)
. (82)

Equations (80) and (81) are well known in the shell literature as the geometrically
exact shell equations in the current and reference con�guration. They were so
far derived from Newton's law and Euler's theorem either by directly using the
Cosserat model [36], [37], [38] or indirectly from 3D elasticity [12], [39]. When
investigated by the direct approach, the dynamics of the directors t3 are the
most of the time, directly derived on S2 through an alternative set of angular
equations deduced from (80)-bottom (or (81)-bottom) by cross multiplying them
on the right by t3.

7.2 Reduction of the model of stress

The equations (80), (81) and (82) take charge the degeneration of M into di-
rectors in the kinematic and kinetic models. It remains to achieve the same
reduction but for the model of stress. To achieve this, we apply in this section
the usual procedure leading to the symmetry of the Cauchy stress tensor of a
classical (non-Cosserat) 3D medium to our full-Cosserat shell. We will �rst de�ne
a set of reduced strain measures adapted to the classical model, and by duality
will introduce a reduced model of the stress, related to these strains through



hyperelastic constitutive laws that force the symmetry of two tensor stress �elds
modelling the stress state in the shell's mid-surface. As in the three-dimensional
case [33], these symmetry conditions will be proved to be equivalent to the angu-
lar balance equations along the microstructures which in the classical model are
directors, i.e. degenerated rigid bodies with no intrinsic spin nor couple stress
along them. At the end, this constitutive law will entirely take charge the re-
duction of the stress state and the equations (80), (81) and (82) will hold for
classical shells, as soon as they will be used with this constitutive law.

Strains of the Classical shell model According to the general Poincaré-
Cosserat picture, any set of strain measures properly invariant under rigid trans-
formations, should depend on the left invariant �elds ξ1 and ξ2 of (66) only. This
basic fact can be easily veri�ed in the case of classical shells with no couple stress
along the directors. Using the �eld of frame and co-frame X 7→ (h1, h2)(X) and
X 7→ (h1, h2)(X) on (Φt ◦ e)(D) as they are de�ned in section 2.3, one can pa-
rameterize the strain state of a classical shell with the following set of tensor
�elds [12]:

ε = εαβ h
α ⊗ hβ =

1

2

(
hα.hβ − hoα.hoβ

)
hα ⊗ hβ , (83)

ρ = ραβ h
α ⊗ hβ =

(
hα.

∂t3
∂Xβ

− hoα.
∂to3
∂Xβ

)
hα ⊗ hβ , (84)

τ = τα h
α =

(
t3.

∂r

∂Xα
− to3.

∂ro
∂Xα

)
hα, (85)

where τα, ραβ and εαβ (α, β = 1, 2) measure the transverse shearing, the cur-
vature and the membrane stretching and shearing of the shell in the two ma-
terial directions X1 and X2, with respect to the reference con�guration (which
is throughout the article distinguished with the upper index o). From section
2.4, we also have (h1, h2)(X) = (∂r/∂X1, ∂r/∂X2)(X) = (R.Γ1, R.Γ2)(X), and
t3 = R.E3, which once introduced into (83-85) give the following alternative
expressions of the strain measures:

εαβ =
1

2
(Γα.Γβ − Γ oα.Γ oβ ), (86)

ραβ = E3.(Kα × Γβ −Ko
α × Γ oβ ), (87)

τα = E3.(Γα − Γ oα), (88)

which show that as expected, the strain measures of (83), (84), and (85) only
depend on the left invariant �elds ξα = (KT

α , Γ
T
α )T of (66).

Constitutive equations for classical shells In the simplest case, where the
shell is made of an isotropic hyperelastic material, we de�ne a density of internal
strain energy per unit of metric reference volume of (Φo ◦ e)(D) in the form



Uo = ρoψ, where ψ is a point-wise function (on D) of the strains (86-88). Then,
invoking the conservation of mass (67), or equivalently a relation similar to (46),
but for strains (86-88), the internal stress state can be de�ned by the properly
invariant hyperelastic constitutive relations:

