
ALMOST ALGEBRAIC ACTIONS OF ALGEBRAIC GROUPS

AND APPLICATIONS TO ALGEBRAIC REPRESENTATIONS

URI BADER, BRUNO DUCHESNE AND JEAN LÉCUREUX

Abstract. Let G be an algebraic group over a complete separable valued field

k. We discuss the dynamics of the G-action on spaces of probability measures
on algebraic G-varieties. We show that the stabilizers of measures are almost

algebraic and the orbits are separated by open invariant sets. We discuss

various applications, including existence results for algebraic representations
of amenable ergodic actions. The latter provides an essential technical step

in the recent generalization of Margulis-Zimmer super-rigidity phenomenon

[BF13].

1. Introduction

This work concerns mainly the dynamics of an algebraic group acting on the
space of probability measures on an algebraic variety. Most (but not all) of our
results are known for local fields (most times, under a characteristic zero assump-
tion). Our main contribution is giving an approach which is applicable also to a
more general class of fields: complete valued fields. On our source of motivation,
which stems from ergodic theory, we will elaborate in §1.2, and in particular Theo-
rem 1.16. First we describe our objects of consideration and our main results, put
in some historical context.

Setup 1.1. For the entire paper (k, | · |) will be a valued field, which is assumed

to be complete and separable as a metric space, and k̂ will be the completion of its
algebraic closure, endowed with the extended absolute value.

Note that k̂ is separable and complete as well (see the proof of Proposition 2.2).
The most familiar examples of separable complete valued fields are of course R and
C, but one may also consider the p-adic fields Qp, as well as their finite extensions.

Considering k = Cp = “Qp one may work over a field which is simultaneously
complete, separable and algebraically closed. Another example of a complete valued
field is the Robinson field ρR, obtained from the field of hyperreals ∗R, considered
in non-standard analysis [LR75]. Note that ρR is not separable. Yet another typical
example is given by fields of Laurent series K((t)), where K is any field (this field
is local if and only if K is finite, and separable if and only if K is countable), or
more generally the field of Hahn series K((tΓ)), where Γ is an ordered abelian group
(which is separable if and only if both K and Γ are countable).

Convention 1.2. Algebraic varieties over k will be identified with their k̂-points
and will be denoted by boldface letters. Their k-points will be denoted by corre-
sponding Roman letters. In particular we use the following.

Setup 1.3. We fix a k-algebraic group G and we denote G = G(k).
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We are interested in algebraic dynamical systems, which we now briefly describe.
For a formal, pedantic description see §2.1 and in particular Proposition 2.2. By
an algebraic dynamical systems we mean the action of G on V , where V is the
space of k-points of a k-algebraic variety V on which G acts k-morphically. Such
a dynamical system is Polish: G is a Polish group, V a Polish space and the action
map G×V → V is continuous. The point stabilizers of such an action are algebraic
subgroups, and by a result of Bernstein-Zelevinski [BZ76], the orbits of such an
action are locally closed (see Proposition 2.2)

Following previous works of Furstenberg and Moore, Zimmer found a surprising
result: for the action of an algebraic group G on an algebraic variety V , all defined
over R, consider now the action of G on the space Prob(V ) of probability measures
on V . Then the point stabilizers are again algebraic subgroups and the orbits are
locally closed. However, this result does not extend trivially to other fields. For
example, with k = C, consider the Haar measure on the circle S1 < C∗. For the
action of C∗ on itself, the stabilizer of that measure is S1, which is not a C-algebraic
subgroup. Similarly, for k = Qp, consider the Haar measure on the p-adic integers
Zp < Qp. For the action of Qp on itself, the stabilizer of that measure is Zp, which
is not a Qp-algebraic subgroup.

Definition 1.4. A closed subgroup L < G is called almost algebraic if there exists a
k-algebraic subgroup H < G such that L containsH = H(k) as a normal cocompact
subgroup. A continuous action of G on a Polish space V is called almost algebraic
if the point stabilizers are almost algebraic subgroups of G and the collection of
G-invariant open sets separates the G-orbits, i.e the quotient topology on G\V is
T0.

Remark 1.5. If k is a local field then G is locally compact and by [Eff65, Theo-
rem 2.6] the condition G\V is T0 is equivalent to the (a priori stronger) condition
that every G-orbit is locally closed in V .

Remark 1.6. If k = R then every compact subgroup of G is the real points of a
real algebraic subgroup of G. It follows that every almost algebraic subgroup is
the real points of a real algebraic subgroup of G. We get that a continuous action
of G on a Polish space V is almost algebraic if and only if the stabilizers are real
algebraic and the orbits are locally closed.

Two obvious classes of examples of almost algebraic actions are algebraic actions
(by the previously mentioned result of Bernstein-Zelevinski) and proper actions (as
the stabilizers are compact and the space of orbits is T2). The notion of almost
algebraic action is a natural common generalization. It is an easy corollary of
Prokhorov’s theorem that if the action of G on V is proper then so is its action on
Prob(V ), see Lemma 2.7. The main theorem of this paper is the following analogue.

Theorem 1.7. If the action of G on a Polish space V is almost algebraic then the
action of G on Prob(V ) is almost algebraic as well.

The following corollary was obtained by Zimmer, under the assumptions that k
is a local field of characteristic 0 and V is homogeneous, see [Zim84, Chapter 3].

Corollary 1.8. Assume G has a k-action on a k-variety V. Then the induced
action of G = G(k) on Prob(V(k)) is almost algebraic.

In the course of the proof of Theorem 1.7 we obtain in fact a more precise
information.
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Proposition 1.9. Fix a closed subgroup L < G. Then there exists a k-subgroup
H0 < G which is normalized by L such that L has a precompact image in the
Polish group (NG(H0)/H0)(k) and such that for every k-G-variety V, any L-
invariant finite measure on V(k) is supported on the subvariety of H0-fixed points,
VH0 ∩V(k).

This proposition is a generalization of one of the main results of Shalom [Sha99],
who proves it under the assumptions that k is local and L = G. For the case L = G
the following striking corollary is obtained.

Corollary 1.10. If for every strict k-algebraic normal subgroup H/G, G(k)/H(k)
is non-compact, then every G-invariant measure on any k-G-algebraic variety V(k)
is supported on the G-fixed points.

In particular we can deduce easily the Borel density theorem.

Corollary 1.11. Let Γ < G be a closed subgroup such that G/Γ has a G-invariant
probability measure. If G is a k-algebraic group such that for every proper k-
algebraic normal subgroup H / G, G(k)/H(k) is non-compact, then Γ is Zariski
dense in G.

To deduce the last corollary from the previous one, consider the map

G/Γ→ (G/Γ
Z

)(k)

and push the invariant measure from G/Γ to obtain a G-invariant measure on

(G/Γ
Z

)(k). The homogeneous space G/Γ
Z

must contain a G-fixed point, hence

must be trivial. That is Γ
Z

= G.

1.1. Applications: ergodic measures on algebraic varieties. A classical theme
in ergodic theory is the attempt to classify all ergodic measures classes, given a con-
tinuous action of a topological group on a Polish space. In this regard the axiom
that the space of orbits is T0 has strong applications. The following proposition is
well known.

Proposition 1.12. Let V be a Polish G-space and assume that the quotient topol-
ogy on G\V is T0. Let L < G be a subgroup and µ a L-quasi-invariant ergodic
probability (or σ-finite) measure. Then there exists v ∈ V such that µ(V −Gv) = 0.

