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Abstract. Let G be an algebraic group over a complete separable valued �eld k.

We discuss the dynamics of the G-action on spaces of probability measures on algebraic

G-varieties. We show that the stabilizers of measures are almost algebraic and the orbits

are separated by open invariant sets. We discuss various applications, including existence

results for algebraic representations of amenable ergodic actions. The latter provides an

essential technical step in the recent generalization of Margulis–Zimmer super-rigidity phe-

nomenon [2].
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1. Introduction

This work concerns mainly the dynamics of an algebraic group acting on the space
of probability measures on an algebraic variety. Most (but not all) of our results are
known for local �elds (most times, under a characteristic zero assumption). Our
main contribution is giving an approach which is applicable also to a more general
class of �elds: complete valued �elds. On our source of motivation, which stems
from ergodic theory, we will elaborate in §1.2, and in particular Theorem 1.16.
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First we describe our objects of consideration and our main results, put in some
historical context.

Setup 1.1. For the entire paper .k; j � j/ will be a valued �eld, which is assumed to
be complete and separable as a metric space, and Ok will be the completion of its
algebraic closure, endowed with the extended absolute value.

Note that Ok is separable and complete as well (see the proof of Proposition 2.2).
The most familiar examples of separable complete valued �elds are of course R

and C, but one may also consider the p-adic �elds Qp, as well as their �nite
extensions. Considering k D Cp D yQp one may work over a �eld which is
simultaneously complete, separable and algebraically closed. Other examples of
a complete valued �eld are given by �elds of Laurent series K..t//, where K is
any �eld (this �eld is local if and only if K is �nite, and separable if and only if
K is countable), or more generally the �eld of Hahn series K..t�//, where � is a
subgroup of R (see for example [17]). This �eld is separable if and only if K is
countable and � is discrete (see [13]).

Convention 1.2. Algebraic varieties over k will be identi�ed with their Ok-points
and will be denoted by boldface letters. Their k-points will be denoted by corre-
sponding Roman letters. In particular we use the following.

Setup 1.3. We �x a k-algebraic group G and we denote G D G.k/.

We are interested in algebraic dynamical systems, which we now brie�y de-
scribe. For a formal, pedantic description see §2.1 and in particular Proposi-
tion 2.2. By an algebraic dynamical system we mean the action of G on V , where
V is the space of k-points of a k-algebraic variety V on which G acts k-morphi-
cally. Such a dynamical system is Polish: G is a Polish group, V a Polish space
and the action map G � V ! V is continuous (see §2.1 for proper de�nitions).
The point stabilizers of such an action are algebraic subgroups, and by a result
of Bernstein and Zelevinski [3], the orbits of such an action are locally closed
(see Proposition 2.2).

Following previous works of Furstenberg and Moore, Zimmer found a sur-
prising result: for the action of an algebraic group G on an algebraic variety V ,
all de�ned over R, consider now the action of G on the space Prob.V / of prob-
ability measures on V . Then the point stabilizers are again algebraic subgroups
and the orbits are locally closed. However, this result does not extend trivially to
other �elds. For example, with k D C, consider the Haar measure on the circle
S1 < C�. For the action of C� on itself, the stabilizer of that measure is S1, which
is not a C-algebraic subgroup. Similarly, for k D Qp, consider the Haar measure
on the p-adic integers Zp < Qp . For the action of Qp on itself, the stabilizer of
that measure is Zp , which is not a Qp-algebraic subgroup.
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De�nition 1.4. A closed subgroup L < G is called almost algebraic if there
exists a k-algebraic subgroup H < G such that L containsH D H.k/ as a normal
cocompact subgroup. A continuous action of G on a Polish space V is called
almost algebraic if the point stabilizers are almost algebraic subgroups of G and
the collection of G-invariant open sets separates the G-orbits, i.e. the quotient
topology on GnV is T0.

Remark 1.5. If k is a local �eld thenG is locally compact and by [8, Theorem 2.6]
the conditionGnV is T0 is equivalent to the (a priori stronger) condition that every
G-orbit is locally closed in V .

Remark 1.6. If k D R then every compact subgroup of G is the real points of a
real algebraic subgroup of G (see e.g. [22, Chapter 4, Theorem 2.1]). It follows
that every almost algebraic subgroup is the real points of a real algebraic subgroup
of G. We get that a continuous action ofG on a Polish space V is almost algebraic
if and only if the stabilizers are real algebraic and the orbits are locally closed.

Two obvious classes of examples of almost algebraic actions are algebraic ac-
tions (by the previously mentioned result of Bernstein and Zelevinski) and proper
actions (as the stabilizers are compact and the space of orbits is T2, that is, Haus-
dor�). The notion of almost algebraic action is a natural common generalization.
It is an easy corollary of Prokhorov’s theorem (see Theorem 2.3 below) that if the
action of G on V is proper then so is its action on Prob.V /, see Lemma 2.7. The
main theorem of this paper is the following analogue.

Theorem 1.7. If the action of G on a Polish space V is almost algebraic then the

action of G on Prob.V / is almost algebraic as well.

The following corollary was obtained by Zimmer, under the assumptions that
k is a local �eld of characteristic 0 and V is homogeneous, see [24, Chapter 3].

Corollary 1.8. Assume G has a k-action on a k-variety V . Then the induced

action of G D G.k/ on Prob.V .k// is almost algebraic.

In the course of the proof of Theorem 1.7 we obtain in fact a more precise
information. A k-G-variety is a k-variety with a k-action of G.

Proposition 1.9. Fix a closed subgroup L < G. Then there exists a k-subgroup

H0 < G which is normalized by L such that L has a precompact image in

the Polish group .NG.H0/=H0/.k/ and such that for every k-G-variety V , any

L-invariant �nite measure on V .k/ is supported on the subvariety of H0-�xed

points, V
H0 \ V .k/.
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This proposition is a generalization of one of the main results of Shalom [19],
who proves it under the assumptions that k is local and L D G. For the case
L D G the following striking corollary is obtained.

Corollary 1.10. If for every strict k-algebraic normal subgroup HGG, G.k/=H.k/

is non-compact, then every G-invariant measure on any k-G-algebraic variety

V .k/ is supported on the G-�xed points.

In particular we can deduce easily the Borel density theorem.

Corollary 1.11. Let G be a k-algebraic group and � < G D G.k/ be a closed

subgroup such that G=� has a G-invariant probability measure. If for every

proper k-algebraic normal subgroup H G G, G.k/=H.k/ is non-compact, then

� is Zariski dense in G.

To deduce the last corollary from the previous one, consider the map

G=� �! .G=x�Z/.k/;

where x�Z denotes the Zariski closure of�, and push forward the invariant measure
from G=� to obtain a G-invariant measure on .G=x�Z/.k/. The homogeneous
space G=x�Z must contain a G-�xed point, hence must be trivial. That is x�Z D G.

1.1. Applications: ergodic measures on algebraic varieties. A classical theme
in ergodic theory is the attempt to classify all ergodic measures classes, given a
continuous action of a topological group on a Polish space. In this regard, the
axiom that the space of orbits is T0 has strong applications. Recall that, given
a group L acting by homeomorphisms on a Polish space V , a measure on V is
L-quasi-invariant if its class is L-invariant. The following proposition is well
known.

Proposition 1.12. Let V be a Polish G-space and assume that the quotient topol-

ogy on GnV is T0. Let L < G be a subgroup and � an L-quasi-invariant

ergodic probability (or �-�nite) measure. Then there exists v 2 V such that

�.V �Gv/ D 0.

Indeed, GnV is second countable, as V is, and for a countable basis Bi ,
denoting the push forward of � to GnV by N�, the set

\

¹Bi j N�.Bi/ D 1º \
\

¹Bc
i j N�.Bi/ D 0º

is clearly a singleton, whose preimage in V is an orbit of full measure.
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In particular, we get that for a subgroup L < G and an algebraic dynamical
system ofG, everyL-invariant measure is supported on a singleG-orbit. Another
striking result is that an algebraic variety cannot support a weakly mixing proba-
bility measure. Recall that anL-invariant probability measure � is weakly mixing
if and only if � � � is L-ergodic.

Corollary 1.13. Assume G has a k-action on the k-variety V . Fix a closed

subgroup L < G and let � be an L-invariant weakly mixing probability measure

on V D V .k/. Then there exists a point x 2 V L such that � D ıx.

This corollary follows at once from Proposition 1.9, as the action of L on
V

H0 \ V .k/ is via a compact group.
We end this subsection with the following useful application, obtained by

composing Proposition 1.12 with Theorem 1.7. This corollary is in fact our main
motivation for developing the material in this paper. It deals with measure on
spaces of measures, and is the main tool in deriving Theorem 1.16 below.

Corollary 1.14. Assume G has a k-action on the k-variety V . Denote V D V .k/.

Let L < G be a subgroup and � be an L-ergodic quasi-invariant measure on

Prob.V /. Then there exists � 2 Prob.V / such that �.Prob.V / � G�/ D 0.

1.2. Applications to algebraic representations of ergodic actions. A main
motivation for us to extend the foundation outside the traditional local �eld zone
is the recent developments in the theory of algebraic representations of ergodic
actions, and in particular its applications to rigidity theory. In [2] the following
theorem, as well as various generalizations, are proven.

Theorem 1.15 ([2, Theorem 1.1], Margulis super-rigidity for arbitrary �elds). Let

l be a local �eld. Let T to be the l-points of a connected almost-simple algebraic

group de�ned over l . Assume that the l-rank of T is at least two. Let � < T be a

lattice.

Let k be a valued �eld. Assume that as a metric space k is complete. Let G be

the k-points of an adjoint simple algebraic group de�ned over k. Let ıW� ! G be

a homomorphism. Assume ı.�/ is Zariski dense in G and unbounded. Then there

exists a continuous homomorphism d WT ! G such that ı D d j� .

The proofs in [2] are based on the following, slightly technical, theorem which
will be proven here.

Theorem 1.16. LetR be a locally compact group and Y be an ergodic, amenable

Lebesgue R-space. Let .k; j � j/ be a valued �eld. Assume that as a met-

ric space k is complete and separable. Let G be a simple k-algebraic group.

Let f WR � Y ! G.k/ be a measurable cocycle.
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Then either there exists a k-algebraic subgroup H Œ G and an f -equivariant

measurable map �WY ! G=H.k/, or there exists a complete and separable

metric space V on which G acts by isometries with bounded stabilizers and an

f -equivariant measurable map �0WY ! V .

A more friendly, cocycle free, version is the following.

