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Optimizing Nanoparticle Designs for Ideal Absorption of Light

Victor Grigoriev, Nicolas Bonod, Jérôme Wenger, and Brian Stout
CNRS, Aix-Marseille Université, Centrale Marseille, Institut Fresnel,

UMR 7249, Campus de St. Jérôme, 13397 Marseille, France

Resonant interaction of light with nanoparticles is essential for a broad range of nanophotonics and
plasmonics applications, including optical antennas, photovoltaics, thermoplasmonics, and sensing.
Given this broad interest, analytical formulas are highly desirable to provide design guidelines for
reaching the conditions of ideal absorption. Here we derive analytical expressions to accurately
describe the electric and magnetic modes leading to ideal absorption. Our model significantly
improves on accuracy as compared to classical models using Green’s functions or a Mie coefficient
expansion. We demonstrate its applicability over a broad parameter space of frequencies and particle
diameters up to several wavelengths. We reveal that ideal absorption is attainable in homogeneous
spherical nanoparticles made of gold or silver at specific sizes and illumination frequencies. To
reach ideal absorption at virtually any frequency in the visible and near infrared range, we provide
explicit guidelines to design core-shell nanoparticles. This work should prove useful for providing
experimental designs that optimize absorption and for a better understanding of the physics of ideal
absorption. Keywords : Ideal absorption, Coherent Perfect Absorption, Plasmonics, Scattering
theory, Mie theory, Optical magnetic modes, resonant photonics.

Metallic nanoparticles, and more recently dielectric
nanoparticles, are receiving tremendous attention due
to their ability to concentrate light energy into volumes
at the nanometer scale [1, 2]. Light-matter interaction
around nanoparticles is at the core of a wide range appli-
cations including optical antennas,[3] light harvesting,[4]
thermoplasmonics,[5] and local surface plasmon reso-
nance sensing[6]. In this context, optimizing the design of
nanoparticles to maximize absorption of light is of crucial
importance.[7, 8] This will lead to enhanced light-matter
interaction, photoluminescence or heat generation.

While brute force numerical simulations can certainly
answer the question and provide reliable design param-
eters, they come at the price of extensive parameter
searches and a lack of physical insight. Analytical expres-
sions for simple and faultless nanoparticle geometries are
therefore interesting as they are quite straightforward for
other researchers to use and provide insights into light ab-
sorption problems. However, as we will show below, clas-
sical point-like dipole models are inaccurate for nanopar-
ticles of sizes & 30nm, and a more realistic model needed
to to be developed.

In this manuscript, we develop a conceptual framework
to achieve ideal absorption of light by metallic and dielec-
tric nanoparticles over a broad parameter space of fre-
quencies and particle sizes. We define Ideal Absorption
(IA) as the conditions leading to a mode of the total field
being completely absorbed by the nanoparticle. Ideal ab-
sorption is also sometimes referred to as “coherent per-
fect absorption”[9–11]. However, it should be pointed
out that absorption of the incident field is only perfect
for an ideal 4π illumination specifically tailored to the IA
mode.[12]

As our main result, eq.(16) provides explicitly analyt-
ical formulas describing the conditions to reach IA for
homogeneous spherical nanoparticles. For such particles,
only a restricted number of attainable parameters (ra-
dius, permittivity, frequency) reach ideal absorption. We

proceed to show that core-shell nanoparticles feature the
ability to satisfy the ideal light absorption condition over
the full visible spectrum by tuning the filling factor and
the radius of the nanoparticle. We provide explicit guide-
lines (eq. (18)) to optimize the design so as to reach ideal
absorption for silver and gold core-shell nanoparticles.

The manuscript is organized as follows: in Section 1,
we introduce ideal absorption and demonstrate that it
corresponds to a fundamental upper bound in an ab-
sorption cross section channel (σa = 3λ2/8π for dipole
resonators). We then discuss in Section 2 two classical
‘point-like’ models providing analytical formulas for pre-
dicting fundamental electric dipole IA (eq. (12)). Since
these models are limited to treatments of fundamental
electric modes and make rather inaccurate predictions
for all but the smallest particle sizes, we derive signifi-
cantly improved analytic formulas in Eq.(16) predicting
the required electric and magnetic fundamental dipole IA
solutions in homogeneous scatterers. Section 3 shows nu-
merical results using a Weierstrass factorization method
[13, 14] that determines fundamental and higher order
IA modes to arbitrary accuracy. After some discussion
and calculations concerning multi-mode absorption and
IA bandwidth, Section 4 illustrates some predictions for
IA in homogeneous spheres with gold and silver at spe-
cific frequencies and sizes. Finally, the discussion is ex-
tended to core-shell nanoparticles (Section 5). Combin-
ing eq. (18) with eq. (16a), we provide a simple procedure
to design optimized core-shells achieving IA at essentially
any frequency in the visible and near visible range.