Indeed, G\V is second countable, as V is, and for a countable basis Bi, denoting
the push of µ to G\V by µ̄, the set⋂

{Bi | µ̄(Bi) = 1} ∩
⋂
{Bci | µ̄(Bi) = 0}

is clearly a singleton, whose preimage is an orbit of full measure.
In particular, we get that for a subgroup L < G and an algebraic dynamical

system of G, every L-invariant measure is supported on a single G-orbit. Another
striking result is that an algebraic variety cannot support a weakly mixing proba-
bility measure. Recall that an L-invariant probability measure µ is weakly mixing
if and only if µ× µ is L-ergodic.

Corollary 1.13. Assume G has a k-action on the k-variety V. Fix a closed
subgroup L < G and let µ be an L-invariant weakly mixing probability measure on
V = V(k). Then there exists a point x ∈ V L such that µ = δx.
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This corollary follows at once from Proposition 1.9, as the action of L on VH0 ∩
V(k) is via a compact group.

We end this subsection with the following useful application, obtained by com-
posing Proposition 1.12 with Theorem 1.7. This corollary is in fact our main mo-
tivation for developing the material in this paper. It deals with measure on spaces
of measures, and is the main tool in deriving Theorem 1.16 below.

Corollary 1.14. Assume G has a k-action on the k-variety V. Denote V = V(k).
Let L < G be a subgroup and ν be a L-ergodic quasi-invariant measure on Prob(V ).
Then there exists µ ∈ Prob(V ) such that ν(Prob(V )−Gµ) = 0.

1.2. Applications to algebraic representations of ergodic actions. A main
motivation for us to extend the foundation outside the traditional local field zone
is the recent developments in the theory of algebraic representations of ergodic
actions, and in particular its applications to rigidity theory. In [BF13] the following
theorem, as well as various generalizations, are proven.

Theorem 1.15 ([BF13, Theorem 1.1], Margulis super-rigidity for arbitrary fields).
Let l be a local field. Let T to be the l-points of a connected almost-simple algebraic
group defined over l. Assume that the l-rank of T is at least two. Let Γ < T be a
lattice.

Let k be a valued field. Assume that as a metric space k is complete. Let G be the
k-points of an adjoint form simple algebraic group defined over k. Let δ : Γ→ G be
a homomorphism. Assume δ(Γ) is Zariski dense in G and unbounded. Then there
exists a continuous homomorphism d : T → G such that δ = d|Γ.

The proofs in [BF13] are based on the following, slightly technical theorem, which
will be proven here.

Theorem 1.16. Let R be a locally compact group and Y be an ergodic, amenable
R-Lebesgue space. Let (k, | · |) be a valued field. Assume that as a metric space k is
complete and separable. Let G be a simple k-algebraic group. Let f : R×Y → G(k)
be a measurable cocycle.

Then either there exists a k-algebraic subgroup H � G and an f -equivariant
measurable map φ : Y → G/H(k), or there exists a complete and separable metric
space V on which G acts by isometries with bounded stabilizers and an f -equivariant
measurable map φ′ : Y → V .

A more friendly, cocycle free, version is the following.

Corollary 1.17. Let R be a locally compact, second countable group. Let Y be an
ergodic, amenable R-space. Suppose that G is an adjoint simple k-algebraic group,
and there is a morphism R→ G = G(k). Then :

• Either there exists a metric space M , on which G acts by isometries with
bounded stabilizers, and an R-equivariant measurable map Y →M ;
• or there exists a strict k-algebraic subgroup H and an R-equivariant mea-

surable map Y → G/H(k).

Taking Y to be a point in the above corollary, we obtain the following.

Corollary 1.18. Suppose R < GLn(k) is a closed amenable subgroup. Then the

image of R in R
Z

modulo its solvable radical is bounded.
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Indeed, upon moding out the solvable radical of R
Z

, the latter is a product of
simple adjoint factors, and by the previous corollary the image of R in each factor
is bounded.

Note that over various fields, such as Cp and F̄p((t)), every bounded groups is
amenable, being the closure of an ascending union of compact groups, while for
other fields there exist bounded groups which are not amenable. For example
SL2(Q[[t]]), which is bounded in SL2(Q((t))), factors over the discrete group SL2(Q)
which contains a free group.

1.3. The structure of the paper. The paper has two halves: the first half con-
sisting of §2,§3 is devoted to the proof of Theorem 1.7 and the second half is devoted
to the proof of Theorem 1.16.

In §2 we collect various needed preliminaries, in particular we discuss the Polish
structure on algebraic varieties, and on spaces of measures. The most important
results in this section are Proposition 2.2 that discusses algebraic varieties and
and Corollary 2.14 that uses disintegration as a replacement for a classical ergodic
decomposition argument (which is not applicable in our context, due to the lack of
compactness). The heart of the paper is §3, where the concept of almost algebraic
action is discussed. Theorem 1.7 is proven at §3.4.

In §4 we give a thorough discussion of bounded subgroups of algebraic groups,
and in §5 we discuss a suitable replacement of a compactification of coset spaces.
In §6 we prove Theorem 1.16.

2. Preliminaries

2.1. Algebraic varieties as Polish spaces. Recall that a topological space is
called Polish if it is separable and completely metrizable. For a good survey on
the subject we recommend [Kec95]. We mention that the class of Polish spaces
is closed under countable disjoint unions and countable products. A Gδ subset of
a Polish space is Polish so, in particular, a locally closed subset of a Polish space
is Polish. An Hausdorff space which admits a finite open covering by Polish open
sets is itself Polish. Indeed, such a space is clearly metrizable (e.g. by Smirnov
metrization theorem) so it is Polish by Sierpinski theorem [Kec95, Theorem 8.19]
which states that the image of an open map from a Polish space to a separable
metrizable space is Polish.

Sierpinski theorem also implies that for a Polish group K and a closed subgroup
L, the quotient topology on K/L is Polish. Effros Lemma [Eff65, Lemma 2.5] says
that the quotient topology on K/L is the unique K-invariant Polish topology on
this space. Another important result of Effros concerning Polish actions (that are
continuous actions of Polish groups on Polish spaces) is the following.

Theorem 2.1 (Effros theorem [Eff65, Theorem 2.1]). For a continuous action of
a Polish group G on a Polish space V the following are equivalent.

(1) The quotient topology on G\V is T0.
(2) For every v ∈ V , the orbit map G/StabG(v)→ Gv is a homeomorphism.

Our basic class of Polish actions will be given by actions of algebraic groups
on algebraic varieties. As mentioned in Setups 1.1 & 1.3 we fixed a complete and
separable valued field (k, | · |), that is a field k with an absolute value | · | which
is complete and separable (in the sense of having a countable dense subset). See
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[EP05, BGR84]1 for a general discussion on these fields. It is a standard fact that a
complete absolute value on a field F has a unique extension to its algebraic closure

F [BGR84, §3.2.4, Theorem 2] and Hensel lemma implies that the completion “F of
this algebraic closure is still algebraically closed [BGR84, §3.4.1, Proposition 3].

Recall that we identify each k-variety V with its set of k̂-points. In particular,

this identification yields a topology on V. Identifying the affine space An(k̂) with

k̂n, any affine k-variety can be seen as a closed subset of An(k̂). More generally, a
k-variety has a unique topology making its affine charts homeomorphisms. Observe
that with this topology, the set of k-points V of V is closed.

Topological notions, unless otherwise said, will always refer to this topology. In
particular, for the k-algebraic group G we fixed, G and G = G(k) are topological
groups. We note that V actually carries a structure of a k-analytic manifold, G is
a k-analytic group and the action of G on V is k-analytic. We will not make an
explicit use of the analytic structure here. The interested reader is referred to the
excellent text [Ser06], in which the theory of analytic manifolds and Lie groups over
complete valued fields is developed (see in particular [Ser06, Part II, Chapter I]).

We will discuss the category of k-G-varieties. A k-G-variety is a k-variety
endowed with an algebraic action of G which is defined over k. A morphism of
such varieties is a k-morphism which commutes with the G-action.