Corollary 1.17. Let R be a locally compact, second countable group. Let Y be

an ergodic, amenable R-space. Suppose that G is an adjoint simple k-algebraic

group, and there is a morphism R ! G D G.k/. Then

� either there exists a complete and separable metric space V , on whichG acts

by isometries with bounded stabilizers, and an R-equivariant measurable

map Y ! V or

� there exists a strict k-algebraic subgroup H and an R-equivariant measur-

able map Y ! G=H.k/.

Taking Y to be a point in the above corollary, we obtain the following.

Corollary 1.18. Suppose R < GLn.k/ is a closed amenable subgroup. Then the

image of R in xRZ modulo its solvable radical is bounded.

Indeed, upon modding out the solvable radical of xRZ, the latter is a product of
simple adjoint factors, and by the previous corollary the image ofR in each factor
is bounded.

Note that over various �elds, such as Cp and NFp..t //, every bounded group is
amenable, being the closure of an ascending union of compact groups, while for
other �elds there exist bounded groups which are not amenable. For example
SL2.QŒŒt ��/, which is bounded in SL2.Q..t ///, factors over the discrete group
SL2.Q/ which contains a free group.

1.3. The structure of the paper. The paper has two halves: the �rst half consist-
ing of §2,§3 is devoted to the proof of Theorem 1.7 and the second half is devoted
to the proof of Theorem 1.16.

In §2 we collect various needed preliminaries, in particular we discuss the
Polish structure on algebraic varieties, and on spaces of measures. The most im-
portant results in this section are Proposition 2.2 that discusses algebraic varieties
and and Corollary 2.14 that uses disintegration as a replacement for a classical er-
godic decomposition argument (which is not applicable in our context, due to the
lack of compactness). The heart of the paper is §3, where the concept of almost
algebraic action is discussed. Theorem 1.7 is proven at §3.4.

In §4, we give a thorough discussion of bounded subgroups of algebraic
groups, and in §5, we discuss a suitable replacement of a compacti�cation of coset
spaces. In §6, we prove Theorem 1.16.
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2. Preliminaries

2.1. Algebraic varieties as Polish spaces. Recall that a topological space is
called Polish if it is separable and completely metrizable. For a good survey on
the subject we recommend [14]. We mention that the class of Polish spaces is
closed under countable disjoint unions and countable products. A Gı-subset of a
Polish space is Polish so, in particular, a locally closed subset of a Polish space
is Polish. A Hausdor� space which admits a �nite open covering by Polish open
sets is itself Polish. Indeed, such a space is clearly metrizable (e.g. by Urysohn
metrization theorem [14, Theorem 1.1]) so it is Polish by Sierpinski theorem [14,
Theorem 8.19] which states that the image of a continuous open map from a Polish
space to a separable metrizable space is Polish.

A topological group which underlying topological space is Polish is called a
Polish group. Sierpinski theorem also implies that for a Polish group K and a
closed subgroup L, the quotient topology on K=L is Polish. E�ros Lemma [8,
Lemma 2.5] says that the quotient topology on K=L is the unique K-invariant
Polish topology on this space. Another important result of E�ros concerning
Polish actions (that are continuous actions of Polish groups on Polish spaces) is
the following.

Theorem 2.1 (E�ros theorem [8, Theorem 2.1]). For a continuous action of a

Polish group G on a Polish space V the following are equivalent.

(1) The quotient topology on GnV is T0.

(2) For every v 2 V , the orbit map G=StabG.v/ ! Gv is a homeomorphism.

Our basic class of Polish actions will be given by actions of algebraic groups
on algebraic varieties. As mentioned in Setups 1.1 & 1.3, we �xed a complete and
separable valued �eld .k; j � j/, that is a �eld k with an absolute value j � j which
is complete and separable (in the sense of having a countable dense subset). See
[9, 6]1 for a general discussion on these �elds. It is a standard fact that a complete
absolute value on a �eld F has a unique extension to its algebraic closure xF
[6, §3.2.4, Theorem 2] and Hensel lemma implies that the completion yF of this
algebraic closure is still algebraically closed [6, §3.4.1, Proposition 3].

Recall that we identify each k-variety V with its set of Ok-points. In particular,
this identi�cation yields a topology on V. Identifying the a�ne space An. Ok/ with
Okn, any a�ne k-variety can be seen as a closed subset of An. Ok/. More generally,
a k-variety has a unique topology making its a�ne charts homeomorphisms.
Observe that with this topology, the set of k-points V of V is closed.

Topological notions, unless otherwise said, will always refer to this topology.
In particular, for the k-algebraic group G we �xed, G and G D G.k/ are topolog-
ical groups. We note that V actually carries a structure of a k-analytic manifold,

1 In the second reference, the word valuation is used for what we call an absolute value.
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G is a k-analytic group and the action of G on V is k-analytic. We will not make
an explicit use of the analytic structure here. The interested reader is referred to
the excellent text [18], in which the theory of analytic manifolds and Lie groups
over complete valued �elds is developed (see in particular [18, Part II, Chapter I]).

We will discuss the category of k-G-varieties. A k-G-variety is a k-variety
endowed with an algebraic action of G which is de�ned over k. A morphism of
such varieties is a k-morphism which commutes with the G-action.

Proposition 2.2. A k-variety V and its set of k-points V are Polish spaces. In

particular, G and G are Polish groups.

If V is a k-G-variety then theG-orbits in V are locally closed and the quotient

topology on GnV is T0. For v 2 V , the orbit Gv is a k-subvariety of V . There

exists a k-subgroup H < G contained in the stabilizer of v such that the orbit

map G=H ! Gv is de�ned over k and the induced map G=H ! Gv is a

homeomorphism, where H D H.k/, G=H is endowed with the quotient space

topology and Gv is endowed with the subspace topology.

Proof. Let us �rst explain how the extended absolute value makes Ok Polish. In
our situation k has a countable dense sub�eld k0. The algebraic closure Nk0 of k0

is still countable and thus its completion Ok0 is separable and algebraically closed.
By the universal property of the algebraic closure, Nk embeds in Ok0 and by unique-
ness of the extension of the absolute value, this embedding is an isometry. Thus
Ok is algebraically closed, complete and separable.

Since Ok is Polish, so is the a�ne space An. Ok/ ' Okn. It follows that V

(respectively V ) is a Polish space, as this space is a Hausdor� space which admits
a �nite open covering by Polish open sets — the domains of its k-a�ne charts
(respectively their k-points).

The fact that the G-orbits in V are locally closed is proven in the appendix
of [3]. Note that in [3] the statement is claimed only for non-Archimedean local
�elds, but the proof is actually correct for any �eld with complete non-trivial
absolute value, which is the setting of [18, Part II, Chapter III] on which [3] relies.
Another proof can be found in [11, §0.5]. It is then immediate that the quotient
topology on GnV is T0.

For v 2 V the orbit Gv is a k-subvariety of V by [5, Proposition 6.7]. We

set H D StabG.v/
Z

(note that if char.k/ D 0 then H D StabG.v/). By [5, AG,
Theorem 14.4], H is de�ned over k, and it is straightforward that H D H.k/ D

StabG.v/. By [5, Theorem 6.8] the orbit map G=H ! Gv is de�ned over k,
thus it restricts to a continuous map from G=H onto Gv. The fact that the latter
map is a homeomorphism follows from E�ros theorem (Theorem 2.1) since GnV
is T0. �
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We emphasize that, as a special case of Proposition 2.2, we get that for every
k-algebraic subgroup H of G, the embedding G=H ! G=H.k/ is a homeomor-
phism on its image. We will use this fact freely in the sequel.

2.2. Spaces of measures as Polish spaces. In this subsectionV denotes a Polish
space. We let Prob.V / be the set of Borel probability measures on V , endowed
with the weak*-topology (also called the topology of weak convergence). This
topology comes from the embedding of Prob.V / in the dual of the Banach space
of bounded continuous functions on V . If d is a complete metric on V which
is compatible with the topology (the metric topology coincides with the original
topology on V ), the corresponding Prokhorov metric d on Prob.V / is de�ned as
follows: for �; � 2 Prob.V /, d.—; �/ is the in�mum of " > 0 such that for all Borel
subset A � V , �.A/ � �.A"/ C " and symmetrically �.A/ � �.A"/ C ", where
A" is the "-neighborhood (for d ) around A. The following theorem summarizes
some standard results, see Chapter 6 and Appendix III of [4].

Theorem 2.3 (Prokhorov). The metric space .Prob.V /; d/ is complete and sep-

arable and the topology induced by d on Prob.V / is the weak*-topology. In par-

ticular the space Prob.V / endowed with the weak*-topology is Polish.

A subset C in Prob.V / is precompact if and only if it is tight: for every

� > 0 there exists compact K � V such that for every � 2 C , �.K/ > 1 � �.

In particular Prob.V / is compact if V is.

Remark 2.4. Replacing if necessary d by a bounded metric, we note that there
is another metric on Prob.V / with the same properties (metrizing the weak*-
topology and being invariant under isometries): the Wasserstein metric [21, Corol-
lary 6.13].

We endow Homeo.V / with the pointwise convergence topology. The follow-
ing is a standard application of the Baire category theorem, see [14, Theorem 9.14].

Theorem 2.5. Assume G is acting by homeomorphisms on V . Then the action

map G�V ! V is continuous if and only if the homomorphismG ! Homeo.V /
is continuous.

Lemma 2.6. If G acts continuously on V then it also acts continuously on

Prob.V / and if the action G Õ .V; d/ is by isometries, the action G Õ

.Prob.V /;d/ is also by isometries.

Proof. The fact that G acts by isometries on Prob.V / when G acts by isometries
on V is straightforward from the de�nition of the Prokhorov metric. In order to
prove that G acts continuously on Prob.V / when it acts continuously on V it is
enough, by Theorem 2.5, to show that for every � 2 Prob.V / and every sequence
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gn in G, gn ! e in G implies gn� ! � in Prob.V /. Fix � 2 Prob.V / and
assume gn ! e in G. For every bounded continuous function f on V , we have
by Lebesgue bounded convergence theorem

Z

f .x/ d.gn�/.x/ D

Z

f .gnx/ d�.x/ �!

Z

f .x/ d�.x/

as for every x 2 V , gnx ! x. Thus, by the de�nition of the weak*-topology
gn� ! �. �

We observe that Lemma 2.6 and Proposition 2.2 show that if V is a k-G-variety
then G acts continuously on V D V .k/ and on Prob.V /. The following is a nice
application of Prokhorov theorem (Theorem 2.3).