Nαβ
t = ρt

∂ψ

∂εαβ
,Mαβ

t = ρt
∂ψ

∂ραβ
, Qαt = ρt

∂ψ

∂τα
, (89)

where Nt = Nαβ
t hα ⊗ hβ , Mt =Mαβ

t hα ⊗ hβ and Qt = Qαt hα de�ne a set of
stress tensors, called "e�ective" in [12], which are entirely de�ned as the dual of
the strain �elds (83-85) according to the following expression of the virtual work
of the internal forces exerted inside B:

δWint =

∫
D
(Nαβ

t δεαβ +Mαβ
t δραβ +Qαt δτα)

√
|h| dX1 ∧ dX2. (90)

De�ned in this way, the e�ective stress tensor Nt inherits of the symmetry
(w.r.t. the (α, β) indices) of the strain measures (86) and satis�es by construc-

tion Nαβ
t = N βα

t (α, β = 1, 2), a restriction which will be discussed further
in next subsection. For the time being, note that the Cosserat stress density
Λαt = (MαT

t , NαT
t )T of the Poincaré-Cosserat equations (75) are related to the

e�ective stress through the relation:

Λγt = ρt

(
∂ψ

∂εαβ

)(
∂εαβ
∂ξγ

)
+ ρt

(
∂ψ

∂ραβ

)(
∂ραβ
∂ξγ

)
+ ρt

(
∂ψ

∂τα

)(
∂τα
∂ξγ

)
, (91)

which can be detailed, by using the de�nitions of e�ective strains (86-88) and
stress (89), as:

Λαt =

(
Mα
t

Nα
t

)
=

(
Mαβ

t (E3 × Γβ)
Mβα

t (Kβ × E3) +Nαβ
t Γβ +Qαt E3

)
. (92)

Finally, by substituting (86-88) into (89) and the result into (92), we obtain a
constitutive law for classical shells which relates the left invariant �elds of (65)
to their dual (69).

Role of the constitutive law in the reduction of the internal stress
state The aim of this subsection is to show how the above constitutive law
(89) completely takes charge the process of degenerating the micro-solid M
into directors (i.e. one-dimensional rigid bodies) in the stress model. To achieve
this reduction process, we can take inspiration from the reduction of the an-
gular balance equations of a 3D Cosserat (micropolar) medium into those of
a classical (non-Cosserat) one. Thus, we reconsider the model of full Cosserat
shells (75), in which we remove M31

t and M32
t , along with the kinetic momenta

Σ3
t = (j‖/

√
h)Ω3 and external couples M3

ext,t around the directors t3. This sim-
pli�cation changes the sixth row of (75) into:

E3.(Γα ×Nα
t + (Kα × E3)× (Mα

t × E3)) = 0, (93)



which models the (degenerated) angular dynamics about the directors with no
intrinsic spin and couple stress. Expression (93) stands for a static constitutive
constraint on the internal stress of the classical shell model. Moreover, inserting
(92) into (93) and achieving simple vector algebra allows changing (93) into the
following constitutive constraint on the e�ective stress tensor components:

Nαβ
t (Γα × Γβ).E3 = 0, (94)

which obliges the e�ective stress tensor Nt = Nαβ
t hα ⊗ hβ to be symmetric, as

the Cauchy stress tensor �eld is in a classical (not Cosserat) 3D medium [33].
Thus, the constitutive law (89) imposing defacto the symmetry condition (94),
it implicitly forces the constitutive constraint (93), and the degenerated angular
balance along the directors, from which it derives. Finally, the internal stress
state dimension has been reduced from the 12 components of the Cosserat-stress
tensor-densities (Mα

t , N
α
t ) to the 8 components of the e�ective stress �elds Nαβ

t ,

Mαβ
t and Qαt , if, as it is usually done, the skew symmetric components of the

couple stressMt =Mαβ
t hα⊗hβ are forced to zero by restricting the constitutive

law (89-midle) to the symmetric part of Mt. For each dimension of M which
is degenerated, p couple stress components are removed. This �rst simpli�ca-
tion forces a second one through the angular momentum balance which leads to
the removal of the (p2 − p)/2 = p(p− 1)/2 symmetric components of the stress
tensor. In the 3D case, p = 3, and this process reduces the stress state from
the 6.p = 18 components of the Cauchy stress and couple stress tensors to the
18− 3.3− 3(3− 1)/2 = 6 independent components of the Cauchy-stress tensor.
In the 2D case, we have p = 2 and the same process reduces the stress state from
the 6.p = 12 components of the full Cosserat model to 12− 1.2− 2(2− 1)/2 = 9
and �nally, with the couple stress tensor symmetry, to the 8 independent com-
ponents of the e�ective stress tensors and vectors.