Proposition 2.2. A k-variety V and its set of k-points V are Polish spaces. In
particular, G and G are Polish groups.

If V is a k-G-variety then the G-orbits in V are locally closed and the quotient
topology on G\V is T0. For v ∈ V the orbit Gv is a k-subvariety of V. There exists
a k-subgroup H < G contained in the stabilizer of v such that the orbit map G/H→
Gv is defined over k and the induced map G/H → Gv is a homeomorphism, where
H = H(k), G/H is endowed with the quotient space topology and Gv is endowed
with the subspace topology.

Proof. Let us first explain how the extended absolute value makes k̂ Polish. In our
situation k has a countable dense subfield k0. The algebraic closure k0 of k0 is

still countable and thus its completion “k0 is separable and algebraically closed. By

the universal property of the algebraic closure, k embeds in “k0 and by uniqueness

of the extension of the absolute value, this embedding is an isometry. Thus k̂ is
algebraically closed, complete and separable.

Since k̂ is Polish, so is the affine space An(k̂) ' k̂n. It follows that V (respectively
V ) is a Polish space, as this space is an Hausdorff space which admits a finite open
covering by Polish open sets — the domains of its k-affine charts (respectively their
k-points).

The fact that the G-orbits in V are locally closed is proven in the appendix of
[BZ76]. Note that in [BZ76] the statement is claimed only for non-archimedean
local fields, but the proof is actually correct for any field with complete non-trivial
absolute value, which is the setting of [Ser06, Part II, Chapter III] on which [BZ76]
relies. Another proof can be found in [GGMB13, §0.5].

It is then immediate that the quotient topology on G\V is T0. For v ∈ V the

orbit Gv is a k-subvariety of V by [Bor91, Proposition 6.7]. We set H = StabG(v)
Z

(note that if char(k) = 0 then H = StabG(v)). By [Bor91, AG, Theorem 14.4],

1In the second reference, the word valuation is used for what we call an absolute value.
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H is defined over k, and it is straightforward that H = H(k) = StabG(v). By
[Bor91, Theorem 6.8] the orbit map G/H→ Gv is defined over k, thus it restricts
to a continuous map from G/H onto Gv. The fact that the latter map is an
homeomorphism follows from Effros theorem since G\V is T0. �

We emphasize that, as a special case of Proposition 2.2, we get that for every k-
algebraic subgroup H of G, the embedding G/H → G/H(k) is an homeomorphism
on its image. We will use this fact freely in the sequel.

2.2. Spaces of measures as Polish spaces. In this subsection V denotes a Pol-
ish space. We let Prob(V ) be the set of Borel probability measures on V , en-
dowed with the weak*-topology (also called the topology of weak convergence). This
topology comes from the embedding of Prob(V ) in the dual of the Banach space
of bounded continuous functions on V . If d is a compatible complete metric on
V , the corresponding Prokhorov metric d on Prob(V ) is defined as follows: for
µ, ν ∈ Prob(V ), d(µ, ν) is the infimum of ε > 0 such that for all Borel subset
A ⊆ V , µ(A) ≤ ν(Aε) + ε and symmetrically ν(A) ≤ µ(Aε) + ε, where Aε is the ε-
neighborhood around A. The following theorem summarizes some standard results,
see Chapter 6 and Appendix III of [Bil99].

Theorem 2.3 (Prokhorov). The metric space (Prob(V ),d) is complete and sepa-
rable and the topology induced by d on Prob(V ) is the weak*-topology. In particular
the space Prob(V ) endowed with the weak*-topology is Polish.

A subset C in Prob(V ) is precompact if and only if it is tight: for every ε > 0
there exists compact K ⊂ V such that for every µ ∈ C, µ(K) > 1− ε. In particular
Prob(V ) is compact if V is.

Remark 2.4. Replacing if necessary d by a bounded metric, we note that there
is another metric on Prob(V ) with same properties (metrizing the weak*-topology
and being invariant under isometries): the Wasserstein metric [Vil09, Corollary
6.13].

We endow Homeo(V ) with the pointwise convergence topology. The following is
a standard application of the Baire category theorem, see [Kec95, Theorem 9.14].

Theorem 2.5. Assume G is acting by homeomorphisms on V . Then the action
map G × V → V is continuous if and only if the homomorphism G → Homeo(V )
is continuous.

Lemma 2.6. If G acts continuously on V then it also acts continuously on Prob(V )
and if the action Gy (V, d) is by isometries, the action Gy (Prob(V ),d) is also
by isometries.

Proof. The fact that G acts by isometries on Prob(V ) when G acts by isometries on
V is straightforward from the definition of the Prokhorov metric. In order to prove
that G acts continuously on Prob(V ) when it acts continuously on V it is enough,
by the Theorem 2.5, to show that for every µ ∈ Prob(V ) and every sequence gn
in G, gn → e in G implies gnµ → µ in Prob(V ). Fix a µ ∈ Prob(V ) and assume
gn → e in G. For every bounded continuous function f on V , we have by Lebesgue
bounded convergence theorem∫

f(x)dgnµ(x) =

∫
f(gnx)dµ(x)→

∫
f(x)dµ(x)
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as for every x ∈ V , gnx → x. Thus, by the definition of the weak*-topology
gnµ→ µ. �

We observe that Lemma 2.6 and Proposition 2.2 show that if V is a k-G-variety
then G acts continuously on V = V(k) and on Prob(V ). The following is a nice
application of Prokhorov theorem.

Lemma 2.7. If the action of G on V is proper then the action of G on Prob(V )
is proper as well.

Proof. For a compact C ⊂ Prob(V ) we can find a compact K ⊂ V with µ(K) > 1/2
for every µ ∈ C. Then for g ∈ G and µ ∈ C such that gµ ∈ C we get that both
µ(K) > 1/2 and µ(gK) = gµ(K) > 1/2, thus gK ∩ K 6= ∅. We conclude that
{g ∈ G | gC ∩ C 6= ∅} is precompact, as it is a subset of the precompact set
{g ∈ G | gK ∩K 6= ∅}. �

2.3. Polish extensions and disintegration.

Definition 2.8. A Polish fibration is given by a T0-space U , a Polish space V , and
a continuous map p : V → U . An action of G on such a Polish fibration is given by
a continuous actions on V and U such that p is equivariant.

Let p : V → U be a Polish fibration. Let ProbU (V ) be the set of probability
measures on V which are supported on one fiber. For the simplicity of notation,
we note p∗ : ProbU (V )→ U the natural map.

Lemma 2.9. The map p∗ is a Polish fibration. If the group G acts on the fibration
V → U , then it also acts on ProbU (V )→ U .

Proof. Since U is T0, fibers of p are separated by a countable family (Cn) of closed
saturated subsets of V . A probability measure µ is supported on one fiber if and
only if for all n, µ(Cn)µ(V \ Cn) = 0. The set {µ ∈ Prob(V ), µ(Cn) = 1}
is closed and {µ ∈ Prob(V ), µ(V \ Cn) = 1} is Gδ since for all 0 < r < 1,
{µ ∈ Prob(V ), µ(V \ Cn) > r} is open. So ProbU (V ) is a Gδ-subset of Prob(V )
and thus Polish.

Let us show that p∗ is continuous. Assume µn → µ in ProbU (V ). Let u = p∗(µ)
and un = p∗(µn). Let O ⊆ U be an open set containing u. For n large enough,
µn(p−1(O)) > 1/2 and thus un ∈ O.