I. SCATTERING THEORY FOR IDEAL
ABSORPTION

Scattering in three dimensional electromagnetic prob-
lems is conveniently expressed in terms of incoming and
outgoing spherical Vector Partial Waves (VPWs).[15]
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The VPWs are solutions of homogeneous media Maxwell

equations of either electric source type (e :
(±)
n,m (kr)) or

magnetic source type (h : M
(±)
n,m (kr)), with the +(−)

superscripts indicating that the functions satisfy outgo-
ing (incoming) boundary conditions respectively. The
subscript, n, denotes the total angular momentum num-
ber, and m = −n, ..., n, the angular momentum projec-
tion number.[15] The spatial dependence of the VPWs is
scaled by the in-medium wavenumber, k =

√
εbµbω/c =

Nbω/c = 2π/λ, whereNb is the refraction index of the ho-
mogeneous background material, and λ, the in-medium
wavelength.

Theoretical treatments of electromagnetic scattering
from a homogeneous spherically symmetric particle go
under the names of Lorenz-Mie-Debye theory, but the
physical content is best viewed in the formalism of S or
T matrices, originally developed for quantum mechani-
cal scattering theory.[15–19, 22] The S-matrix seems best
adapted to the discussion of IA, and is privileged from
here on.

The total field in a homogeneous region surround-
ing a particle can always be developed on the basis set

of the incoming and outgoing VPWs, with a
(e,±)
n,m and

a
(h,±)
n,m respectively denoting the electric and magnetic

mode VPWs field coefficients. Since the S-matrix of a
spherically symmetric system is automatically diagonal
in the VPW basis, its elements express the linear rela-
tionship between the outgoing and incoming field coef-
ficients of the total field for both electric and magnetic

source fields respectively, i.e. S
(e)
n = a

(e,+)
n,m /a

(e,−)
n,m , and

S
(h)
n = a

(h,+)
n,m /a

(h,−)
n,m .

Algebraic manipulations involving the T-matrix[15,

16], and the definition of the S-matrix[15, 18], S ≡ I+2T ,
provide convenient expressions for the S-matrix coeffi-
cients:

S(e)
n = −h

(−)
n (kR)

h
(+)
n (kR)

· εsϕ
(−)
n (kR)− ϕn (ksR)

εsϕ
(+)
n (kR)− ϕn (ksR)

(1a)

S(h)
n = −h

(−)
n (kR)

h
(+)
n (kR)

· µsϕ
(−)
n (kR)− ϕn (ksR)

µsϕ
(+)
n (kR)− ϕn (ksR)

, (1b)

where, εs ≡ εs/εb, and µs ≡ µs/µb are respectively
the permittivity and permeability contrasts between the
sphere and the host medium, and ks is the wavenum-

ber inside the sphere. The h
(+)
n (x) and h

(−)
n (x) functions

respectively denote the outgoing and incoming spherical
Hankel functions. The expressions in eq.(1) also employ
the functions:

ϕ(±)
n (x) ≡

[
xh

(±)
n (x)

]′
h

(±)
n (x)

, ϕn(x) ≡ [xjn(x)]
′

jn(x)
, (2)

where jn (x) are the nth order spherical Bessel functions.
Flux conservation imposes an upper bound on the am-

plitude of the S matrix elements,
∣∣∣S(e,h)
n

∣∣∣ ≤ 1, where

the upper limit,
∣∣∣S(e,h)
n

∣∣∣ = 1 is satisfied by any lossless

scatterer since this condition results directly in
∣∣∣a(+)
n,m

∣∣∣ =∣∣∣a(−)
n,m

∣∣∣.[18] The S-matrix of a lossless scatterer is char-

acterized by zeros (absorbing modes) in the upper-half
complex frequency plane, and poles (emitting modes) in
the lower-half plane frequency plane.[13, 14] Adding ab-
sorption to the particle causes the absorbing modes to de-
scend towards (and finally into) the lower complex plane
with IA occurring at those values of εs for which a zero
of the S-matrix lies on the real frequency axis, i.e. there
exists an n such that:

S(e)
n = 0⇔ ϕn (ksR)

εs
= ϕ(−)

n (kR) , or , (3a)

S(h)
n = 0⇔ ϕn (ksR)

µs
= ϕ(−)

n (kR) , (3b)

when ={ω} = 0 (these conditions being found by inspec-
tion of eq. (1a) and eq. (1b).