Lemma 2.7. If the action of G on V is proper then the action of G on Prob.V / is

proper as well.

Proof. For a compact C � Prob.V / we can �nd a compact K � V with
�.K/ > 1=2 for every � 2 C by Theorem 2.3. Then for g 2 G and � 2 C

such that g� 2 C we get that both �.K/ > 1=2 and �.gK/ D g�.K/ > 1=2, thus
gK \K ¤ ;. We conclude that ¹g 2 G j gC \ C ¤ ;º is precompact, as it is a
subset of the precompact set ¹g 2 G j gK \K ¤ ;º. �

2.3. Polish extensions and disintegration

De�nition 2.8. A Polish �bration is a continuous map pWV ! U where U is a
T0-space and V a Polish space. An action of G on such a Polish �bration is a pair
of continuous actions on V and U such that p is equivariant.

Let pWV ! U be a Polish �bration. Let ProbU .V / be the set of probability
measures on V which are supported on one �ber. We denote p�W ProbU .V / ! U

the natural map.

Lemma 2.9. The map p� is a Polish �bration. If the group G acts on the Polish

�bration V ! U , then it also acts on p�.

Proof. Since U is T0, �bers of p are separated by a countable family .Cn/ of
closed saturated subsets of V . A probability measure � is supported on one �ber
if and only if for all n, �.Cn/�.V n Cn/ D 0. The set ¹� 2 Prob.V /; �.Cn/ D 1º

is closed and ¹� 2 Prob.V /; �.V n Cn/ D 1º is Gı since for all 0 < r < 1,
¹� 2 Prob.V /; �.V n Cn/ > rº is open. So ProbU .V / is a Gı-subset of Prob.V /
and thus Polish.

Let us show that p� is continuous. Assume �n ! � in ProbU .V /. Let
u D p�.�/ and un D p�.�n/. Let O � U be an open set containing u. For
n large enough, �n.p

�1.O// > 1=2 and thus un 2 O .



Almost algebraic actions of algebraic groups 715

If G acts on V ! U , it is clear that G acts on ProbU .V /. The continuity of
the action on ProbU .V / follows from Lemma 2.6. �

Let .U; �/ be a probability space and X be a Polish space, we denote by
L0.U; X/ the space of classes of measurable maps from U to X , under the equiv-
alence relation of equality �-almost everywhere. Note that the dependence on � is
implicit in our notation. We endow that space with the topology of convergence
in probability. Fixing a compatible metric d on X , this topology is metrized as
follows: for �; �0 2 L0.U; X/, the distance between � and �0 is

ı.�; �0/ D

Z

X

min.d.�.v/; �0.v//; 1/ d�.v/:

This topology can be also de�ned using sequences: �n ! � if for any " > 0, there
is A � U such that �.A/ > 1 � " and for all n su�ciently large and all v 2 A,
d.�.v/; �n.v// < ". We note that this topology on L0.U; X/ does not depend on
the choice of an equivalent metric on V . This turns L0.U; X/ into a Polish space.

Lemma 2.10. Assume .˛n/ is a sequence converging to ˛ in probability in

L0.U; X/. Then there exists a subsequence ˛nk
which convergence �-a.e. to ˛,

that is for �-almost every u 2 U , ˛nk
.u/ converges to ˛.u/ in X .

The proof of the lemma is standard, but in most textbooks it appears only for
the casesX D R or X D C, see for example [10, Theorem 2.30]. Even though the
standard proof works mutatis mutandis, we give below a short argument, reducing
the general case to the case X D R.

Proof. The sequence d.˛n; ˛/ (which denotes the map u 7! d.˛n.u/; ˛.u//) con-
verges in probability to 0 in L0.U;R/. Thus there exists a subsequence d.˛nk

; ˛/

converging to 0 a.e, and we get that ˛nk
converges to ˛ a.e. �

If pWV ! U is a Polish �bration, and � is a measure onU , we denote L0
p.U; V /

the space of measurable (identi�ed if agree almost everywhere) sections of p, i.e.
maps which associates to u 2 U a point in p�1.U /, endowed with the induced
topology from L0.U; V /. If G acts on the Polish �bration p, it also acts on
L0

p.U; V / via the formula .gf /.u/ D gf .g�1u/ where u 2 U and f 2 L0
p.U; V /.

The following theorem is a variation of the classical theorem of disintegration
of measures. It is essentially proven in [20].

Theorem 2.11. Let pWV ! U be a Polish �bration and � be a probability

measure on U . Let P D ¹� 2 Prob.V / j p�� D �º. For every ˛ 2

L0
p�
.U; ProbU .V // the formula

R

U ˛.u/ d� de�nes an element of P . The map thus

obtained L0
p�
.U; ProbU .V // ! P is a homeomorphism onto.
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De�nition 2.12. For � 2 P , the element of L0
p�
.U; ProbU .V // obtained by

applying to � the inverse map of ˛ 7!
R

U ˛.u/ d� is denoted u 7! �u. It is
called the disintegration of � with respect to pWV ! U .

Proof. We �rst claim that the map ˛ 7!
R

U
˛.u/ d� is continuous, and then we

argue to show that it is invertible, and its inverse is continuous as well.
For the continuity, given a converging sequence ˛n ! ˛ in L0

p�
.U; ProbU .V //

with �n D
R

U
˛n.u/ d�, � D

R

U
˛.u/ d�, it is enough to show that every

subsequence of �n has a subsequence that converges to �. Since every sequence
that converges in measure has a subsequence that converges almost everywhere,
abusing our notation and denoting again ˛n and �n for the resulting sub-sub-
sequences, we may assume that ˛n converges to ˛ �-almost everywhere. Picking
an arbitrary continuous bounded function f on V , we obtain that for �-a.e u 2 U ,
R

V d˛n.u/f !
R

V d˛.u/f . Thus by Lebesgue bounded convergence theorem we
get

Z

V

d�nf D

Z

U

d�
Z

V

d˛n.u/f �!

Z

U

d�
Z

V

d˛.u/f D

Z

V

d�f:

This shows that indeed �n ! �.
We now argue that the map ˛ 7!

R

U ˛.u/ d� is invertible and its inverse is
continuous. Without loss of generality, we can assume that p is onto. Hence
U is second countable. Since it is also T0, it follows that U is countably sep-
arated. By [24, Proposition A.1], there exists a Borel embedding �WU ! Œ0; 1�.
We consider Œ0; 1�with the measure ���. Precomposition by � gives a homeomor-
phism L0

.�ıp/�

�

Œ0; 1�; ProbŒ0;1�.V /
�

! L0
p�
.U; ProbU .V //. Thus, in what follows

we may and do assume that U � Œ0; 1�.2 Under this assumption [20, Theorem 2.1]
guarantees that the map L0

p�
.U; ProbU .V // ! P is invertible. We denote the

preimage of � 2 P by u 7! �u. We are left to show that this association is con-
tinuous. To this end we embed V in a compact metric space V 0 and extend p by
setting p.v0/ D 1 for v0 2 V 0 � V . Then [20, Theorem 2.2] proves that for almost
every u 2 U , �u is obtained as the weak*-limit of the normalized restrictions,
denoted by �u;�, of � on p�1.u� �; uC �/ as � ! 0.

Assume that �n ! � is a converging sequence in P . We know that for �-a.e.
u, d.�u;�; �u/ ! 0 when � ! 0 and similarly for all n 2 N, d.�n

u;�; �
n
u/ ! 0

when � ! 0. Fix " > 0. For n 2 N, we set

An D ¹u 2 U j there exists �0 > 0 such that

d.�k
u;�; �u/ � " for all k � n and � 2 .0; �0/º:

2 Since the embedding U ! Œ0; 1� is only Borel, when we assume U � Œ0; 1�, the �bration
V ! U cannot be assumed to be Polish anymore. Since our argument does not depend on the
topology of U , this does not matter here.
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Then �.
S

An/ D 1 and An � AnC1. Thus there is n such that �.An/ � 1 � " and
for u 2 An, d.�u; �

k
u/ � " for all k � n. This shows that the image sequence of

.�n/ in L0
p�
.U; ProbU .V // indeed converges to the image of �. �

We note that if G acts on the �bration V ! U (that is, G acts on U and V and
p is equivariant) then the disintegration homeomorphism is also equivariant with
respect to the natural action of G on L0

p.U; V / given by .gf /.u/ D g.f .g�1u//.

Lemma 2.13. Let pWV ! U be a Polish �bration with an action of G such

that the G-action on U is trivial. Let � be a probability measure on U , and let

f 2 L0
p.U; V /. Then there exists U1 � U of full measure such that

Stab.f / D
\

u2U1

Stab.f .u//:

Proof. Let L be the stabilizer of f in G. If L0 is a countable dense subgroup of
L, then there is a full measure subset U1 � U such that L0 �

T

u2U1
Stab.f .u//

(for any g 2 L0, there is such a subspaceUg . ChooseU1 to be the intersection over
L0). Since all these stabilizers are closed, and L0 is dense in L, we actually have
L �

T

u2U1
Stab.f .u//. Since the reverse inclusion is clear, we conclude that

L D
\

u2U1

Stab.f .u//: �

Corollary 2.14. Assume G acts continuously on the Polish space V and the

quotient topology on GnV is T0. Let L < G be a closed subgroup and � be

an L-invariant probability measure on V . Then there exist a point v 2 V and an

L-invariant probability measure on G � v ' G=Stab.v/.

Proof. Let � be the pushforward measure of � on U . By Theorem 2.11, we
may consider the disintegration of � as an element .�u/ 2 L0

p�
.U; ProbU .V //

and this element is clearly L-invariant. By Lemma 2.13, the stabilizer of .�u/

is an intersection of stabilizers of the measures �u, for u in a subset of U .
In particular L stabilizes some �u, which is a measure supported on an orbitG �v.
The latter is equivariantly homeomorphic to G=Stab.v/ thanks to E�ros theorem
(Theorem 2.1). �

3. Almost algebraic groups and actions

The goal of this section is the proof of Theorem 1.7. Starting with an almost
algebraic action ofG on a Polish V , we aim to prove that the actionG Õ Prob.V /
is algebraic as well. So we have to prove that stabilizers of probability measures
on V are almost algebraic and the quotientGn Prob.V / is T0. Going toward wider
and wider generality, we prove the �rst point in §3.2 and the second one in §3.3.
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3.1. Almost algebraic groups. Recall that by our setup 1.1, .k; j�j/ is a �xed com-
plete and separable valued �eld and G is a �xed k-algebraic group.
By Proposition 2.2, G D G.k/ has the structure of a Polish group. Recall that
a closed subgroup L < G is called almost algebraic if there exists a k-algebraic
subgroup H < G such that L contains H D H.k/ as a normal cocompact sub-
group (De�nition 1.4).