If G acts on V → U , it is clear that G acts on ProbU (V ). The continuity of the
action on ProbU (V ) follows from Lemma 2.6. �

Let (U, ν) be a probability space and (X, d) be a separable metric space, we
denote by L0(U,X) the space of classes of measurable maps from U to X, under
the equivalence relation of equality ν-almost everywhere. Note that the dependence
on ν is implicit in our notation. We endow that space with the topology of con-
vergence in probability. This topology is metrized as follows: for φ, φ′ ∈ L0(U,X),
the distance between φ and φ′ is δ(φ, φ′) =

∫
X

min(d(φ(v), φ′(v)), 1) dν(v). This
topology can be also defined using sequences: φn → φ if for any ε > 0, there is
A ⊆ U such that ν(A) > 1 − ε and for all n sufficiently large and all v ∈ A,
d(φ(v), φn(v)) < ε. We note that this topology on L0(U,X) does not depend on
the choice of an equivalent metric on V . This turns L0(U,X) into a Polish space.
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Lemma 2.10. Assume (αn) is a sequence converging to α in probability in L0(U,X).
Then there exists a subsequence αnk which convergence ν-a.e to α, that is for ν-
almost every u ∈ U , αnk(u) converges to α(u) in X.

The proof of the lemma is standard, but in most textbooks it appears only for
the cases X = R or X = C, see for example [Fol99, Theorem 2.30]. Even though the
standard proof works mutatis-mutandis, we give below a short argument, reducing
the general case to the case X = R.

Proof. Observe that the sequence d(αn, α) converges in probability to 0 in L0(U,R).
Thus there exists a subsequence d(αnk , α) converging to 0 a.e, and we get that αnk
converges to α a.e. �

If p : V → U is a Polish fibration, and ν is a measure on U , we denote L0
p(U, V )

the space of measurable (identified if agree almost everywhere) sections of p, i.e.
maps which associates to u ∈ U a point in p−1(U), endowed with the induced
topology from L0(U, V ).

The following theorem is a variation of the classical theorem of disintegration of
measures. It is essentially proven in [Sim12].

Theorem 2.11. Let p : V → U be a Polish fibration and ν be a probability measure
on U . Let P = {µ ∈ Prob(V ) | p∗µ = ν}. For every α ∈ L0

p∗(U,ProbU (V )) the for-

mula
∫
U
α(u)dν defines an element of P . The map thus obtained L0

p∗(U,ProbU (V ))→
P is a homeomorphism onto.

Definition 2.12. For µ ∈ P , the element of L0
p∗(U,ProbU (V )) obtained by apply-

ing to µ the inverse map of α 7→
∫
U
α(u)dν is denoted u 7→ µu. It is called the

disintegration of µ with respect to p : V → U .

Proof. We first claim that the map α 7→
∫
U
α(u)dν is continuous, and then we

argue to show that it is invertible, and its inverse is continuous as well.
For the continuity, given a converging sequence αn → α in L0

p∗(U,ProbU (V ))

with µn =
∫
U
αn(u)dν, µ =

∫
U
α(u)dν, it is enough to show that every subsequence

of µn has a subsequence that converges to µ. Since every sequence that converges
in measure has a subsequence that converges almost everywhere, abusing our nota-
tion and denoting again αn and µn for the resulting sub-sub-sequences, we may as-
sume that αn converges to α ν-almost everywhere. Picking an arbitrary continuous
bounded function f on V , we obtain that for ν-a.e u ∈ U ,

∫
V
dαn(u)f →

∫
V
dα(u)f .

Thus by Lebesgue bounded convergence theorem we get∫
V

dµnf =

∫
U

dν

∫
V

dαn(u)f →
∫
U

dν

∫
V

dα(u)f =

∫
V

dµf.

This shows that indeed µn → µ.
We now argue that the map α 7→

∫
U
α(u)dν is invertible and its inverse is

continuous. Without loss of generality, we can assume that p is onto. Hence U
is second countable. Since it is also T0, it follows that U is countably separated.
By [Zim84, Proposition A.1], there exists a Borel embedding φ : U → [0, 1). We
consider [0, 1] with the measure φ∗ν. Precomposition by φ gives a homeomorphism
L0

(φ◦p)∗([0, 1],Prob[0,1](V ))→ L0
p∗(U,ProbU (V )). Thus, in what follows we may and
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do assume that U ⊂ [0, 1).2 Under this assumption [Sim12, Theorem 2.1] guarantees
that the map L0

p∗(U,ProbU (V ))→ P is invertible. We denote the preimage of µ ∈ P
by u 7→ µu. We are left to show that this association is continuous. To this end
we embed V in a compact metric space V ′ and extend p by setting p(v′) = 1 for
v′ ∈ V ′ − V . Then [Sim12, Theorem 2.2] proves that for almost every u ∈ U , µu
is obtained as the weak*-limit of the normalized restrictions, denoted by µu,η, of µ
on p−1(u− η, u+ η) as η → 0.

Assume that µn → µ is a converging sequence in P . We know that for ν-a.e.
u, d(µu,η, µu) → 0 when η → 0 and similarly for all n ∈ N, d(µnu,η, µ

n
u) → 0 when

η → 0. Fix ε > 0. For n ∈ N, we set

An = {u ∈ U
∣∣∣∃η0 > 0 ∀k ≥ n ∀η ∈ (0, η0); d(µku,η, µu) ≤ ε}.

Then ν(∪An) = 1 and An ⊆ An+1. Thus there is n such that ν(An) ≥ 1 − ε and
for u ∈ An, d(µu, µ

k
u) ≤ ε for all k ≥ n. This shows that the image sequence of

(µn) in L0
p∗(U,ProbU (V )) indeed converges to the image of µ. �

We note that if G acts on the fibration V → U , then the disintegration homeo-
morphism is also equivariant.

Lemma 2.13. Let p : V → U be a Polish fibration with an action of G such that the
G-action on U is trivial. Let ν be a probability measure on U , and let f ∈ L0

p(U, V ).
Then there exists U1 ⊂ U of full measure such that

Stab(f) =
⋂
u∈U1

Stab(f(u)).

Proof. Let L be the stabilizer of f in G. If L′ is a countable dense subgroup of
L, then there is a full measure subset U1 ⊂ U such that L′ ⊂

⋂
u∈U1

Stab(f(u)).
Since all these stabilizers are closed, and L′ is dense in L, we actually have L ⊂⋂
u∈U1

Stab(f(u)). Since the reverse inclusion is clear, we conclude that

L =
⋂
u∈U1

Stab(f(u)).

�

Corollary 2.14. Assume G acts continuously on the Polish space V and the quo-
tient topology on G\V is T0. Let L < G be a closed subgroup and µ be a L-invariant
probability measure on V . Then there exists a point v ∈ V and a L-invariant prob-
ability measure on G · v ' G/Stab(v).

Proof. Let ν be the pushforward measure of µ on U . By Theorem 2.11, we may
consider the disintegration of µ as an element (µu) ∈ L0

p∗(U,ProbU (V )) and this
element is clearly L-invariant. By Lemma 2.13, the stabilizer of (µu) is an inter-
section of stabilizers of the measures µu, for u in a subset of U . In particular L
stabilizes some µu, which is a measure supported on an orbit G · v. The latter is
equivariantly homeomorphic to G/Stab(v) thanks to Effros theorem. �

2Since the embedding U → [0, 1) is only Borel, when we assume U ⊂ [0, 1), the fibration
V → U cannot be assumed to be Polish anymore. Since our argument does not depend on the

topology of U , this does not matter here.
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3. Almost algebraic groups and actions

3.1. Almost algebraic groups. Recall that by our setup 1.1, (k, | · |) is a fixed
complete and separable valued field and G is a fixed k-algebraic group. By Propo-
sition 2.2, G = G(k) has the structure of a Polish group. Recall that a closed
subgroup L < G is called almost algebraic if there exists a k-algebraic subgroup
H < G such that L contains H = H(k) as a normal cocompact subgroup (Defini-
tion 1.4).