Scattering and absorption cross sections of a spheri-
cally symmetric scatterer are the sum of the contribu-
tions from all multi-pole orders, n:

σs =

∞∑
n=1

(
σ(e)
n,s + σ(h)

n,s

)
, σa =

∞∑
n=1

(
σ(e)
n,a + σ(h)

n,a

)
. (4)

The multi-pole contributions to the extinction, scatter-
ing, and absorption cross sections[15, 18, 19] can be re-
spectively expressed in terms of the S-matrix as:

σ(e,h)
n,a =

π

2k2
(2n+ 1)

(
1−

∣∣∣S(e,h)
n

∣∣∣2) (5a)

σ(e,h)
n,s =

π

2k2
(2n+ 1)

∣∣∣S(e,h)
n − 1

∣∣∣2 (5b)

σ(e,h)
n,e =

π

k2
(2n+ 1)<

{
1− S(e,h)

n

}
, (5c)

where the 2n+ 1 factors arise from the azimuthal mode
degeneracy of the orbital modes.

One finds that an IA mode contributes equally to the
absorption and scattering cross sections by inserting the
IA criteria, Sn = 0 into eq. (5a) and eq. (5b) (in either
the (e) or (h) channels), with values of:[20, 21]

σn,s = σn,a =
2n+ 1

8π
λ2 , (6)

which is an upper bound for the absorption cross sec-
tion of a mode, but a factor four times less than the
Sn = −1, unitary limit [17] of the scattering or extinction
cross sections, obtainable from eq. (5b) and eq. (5c). The
equality of scattering and absorption cross sections in an
IA channel follows from the fact that IA requires the
field scattered by the particle to have perfectly destruc-
tive interference with the outgoing wave components of
the local excitation field (leaving the nth order modes of
the total field to be purely incoming). We also remark
that many properties of IA in particles, like eq. (6), find
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analogues in the ideal absorption of 1D systems, where
for example the maximum absorption coefficient, A, of a
plane wave illuminating a single side of a symmetric thin
film occurs when A = R+ T = 0.5.[23, 24]

Since the ϕ
(−)
n (kR) is a complex function of a real

variable, and ϕn (ksR) is real for real valued ks, the IA
solutions of eq. (3a) or eq. (3b) can occur only for com-
plex values of εs. Furthermore, eqs.(3) are transcendental
equations, and each has an infinite number of solutions.
For the sake of clarity, further discussion in this work will
be limited to the n = 1 (i.e. dipole) mode solutions of
eq.(3).

The real and imaginary parts of the solutions of
eq. (3a) with the lowest values of <{εs} are plotted as
the blue(solid) line in fig. 1 for particle diameters rang-
ing from zero up to a little more than a wavelength.
These results were computed by taking advantage of
the newly developed Weierstrass factorization for reso-
nant photonic structures.[13, 14] One readily remarks
that this solution tends to the well-known quasi-static
dipolar plasmon resonance at εs = −2 when kR → 0.
When only this IA mode is of interest, one can try to
describe IA with a ‘point-like’ model aimed at provid-
ing approximate descriptions of the lowest <{εs} electric
dipole resonance[25, 26]. This is the aim of the next sec-
tion.

(a) (b)
Re{e

s
}

( )e

Im{e
s

}
( )e

Green model Eq.(9)
Mie model Eq.(10)

Our model Eq.(16a)
Numerical solution

Green model Eq.(9)

Mie model Eq.(10)

Our model Eq.(16a)

Numerical solution

FIG. 1. Numerical results of the real and imaginary parts of
εs yielding the lowest IA solution are plotted as a function
of kR (blue solid curves). The predictions from the Green
function point-like model eq. (9) are plotted in green (long
dashed lines), and the Mie theory development model eq. (10)
are plotted in orange (dotted lines). Our analytical model
eq. (16a) (red short dashed curves) provides an improved de-
scription of the conditions to reach Ideal Absorption over a
broad kR range.