Lemma 3.1. An arbitrary intersection of almost algebraic subgroups is again

almost algebraic.

More precisely, let .Li /i2I be a collection of almost algebraic subgroups and

Hi algebraic subgroups such that Hi D Hi .k/ is normal and cocompact in Li .

Then one can �nd a �nite subset I0 such that, de�ning H D
T

i2I0
Hi , we have

that H D
T

i2I Hi and H.k/ is normal and cocompact in
T

i2I Li .

Proof. Let L D
T

Li and H D
T

Hi which coincides with .
T

i2I Hi/.k/. Then
it is straightforward to check that H C L. Thanks to the Noetherian property of
G, there exists a �nite subset I0 � I such that

T

i Hi coincides with
T

i2I0
Hi .

Let L be the Zariski closure of L and Li the one of Li . The diagonal im-
age of L.k/ in

Q

i2I0
Li .k/=Hi is locally closed by Proposition 2.2 and it is a

group. Thus it is actually closed. Moreover it is homeomorphic to L.k/=H .
To conclude, it su�ces to observe that L=H is closed in L.k/=H and lies in
.L.k/=H/

T
�
Q

i2I0
Li=Hi

�

which is compact. �

Remark 3.2. Actually the proof of this lemma shows that any almost algebraic
subgroup L has a minimal subgroup among all cocompact normal subgroups N
which can be written N D N.k/ for some algebraic subgroup N � G. This
group is actually the intersection of all such subgroups and it is invariant under
the normalizer NG.L/ of L in G.

Lemma 3.3. LetH;L be closed subgroups ofG such thatH is almost algebraic,

H C L and L=H is compact. Then L is almost algebraic.

Proof. There is a algebraic subgroup N of G such that N D N.k/ is normal and
cocompact inH . Moreover thanks to Remark 3.2,N may be chosen to be invariant
under NG.H/ and thus N is cocompact and normal in L. �

3.2. Almost algebraicity of stabilizers of probability measures. Let V be a
Polish space endowed with a continuous G-action. Recall that the action G Õ V

is called almost algebraic if the stabilizers are almost algebraic subgroups of G
and the quotient topology on GnV is T0 (De�nition 1.4).
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Remark 3.4. For a continuous action of G on a Polish space V , the action is
almost algebraic if and only if the stabilizers are almost algebraic and for every
v 2 V and any sequence gn 2 G, gnv ! v implies gn ! e in G=StabG.v/.
This equivalent de�nition is much easier to check, and we will allow ourselves to
use it freely in the sequel. The two de�nitions are indeed equivalent by E�ros’
Theorem 2.1.

Example 3.5. Let I be a k-algebraic group and �W G ! I a k-morphism. Let L
be an almost algebraic group in I D I.k/. Then the action of G on I=L is almost
algebraic. This fact is proved after Lemma 3.7.

Lemma 3.6. Let K be a compact group acting continuously on a T0-space X .

Then the orbit space KnX is T0 as well.

Proof. Continuity of the action means that the action mapK�X ! K�X which
associates .k; kx/ to .k; x/ is a homeomorphism. Compactness of K implies that
the projection .k; x/ 7! x from K � X to X is closed. Composing the two yields
closedness of the map .k; x/ 7! kx. This implies that if F � X is closed, then
KF is again closed.

Let x; y 2 X in di�erent K-orbits. Let us consider Y D Kx [ Ky with the
induced topology. This is a compact T0-space. Now, consider the set of closed
non-empty subspaces of Y with the order given by inclusion. By compactness
any decreasing chain has a non-empty intersection and thus Zorn’s Lemma implies
there are minimal elements, that are points since Y is T0. Thus Y has at least a
closed point.

Without loss of generality we may and shall assume that ¹xº is closed in Y .
This means that there exists a closed subset F of X such that F \ Y D ¹xº.
In particular F \Ky D ;, and therefore Ky \KF D ;. Finally, KF is a closed
K-invariant set separating Kx from Ky. �

Lemma 3.7. Let J be a topological group acting continuously on a topological

space X . If N is a closed normal subgroup of J , the induced action of J=N on

NnX is continuous and the orbits spaces J nX and .J=N/n.NnX/ are homeo-

morphic.

Proof. The map .g; x/ 7! Ngx from J � X to NnX is continuous and goes
through the quotient space J=N �NnX which is the orbit space of N �N acting
diagonally on J �X . Thus, .gN;Nx/ 7! Ngx is continuous, that is the action of
J=N on NnX is continuous.

By the universal property of the topological quotient, the continuous map
x 7! .J=N/Nx from X to .J=N/n.NnX/ induces a continuous map J nX !

.J=N/n.NnX/. Conversely, the continuous map NnX ! J nX induces also a
continuous map .J=N/n.NnX/ ! J nX which is the inverse of the previous
one. �
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Proof of Example 3.5. Since ��1.L/ and its conjugates are almost algebraic inG,
it is clear that the stabilizers are almost algebraic. So we are left to prove that the
topology on GnI=L is T0. Let H be a cocompact normal subgroup in L with
H D H.k/ for some k-algebraic subgroup H of I. By Lemma 3.7 the orbit space
GnI=L is homeomorphic to the space of orbits of the action of G � .L=H/ on
I=H . Note that the action of G on I=H � I=H.k/ has locally closed orbits
(and therefore GnI=H is T0) by Proposition 2.2, as the action of G on I=H is
k-algebraic. Now the T0 property of GnI=L follows from Lemma 3.6 for the
compact group L=H acting continuously on the T0-space GnI=H . �

Lemma 3.8. Let J be a countable set, .Li /i2J a family of almost algebraic

subgroups ofG. Then the diagonal action ofG on
Q

i2J G=Li is almost algebraic.

Proof. Stabilizers of points in
Q

i2J G=Li are intersections of almost algebraic
subgroups of G. Hence by Lemma 3.1 they are almost algebraic. So we just have
to prove that Gn

�
Q

i2J G=Li

�

is T0.
For i 2 J , let Hi be an algebraic subgroup of G such that Hi D Hi .k/ is a

cocompact normal subgroup of Li . Consider V D
Q

i2J G=Hi . We �rst prove
that the topology on GnV is T0, by proving that orbit maps are homeomorphisms
(Theorem 2.1). Let .hiHi /i2J be an element of V and .gn/ be a sequence of
elements of G such that gn � .hiHi / converges to .hiHi/ in V .

Let H D
T

i2J hiHih
�1
i D Stab..hiHi /i2J /. We have to prove that gn

converges to e in G=H (see Remark 3.4). By Noetherianity, there exists a �nite
J0 � J such that H D

T

i2J0
hiHih

�1
i . Set V0 D

Q

i2J0
G=Hi . We see that,

in V0, we have that gn:.hiHi/i2J0
converges to .hiHi /i2J0

. By Proposition 2.2,
it follows that gn converges to the identity in G=H .

Now let K be the compact group
Q

i2J Li=Hi . The group K acts also contin-
uously on V via the formula .liHi / � .giHi/ D .gi l

�1
i Hi / and this action com-

mutes with the action of G. Thus we can apply Lemma 3.6 to K acting on GnV
and get that the space of orbits for the G-action on V=K '

Q

i2J Gi=Li is T0,
as desired. �

Our main goal in this subsection is proving the following theorem, which is an
essential part of our main theorem, Theorem 1.7.

Theorem 3.9. Let V be a Polish space with an almost algebraic action ofG. Then

stabilizers of probability measures on V are almost algebraic subgroups of G.

We �rst restate and prove Proposition 1.9, discussed in the introduction.

Proposition 3.10. Fix a closed subgroup L < G. Then there exists a k-subgroup

H0 < G which is normalized by L such that L has a precompact image in

the Polish group .NG.H0/=H0/.k/ and such that for every k-G-variety V , any

L-invariant �nite measure on V .k/ is supported on the subvariety of H0-�xed

points.
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Proof. Replacing G by the Zariski closure ofL, we assume thatL is Zariski-dense
in G and consider the collection

¹H < G j H is a k-algebraic subgroup; Prob.G=H.k//L ¤ ;º:

By the Noetherian property of G there exists a minimal element H0 in this
collection. We let �0 be a corresponding L-invariant measure on G=H0.k/.

We �rst claim that H0 is normal in G. Assuming not, we let N Œ G be the
normalizer of H0 and consider the set

U D ¹.xH0; yH0/ j y�1x … Nº � G=H0 � G=H0:

This set is a non-empty Zariski-open set which is invariant under the diagonal
G-action, as its complement is the preimage of the diagonal under the natural
map G=H0 � G=H0 ! G=N � G=N. Since the support of �0 � �0 in G=H0 �
G=H0 is invariant under L � L which is Zariski-dense in G � G we get that
.�0 � �0/.U.k// ¤ 0. It follows from Corollary 2.14 that there exist u 2 U.k/

and an L-invariant �nite measure on G=StabG.u/ � .G=StabG.u//.k/. By the
de�nition of U we get a contradiction to the minimality of H0, as point stabilizers
in U are properly contained in conjugates of H0. This proves that H0 is normal
in G.

Next we let V be a k-G-variety and � be an L-invariant measure on V .k/. We
argue to show that � is supported on V

H0 \ V .k/. Indeed, assume not. Let V0

be the Zariski-closure of V .k/ \ V
H0 , and V

00 D V � V
0. Then we see that V

0 is
de�ned over k [5, AG, 14.4]. Furthermore, H0 acts on V0 trivially, so that we have
V

0.k/ D V .k/\V
H0 . Hence by assumption we get that�.V 00.k// > 0. Replacing

V by V
00 and restricting and normalizing the measure, we may and shall assume

that V
H0 \ V .k/ D ;.

We consider the variety G=H0 � V as a k-G-variety. The measure �0 � � is
an L-invariant measure on .G=H0 � V /.k/. It follows from Corollary 2.14 that
there exists u 2 .G=H0 � V /.k/ and an L-invariant measure on G=StabG.u/.
By Proposition 2.2 there exist a k-algebraic subgroup H < G with H D

H.k/ D StabG.u/ and an orbit map G=H ! Gu inducing a homeomorphism
G=H ! G=StabG.u/. Thus we obtain an L-invariant probability measure on
G=H.k/. Now, H is contained in some conjugate gH0g

�1, for some g 2 G.
Hence we get that g�1

Hg < H0 is such that G=g�1
Hg has an L-invariant proba-

bility measure. By minimality, this implies that g�1
Hg D H0, hence by normality

of H0, H D H0. Therefore u belongs to V .k/ \ V
H
0 , which was assumed to be

empty. Hence we get a contradiction. This proves that � is supported on V
H0 .