Lemma 3.1. An arbitrary intersection of almost algebraic subgroups is again al-
most algebraic.

More precisely, let (Li)i∈I be a collection of almost algebraic subgroups and Hi

algebraic subgroups such that Hi = Hi(k) is normal and cocompact in Li.
Then one can find a finite subset I0 such that, defining H = ∩i∈I0Hi, we have

that H = ∩i∈IHi and H(k) is normal and cocompact in ∩i∈ILi.

Proof. Let L = ∩Li and H = ∩Hi which coincides with (∩i∈IHi)(k). Then it is
straighforward to check that H C L. Thanks to the Noetherian property, there
exists a finite subset I0 ⊂ I such that ∩iHi coincides with ∩i∈I0Hi.

Let L be the Zariski closure of L and Li the one of Li. The diagonal image of
L(k) in

∏
i∈I0 Li(k)/Hi is locally closed by Proposition 2.2 and it is a group. Thus it

is actually closed. Moreover it is homeomorphic to L(k)/H. To conclude, it suffices
to observe that L/H is closed in L(k)/H and lies in (L(k)/H)

⋂(∏
i∈I0 Li/Hi

)
which is compact. �

Remark 3.2. Actually the proof of this lemma shows that any almost algebraic
subgroup L has a minimal subgroup among all cocompact normal subgroups N
which can be written N = N(k) for some algebraic subgroup N ≤ G. This group
is actually the intersection of all such subgroups and it is invariant under the nor-
malizer NG(L) of L in G.

Lemma 3.3. Let H,L be closed subgroups of G such that H is almost algebraic,
H C L and L/H is compact. Then L is almost algebraic.

Proof. There is a algebraic subgroup N of G such that N = N(k) is normal and
cocompact in H. Moreover thanks to Remark 3.2, N may be choosen to be invariant
under NG(H) and thus N is cocompact and normal in L. �

3.2. Almost algebraicity of stabilizers of probability measures. Let V be
a Polish space endowed with a continuous G-action. Recall that the action Gy V
is called almost algebraic if the stabilizers are almost algebraic subgroups of G and
the quotient topology on G\V is T0 (Definition 1.4).

Remark 3.4. For a continuous action of G on a Polish space V , the action is almost
algebraic if and only if the stabilizers are almost algebraic and for every v ∈ V and
any sequence gn ∈ G, gnv → v implies gn → e in G/StabG(v). This equivalent
definition is much easier to check, and we will allow ourselves to use it freely in the
sequel. The two definitions are indeed equivalent by Effros’ Theorem 2.1.

Example 3.5. Let I be a k-algebraic group and φ : G → I a k-morphism. Let L
be an almost algebraic group in I = I(k). Then the action of G on I/L is almost
algebraic.
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Lemma 3.6. Let K be a compact group acting continuously on a T0-space X. Then
the orbit space K\X is T0 as well.

Proof. Continuity of the action means that the action map K×X → K×X which
associates (k, kx) to (k, x) is an homeomorphism. Compactness of K implies that
the projection (k, x) 7→ x from K × X to X is closed. Composing the two yields
closedness of the map (k, x) 7→ kx. This implies that if F ⊂ X is closed, then KF
is again closed.

Let x, y ∈ X in different K-orbits. Let us consider Y = Kx ∪ Ky with the
induced topology. This is a compact T0-space. Now, consider the set of closed
non-empty subspaces of Y with the order given by inclusion. By compactness any
decreasing chain has a non-empty intersection and thus Zorn’s Lemma implies there
are minimal elements, that are points since Y is T0. Thus Y has at least a closed
point.

Without loss of generality we may and shall assume that {x} is closed in Y . This
means that there exists a closed subset F of X such that F ∩Y = {x}. In particular
F ∩Ky = ∅, and therefore Ky ∩KF = ∅. Finally, KF is a closed K-invariant set
separating Kx from Ky. �

Lemma 3.7. Let H be a topological group acting continuously on a topological space
X. If N is a closed normal subgroup of H, the induced action of H/N on N\X is
continuous and the orbits spaces H\X and (H/N)\(N\X) are homeomorphic.

Proof. The map (g, x) 7→ Ngx from H ×X to N\X is continuous and goes trough
the quotient space H/N×N\X which is the orbit space of N×N acting diagonally
on H × X. Thus, (gN,Nx) 7→ Ngx is continuous, that is the action of H/N on
N\X is continuous.

By the universal property of the topological quotient, the continuous map x 7→
(H/N)Nx fromX to (H/N)\(N\X) induces a continuous mapH\X → (H/N)\(N\X).
Conversely, the continuous map N\X → H\X induces also a continuous map
(H/N)\(N\X)→ H\X which is the inverse of the previous one. �

Proof of Example 3.5. Since φ−1(L) and its conjugates are almost algebraic in G,
it is clear that the stabilizers are almost algebraic. So we are left to prove that
the topology on G\I/L is T0. Let H be a cocompact normal subgroup in L with
H = H(k) for some k-algebraic subgroup of I. By Lemma 3.7 the orbit space
G\I/L is homeomorphic to the space of orbits of the action of G × L/H on I/H.
Note that the action of G on I/H ⊂ I/H(k) has locally closed orbits (and therefore
G\I/H is T0) by Proposition 2.2, as the action of G on I/H is k-algebraic. Now the
T0 property of G\I/L follows from Lemma 3.6 for the compact group L/H acting
continuously on the T0-space G\I/H. �

Lemma 3.8. Let I be a countable set, (Li)i∈I a family of almost algebraic subgroups
of G. Then the diagonal action of G on

∏
i∈I G/Li is almost algebraic.

Proof. Stabilisers of points in
∏
i∈I G/Li are intersections of almost algebraic sugroups

of G. Hence by Lemma 3.1 they are almost algebraic. So we just have to prove
that G\ (

∏
i∈I G/Li) is T0.

For i ∈ I, let Hi be an algebraic subgroup of G such that Hi(k) is a cocompact
normal subgroup of Li. Consider V =

∏
i∈I G/Hi. We first prove that the topology

on G\V is T0, by proving that orbit maps are homeomorphisms. Let (hiHi)i∈I be
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an element of V and (gn) be a sequence of elements of G such that gn · (hiHi)
converges to (hiHi) in V .

Let H =
⋂
i∈I hiHih

−1
i = Stab((hiHi)i∈I). We have to prove that gn con-

verges to e in G/H. By noetherianity, there exists a finite I0 ⊂ I such that
H =

⋂
i∈I0 hiHih

−1
i . Set V0 =

∏
i∈I0 G/Hi. We see that, in V0, we have that

gn.(hiHi)i∈I0 converges to (hiHi)i∈I0 . By Proposition 2.2, it follows that gn con-
verges to the identity in G/H.

Now let K be the compact group
∏
i∈I Li/Hi. The group K acts also continu-

ously on V via the formula (liHi) · (giHi) = (gil
−1
i Hi) and this action commutes

with the action of G. Thus we can apply Lemma 3.6 to K acting on G\V and get
that the space of orbits for the G-action on V/K '

∏
i∈I Gi/Li is T0, as desired. �

Our main goal in this subsection is proving the following theorem, which is an
essential part of our main theorem, Theorem 1.7.

Theorem 3.9. Let V be a Polish space with an almost algebraic action of G. Then
stabilizers of probability measures on V are almost algebraic subgroups of G.

We first rephrase and prove Proposition 1.9, discussed in the introduction.

Proposition 3.10. Fix a closed subgroup L < G. Then there exists a k-subgroup
H0 < G which is normalized by L such that L has a precompact image in the Polish
group (NG(H0)/H0)(k) and such that for every k-G-variety V, any L-invariant
finite measure on V(k) is supported on the subvariety of H0-fixed points.