II. POINT-LIKE MODELS AND ANALYTIC
EXTENSIONS

Unitarity considerations[15, 17, 18] dictate that the
polarizability of a small isotropic scatterer takes the
form:[27–29]

α−1
e = α−1

qs − i
k3

6π
, (7)

where the quasi-static polarizability, αqs, is real in the ab-
sence of absorption, while the −ik3/6π term accounts for

radiative losses. Unitarity however does not dictate the
finite frequency corrections to αqs, and one only knows
that αqs must tend towards its quasi-static value in the
small kR limit:

lim
kR→0

αqs = 4πR3 εs − 1

εs + 2
≡ α0 , (8)

where α0 is the ‘static’ polarizability of a sphere. Some
authors simply impose αqs = α0, while others, using first
principles Green’s function theory and ‘regularizations’
of the point-like integrals, commonly derive a k2 order
correction to α−1

qs of the form:[26, 30, 31] :

[
α(G.f)

qs

]−1

' α−1
0 −

k2

6πR
. (9)

An alternative approach is to expand the exact Mie
formula to lowest order in k2, as proposed earlier by
Moroz[27] (see also Stratton[32]), which leads to :[

α(M.t)
qs

]−1

' α−1
0 −

3

5

εs − 2

εs − 1

k2

4πR
. (10)

It is a bit surprising that the factors multiplying the k2

corrections of eq. (9) and eq. (10) do not agree. We relate
this to the lack of rigor in the regularizations of the Green
function derivation. It seems nevertheless desirable to in-
clude k2 corrections to the polarizability since such cor-
rections predict the physically observed ‘red-shift’ of lo-
calized plasmon resonances with increasing particle size.

Neither eq. (9) nor eq. (10) are strictly necessary for
isotropic scatterers, since in this case the polarizability is
directly related to the electric dipole S-matrix element,

S
(e)
1 , via the relation:[33]

αe =
3πi

k3

(
1− S(e)

1

)
, (11)

thus predicting an IA polarizability of αIA = 3πi/k3.
The advantage of adopting a point-like model is that if
one replaces the left hand side of either eq. (9) or eq. (10)
with αIA, then one can algebraically solve for the value

of ε
(e)
IA as a function of the size parameter, ρ ≡ kR:

ε
(e)
IA (ρ) =


−2

1+ 1
3ρ

2(1−iρ)
1− 2

3ρ
2(1−iρ) Green function : eq. (9)

−2
1+ 1

15ρ
2(9−5iρ)

1− 1
15ρ

2(9+10iρ)
Mie development : eq. (10)

.

(12)
The real and imaginary parts of these functions are

plotted in fig. 1a, and fig. 1b. both point-like predictions

for ε
(e)
IA (kR) tend towards the exact result (blue curve) in

the kR→ 0 limit, they differ significantly from the exact
result and each other for larger kR.

In view of the inaccuracies of these traditional point-
like models, we derive below more reliable predictions
of the IA conditions by analyzing the pole structure of

the special functions. One first remarks that the ϕ
(±)
n
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functions appearing in eq. (1) have finite meromorphic
expressions, which for the dipole example take the form:

h
(±)
1 (z) = −e±iz z ± i

z2
; ϕ

(±)
1 (z) = ±iz − 1

1∓ iz
. (13)

The ϕn functions on the other hand have an infinite num-
ber of poles located along the real axis, and can be ex-
pressed in meromorphic form as:

ϕn (z) = n+ 1 +

∞∑
α=1

(
2z2

z2 − a2
n,α

)
, (14)

where the constants, an,α, are the zeros of the spherical
Bessel function, jn(x), and are tabulated.[34]

One can obtain analytic dipole approximations to
eq. (1) by replacing ϕ1 of eq. (14) with an approximate
meromorphic function having the same two lowest poles,
a and zeros, b:

ϕ1 (z) ≈ 2
1− (z/b)2

1− (z/a)2
, (15)

where a = 1.4303π and b = 0.87335π. Adopting this sub-

stitution transforms S
(e,h)
1 = 0 into quadratic equations

in terms of ε
(e,h)
s whose relevant solutions are:

ε
(e)
IA (ρ) =

1

2

b2

ρ2

[
1 +

ρ2

a2

2 (iρ+ 1)

(ρ2 − iρ− 1)

−

√(
1 +

ρ2

a2

2 (iρ+ 1)

(ρ2 − iρ− 1)

)2

− ρ2

b2
8 (iρ+ 1)

(ρ2 − iρ− 1)


(16a)

ε
(h)
IA (ρ) =

3 + 3iρ− ρ2

ρ2
(

2+2iρ
b2 + 1+iρ−ρ2

a2

) . (16b)

This set of analytical formulas forms our first main re-
sult. It allows the accurate design of ideal absorbers in
both electric and magnetic modes, and can be immedi-
ately used by other researchers to optimize absorption in
nanoparticles. The electric dipole solution of eq. (16a)
is plotted in red in fig. 1. It remarkably converges to-
wards the numerical exact solution (blue curve) over a
broad kR parameter range. The magnetic dipole solu-
tion of eq. (16b) is plotted in fig. 2c and fig. 2d, where
it is visually indistinguishable from the numerically ex-
act solution. Our new analytical formulas are thus valid
up to particles sizes of several hundreds of nanometers,
which constitutes an improvement of more than an order
of magnitude in nanoparticle size with respect to classical
‘point-like’ models.