This reduction process is schematized in �gure 4. It leads to a closed formulation
for classical shells which consists of the balance equations (80) or (81) with
their boundary conditions, the reconstruction equation (82), the de�nition of
the strains (83-85) and the constitutive law (89), with (92) relating the Cosserat
stress in (80) and (81) with the e�ective stress of (89).

8 Geometrically exact model of classical shells with

drilling rotations

It is worth noting that in the above model of classical shell, the angular velocity
around the directors, "named drilling rotation" in shell literature [27], is assumed
to be zero, i.e, Ω3 = 0, in (80), (81) and (82). Though it has no consequence on
the dynamics of the directors, this condition is kinematically inconsistent with
the mid-surface shell deformation. In this section, we reintroduce this additional
rotation at the kinematic stage (25) of the state-space formulation, and derive a
closed formulation of classical shells with a model of drilling rotations consistent



First Second
reduction reduction

Type of media Classical Micropolar Classical

3D media shells shells

Constitutive
Model B ∼= R3 B = D ×M B = D ×M

∼= R2 × R3 ∼= R2 × R

Model

of strains F (X) = gα ⊗ gαo
(
kα
γα

)
⊗ hα(X̄) (ε, ρ, τ)(X̄)

Duality Eq. (59) Eq. (87)

Model

of stress P (X)

(
mα
t

nαt

)
⊗ hα(X̄) (Nt,Mt,Qt)(X̄)

Fig. 4. Reduction process for classical shells. The �rst reduction is based on Cosserat
kinematics (8) and leads to the micropolar model of section 6, the second is based
on the elimination of couple stress and intrinsic spin about directors, along with the
constitutive law (89). It leads to the models of classical shells of section 7 and 8.



with the mid-surface deformation. To that end, we �xe the rotation around the
directors, to ensure that the full �eld R matches the rotational part of the polar
decomposition of the gradient of the transformation (64) restricted to the mid-
surface shell. The restricted gradient has been de�ned as ∇Φ = hα ⊗ Eα (see
section 2.4). Inspired by [40], this approach has been originally applied to the
restricted gradient of transformations F , hα ⊗ hαo in the context of the �nite
element method for geometrically exact shells [28]. In our context, it consists of
�xing the drilling rotation about the directors at each instant, by imposing the
symmetry of the tensor (RT .∇Φ)(X) = U(X), where U is a symmetric tensor on
the shell mid-surface measuring the stretching and shearing between the material
mid surface and its deformed con�guration. As a result, imposing the symmetry
of U on the mid-surface is equivalent to force for α, β = 1, 2:

Eα.U.Eβ = Eβ .U.Eα. (95)

But since we also have:

Eα.(R
T .∇Φ).Eβ = Eα.(R

T .(hγ ⊗ Eγ)).Eβ = Eα.(R
T .hβ) = Eα.Γβ , (96)

the dynamically undeterminate drilling rotation is �xed by forcing the following
point-wise geometric constraint on the shell mid-surface:

E1.Γ2 = E2.Γ1. (97)

Time-di�erentiating (97) gives the following expression of the missing angular
�eld, with Tr(K) = K11 +K22 and summations on α:

Ω3 =
1

Γ11 + Γ22

[(
∂V2
∂X1

− ∂V1
∂X2

)
− Tr(K)V3 +K3αVα + Γ3αΩα

]
. (98)

It is worth noting here that (98) is the shell counterpart of the angular veloc-
ity �eld de�ned as the skew-symmetric part of the 3D velocity gradient in the
classical (not Cosserat) 3D media. As an illustration, consider the case of a rigid
plate, where Kα = 0, Γ3α = 0, and Γ11 = Γ22 = 1 are imposed in (98). As
expected, Ω3 = (1/2)(∂V2/∂X

1 − ∂V1/∂X2), i.e., Ω3 is equal to the half curl
of the linear velocity �eld on the rigid plate mid-surface. Finally, once inserted
in (78), the kinematic model (98) of Ω3 completes the degenerated dynamics
which now govern the time evolution of V and Ωα, α = 1, 2. It is worth not-
ing here that as this model of the drilling rotation is only kinematic, and not
dynamic, the reference con�guration plays no role other than �xing the initial
conditions of the state-space equations through the �eld of frame X 7→ Ro(X),
which support the directors at t = 0. In particular, the symmetric tensor U of
the above construction does not match with the stretching tensor related to the
mechanical states in the reference and deformed con�guration.