Proof. Replacing G by the Zariski closure of L, we assume that L is Zariski-dense
in G and consider the collection

{H < G | H is a k-algebraic subgroup, Prob(G/H(k))L 6= ∅}.
By the Noetherian property of G there exists a minimal element H0 in this collec-
tion. We let µ0 be a corresponding L-invariant measure on G/H0(k).

We first claim that H0 is normal in G. Assuming not, we let N � G be the
normalizer of H0 and consider the set

U = {(xH0, yH0) | y−1x /∈ N} ⊂ G/H0 ×G/H0.

This set is a non-empty Zariski-open set which is invariant under the diagonal G-
action, as its complement is the preimage of the diagonal under the natural map
G/H0×G/H0 → G/N×G/N. Since the support of µ0×µ0 in G/H0×G/H0 is
invariant under L×L which is Zariski-dense in G×G we get that (µ0×µ0)(U(k)) 6=
0. It follows from Corollary 2.14 that there exists u ∈ U(k) and a L-invariant
finite measure on G/StabG(u) ⊂ (G/StabG(u))(k). By the definition of U we
get a contradiction to the minimality of H0, as point stabilizers in U are properly
contained in conjugates of H0. This proves that H0 is normal in G.

Next we let V be a k-G-variety and µ be an L-invariant measure on V(k). We
argue to show that µ is supported on VH0 ∩ V(k). Indeed, assume not. Let V′

be the Zariski-closure of V(k) ∩ VH0 , and V′′ = V − V′. Then we see that V′

is defined over k [Bor91, AG, 14.4]. Furthermore, H0 acts on V′ trivially, so that
we have V′(k) = V(k) ∩ VH0 . Hence by assumption we get that µ(V′′(k)) > 0.
Replacing V by V′′ and restricting and normalizing the measure, we may and shall
assume that VH0 ∩V(k) = ∅.

We consider the variety G/H0×V as a k-G-variety. The measure µ0×µ is an L-
invariant measure on (G/H0×V)(k). It follows from Corollary 2.14 that there exists
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u ∈ (G/H0×V)(k) and a L-invariant measure on G/StabG(u). By Proposition 2.2
there exists a k-algebraic subgroup H < G with H = H(k) = StabG(u) and an
orbit map G/H → Gu inducing a homeormorphism G/H → G/StabG(u). Thus
we obtain a L-invariant probability measure on G/H(k). Now, H is contained in
some conjugate gH0g

−1, for some g ∈ G. Hence we get that g−1Hg < H0 is such
that G/g−1Hg has an L-invariant probability measure. By minimality this implies
that g−1Hg = H0, hence by normality of H0, H = H0. Therefore u belongs to
V(k) ∩VH0 , which was assumed to be empty. Hence we get a contradiction. This
proves that µ is supported on VH0 .

We set S = (G/H0)(k) and let T be the closure of the image of L in S. We are
left to show that T is compact. S is a Polish group and T is a closed subgroup.
The quotient topology on T\S is Hausdorff, and in particular T0. The measure
µ0 is an L-invariant finite measure on S, hence it is also T -invariant. Substituting
S = V and T = G = L in Corollary 2.14 we find a finite measure µ1 on S which is
supported on a unique T coset, Ts. The measure (Rs)∗µ1, given by pushing µ1 by
the right translation by s−1 is then a T -invariant probability measure on T . It is
well-known result due to A. Weil (see [Oxt46] where the result is attributed to Ulam)
that a Polish group that admits an invariant measure class is locally compact, and
a locally compact group that admits an invariant probability measure is compact.
Thus T is indeed compact. �

Corollary 3.11. Fix a k-G-algebraic variety V, and set V = V(k). Let µ ∈
Prob(V ). Then Stab(µ) is almost algebraic.

Proof. Let L = Stab(µ). We may and shall assume L to be Zariski-dense in G, and
we can find H0 as in Proposition 1.9. We know that µ is supported on the set of
VH0 thus H0 = H0(k) < L. Since G/H0 is acting on VH0 ∩V(k) and the stabilizer
of µ is closed in G/H0, we conclude that L has a closed image. We know that the
image of L is precompact, thus it is actually compact, and we conclude that L is
almost algebraic. �

Lemma 3.12. Let L < G be an almost algebraic group, with H = H(k) a normal
cocompact algebraic subgroup of L. Then there is a G-equivariant continous map
φ : Prob(G/L) → Prob(G/H). Furthermore, we have, for every µ ∈ Prob(G/L),
Stab(µ) = Stab(φ(µ)).

Proof. Let λ be a Haar probability measure on L/H. For a continuous bounded
function f on G/H let f be the continuous bounded function on G/L defined by
f(gL) =

∫
L/H

f(gh) dλ(h) and finally φ(µ)(f) = µ(f).

Then it is clear that φ is equivariant, and we deduce that Stab(µ) ⊂ Stab(φ(µ)).
In the other direction, we note that if π : G/H → G/L is the projection, we have
π∗(φ(µ)) = µ. Hence the other inclusion is also clear.

To check the continuity, let µn → µ ∈ Prob(G/L), and take f a continuous
bounded function on G/H. Then φ(µn)(f) = µn(f) → µ(f) = φ(µ)(f). Hence
φ(µn) converges to φ(µ). �

Proof of Theorem 3.9. Choose µ ∈ Prob(V ) and denote L = StabG(µ), H =
FixG(supp(µ)). Set U = G\V , and let ν = p∗µ, where p : V → U is the pro-
jection. Note that p is a Polish fibration. By Theorem 2.11, L is equal to the
stabilizer of an element f ∈ L0

p∗(U,ProbU (V )). By Lemma 2.13 there exists a ν-full
measure set U1 ⊂ U such that L =

⋂
u∈U1

Stab(f(u)). For a fixed u ∈ U1, f(u) is a
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measure on a G-orbit in V which we identify with G/L′ for some almost algebraic
subgroup L′ < G. Let H′ < G be a k-algebraic subgroup such that H ′ = H′(k)
is a cocompact normal subgroup of L′. By Lemma 3.12, Stab(f(u)) is also the
stabilizer of a probability measure on G/H ′ ⊂ G/H′(k). By Corollary 3.11, it
follows that Stab(f(u)) is almost algebraic. We conclude that L is almost algebraic
by Lemma 3.1. �

3.3. Separating orbits in the space of probability measures. In this subsec-
tion, we prove the following theorem.

Theorem 3.13. Let L < G be an almost algebraic subgroup. Then the action of
G on Prob(G/L) is almost algebraic.

The proof of Theorem 3.13 consists in several steps, proving particular cases of
the Theorem, each of them using the previous one. First we start with the case
when L = G (Lemma 3.14). Then we treat the case when L is a normal algebraic
subgroup of G (Lemma 3.15). The main step is then to deduce the theorem when
L is any algebraic subgroup of G (Proposition 3.20), before concluding with the
general case.

Lemma 3.14. The G-action on Prob(G) is almost algebraic.

Proof. The regular action of G is proper, so by Lemma 2.7 it follows that the action
of G on Prob(G) is proper. Any proper action is almost algebraic. �

Lemma 3.15. Let H < G be a normal k-algebraic subgroup. Then the G-action
on Prob((G/H)(k)) is almost algebraic.

Proof. Denoting I = G/H and I = I(k), we know that the I-action on Prob(I)
is almost algebraic. Since G/H is a subgroup of I, G stabilizes each I-orbit. It is
thus enough to show that G acts almost algebraically on each I-orbit. We know
that such an orbit is of the form I/L where L is almost algebraic (Theorem 3.9),
so this follows from Example 3.5. �

An essential technical tool for proving Theorem 3.13 and Theorem 1.7 is given
by the following proposition.