III. EXACT SOLUTIONS

Although the analytic expressions of Eq.(16) provide
accurate approximations for the lowest IA modes, one

may nevertheless desire higher precision or the predic-
tions of additional IA solutions, either of which will re-
quire numerical solutions of eq. (3a) or eq. (3b). Finding
these solutions is quite difficult when using commonly
employed techniques involving Cauchy integrals in the
complex plane or conjugate gradient methods; but they
can be readily solved using techniques based on Weier-
strass factorization[13, 14] which exploit the meromor-
phic expansion of eq. (14).

Re{e
s

} Im{e
s

}

kR kR

(a) (b)

kRkR

Re{e
s

} (c) (d)Im{e
s

}

( )e ( )e

(  )h (  )h

FIG. 2. Conditions to reach electric dipole Ideal Absorption
as function of kR for the real (a) and imaginary (b) part of
the complex permittivity εs. Magnetic dipole IA values for εs
are also plotted in (c,d). The lowest electric dipole solution
with <{εs} > 1 is plotted as a dashed curve in (c) and (d)
for comparison.

The real and imaginary parts of the numerically ob-
tained dipole solutions of eq. (3a) and eq. (3b) for the
εs are plotted in fig. 2 as a function of kR for particles
ranging in size from zero up to slightly larger than a wave-
length (kR = π corresponds to particle diameter=λ).

Even though the IA conditions can be found from
the numerical solutions presented in fig. 2, absorber de-
sign will generally require taking into account the other
properties of the absorber, like IA bandwidth and ab-
sorption in other modes. We illustrate this point with
some plots of the dimensionless absorption cross section,
8πσabs/(3λ

2), for particles designed to satisfy electric
dipole IA at a few different sub-wavelength size parame-
ters, notably kR = 0.3 and kR = 1 in fig. 3a and fig. 3b.
The total absorption cross sections are plotted in blue,
the electric dipole absorption cross sections in red, and
as a further piece of information, the magnetic dipole
absorption cross section is plotted in green.

One remarks from fig. 2 that IA can be satisfied for
relatively modest values of <{εs} > 1 for size param-
eters roughly larger than unity (i.e. D & λ/3). For
IA designed to occur at kR = 2, absorption cross sec-
tions are plotted for both the <{εs} < 1 solution value
of 0.4809 + i1.148 in fig. 3c and the lowest <{εs} > 1
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(a) (b)

(c) (d)

FIG. 3. Dimensionless absorption cross sections,
8πσabs/(3λ

2), plotted as a function of kR for IA de-
signed to occur at: (a) kR = 0.3, εs = −2.21 + i0.0611; (b)
kR = 1, εs = −1.87 + i2.91; (c) kR = 2, εs = 0.4809 + i1.148;
and (d) kR = 2, εs = 4.968 + i1.361. Total absorption cross
sections are given by blue curves, electric dipole absorption
by red curves, and magnetic dipole absorption by green
curves.

solution of εs = 4.968 + i1.361 in fig. 3d.
For scatterers that are quite small with respect to the

IA wavelength, like kR = 0.3 in fig. 3a, one clearly ob-
serves peaks in the total absorption cross section associ-
ated with higher electric multi-pole modes, although only
the electric dipole mode (red curve), satisfies the IA con-
dition per its design. We remark that the magnetic dipole
contributions (green curve) are insignificant at such sizes.
For somewhat larger sub-λ particles, like the kR = 1, the
electric dipole IA solution in fig. 3b, one remarks that
the electric dipole IA is accompanied by non-negligible
absorption in higher order modes including the magnetic
dipole contribution (in green). This behavior is accentu-
ated for kR = 2 with magnetic dipole contributions com-
ing close to the IA condition in both the <{εs} < 1 and
<{εs} > 1 designs. We remark however that even when
IA occurs for both electric and magnetic dipole modes
in the same particle, they cannot both be satisfied at the
same frequency (for a homogeneous particle at least). We
also underline the fact that for <{εs} > 1 absorbers, it
can be easier to obtain magnetic dipole IA solutions than
those of electric dipoles. The ability for small particles
to produce strong magnetic dipole absorption at opti-
cal frequencies has also been remarked recently by other
authors[35].