We set S D .G=H0/.k/ and let T be the closure of the image of L in S .
We are left to show that T is compact. S is a Polish group and T is a closed
subgroup. The quotient topology on T nS is Hausdor�, and in particular T0. The
measure �0 is an L-invariant �nite measure on S , hence it is also T -invariant.
Substituting S D V and T D G D L in Corollary 2.14 we �nd a �nite measure �1
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on S which is supported on a unique T -coset, T s. The measure .Rs/��1, given
by pushing �1 by the right translation by s�1 is then a T -invariant probability
measure on T . It is well-known result due to A. Weil (see [15] where the result is
attributed to Ulam) that a Polish group that admits an invariant measure class is
locally compact, and a locally compact group that admits an invariant probability
measure is compact. Thus T is indeed compact. �

Corollary 3.11. Fix a k-G-algebraic variety V , and set V D V .k/. Let � 2

Prob.V /. Then Stab.�/ is almost algebraic.

Proof. Let L D Stab.�/. We may and shall assume L to be Zariski-dense in G,
and we can �nd H0 as in Proposition 1.9. We know that � is supported on the set
of V

H0 thus H0 D H0.k/ < L. Since G=H0 is acting on V
H0 \ V .k/ and the

stabilizer of� is closed inG=H0, we conclude thatL has a closed image. We know
that the image of L is precompact, thus it is actually compact, and we conclude
that L is almost algebraic. �

Lemma 3.12. Let L < G be an almost algebraic group, with H D H.k/

a normal cocompact algebraic subgroup of L. Then there is a G-equivariant

continuous map �W Prob.G=L/ ! Prob.G=H/. Furthermore, we have, for every

� 2 Prob.G=L/, Stab.�/ D Stab.�.�//.

Proof. Let � be a Haar probability measure on L=H . For a continuous bounded
function f on G=H let Nf be the continuous bounded function on G=L de�ned by
Nf .gL/ D

R

L=H f .gh/ d�.h/ and �nally �.�/.f / D �. Nf /.
Then it is clear that � is equivariant, and we deduce that Stab.�/ � Stab.�.�//.

In the other direction, we note that if � WG=H ! G=L is the projection, we have
��.�.�// D �. Hence the other inclusion is also clear.

To check the continuity, let �n ! � 2 Prob.G=L/, and take f a continuous
bounded function on G=H . Then �.�n/.f / D �n. Nf / ! �. Nf / D �.�/.f /.
Hence �.�n/ converges to �.�/. �

Proof of Theorem 3.9. Choose � 2 Prob.V / and denote L D StabG.�/, H D

FixG.supp.�//. Set U D GnV , and let � D p��, where pWV ! U is the
projection. Note that p is a Polish �bration. By Theorem 2.11, L is equal to the
stabilizer of an element f 2 L0

p�
.U; ProbU .V //. By Lemma 2.13 there exists

a �-full measure set U1 � U such that L D
T

u2U1
Stab.f .u//. For a �xed

u 2 U1, f .u/ is a measure on a G-orbit in V which we identify with G=L0 for
some almost algebraic subgroup L0 < G. Let H

0 < G be a k-algebraic subgroup
such that H 0 D H

0.k/ is a cocompact normal subgroup of L0. By Lemma 3.12,
Stab.f .u// is also the stabilizer of a probability measure on G=H 0 � G=H0.k/.
By Corollary 3.11, it follows that Stab.f .u// is almost algebraic. We conclude that
L is almost algebraic by Lemma 3.1. �
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3.3. Separating orbits in the space of probability measures. In this subsec-
tion, we prove the following theorem.

Theorem 3.13. Let L < G be an almost algebraic subgroup. Then the action of

G on Prob.G=L/ is almost algebraic.

The proof of Theorem 3.13 consists in several steps, proving particular cases of
the theorem, each of them using the previous one. First we start with the case when
L is trivial (Lemma 3.14). Then we treat the case when L is a normal algebraic
subgroup of G (Lemma 3.15). The main step is then to deduce the theorem when
L is any algebraic subgroup of G (Proposition 3.20), before concluding with the
general case.

Lemma 3.14. The G-action on Prob.G/ is almost algebraic.

Proof. The regular action ofG on itself is proper, so by Lemma 2.7 it follows that
the action of G on Prob.G/ is proper. Any proper action is almost algebraic. �

Lemma 3.15. Let H < G be a normal k-algebraic subgroup. Then the G-action

on Prob..G=H/.k// is almost algebraic.

Proof. Denoting I D G=H and I D I.k/, we know that the I -action on Prob.I /
is almost algebraic (Lemma 3.14). SinceG=H is a subgroup of I ,G stabilizes each
I -orbit. It is thus enough to show that G acts almost algebraically on each
I -orbit. We know that such an orbit is of the form I=LwhereL is almost algebraic
(Theorem 3.9), so this follows from Example 3.5. �

An essential technical tool for proving Theorem 3.13 and Theorem 1.7 is given
by the following proposition.

Proposition 3.16. Let V be a Polish space, with a continuous action ofG. Assume

that

� the quotient topology on GnV is T0, and

� for any v 2 V , the action of G on Prob.G:v/ is almost algebraic.

Then the quotient topology on Gn Prob.V / is T0.

The proposition will directly follow from the following lemma.

Lemma 3.17. Let pWV ! U be a Polish �bration with an action of G, and let �

be a probability measure on U . Assume that the action of G on U is trivial and

that the action of G on Prob.p�1.u// is almost algebraic for almost every u 2 U .

Let P D ¹� 2 Prob.V / j p�� D �º. Then the topology on GnP is T0.
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This proof is similar to the proof presented in [24, Proof of Proposition 3.3.1];
see also [1, Lemma 6.7].

Proof. The set P is Polish, as a closed subset of Prob.V /. By Theorem 2.1
we need to show that the orbit maps are homeomorphisms. By Theorem 2.11,
P is equivariantly homeomorphic to L0

p�
.U; ProbU .V //.

Fixing f 2 L0
p�
.U; ProbU .V // and letting gn 2 G be such that gnf ! f , we

will show that gn converges to the identity in G=Stab.f / by proving that every
subsequence of .gn/ has a sub-subsequence which converges to the identity in
G=Stab.f /. Doing so, we are free to replace .gn/ by any subsequence. Relying
on Lemma 2.10, we replace .gn/ by a subsequence such that gnf .u/ ! f .u/ for
every u in some �-full subset U0 � U . Let U1 � U0 be a full measure subset such
that the action of G on p�1.u/ is almost algebraic for every u 2 U1.

Let u 2 U1. By de�nition, we know that f .u/ 2 Prob.p�1.u// and that the
action of G on Prob.p�1.u// is almost algebraic. By Proposition 2.2, the orbit
map G=Stab.f .u// ! Gf .u/ is a homeomorphism thus gnf .u/ ! f .u/ implies
that gn converges to the identity in G=Stab.f .u//. By Lemma 2.13, there is also
a full measure subset U2, that we may and do assume to be contained in U1, such
that

Stab.f / D
\

u2U2

Stab.f .u//

and since G is second countable, one can �nd U3 countable in U2 such that

Stab.f / D
\

u2U3

Stab.f .u//:

By assumption, for every u 2 U3, the group Stab.f .u// is almost algebraic.
Hence by Lemma 3.8, the action ofG on

Q

u2U3
G=Stab.f .u// is almost algebraic.

In particular, we see that gn converges to e in G=Stab.f /. �

Proof of Proposition 3.16. Let U D GnV and pWV ! U be the projection.
Consider the G-invariant continuous map p�W Prob.V / ! Prob.U /. Clearly the
�bers of p� are closed and G-invariant, so it is enough to prove that for a given
� 2 Prob.U /, the quotient spaceGnp�1

� .¹�º/ has a T0 -topology. This is precisely
Lemma 3.17. �

Let � WV ! V 0 be a continuous G-map between Polish spaces, � 2 Prob.V /
and � D ���. Then � has a unique decomposition � D �c C �d where �c

and �d are the continuous and discrete parts of �. Moreover �d can be written
P

�2ƒ �
P

f 2F�
ıf , where

ƒ D ¹� 2 RC j there exists u 2 V 0 such that ���.¹uº/ D �º
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and F� D ¹u 2 V 0 j �.¹uº/ D �º. De�ning �� to be the restriction of � to
��1.F�/ and �c D � �

P

�2ƒ ��, we have a unique decomposition � D �c C
P

�2ƒ ��, where ��.�c/ is non-atomic and each ��.��/ is a �nitely supported,
uniform measure of the form �

P

f 2F�
ıf .

Lemma 3.18. Let � WV ! V 0 be a continuous G-map between Polish spaces and

� 2 Prob.V /. Using the above decomposition, we have Stab.�/ D Stab.�c/ \
.
T

� Stab.��//. If gn� ! � then gn�c ! �c and for each � 2 ƒ, gn�� ! ��.

Proof. The statement about Stab.�/ is straightforward from the uniqueness of the
decomposition of �. Let .gn/ be a sequence such that gn� ! �. Once again, we
use a sub-subsequence argument: we prove that any subsequence of .gn/ contains
a sub-subsequence such that gn�� ! �� for every �. Hence we start by replacing
.gn/ by an arbitrary subsequence.

Observe that gn� ! � implies gn� ! � because ��W Prob.V / ! Prob.V 0/

is continuous. Let K 0 be a compact metrizable space in which V 0 is continuously
embedded as a Gı -subset (see [14, Theorem 4.14]). Then Prob.V 0/ embeds as
a Gı-subset in Prob.K 0/ as well [14, Proof of Theorem 17.23]. We begin with
the following observation. Assume �n is a sequence of probability measures
converging to � 2 Prob.V 0/ and �n decomposes as ıun

C �0
n with un 2 V 0 and

�0
n 2 Prob.V 0/. Up to extraction un converges to some k 2 K 0 and thus �.¹kº/ > 0

which implies that k 2 V 0.
Let �1 be the maximum of ƒ. The above observation implies that up to

extraction we may assume that for any f 2 F�1
, gnf converges to some

l.f / 2 V 0. Since gn� ! �, we have that l.f / 2 F�1
thus gn��1

converges to
��1

, where ��1
D ��.��1

/. An induction on ƒ (countable and well ordered with
the reverse order of R) shows that (after extraction) gn�� ! �� for any � 2 ƒ.