Proposition 3.16. Let V be a Polish space, with a continuous action of G. Assume
that

• The quotient topology on G\V is T0, and
• For any v ∈ V , the action of G on Prob(G.v) is almost algebraic.

Then the quotient topology on G\Prob(V ) is T0.

The proposition will directly follow from the following lemma.

Lemma 3.17. Let p : V → U be a Polish fibration with an action of G, and let
ν be a probability measure on U . Assume that the action of G on U is trivial and
that the action of G on Prob(p−1(u)) is almost algebraic for almost every u ∈ U .
Let P = {µ ∈ Prob(V ) | p∗µ = ν}. Then the topology on G\P is T0.

This proof is similar to the proof presented in [Zim84, Proof of Proposition 3.3.1];
see also [AB94, Lemma 6.7].
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Proof. The set P is Polish, as a closed subset of Prob(V ). By Theorem 2.1 we
need to show that the orbit maps are homeomorphisms. By Theorem 2.11, P is
equivariantly homeomorphic to L0

p∗(U,ProbU (V )).

Fixing f ∈ L0
p∗(U,ProbU (V )) and letting gn ∈ G be such that gnf → f , we will

show that gn converges to the identity in G/Stab(f) by proving that every subse-
quence of (gn) has a sub-subsequence which converges to the identity in G/Stab(f).
Doing so, we are free to replace (gn) by any subsequence. Relying on Lemma 2.10
we replace (gn) by a subsequence such that gnf(u) → f(u) for every u in some
ν-full subset U0 ⊂ U . Let U1 ⊂ U0 be a full measure subset such that the action of
G on p−1(u) is almost algebraic for every u ∈ U1.

Let u ∈ U1. By definition, we know that f(u) ∈ Prob(p−1(u)) and that the
action of G on Prob(p−1(u)) is almost algebraic. By Proposition 2.2, the orbit map
G/Stab(f(u)) → Gf(u) is a homeomorphism thus gnf(u) → f(u) implies that gn
converges to the identity in G/Stab(f(u)). By Lemma 2.13, there is also a full
measure subset U2, that we may and do assume to be contained in U1, such that

Stab(f) =
⋂
u∈U2

Stab(f(u))

and since G is second countable, one can find U3 countable in U2 such that

Stab(f) =
⋂
u∈U3

Stab(f(u)).

By assumption, for every u ∈ U3, the group Stab(f(u)) is almost algebraic. Hence
by Lemma 3.8, the action of G on

∏
u∈U3

G/Stab(f(u)) is almost algebraic. In
particular we see that gn converges to e in G/Stab(f). �

Proof of Proposition 3.16. Let U = G\V and p : V → U be the projection. Con-
sider theG-invariant continuous map p∗ : Prob(V )→ Prob(U). Clearly the fibers of
p∗ are closed and G-invariant, so it is enough to prove that for a given ν ∈ Prob(U),
the quotient space G\p−1

∗ ({ν}) has a T0 topology. This is precisely Lemma 3.17. �

Let π : V → V ′ be a continuous G-map between Polish spaces, µ ∈ Prob(V ) and
ν = π∗µ. Then ν has a unique decomposition ν = νc + νd where νc and νd are the
continuous and discrete parts of ν. Moreover νd can be written

∑
λ∈Λ λ

∑
f∈Fλ δf ,

where Λ = {λ ∈ R+ | ∃u ∈ V ′, π∗µ({u}) = λ} and Fλ = {u ∈ V ′ | ν({u}) = λ}.
Defining µλ to be the restriction of µ to π−1(Fλ) and µc = µ−

∑
λ∈Λ µλ, we have

a unique decomposition µ = µc +
∑
λ∈Λ µλ, where π∗(µc) is non-atomic and each

π∗(µλ) is a finitely supported, uniform measure of the form λ
∑
f∈Fλ δf .

Lemma 3.18. Let π : V → V ′ and µ ∈ Prob(V ). Using the above decomposition,
we have Stab(µ) = Stab(µc) ∩ (

⋂
λ Stab(µλ)). If gnµ→ µ then gnµc → µc and for

each λ ∈ Λ, gnµλ → µλ.

Proof. The statement about Stab(µ) is straightforward from the uniqueness of the
decomposition of µ. Let (gn) be a sequence such that gnµ → µ. Once again, we
use a subsubsequence argument: we prove that any subsequence of (gn) contains
a subsubsequence such that gnµλ → µλ for every λ. Hence we start by replacing
(gn) by an arbitrary subsequence.

Observe that gnµ → µ implies gnν → ν because π∗ : Prob(V ) → Prob(V ′) is
continuous. Let K ′ be a compact metrizable space in which V ′ is continuously
embedded as a Gδ subset (see [Kec95, Theorem 4.14]). Then Prob(V ′) embeds as a
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Gδ subset in Prob(K ′) as well [Kec95, Proof of Theorem 17.23]. We begin with the
following observation. Assume νn is a sequence of probability measures converging
to ν ∈ Prob(V ′) and νn decomposes as δun + ν′n with un ∈ V ′ and ν′n ∈ Prob(V ′).
Up to extraction un converges to some k ∈ K ′ and thus ν({k}) > 0 which implies
that k ∈ V ′.

Let λ1 be the maximum of Λ. The above observation implies that up to extrac-
tion we may assume that for any f ∈ Fλ1 , gnf converges to some l(f) ∈ V ′. Since
gnν → ν, we have that l(f) ∈ Fλ1 thus gnνλ1 converges to νλ1 , where νλ1 = π∗(µλ1).
An induction on Λ (countable and well ordered with the reverse order of R) shows
that (after extraction) gnνλ → νλ for any λ ∈ Λ.

Once again, we embed V in some compact metrizable space K. Fix λ ∈ Λ and let
µ′ be an adherent point of (gnµλ) in Prob(K). As π is G-equivariant, we have that
π∗gnµλ = gnπ∗µλ = gnνλ which converges to νλ. Hence π∗µ

′ = νλ. Furthermore
we also see that µ′ is supported on π−1(Fλ), hence µ′ ∈ Prob(V ).

The same argument proves that µ−µ′, which is an adherent point of gn(µ−µλ),
is supported on V \ π−1(Fλ).

As µ can be written uniquely as a sum of a measure supported on π−1(Fλ) and a
measure supported on V \π−1(Fλ), we see, writing µ = (µ−µ′)+µ′ = (µ−µλ)+µλ,
that necessarily µ′ = µλ. This concludes the proof since µc = µ−

∑
λ∈Λ µλ. �

Lemma 3.19. Let H < G be a k-algebraic subgroup. Set N = NG(H), H = H(k)
and N = N(k). Let V = G/H, V′ = G/N, V = V(k) and V ′ = V′(k). Consider
the map π : V → V ′. Let F ⊂ V ′ be a finite set, ν = 1/|F |

∑
f∈F δf and µ ∈

Prob(V ) be a measure with π∗µ = ν. Let (gi) be a sequence with giµ → µ. Then
gi → e ∈ G/Stab(µ).

Proof. Denote m = |F |. We know that (V′)m/ Sym(m) is an algebraic variety,
hence by Proposition 2.2 every G-orbit in (V ′)m/ Sym(m) is locally closed. It
follows in particular that gi → e in G/Stab(F ).

Again, it is enough to show that every subsequence of (gi) contains a subsequence
which tends to e modulo Stab(µ). We start by extracting an arbitrary subsequence
of (gi).

Let us number f1, f2, . . . , fm the elements of F and denote F ′ = (f1, . . . , fm) ∈
(V ′)m. Since gi converges to e in G/Stab(F ), it follows that, passing to a subse-
quence, there exists σ ∈ Sym(m) such that giF

′ tends to σ(F ′) = (fσ(1), . . . , fσ(m)).