IV. IDEAL ABSORPTION WITH REALISTIC
MATERIALS

Materials exhibiting plasmonic resonances like silver
and gold are good candidates to achieve ideal absorption
at small nanoparticle sizes since they provide <{εs} < 1
and modest absorption over the visible and near visible

frequencies. Even for these materials however, ideal ab-
sorption will only occur at certain frequencies and sizes,
and generally requires exploiting at least one tunable pa-
rameter like the refractive index Nb of the background
medium.

We plot in fig. 4a, the path traced out by εs for gold
and silver in a water background, Nb = 1.33, as the vac-
uum wavelength of light varies from the near ultra-violet
to the mid-visible range (using interpolated Johnson &
Christy data[36]). The values of εs required for produc-
ing the lowest electric dipole IA are also plotted in this
figure as the size parameter, kR, varies from 0 to 4. The
values predicted for IA by the Green function point-like
model are also plotted in this graph as kR varies from 0
to infinity. IA is predicted to occur at the values of kR
and frequencies where the IA curves, dashed lines, inter-
cept the experimentally determined dispersion relations,
full lines.

Inspection of fig. 4a indicates 3 possible IA solutions in
a water background (cf. table I), we caution that only the
lowest particle sizes correspond to resonances dominated
by a dipolar response. Dipole IA solutions at larger par-
ticles sizes will include significant absorption in higher
order modes similar to that seen in fig. 3(c)-(d).

DIA(nm) λ
(IA)
v (nm) kRIA εAg

34.04 393.76 0.361 -4.094 + i0.199

115.53 295.80 1.63 0.704 + i3.01

291.4 321.0 3.13 0.700 + i0.856

DI (nm) λ
(IA)
v (nm) kRIA εAu

91.74 540.69 0.709 -5.30 + i2.20

121.59 451.81 1.12 -1.76 + i5.27

75.94 273.38 1.16 -1.37 + i5.17

TABLE I. Conditions to reach electric dipole IA for silver and
gold nanoparticles in water medium (Nb = 1.33): particle di-

ameters DIA, vacuum wavelengths λ
(IA)
v and non-normalized

metal permittivity εs.

DIA (nm) λ
(IA)
v (nm) kRIA εAg

30.62 412.77 0.35 -5.16 + i0.227

DIA (nm) λ
(IA)
v (nm) kRIA εAu

76.23 559.68 0.64 -6.57 + i1.95

TABLE II. Conditions to reach electric dipole IA for silver and
gold nanoparticles in glass medium (Nb = 1.5): particle di-

ameters DIA, vacuum wavelengths λ
(IA)
v and non-normalized

metal permittivity εs.

Analogous curves are plotted in fig. 4b for a higher
background index material, Nb = 1.5, like that typical
of polymers and glass. At this higher index background
medium, only one IA solution exists for both silver and
gold. The IA values for gold and silver deduced from
an analysis of the intercepts between the IA conditions
and the experimental permittivity functions of fig. 4 are
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silver

(a) Water medium

(b) Glass medium

silver

gold

gold

IA exact
solution

Green
function
model

Green
function
model

IA exact
solution

FIG. 4. Evolution of the normalized permittivity εs = εs/εb
in the complex plane as the vacuum wavelength is varied
for silver nanoparticles (red) λv ∈ {188 − 500}nm and gold
nanoparticles (magenta) λv ∈ {188− 600}nm embedded in a
water medium Nb = 1.33 (a), and a glass medium Nb = 1.5
(b). The values of εs required to reach ideal absorption in the
lowest electric dipole mode are plotted in dashed blue for kR
varying from 0 to 4. The intersections between this curve and
the measured metal permittivity provide the conditions to op-
timize absorption using silver or gold nanoparticles. Tables 1
and 2 detail these conditions for water and glass media. For
comparison, we also represent the Green function point-like
predictions of eq. (12) in dashed green. As already noted in
Fig. 1, this model fails in accurately predicting the IA condi-
tions.

given in table I and table II for Nb = 1.33 and Nb = 1.5
respectively.

Although IA is predicted for both silver and gold in
transparent material media, one can expect significant
differences in their IA behavior in view of the consider-
able differences in their respective dispersion relations
and predicted IA sizes. This is indeed the case, as
illustrated in fig. 5 where the scattering and absorp-
tion cross sections of the silver (a)-(b) and gold par-
ticles (c)-(d) are plotted for frequencies in the visible
range for particles whose IA diameters are taken from
table II (DIA = 30.6nm (λv = 413nm) for silver and
DIA = 76.2nm λv = 560nm for gold).