To conclude this section, a closed formulation for classical shells with a consis-
tent model of drilling rotations consists of the strains (83-85), the constitutive
law (89) and (92), along with the balance equations (80) (or their counterparts
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Fig. 5. Sketch of the drilling rotation in classical Cosserat shells.

related to the reference con�guration), and the reconstruction equation (78),
where in (78), Ω3 is given by (98).

9 Illustrative example: application to axisymmetric shells

In this section we illustrate the previous general picture by applying it to an
axisymmetric shell B with a mid-surface di�eomorphic to a disc as pictured
in �gure 6. The shell undergoes a net translation and axisymmetric shape de-
formations along the (o, e3) direction of an inertial frame (o, e1, e2, e3) with no
rotation around it. Thus, there is no couple nor rotation exerted around the
micro-structures and the full Cosserat model can be applied even if the shell is
classical. According to the problem symmetry, the inertial frame (o, e1, e2, e3)
is endowed with a chart of cylindrical coordinates (r, φ, z) of local orthonor-
mal basis (er, eφ, e3). The material space B, of material frame (O,E1, E2, E3) =
(o, e1, e2, e3), is identi�ed to D ×M, with D the shell's material mid surface
supported by (E1, E2), andM its director supported by E3, and crossed by D,
in its center (l and j denote the length and the perpendicular angular geometric
inertia moment ofM). The reference con�guration is Φo(B). Its symmetry axis
is (O, e3), and the cylindrical coordinates of its points are denoted (ro, zo, φo).
In this context, the open set D − {∂D ∪ O} is covered with the material chart
{X1, X2} = {X,φ} of natural basis {E1, E2} = {∂/∂X, ∂/∂φ}, where X is the
metric length along the meridians of (Φo◦e)(D). In any con�guration Φ(B) of the
shell, any cross section �ber crossing D in (X,φ), is supported by the third unit
vector of a director frame (t1, t2, t3)(X,φ) deduced from (O,E1, E2, E3) through
a transformation of SE(3) of the form:

g(X,φ) =

(
exp(φê3) 0

0 1

)(
exp(−θêφ) rer + ze3

0 1

)
, (99)
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Fig. 6. Application of the construction to an axisymmetric shell.

with θ, the angle parameterizing the local rotation of the director t3 with respect
to e3. Using (99) in (65), gives with se(3) ∼= R6, the three left invariant �elds:

η =


0
Ω2

0
V1
0
V3

 , ξX =


0

K2X

0
Γ1X

0
Γ3X

 =


0
−θ′
0

r′ cos θ + z′ sin θ
0

z′ cos θ − r′ sin θ

 , ξφ =


K1φ

0
K3φ

0
Γ2φ

0

 =


sin θ
0

cos θ
0
r
0

 ,

where ′ denotes ∂./∂X. These expressions de�ne Γα and Kα (α = X,φ), which
once inserted in (86-88), give the expressions of (e�ective) strain components:(

τX
τφ

)
=

(
Γ3X

0

)
,

(
εXX εXφ
εφX εφφ

)
=

(
Γ 2
1X + Γ 2

3X − 1 0
0 Γ 2

2φ − r2o

)
,(

ρXX ρXφ
ρφX ρφφ

)
=

(
Ko

2XΓ
o
1X −K2XΓ1X 0

0 K1φΓ2φ − roKo
1φ

)
, (100)

where we assume no transverse shearing in the reference con�guration. Then,
introducing the Cosserat and e�ective stress of the general construction, and
remarking that the axisymmetry imposes: NXφ

t = N φX
t = 0,MXφ

t =MφX
t = 0



and Qφt = 0, (92) allows writing the relations between the Cosserat and the
e�ective stress tensors components, all related to the reference con�guration, as:

0
M2X
o

0
N1X
o

0
N3X
o

 =


0

Γ1XMXX
o

0
K1φMXX

o + Γ1XNXX
o

0
Γ3XNXX

o +QXo

 ,


M1φ
o

0
0
0

N2φ
o

0

 =


−Γ2φMφφ

o

0
0
0

Γ2φN φφ
o −K2XMφφ

o

0

 .