Once again, we embed V in some compact metrizable space K. Fix � 2 ƒ

and let �0 be an adherent point of .gn��/ in Prob.K/. As � is G-equivariant, we
have that ��gn�� D gn���� D gn�� which converges to ��. Hence ���

0 D ��.
Furthermore, we also see that �0 is supported on ��1.F�/, hence �0 2 Prob.V /.

The same argument proves that���0, which is an adherent point of gn.����/,
is supported on V n ��1.F�/.

As � can be written uniquely as a sum of a measure supported on ��1.F�/

and a measure supported on V n ��1.F�/, we see, writing � D .� � �0/C �0 D

.� � ��/ C ��, that necessarily �0 D ��. This concludes the proof since
�c D � �

P

�2ƒ ��. �

Lemma 3.19. Let H < G be a k-algebraic subgroup. Set N D NG.H/,

H D H.k/ and N D N.k/. Let V D G=H, V
0 D G=N, V D V .k/ and

V 0 D V
0.k/. Consider the map � WV ! V 0. Let F � V 0 be a �nite set,

� D 1=jF j
P

f 2F ıf and � 2 Prob.V / be a measure with ��� D �. Let .gi /

be a sequence with gi� ! �. Then gi ! e 2 G=Stab.�/.
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Proof. Denote m D jF j. We know that .V 0/m=Sym.m/ is an algebraic variety,
hence by Proposition 2.2, every G-orbit in .V 0/m=Sym.m/ is locally closed.
It follows in particular that gi ! e in G=Stab.F /.

Again, it is enough to show that every subsequence of .gi / contains a sub-
sequence which tends to e modulo Stab.�/. We start by extracting an arbitrary
subsequence of .gi /.

Let us numberf1; f2; : : : ; fm the elements ofF and denoteF 0 D .f1; : : : ; fm/2
.V 0/m. Since gi converges to e in G=Stab.F /, it follows that, passing to a
subsequence, there exists � 2 Sym.m/ such that giF

0 tends to �.F 0/ D
.f�.1/; : : : ; f�.m//. This means GF 0 � G�.F 0/ and thus GF 0 � G�.F 0/ � � � � �

G�n.F 0/ D GF 0 for some n 2 N. In particular GF 0 D G�.F 0/ and since orbits
are locally closed we have that GF 0 D G�.F 0/.

This shows that there exists g 2 Stab.F / such that gF 0 D �.F 0/. Hence we
have giF

0 ! gF 0, and by almost algebraicity of the action on .V 0/m it follows
that gi tends to g modulo Stab.F 0/ D

T

f 2F Stab.f /.

Let us �x some notations. For f 2 F we denote by �f the restriction of
� to ��1.¹f º/ and �x Nf 2 G such that Nf N D f and denote by Hf � G

the conjugate of H by Nf . Observe that Nf N Nf �1 D StabG.f /, Hf C StabG.f /

and �
�1.¹f º/ ' StabG.f /=Hf where �W G=H ! G=N is the projection and

StabG.f / is the stabilizer of f under the action of G on G=N. We also denote
�0

f
D g�1��.f / and g0

i D g�1gi . Since g0

i ! e 2 G=
T

f 2F Stab.f / there

exists ni 2
T

f 2F Stab.f / such that g0

in
�1
i converges to e (in G). We observe that

ni�f D ni .g
0

i /
�1g0

i�f . As g0

i�f tends to �0

f
and ni .g

0

i /
�1 tends to e, we have that

ni�f converges to �0

f
.

Those measures are supported on ��1.¹f º/ '
�

StabG.f /=Hf

�

.k/. By
Lemma 3.15, Stab.f / acts almost algebraically on Prob..StabG.f /=Hf /.k//.
So we have that ni tends to some n in Stab.f /=Stab.�f /.

We conclude that g0

i D g0

in
�1
i ni tends to n in G=Stab.�f /. Arguing similarly

for every f , it follows that gi tends to gn in G=
T

f 2F Stab.�f /. Hence .gi /

converges also in G=Stab.�/, since
T

f 2F Stab.�f / � Stab.�/. Let h be the
limit point of .gi / modulo Stab.�/. Then we have that gi� converges to h� by
continuity of the action. Hence h 2 Stab.�/, meaning that h D e modulo Stab.�/.
In other words, gi converges to e in G=Stab.�/. �
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Proposition 3.20. Let H < G be a k-algebraic subgroup and set H D H.k/.

Then the action of G on Prob.G=H/ is almost algebraic.

Proof. Assume the proposition fails for an algebraic subgroup H. We also as-
sume, as we may, that H is minimal in the collection of k-subgroup of G with
the property that the G-action on Prob.G=H/ is not almost algebraic. By Theo-
rem 3.9, G acts on Prob.G=H/ with almost algebraic stabilizers. Hence we have
to show that for every measure � 2 Prob.G=H/ and sequence gn with gn� ! �

then gn tends to e in G=Stab.�/ (Remark 3.4). We �x such a measure � and a
sequence gn. We will achieve a contradiction by showing that gn does tend to e
in G=Stab.�/.

We set N D NG.H/, N D N.k/, V D G=H, V 0 D G=N, V D V .k/ and
V 0 D V

0.k/. We consider the natural inclusion G=H � V and view � as a
measure on V . We consider the projection map � WV ! V 0 and set � D ���.
We use the notation introduced in the discussion before Lemma 3.18. The lemma
gives: Stab.�/ D Stab.�c/ \ .

T

�2ƒ Stab.��// where ƒ is a countable subset of
Œ0; 1�, gn�c ! �c and for each � 2 ƒ, gn�� ! ��. By Lemma 3.19, for each
� 2 ƒ, gi ! e 2 G=Stab.��/. Assume given also that gn ! e 2 G=Stab.�c/.
Since by Theorem 3.9 the groups Stab.��/ and Stab.�c/ are almost algebraic, we
will get by Lemma 3.8 that the action of G on G=Stab.�c/ �

Q

�G=Stab.��/ is
almost algebraic. Hence,

gn �! e 2 G=
�

Stab.�c/ \
�

\

�

Stab.��/
��

D G=Stab.�/;

achieving our desired contradiction. We are thus left to show that indeed we have
gn ! e 2 G=Stab.�c/.

For the rest of the proof we will assume as we may� D �c , that is � 2 Prob.V 0/

is atom-free. We consider the measure � � � 2 Prob.V � V / and the subset

U D ¹.xH; yH/ j y�1x … Nº � G=H � G=H D V � V

de�ned and discussed in the proof of Proposition 1.9. We set U D U.k/. Note
that the diagonal in V 0 � V 0 is � � �-null as � is atom-free, thus U is � � �-full.
We view as we may � � � as a probability measure on U .

We now consider the G-action on U and claim that the G-orbits are locally
closed and for every u 2 U , G acts almost algebraically on Prob.Gu/. The fact
that the G-orbits are locally closed follows from Proposition 2.2, as U is a k-
subvariety of V . Fix now a point u D .xH; yH/ 2 U for some x; y 2 G, and
consider theG-action on Prob.Gu/. By the de�nition of U , H\H

y�1x Œ H, thus
by the minimality of H the G-action on Prob.G=H \ Hy�1x/ ' Prob.G=H x \

Hy/ is almost algebraic. Since by Proposition 2.2 G=H x \ Hy is equivariantly
homeomorphic to Gu we conclude that indeed, G acts almost algebraically on
Prob.Gu/, and the claim is proved.
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By Proposition 3.16, G acts on Prob.U / almost algebraically. Hence E�ros’
Theorem 2.1 implies that gn ! e in G=Stab.� � �/ as gn.� � �/ ! � � �.
Observing that Stab.� � �/ D Stab.�/, the proof is complete. �

Proof of Theorem 3.13. By Theorem 3.9 we know that the point stabilizers in
Prob.G=L/ are almost algebraic. We are left to show that for every � 2
Prob.G=L/, for every sequence gn 2 G satisfying gn� ! � we have gn ! e

modulo Stab.�/ (see Remark 3.4). Fix� 2 Prob.G=L/ and a sequencegn 2 G sat-
isfying gn� ! �. Let H < G be a k-algebraic subgroup with H D H.k/ normal
and cocompact in L, and recall that by Lemma 3.12 we can �nd a G-equivariant
continuous map �W Prob.G=L/ ! Prob.G=H/ such that Stab.�/ D Stab.�.�//.
We get that gn�.�/ ! �.�/. By Proposition 3.20, the G-action on Prob.G=H/
is almost algebraic, thus gn ! e modulo Stab.�.�//. This �nishes the proof, as
Stab.�/ D Stab.�.�//. �

3.4. Proof of Theorem 1.7. For the convenience of the reader we restate Theo-
rem 1.7.

Theorem 3.21. If the action of G on V is almost algebraic then the action of G

on Prob.V / is almost algebraic as well.

Proof. By Theorem 3.9, we know that the G-stabilizers in Prob.V / are almost
algebraic. We need to show that the quotient topology on Gn Prob.V / is T0.
By Proposition 3.16, it is enough to check that the quotient topology on GnV

is T0, which is guaranteed by the assumption that the action of G on V is almost
algebraic, and, as we will see, that for any v 2 V , the action of G on Prob.Gv/
is almost algebraic. We note that by E�ros theorem (Theorem 2.1), the orbit
Gv is equivariantly homeomorphic to the coset space G=StabG.v/, and thus
Prob.Gv/ ' Prob.G=StabG.v//. Since StabG.v/ is an almost algebraic subgroup
ofG, the fact that the G-action on Prob.Gv/ is almost algebraic now follows from
Theorem 3.13. �

4. On bounded subgroups

In this section, we essentially retain the setup 1.1 & 1.3: we �x a complete .k; j � j/
valued �eld and a k-algebraic group G. Nevertheless there is no need for us to
assume that .k; j � j/ is separable, so we will refrain from doing so.

De�nition 4.1. A subset of k is called bounded if its image under j � j is bounded
in R. For a k-variety V, a subset of V .k/ is called bounded if its image by any
regular function is bounded in k.
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Remark 4.2. Note that the collection of bounded sets on a k-variety forms a
bornology.

Remark 4.3. For a k-variety V it is clear that a subset of V .k/ is bounded if and
only if its intersection with every k-a�ne open set is bounded, so in what follows
we will lose nothing by considering exclusively k-a�ne varieties. We will do so.