The frequencies at which IA is predicted are indicated

by vertical dashed lines, and the IA cross sections of
8πσabs/(3λ

2) = 1 are indicated by horizontal dashed
lines in these figures. The total absorption and scattering
cross sections are drawn in blue, and electric dipole con-
tributions are drawn in red, but these curves are nearly
indistinguishable on the scale of these graphs except for
short wavelengths in gold. Magnetic dipole contributions
are plotted in green, but are negligible in all graphs ex-
cepting some mild magnetic dipole absorption in gold at
short wavelengths.

(a) (b)

(d)(c)

Absorption cross section Scattering cross section

FIG. 5. Absorption (a) and scattering (b) cross sections for
silver nanoparticles designed to reach IA in glass medium
Nb = 1.5 (blue curves). Dipole contributions to the cross
sections are plotted in red for the electric dipole and green
for the magnetic dipole. The silver nanoparticle diameter is
DIA = 30.6nm. The IA wavelength is specified by a vertical
dashed line, and corresponds to the situation of the cross sec-
tion reaching the limit of eq. (6). (c,d) Same as (a,b) for gold
nanoparticles of diameter DIA = 76.2nm.

In fig. 5, one remarks significant differences between
the respective behaviors of silver and gold IA parti-
cles near their IA resonances. Notably, the electric
quadrupole, magnetic dipole and higher order corrections
are essentially negligible near the silver IA resonance,
while non-electric dipole orders contribute significantly
to absorption (but not scattering) at wavelengths below
the IA resonance in gold. One should also remark that
although the dipole contributions to the absorption cross
sections are limited by their theoretical upper bound of
σabs = 3λ2/(8π), the electric dipole scattering cross sec-
tion of gold rises to values above 3λ2/(8π), at frequencies
below the IA resonance, but this is allowed by the gen-
eral theoretical considerations of eq. (5) where one sees
that the scattering cross section of a dipole mode is only
required by unitarity to satisfy σscat ≤ 3λ2/(2π). Nev-
ertheless, one can see in both fig. 5b and fig. 5d that
σscat = 3λ2/(8π) at the IA resonance as required by the
general theoretical restraint of eq. (6).
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V. IDEAL ABSORPTION FOR CORE-SHELL
NANOPARTICLES

Although we saw that changing the background ma-
terial index allows some control over IA frequency with
homogeneous inclusions, applications are likely to request
IA to occur at particular frequencies with a set of avail-
able materials. This requires additional adjustable geo-
metric parameters and concentric coatings is one of the
simplest ways to achieve this.

If we consider inclusions consisting of a core and a sin-
gle concentric coating, one has two adjustable parame-
ters, the radius of the outer shell R, and its concentric
spherical core, Rc (cf. fig. 6). It proves convenient to fix
these two dimensioned parameters, R and Rc, in terms
of the dimensionless size parameter, kR, and core mate-
rial filling factor f ≡ (Rc/R)

3
. Unlike the homogeneous

sphere studied in the previous section, the analytic prop-
erties of the S matrix cannot be directly exploited to
determine the parameters producing IA solutions, since
no IA solutions are guaranteed to exist when varying the
parameters kR and f of a coated sphere with fixed per-
mittivities.

Rc

R

f = /R( )3Rc

esh

ec

eb

FIG. 6. Schematic of a concentric coated sphere where the
core, shell, and background permittivities are denoted respec-
tively εc, εsh, and εb. The filling fraction of the core material
is defined as f ≡ (Rc/R)3.

Given the complexity of the analytic coated sphere so-
lutions, the possible non-existence of solutions at finite
frequency, and finally the fact that there are multiple ad-
justable parameters, it is advantageous to develop com-
pact approximate formulas that allow one to rapidly de-
termine which parameters and materials can provide vi-
able designs for coated sphere ideal absorbers. We derive
now an approximation which allows the design of core-
shell electric dipole IA scatterers by taking advantage of
the fact that one is generally interested in designing sub-
wavelength IA particles.