Applying the material Poincaré-Cosserat equations (75) related to the reference
con�guration (Φo ◦ e)(D) to our shell, with the expressions of η, ξX , ξφ above,√
|ho| = (Γ o2φ(Γ

o
1X)2+ (Γ o3X)2)1/2 = ro, and no dependency of the Lagrangian

density with respect to φ, gives the three following scalar equations :

ρol

(
∂V1
∂t
− V3Ω2

)
=

1

ro

∂roN
1X
o

∂X
+K2XN

3X
o −K3φN

2φ
o +N1

ext,o,

ρol

(
∂V2
∂t

+ V1Ω2

)
=

1

ro

∂roN
3X
o

∂X
−K2XN

1X
o +K1φN

2φ
o +N2

ext,o,

ρoj
∂Ω2

∂t
=

1

ro

∂roM
2X
o

∂X
− Γ1XN

3X
o + Γ3XN

1X
o +K3φM

1φ
o +M2

ext,o.

Pushing forward these equations in the �eld of mobile director frames (X,φ) 7→
(t1, t2, t3)(X,φ) with ti(X,φ) = R(X,φ).Ei and remarking that ∂t2/∂φ = −er,
gives two equations (one vectorial and one scalar) which represent the spatial
Poincaré equations (77) for an axisymmetric shell:

ρorol

(
∂v

∂t

)
=

∂

∂X
[ro(N

1X
o t1 +N3X

o t3)]− ro(N2φ
o er − next,o), (101)

ρoroj

(
∂Ω2

∂t

)
=

∂

∂X
[roM

2X
o ] + ro(K3φM

1φ
o + Γ3XN

1X
o − Γ1XN

3X
o +M2

ext,o),

where v = R.V . Moreover, introducing the densities of internal wrench per unit
of metric length of the material coordinate lines on the reference con�guration as
de�ned in section 6.4, that we distinguish from the same densities, but per unit
of material length, by a star ?, we �nd in the present case, i.e., with |ho,XX | = 1,
|ho,φφ| = r2o:

MX
o = (ro/ro)M

?X
o , NX

o = (ro/ro)N
?X
o ,Mφ

o = (1/ro)M
?φ
o , Nφ

o = (1/ro)N
?φ
o .

Once inserted in (101), these relations give an alternative form of balance equa-
tions in terms of metric densities of stress:

ρorol
∂v

∂t
=

∂

∂X
[ro(N

?1X
o t1 +N?3X

o t3)]−N?2φ
o er + ronext,o,

ρoroj
∂Ω2

∂t
=

∂

∂X
[roM

?2X
o ] +K3φM

?1φ
o + ro(Γ3XN

?1X
o − Γ1XN

?3X
o +M2

ext,o),



which are the classical equations of axisymmetric shells as given in [25], where
they are expressed in terms of director stress couples. These balance equations,
which involve densities of wrenches per unit of metric volume of (Φo ◦ e)(D),
have to be supplemented with the expressions of η, ξX and ξφ, the constitutive
equations in terms of e�ective stresses (89), the reconstruction equation (78) with
their initial conditions, and a model of external forces (N1

ext,o, N
2
ext,o,M

2
ext,o).