Remark 4.4. Note that if .k0; j � j0/ is a �eld extension of k endowed with an
absolute value extension of j�j and V is a k-variety, we may regard V .k/ as a subset
of V .k0/ and, as one easily checks, a subset of V .k/ is k-bounded if and only if
it is k0-bounded. Thus it causes no loss of generality assuming k is algebraically
closed since Ok is so. Nevertheless, we will not assume that.

It is clear that every k-regular morphism of k-varieties is a bounded map in
the sense that the image of a bounded set is bounded. For a k-closed immersion
of k-varieties f W U ! V also the converse is true: a subset of U.k/ is bounded
if and only if its image is bounded, as f �W kŒV � ! kŒU � is surjective. This is a
special case of the following lemma.

Lemma 4.5. For a �nite k-morphism f W U ! V a subset of U.k/ is bounded if

and only if its image is bounded.

Proof. Assume there exists an unbounded setL in U.k/with f .L/ being bounded
in V .k/. Then we could �nd p 2 kŒU � and a sequence un 2 Lwith jp.un/j ! 1.
The function p is integral over f �kŒV � so there exist q1; : : : qm 2 f �kŒV � with
pm C

Pm
iD1 qip

m�i D 0. Thus,

1 D

ˇ

ˇ

ˇ

ˇ

ˇ

m
X

iD1

qi .un/

pi .un/

ˇ

ˇ

ˇ

ˇ

ˇ

�

m
X

iD1

jqi .un/j

jpi .un/j
�! 0;

as the sequences qi .un/ are uniformly bounded. This is a contradiction. �

Recall that a seminorm on a k-vector space E is a function k � kWE ! Œ0;1/

satisfying

(1) k˛vk D j˛jkvk, for ˛ 2 k, v 2 E and

(2) kuC vk � kuk C kvk, for u; v 2 E.

A seminorm on E is a norm if furthermore we have

(3) kvk D 0 () v D 0, for v 2 E.

Two norms on a vector space, k � k; k � k0, are called equivalent if there exists
some C � 1 such that

C�1k � k � k � k0 � Ck � k:

It is a general fact that any linear map between two Hausdor� topological
.k; j � j/-vector spaces of �nite dimensions is continuous [7, I, §2,3 Corollary 2]
and thus we get easily the following.
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Theorem 4.6. All the norms on a �nite dimensional k-vector space are equivalent.

Proof. It su�ces to use that the identity map .E; k � k/ ! .E; k � k0/ is continuous
and observe that every continuous linear map is bounded. The latter is an easy
exercise in case j � j is trivial, and standard if it is not (see e.g. [7]). �

Recall that, if .e1; : : : ; en/ is a basis, then the norm k�k1 (relative to this basis)
is de�ned as k

P

xieik1 D max¹jxi jº.

Corollary 4.7. For a subsetB � E D kn the following properties are equivalent:

(1) B is a bounded set of An;

(2) all elements of E� are bounded on B;

(3) all the coordinates of the elements of B are uniformly bounded;

(4) the norm k � k1 is bounded on B;

(5) every norm on E is bounded on B;

(6) some norm on E is bounded on B .

Theorem 4.8. For a subgroup L of GLn.k/ the following are equivalent:

(1) L is bounded in GLn.k/;

(2) L is bounded as a subset of Mn.k/;

(3) L preserves a norm on kn;

(4) L preserves a spanning bounded set in kn.

For a subgroup L of G D G.k/ the following are equivalent:

(1) L is bounded;

(2) L preserves a norm in all k-linear representations of G;

(3) L preserves a norm in some injective k-linear representation of G;

(4) L preserves a spanning bounded set in some injective k-linear representation

of G.

Proof. Note that the second part of the theorem follows from the �rst once we
recall that any injective homomorphism of algebraic groups is a closed immersion.
We prove the equivalence of the �rst four conditions.

.1/ () .2/. Clearly, if L is bounded in GLn.k/ then it is bounded in Mn.k/.
Assume L is bounded in Mn.k/. Then it has a bounded image under both
morphisms

GLn
�

�! GLn ,�! Mn and GLn ,�! Mn
det

�! A1;
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where GLn
�

�! GLn is the group inversion. We conclude that L has a bounded
image under the product morphism GLn ! Mn �A1. But the latter morphism is
the composition of the isomorphism � and the closed immersion

GLn
id ˚ det�1

������! Mn ˚A1:

Thus L is bounded in GLn.k/.

.2/ () .3/. If L is bounded in Mn.k/ then, by Corollary 4.7(3) all its matrix
elements are uniformly bounded, hence for all v 2 kn, supg2L kgvk1 is �nite.
This expression forms an L-invariant norm on kn. On the other hand, if L
preserves a norm on kn, by the equivalence of this norm with k � k1, all matrix
elements of L are uniformly bounded, thus it is bounded in Mn.k/.

.3/ () .4/. If L preserves a norm then it preserves its unit ball which is
a bounded spanning set. If L preserves a bounded spanning set B than it also
preserves its symmetric convex hull:

°

n
X

iD1

˛ivi

ˇ

ˇ

ˇ vi 2 B; ˛i 2 k;

n
X

iD1

j˛i j � 1
±

:

The latter is easily seen to be the unit ball of an L-invariant norm. �

Note that if L is a compact subgroup of G then L is bounded, as the k-regular
functions of G are continuous on G.

Corollary 4.9. Every bounded subgroup of G admits a bi-invariant metric.

Proof. LetL be a bounded subgroup ofG. Fix an injective k-linear representation
G ! GL.V / and considerL as a subset of Endk.V /. Endk.V / is a representation
of G�G, hence admits a norm which is invariant under the bounded group L�L
by Theorem 4.8. This norm gives an L � L-invariant metric on Endk.V / and on
its subset L. �

Proposition 4.10. Assume V is an a�ne k-variety with a k-a�ne action of G.

Let B � V .k/ be a bounded set and denote by xBZ its Zariski closure. Then the

image of StabG.B/ is bounded in the k-algebraic group StabG. xBZ/=FixG. xBZ/.

Proof. Without loss of generality we may replace G by StabG. xBZ/ and then
assume V D xBZ . We then may further assume G D StabG. xBZ/=FixG. xBZ/. We
do so. By [5, Proposition 1.12] there exists a k-embedding of V into some vector
space, which we may assume having a spanning image, equivariant with respect
to some k-representation G ! GLn, which we thus may assume injective. The
proof then follows from the implication .4/ H) .1/ in the second of equivalence
of Theorem 4.8. �

Corollary 4.11. Let L < G be a bounded subgroup. Then NG.L/=ZG.L/ is

bounded.
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5. The space of norms and seminorms

In this section we study a compact space on which an algebraic group over a
complete valued �eld acts by homeomorphisms, the space of seminorms. This
space was already considered in the case when k is local, in [23].

We �x a �nite dimensional vector space E over k. Given two norms n; n0 on
E we denote

d.n; n0/ D log sup

²

n.y/n0.x/

n0.y/n.x/

ˇ

ˇ

ˇ

ˇ

x; y 2 E n ¹0º

³

:

This number is �nite by the fact that n and n0 are equivalent norms. Recall that two
seminorms on E are called homothetic if they di�er by a multiplicative positive
constant. The relation of being homothetic is an equivalence relation. We denote
the set consisting of all homothety classes of norms on E by I.E/. Observe that
d.n; n0/ only depends on the homothety classes of n and n0 and thus de�ne a
function on I.E/.

Lemma 5.1. The function d W I.E/ � I.E/ ! Œ0;1/ de�nes a metric on I.E/.

The group PGL.E/ acts continuously and isometrically on I.E/ and the stabiliz-

ers in PGL.E/ of bounded subsets in I.E/ are bounded as well.

Proof. The fact that d is a metric and PGL.E/ acts by isometries on I.E/ is a
straightforward veri�cation. To prove the continuity part, it su�ces to show that
the orbit map g 7! gn is continuous for all n 2 I.E/. Fix a norm n on E. Let .gi /

be a sequence converging to e in PGL.E/. By an abuse of notation we identify gi

with an element of GL.E/ such that gi ! e 2 GL.E/, and also still denote n a
norm whose homothety class is n. Using that

d.gin; n/ D log sup

²

n.g�1
i y/n.x/

n.g�1
i x/n.y/

ˇ

ˇ

ˇ

ˇ

x; y 2 E n ¹0º; n.x/; n.y/ < 1

³

and that g�1
i converges uniformly to e on the unit ball of E with respect to n,

we see that indeed d.gin; n/ ! 0.
Let L be the stabilizer of some bounded set N � I.E/. Fix v ¤ 0 and

identify N with a set N 0 of norms on E satisfying n.v/ D 1 for every n 2 N 0.
The set B D ¹x 2 E j n.x/ � 1 for all n 2 N 0º is clearly bounded in E.
By Theorem 4.8, its stabilizer L0 2 GL.E/ is bounded, hence also its image in
PGL.E/, namely L. �

Remark 5.2. The space I.E/ actually contains the a�ne Bruhat–Tits building
I.E/ associated to PGL.E/ [16] and there is a metric d0 on I.E/ such that
.I.E/; d0/ is CAT(0) —not necessarily complete. The metric d is similar to the
one considered by Goldman and Iwahori in [12]. The two metrics d and d0 are
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Lipschitz-equivalent. This can be checked �rst on an apartment and extended
to the whole building using that any two points actually lie in some apartment.
Thus, Lemma 5.1 and Theorem 4.8 are a reminiscence of the Bruhat–Tits �xed
point theorem.

Let S 0.E/ be the space of non-zero seminorms on E, and S.E/ be its quotient
by homothety. We endow S 0.E/ with the topology of pointwise convergence and
S.E/ with the quotient topology.

Proposition 5.3. The space S.E/ is compact and metrizable. The action of

PGL.E/ on S.E/ is continuous.

Proof. Let m be the dimension of E. Fix a basis .e1; : : : ; em/ of E. Let S1.E/ be
the set of all s 2 S 0.E/ such that s.ei / � 1 for every 1 � i � d , and s.ej / D 1 for
some j .

We �rst claim that the quotient map S 0.E/ ! S.E/ restricts to a surjection
S1.E/ ! S.E/. This follows from the fact that if a seminorm is zero on all the
vectors ei , then it is zero everywhere, by triangle inequality. Furthermore, the map
S1.E/ ! S.E/ is actually an injection. Indeed if s 2 S1.E/ and �s 2 S1.E/ it is
easy to conclude that � D 1.