We saw that eq. (16a) provides an accurate approxi-
mation for the required IA permittivity contrast, εs, over
the entire range of the size parameter ρ = kR. The
Maxwell-Garnett effective medium approach is derived as
the effective permittivity of a concentric sub-wavelength
core-shell particle whose volume fraction matches that
of the bulk material. The effective permittivity, εeff , of
a core-shell system can thus be written as a function of

filling fraction, f :[37]

εeff = εsh

(
1 + 3f

εc − εsh

εc + 2εsh − f(εc − εsh)

)
. (17)

where εsh and εc are the shell and core relative permittiv-
ities respectively. This equation can then be algebraically
inverted to yield filling fraction as a function of εeff i.e.:

f =
εc + 2εsh

εc − εsh

εeff − εsh

εeff + 2εsh
(18)

One can then solve for core-shell IA by replacing the
“effective” index in eq. (18) by the ε(e) of eq. (16a) that
specifies the permittivity required for the IA condition.
Since εeff and at least one of the materials is complex val-
ued, the filling fraction, f , found by eq. (18) is generally
complex, but one can vary the size parameter, ρ = kR to
obtain a ={f} = 0 solution graphically. Provided that
the real part of the filling fraction is less than 1 when
={f} = 0, then one has found a valid IA solution.

l0 (nm)

l0 (nm)

Filling fraction

Size parameter

silver

silver

gold

gold

FIG. 7. Plots of the filling fraction (a) and the size parameter
(b), required to achieve IA in a core shell structure immersed
in a Nb = 1.5 background material. The core is considered to
be a lossless high index material, Nc = 2.8, and the shell is
either silver (red solid line) or gold (blue dashed line).

We apply the graphic solution method described in the
previous paragraph to the core-shell IA design consisting
of a silver or gold metallic layer around a lossless high
index core of Nc = 2.8 in a background medium of in-
dex Nb = 1.5. The results are illustrated in fig. 7. The
filling fractions of the shell material and the radius of
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the particle are given as a function of the vacuum wave-
length of the incident field. We remark that the chosen
core-shell design with a high index center and a metallic
shell allows one to design IA for any wavelength higher
than the homogeneous sphere solutions given in table II.
It is also possible to design IA for other geometries, like
a dielectric shell around a metallic core, but the metallic
shell design illustrated here tended to give the smallest
IA solutions and seemed more realizable from a practical
standpoint.

VI. CONCLUSIONS

In this work, we have derived simple analytical expres-
sions, Eqs.(16), to accurately predict the lowest order
electric and magnetic modes leading to Ideal Absorption
(IA). These expressions provide a significant improve-
ment as compared to the classical ‘point-like’ models de-
rived using Green’s function or Mie coefficients expan-
sion, and can accurately handle nanoparticle sizes up to
several wavelengths. The IA criteria was shown to corre-
spond to a limit behavior of an absorption cross section

channel. Precise electromagnetic calculations in the com-
plex frequency plane were also introduced to predict this
phenomenon, indicating the intriguing possibility of ob-
serving IA in high index absorbing materials and not just
in metals. Our results showed that IA should be observ-
able at visible frequencies for homogeneous nanoparticles
composed of gold or silver for specific (fixed) frequen-
cies and sizes. The methods and formulas developed in
this work led to a simple scheme (eq. (18)) for predicting
core-shell geometries supporting effective IA conditions
throughout the visible spectrum. Experimental obser-
vations of IA for optimized sub-wavelength particles are
within reach and should prove useful to better under-
stand IA and its signature in quantum systems.
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absorption and scattering for cloaked sensors, Phys. Rev.
B, 89, 045122(12), (2014).

[21] S. Tretyakov, Maximizing Absorption and Scattering by
Dipole Particles, Plasmonics, 9, 935-944, (2014)

[22] T.A. Nieminen, H. Rubinsztein-Dunlop, and N.R. Heck-
enberg, Calculation of the T-matrix: General considera-
tions and application of the point-matching method, J.
Quant. Spect. & Rad. Trans. 79-80, 1019-1029 (2003).

[23] L.C. Botten, R.C. McPhedran, N.A. Nicorovici, and
G.H. Derrick, Periodic Models for Thin Optimal Ab-



9

sorbers of Electromagnetic Radiation, Phys. Rev. B
(Rapid Comm.), 55, R16072-R16075, (1997).

[24] A. K. Sarychev, D. J. Bergman, and Y. Yagil, Theory of
the optical and microwave properties of metal-dielectric
films, Phys. Rev. B, American Physical Society, 51, 5366-
5385 (1995).

[25] P. de Vries, D.V. van Coevorden, A. Lagendijk, Point
scatterers for classical waves, Rev. Mod. Phys, 70, 447-
466, (1998).

[26] Y.-P. Pellegrini, P. Thibaudeau, B. Stout, Off-shell mean-
field electromagnetic T-matrix of finite size spheres and
fuzzy scatterers, J. Phys. Condens. matter, 9, 177-191
(1997).

[27] A. Moroz, Depolarization field of spheroidal particles, J.
Opt. Soc. Am. B 26, 517-527 (2009).

[28] E.C. Le Ru, W.R.C. Somerville, and B. Auguié, Radia-
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