10 Conclusion and perspectives for soft robotics

In this article we proposed a general picture which allowed the partial di�eren-
tial equations and the boundary conditions of a Cosserat medium, i.e., a set of
small rigid bodies continuously staked along one or several material dimensions,
to be derived. This is achieved through a variational calculus from a unique
Lagrangian density and its symmetry group. The approach is systematic and
requires no phenomenological input. It is based on an extension of the Poincaré
equations from classical mechanical systems to �eld theory. As with the classical
Poincaré equations, these equations are stated in the dual of the Lie algebra of
the symmetry group of the Lagrangian. As a result, they are a set of �rst order
dynamics equations governing the medium's velocities, i.e., the components of
the in�nitesimal right (material) or left (spatial) transformations of the group's
Lie algebra. When the system is fully symmetric, they can be time-integrated
autonomously in a �rst step, and in a second step, the resulting velocity �eld
allows the recovery of the motion of the medium's transformations on the group,
through reconstruction equations. Remarkably, these general equations allow the
recovery of the usual formulations of non-linear shells theories in both the ref-
erence and current con�guration, and in the material and spatial setting. More
precisely, this may be achieved from a unique set of covariant partial di�erential
equations leading to all the formulations deduced from each other through some
transformations which change densities related to the material, reference and
deformed con�gurations, and others which change material into spatial in�nites-
imal transformations. While the approach gives a fully determinate dynamic
model of micro-polar shells, it has been reduced further to obtain a model of
classical shells with no couple stress, nor spin about their directors. This reduc-
tion process is based on the use of constitutive laws imposing the symmetry of
a set of e�ective stress de�ned in the shell's mid surface. Due to the indetermi-
nacy of the drilling rotation about the directors, the shell motion reconstruction
requires a kinematic model of the missing rotation deduced from the polar de-
composition of the gradient of the mid-surface transformation.

In future, this work will be used as foundations to address some open issues in
the emerging �eld of underwater soft robotics [22]. Just like the beam Poincaré-
Cosserat equations have been proved to be a powerful modelling tool for �sh
swimming in biorobotics [41], [42], their extension to shells can greatly help in
modelling squids. In fact, these animals have evolved a soft open shell cavity,
a mantle, that they cyclically contract to perform jet propulsion, which is an



emerging research topic in bio-�uid dynamics [43]. Modelling the mantle as an
internally actuated axisymmetric Cosserat shell immersed in a quiescent �uid,
the above Poincaré-Cosserat abstract machinery will be of great help to generate
the squid swimming dynamics equations in a blind manner from a minimum set
of physical inputs, here fed into a Lagrangian. In this perspective, let us remark
that beyond the modeling of body inertial forces addressed in the article, the
reactive hydrodynamic forces that are exerted on the body can be modelled by
adding some �uid contributions to the Lagrangian of the body, according to the
Kirchho� potential approach [44]. On the other hand, the body strain energy
density can be used to help in modelling the animal muscles and their techno-
logical emulations (cables, electro-active materials...). Of course, to achieve our
�nal goal, several evolutions of this picture are already expected. In particu-
lar, starting from the Eulerian realm of �uid mechanics with no model of the
boundary layer, the Kirchho� model of hydrodynamic forces will need to be sup-
plemented with a simpli�ed model of the vorticity, while the �uid kinetic energy
will need to extend the above picture to systems (body + �uid) enjoying weaker
(global) symmetries. Finally, the above picture encompassing both beams and
shells, it can help to build a theory for soft-multibody systems with applications
to octopus.

Appendix 1: Proof of (44) through direct application of the Hamilton
principle

As evoked in remark 5.2, equations (43) and (44) can be derived directly by
applying the Hamilton principle to an action de�ned in terms of the di�er-
ent de�nitions of the reduced Lagrangian of section 2.6. In this Appendix, we
apply this calculus to the deformed con�guration. This can be achieved us-
ing Stokes theorem applied to di�erential forms or alternatively using the di-
vergence theorem and vector analysis. We will follow the latter approach and
will denote, according to the context of section 2.4, dX1dX2...dXp = dD and
|H|1/2dY 1dY 2 ...dY p−1 = d∂D the material volumes of D and ∂D, which are
assumed to be two manifolds consistently oriented according to the outward
unit normal convention. We start from (19) and (20) in which we replace L
by
√
|h|Lt and (Fext, F ext) by (Fext|h|1/2, F ext|h|1/2). In this new formulation

of Hamilton principle, δ being achieved at �xed time and material parameters
according to section 2.6, this enables us to shift it under the integral. Then,
since δ(Lt

√
|h|) = δLt

√
|h| + Ltδ

√
|h|, where

√
|h| is con�guration-dependent

through the invariant �elds ξα (see section 2.6), we have:

∫ t2

t1

∫
D

(
<
∂Lt
∂η

, δη > + <

[
∂L

∂ξα

]
t

, δξα >

)√
|h|dDdt = −

∫ t2

t1

δWext dt,

(102)

where we used the notation [∂L/∂ξα]t = ∂Lt/∂ξα +|h|− 1
2 (∂|h| 12 /∂ξα) Lt, as it is

introduced by (42). Then invoking (23) and applying a by-part time-integration
with �xed extreme times condition, allows the left hand side of (102) to be



rewritten as:∫ t2

t1

∫
D
<

1√
|h|
ad∗η

(√
|h|∂Lt

∂η

)
− 1√

|h|
∂

∂t

(√
|h|∂Lt

∂η

)
, δζ >

√
|h|dDdt

+

∫ t2

t1

∫
D
<

[
∂L

∂ξα

]
t

,
∂δζ

∂Xα
+ adξα(δζ) >

√
|h|dDdt. (103)

Now let us remark that:∫
D
<

[
∂L

∂ξα

]
t

,
∂δζ

∂Xα
>
√
|h|dD = (104)∫

D

∂

∂Xα

(√
|h| <

[
∂L

∂ξα

]
t

, δζ >

)
dD −

∫
D
<

∂

∂Xα

(√
|h|
[
∂L

∂ξα

]
t

)
, δζ > dD,

whose the �rst right-hand-side term is merely the divergence of a vector �eld
of contravariant components vα =< [∂L/∂ξα]t, δζ > in the convected basis
{hα}α=1,..p. Applying the divergence theorem to this term gives:∫
D

∂

∂Xα

(√
|h| <

[
∂L

∂ξα

]
t

, δζ >

)
dD =

∫
∂D

<

[
∂L

∂ξα

]
t

, δζ > νt,α | h |1/2 d∂D,

(105)

where we introduce the metric volume element |h|1/2d∂D on (Φt ◦ e)(∂D), and
νt,αh

α is the unit outward normal to the tangent planes of (Φt ◦ e)(∂D) which,
from (12), is related to the outward unit normal ναE

α by νt,α|h|1/2d∂D =

να
√
|h|d∂D. Then, inserting (105) into (104) and the result into (103) whose

the last term is dualized, gives, with (20), a balance of two integral components,
one over D with metric volume

√
|h|dD and the second over ∂D, whose met-

ric volume is |h|1/2d∂D. This balance being satis�ed for any variation δζ ∈ g,
it gives the set of equations (44), where due to (21), |h|1/2 = 1 in the case of
beams. �

Appendix 2: Proof of (62)

The general expression (106) is stated in [14] in the case of geometrically exact
beams and plates, in this Appendix we prove it for shells. Since the medium B
is classical (not micropolar), we have:

δWint =

∫
B
P : δF

√
|go|dB =

1

2

∫
B
σij δgij

√
|g|dB, (106)

where gij(g
i ⊗ gj) is the fundamental metric tensor in the convected basis of

Φt(B), with determinant |g|, and σij(gi ⊗ gj) is the Cauchy stress tensor in the
same basis. Then introducing the Cosserat shell kinematics (64) into gij = gi.gj
with gi = ∂Φt/∂X

i gives:

gαβ ' Γα.Γβ + E3.(Γα ×Kβ + Γβ ×Kα)X
3 , gα3 = Γα.E3 , g33 = 1, (107)



where, consistently with the �rst-order Cosserat kinematics (8), theX3-quadratic
terms are neglected in the expression of gαβ . In these conditions, we recognize
in (107) the time-dependent components of the strain measures (86-88). Now,
since expressions (107) depend on the medium con�guration through the left
invariant �elds Γα and Kα of (65) only, one can state:

δgij =

(
∂gij
∂Γα

)
δΓα +

(
∂gij
∂Kα

)
δKα, (108)

in which, the partial derivatives depend on the mid-surface coordinates through
the left invariant �elds, and on X3, in a linear way. Then, introducing (108)
into (106), and integrating the result along the X3-thickness dimension, gives
a general expression of the virtual work of internal forces similar to (62), along
with the explicit expressions of the resultant of stress and couple stress Nα

t and
Mα
t in terms of the three-dimensional Cauchy stress tensor:

Mα
t =

1√
|h|

∫
M

(
σij

∂gij
∂Kα

√
|g|
)
dX3 , Nα

t =
1√
|h|

∫
M

(
σij

∂gij
∂Γα

√
|g|
)
dX3,

(109)

where i < j. �
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