We now claim that the space S1.E/ is compact. Indeed, let k � k1 be the norm
de�ned as k

P

xieik1 D
P

i jxi j. Let v D
P

xiei . Then we see that s.v/ � kvk1

for every v 2 E. So we get that S1.E/ is homeomorphic to a closed subset of
Q

v2E Œ0; kvk1�. This proves the compactness of S1.E/ and therefore of S.E/.
Note that it also proves that every element of S1.E/ is 1-Lipschitz with respect to
k � k1.

It follows that S1.E/ is homeomorphic to S.E/. The metrizability of S1.E/

comes from the fact that S1.E/ is a closed subset of the space of continuous
functions on E, which is metrizable because E is separable.

Now, let .gn; sn/ be a sequence converging to .e; s/ 2 GL.E/ � S1.E/ then
gnsn tends to s. Indeed, for every v 2 E,

jsn.gnv/ � s.v/j � jsn.gnv/� sn.v/j C jsn.v/ � s.v/j

� kgnv � vk1 C jsn.v/� s.v/j �! 0: �

Each non-zero seminorm s has a kernel ker.s/ D ¹v 2 E j s.v/ D 0º, which is
a proper linear subspace ofE depending only of the homothety class of s. The map
S.E/ ! N, s 7! dim.ker.s// is obviously PGL.E/-invariant. Denote by Sm.E/

the space of homothety classes of seminorms s such that dim.ker.s// D m. Note
that S0.E/ D I.E/. We denote by Grm.E/ the Grassmannian of m-dimensional
linear subspaces of E. The map Sm.E/ ! Grm.E/, s 7! ker.s/ is clearly
PGL.E/-equivariant. Grm.E/ is the k-points of a k-algebraic variety, thus carries
a Polish topology by Proposition 2.2.



734 U. Bader, B. Duchesne, and J. Lécureux

Proposition 5.4. The maps S.E/ ! N, s 7! dim.ker.s// and Sm.E/ ! Grm.E/,

s 7! ker.s/ are measurable.

Proof. We �rst note that the space S.E/ is covered by (countably many) open sets
which are homeomorphic images of sets of the form ¹s 2 S 0.E/ j s.v/ D 1º, for
v 2 E, under the quotient map S 0.E/ ! S.E/. It is therefore enough to establish
that the corresponding maps S 0.E/ ! N, S 0

m.E/ ! Grm.E/ are measurable
(where S 0

m.E/ denotes the preimage of Sm.E/).

Fix a basis for E and a countable dense sub�eld k0 < k. Let E0 D E.k0/ be
the k0-span of the �xed basis of E. A subspace of E is said to be de�ned over k0

if it has a basis in E0. E0 is a k0-vector space and it is a countable dense subset
of E. Note that for every d , Grm.E0/ is countable. Observe that for s 2 S 0.E/,
dim.ker.s// � m if and only if we can �nd a codimension m subspace F < E

which is de�ned over k0, such that s restricts to a norm on F . The latter condition
is equivalent by Theorem 4.6 to the condition that there exists n 2 N such that for
every v 2 F , s.v/ � jvj=n for some �xed norm j � j. Note that it is enough to check
this for every v 2 F0 D F.k0/, thus we obtain

¹s 2 S 0.E/ j dim.ker.s// � mº

D
[

F02Grdim.E/�m.E0/

[

n

\

v2F0

¹s 2 S 0.E/ j s.v/ � jvj=nº:

This shows that the map s 7! dim.ker.s// is measurable.

In order to prove that the map S 0
m.E/ ! Grm.E/ is measurable, we make two

observations. We �rst observe that the topologies of pointwise convergence and
uniform convergence give the same Borel structure on S 0.E/. In fact, for every
separable topological spaceX , the pointwise and uniform convergence topologies
on Cb.X/ give the same Borel structure (as uniform balls are easily seen to be
Borel for the pointwise convergence topology), and S 0.E/ could be identi�ed with
a closed (for both topologies) subspace of bounded continuous functions on the
unit ball of E. Our second observation is that we may identify Grm.E/ with a
subset of the space of closed subsets of the unit ball of E. Endowing it with
the Hausdor� metric topology, we get a PGL.E/-invariant Polish topology on
Grm.E/. Since the Polish group PGL.E/ acts transitively on Grm.E/, by E�ros
Lemma [8, Lemma 2.5] the quotient topology is the unique PGL.E/-invariant
Polish topology on this space, thus the topology on Grm.E/ given by the Hausdor�
metric coincides with the one discussed in Proposition 2.2.

The proof is now complete, observing further that with respect to the uni-
form convergence topology on S 0

m.E/ and the Hausdor� metric topology on
Grm.E/, the map s 7! ker.s/ is in fact continuous (moreover, it is C -Lipschitz on
¹s 2 S 0

m.E/ j s is C -Lipschitzº). �
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6. Existence of algebraic representations

This section is devoted to the proof of Theorem 1.16, which we restate below. The
reader who is unfamiliar with the notion of measurable cocycles and amenable
actions might consult with pro�t Zimmer’s book [24, Chapter 4]. The following
theorem provides a so-called algebraic representation of the spaceR, thus allow-
ing to start the machinery developed in [2] and prove cocycle super-rigidity for
the group G.

Theorem 6.1. Let R be a locally compact group and Y an ergodic, amenable

Lebesgue R-space. Let .k; j � j/ be a valued �eld. Assume that as a metric

space k is complete and separable. Let G be a simple k-algebraic group. Let

f WR � Y ! G.k/ be a measurable cocycle.

Then either there exists a k-algebraic subgroup H Œ G and an f -equivariant

measurable map �WY ! G=H.k/, or there exists a complete and separable

metric space V on which G acts by isometries with bounded stabilizers and an

f -equivariant measurable map �0WY ! V .

Furthermore, in case k is a local �eld the G-action on V is proper and in case

k D R and G is non-compact the �rst alternative always occurs.

Proof. We �rst note that the isogeny G ! xG, where xG is the adjoint group
associated to G, is a �nite morphism. Thus, by Lemma 4.5 we may assume
that G is an adjoint group. We do so. By [5, Proposition 1.10] we can �nd a
k-closed immersion from G into some GLn. By the fact that G is simple, we
may assume that this representation is irreducible. By the fact that G is adjoint,
the associated morphism G ! PGLn is a closed immersion as well. We will
denote for convenienceE D kn. Via this representation, G acts continuously and
faithfully on the metric space of homothety classes of norms, I.E/, and on the
compact space of homothety classes of seminorms, S.E/, introduced in §5.

By the amenability of the action of R on Y there exists a f -map, that is a
f -equivariant map, �WY ! Prob.S.E//, which we now �x. By Proposition 5.4,
there is a measurable partition S.E/ D

Sn�1
dD0 Sd .E/, given by the dimension

of the kernels of the seminorms. For a given d , the function Y ! Œ0; 1� given
by y 7! �.y/.Sd .E// is R-invariant, hence almost everywhere equal to some
constant, by ergodicity. We denote this constant by ˛d . Note that

Pn�1
dD0 ˛d D 1.

We choose d such that ˛d > 0 and de�ne

 WY �! Prob.Sd .E//;  .y/ D
1

˛d

�.y/jSd .E/:

Note that  is a f -map. We will consider two cases: either d > 0 or d D 0. This
is a �rst bifurcation leading to the two alternatives in the statement of the theorem.
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We �rst consider the case d > 0. We use the map Sd .E/ ! Grd .E/ discussed
in Proposition 5.4 to obtain the push forward map Prob.Sd .E// ! Prob.Grd .E//.
By post-composition, we obtain a f -map‰WY ! Prob.Grd .E//. By Theorem 1.7
the action of G on Prob.Grd .E// is almost algebraic (as the action of G on
Grd .E/ is almost algebraic by Proposition 2.2), and the quotient topology on
Gn Prob.Grd .E// is T0. We claim that there exists � 2 Prob.Grd .E// such
that the set ‰�1.G�/ has full measure in Y . The standard argument is similar
to the prof of Proposition 1.12: for a countable basis Bi for the topology of
Gn Prob.Grd .E//, the set

\

¹Bi j ‰�1.Bi / is full in Y º \
\

¹Bc
i j ‰�1.Bi/ is null in Y º

is clearly a singleton, whose preimage is of full measure in Y . Let� be a preimage
of this singleton in Prob.Grd .E//.

By the fact that G acts almost algebraically on Prob.Grd .E//, we may iden-
tify G� with a coset space G=L, for some almost algebraic subgroup L D

StabG.�/ < G, and view‰ as an f -map from Y toG=L. By Proposition 1.9, there
exists a k-subgroup H0 < G which is normalized by L such that L has a precom-
pact image in the Polish group .NG.H0/=H0/.k/ and such that � is supported on
the subvariety of H0 �xed points in Grd .E/. Note that by the irreducibility of the
representation G ! GLn we have no G-�xed points in Grd .E/, thus H0 Œ G.

Assume moreover that H0 ¤ ¹eº and let H be the Zariski-closure of L.
By [5, Theorem AG14.4], H is a k-subgroup of G. By the simplicity of G,
H Œ G, as H normalizes H0. Post-composing the f -map ‰ with the map
G=L ! G=H.k/ we obtain a k-algebraic subgroup H Œ G and an f -equivariant
measurable map �WY ! G=H.k/, as desired.

Assume now H0 D ¹eº. In that case L is compact, and in particular bounded
in G. It follows by Theorem 4.8 that L �xes a norm on E. Thus we may map
the coset space G=L G-equivariantly into S0.E/ D I.E/. Using the ı-measure
embedding I.E/ ,! Prob.I.E// and obtain a new f -map Y ! Prob.I.E//.
We are then reduced to the case d D 0, to be discussed below.

We consider now the case d D 0, that is we assume having an f -map
Y ! Prob.I.E//. We set V D Prob.I.E//. By Lemma 5.1, G acts isometrically
and with bounded stabilizers on I.E/. By Lemma 2.6, G acts isometrically on
V . Let us check that stabilizers are bounded. Fix � 2 Prob.I.E//, and let L
be its stabilizer in G. Since I.E/ is Polish there is a ball B of I.E/ such that
�.B/ > 1=2. It follows that for any g 2 L, gB intersects B . Thus the set LB
is bounded in I.E/, and by Lemma 5.1 its stabilizer is bounded in G. It follows
that L is bounded. Thus we have found an f -map from Y to a complete and
separable metric space V on which G acts by isometries with bounded stabilizers
as desired. �
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