This means GF ′ ⊃ Gσ(F ′) and thus GF ′ ⊃ Gσ(F ′) ⊃ · · · ⊃ Gσn(F ′) = GF ′ for

some n ∈ N. In particular GF ′ = Gσ(F ′) and since orbits are locally closed we
have that GF ′ = Gσ(F ′).

This shows that there exists g ∈ Stab(F ) such that gF ′ = σ(F ′). Hence we have
giF
′ → gF ′, and by almost algebraicity of the action on (V ′)m it follows that gi

tends to g modulo Stab(F ′) =
⋂
f∈F Stab(f).

Let us fix some notations. For f ∈ F we denote by µf the restriction of µ

to π−1({f}) and fix f ∈ G such that fN = f and denote by Hf ≤ G the

conjugate of H by f . Observe that fNf
−1

= StabG(f), Hf C StabG(f) and
π−1({f}) ' StabG(f)/Hf where π : G/H→ G/N is the projection and StabG(f)
is the stabilizer of f under the action of G on G/N. We also denote µ′f = g−1µσ(f)

and g′i = g−1gi. Since g′i → e ∈ G/
⋂
f∈F Stab(f) there exist ni ∈

⋂
f∈F Stab(f)

such that g′in
−1
i converges to e (in G). We observe that niµf = ni(g

′
i)
−1g′iµf . As

g′iµf tends to µ′f and ni(g
′
i)
−1 tends to e, we have that niµf converges to µ′f .
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Those measures are supported on π−1({f}) ' (StabG(f)/Hf ) (k). By Lemma
3.15, Stab(f) acts almost algebraically on Prob ((StabG(f)/Hf ) (k)). So we have
that ni tends to some n in Stab(f)/ Stab(µf ).

We conclude that g′i = g′in
−1
i ni tends to n in G/Stab(µf ). Arguing similarly for

every f , it follows that gi tends to gn in G/
⋂
f∈F Stab(µf ). Hence (gi) converges

also in G/Stab(µ), since
⋂
f∈F Stab(µf ) ≤ Stab(µ). Let h be the limit point of

(gi) modulo Stab(µ). Then we have that giµ converges to hµ by continuity of the
action. Hence h ∈ Stab(µ), meaning that h = e modulo Stab(µ). In other words,
gi converges to e in G/Stab(µ). �

Proposition 3.20. Let H < G be a k-algebraic subgroup and set H = H(k). Then
the action of G on Prob(G/H) is almost algebraic.

Proof. Assume the proposition fails for an algebraic subgroup H. We also assume,
as we may, that H is minimal in the collection of k-subgroup of G with the property
that the G-action on Prob(G/H) is not almost algebraic. By Theorem 3.9, G acts
on Prob(G/H) with almost algebraic stabilizers. Hence we have to show that for
every measure µ ∈ Prob(G/H) and sequence gn with gnµ → µ then gn tends to
e in G/Stab(µ). We fix such a measure µ and a sequence gn. We will achieve a
contradiction by showing that gn does tend to e in G/Stab(µ).

We set N = NG(H), N = N(k), V = G/H, V′ = G/N, V = V(k) and
V ′ = V′(k). We consider the natural inclusion G/H ⊂ V and view µ as a measure
on V . We consider the projection map π : V → V ′ and set ν = π∗µ. We use
the notation introduced in the discussion before Lemma 3.18. The lemma gives:
Stab(µ) = Stab(µc)∩(

⋂
λ Stab(µλ)) where Λ is countable subset of [0, 1], gnµc → µc

and for each λ ∈ Λ, gnµλ → µλ. By Lemma 3.19, for each λ ∈ Λ, gi → e ∈
G/Stab(µλ). Assume given also that gn → e ∈ G/Stab(µc). Since by Theorem 3.9
the groups Stab(µλ) and Stab(µc) are almost algebraic, we will get by Lemma 3.8
that the action of G on G/Stab(µc)×

∏
λG/Stab(µλ) is almost algebraic. Hence,

gn → e ∈ G

/(
Stab(µc) ∩

(⋂
λ

Stab(µλ)

))
= G/Stab(µ),

achieving our desired contradiction. We are thus left to show that indeed gn → e ∈
G/Stab(µc).

For the rest of the proof we will assume as we may µ = µc, that is ν ∈ Prob(V ′)
is atom-free. We consider the measure µ× µ ∈ Prob(V × V ) and the subset

U = {(xH, yH) | y−1x /∈ N} ⊂ G/H×G/H = V ×V

defined and discussed in the proof of Proposition 1.9. We set U = U(k). Note that
the diagonal in V ′×V ′ is ν×ν-null as ν is atom-free, thus U is µ×µ-full. We view
as we may µ× µ as a probability measure on U .

We now consider the G-action on U and claim that the G-orbits are locally closed
and for every u ∈ U , G acts almost algebraically on Prob(Gu). The fact that the
G-orbits are locally closed follows from Proposition 2.2, as U is a k-subvariety of V.
Fix now a point u = (xH, yH) ∈ U for some x, y ∈ G, and consider the G-action on

Prob(Gu). By the definition of U, H∩Hy−1x � H, thus by the minimality of H the

G-action on Prob(G/H ∩ Hy−1x) ' Prob(G/Hx ∩ Hy) is almost algebraic. Since
by Proposition 2.2 G/Hx ∩Hy is equivariantly homeomorphic to Gu we conclude
that indeed, G acts almost algebraically on Prob(Gu), and the claim is proved.
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By Proposition 3.16 we conclude that G acts on Prob(U) almost algebraically.
Hence Effros’ Theorem 2.1 implies that gn → e in G/Stab(µ× µ) as gn(µ× µ)→
µ× µ. Observing that Stab(µ× µ) = Stab(µ), the proof is complete. �

Proof of Theorem 3.13. By Theorem 3.9 we know that the point stabilizers in
Prob(G/L) are almost algebraic. We are left to show that for every µ ∈ Prob(G/L),
for every sequence gn ∈ G satisfying gnµ → µ we have gn → e modulo Stab(µ)
(see Remark 3.4). Fix µ ∈ Prob(G/L) and a sequence gn ∈ G satisfying gnµ→ µ.
Let H < G be a k-algebraic subgroup with H = H(k) normal and cocompact
in L, and recall that by Lemma 3.12 we can find a G-equivariant continous map
φ : Prob(G/L) → Prob(G/H) such that Stab(µ) = Stab(φ(µ)). We get that
gnφ(µ) → φ(µ). By Proposition 3.20 the G-action on Prob(G/H) is almost al-
gebraic, thus gn → e modulo Stab(φ(µ)). This finishes the proof, as Stab(µ) =
Stab(φ(µ)). �

3.4. Proof of Theorem 1.7. For the convenience of the reader we restate Theo-
rem 1.7.

Theorem 3.21. If the action of G on V is almost algebraic then the action of G
on Prob(V ) is almost algebraic as well.

Proof. By Theorem 3.9 we know that the G-stabilizers in Prob(V ) are almost al-
gebraic. We need to show the quotient topology on G\Prob(V ) is T0. By Propo-
sition 3.16 it is enough to check that the quotient topology on G\V is T0, which is
guaranteed by the assumption that the action of G on V is almost algebraic, and, as
we will see, that for any v ∈ V , the action of G on Prob(Gv) is almost algebraic. We
note that by Effros Theorem 2.1, the orbit Gv is equivariantly homeomorphic to the
coset space G/StabG(v), and thus Prob(Gv) ' Prob(G/StabG(v)). Since StabG(v)
is an almost algebraic subgroup of G, the fact that the G-action on Prob(Gv) is
almost algebraic now follows from Theorem 3.13. �

4. On bounded subgroups

In this section we essentially retain the setup 1.1 & 1.3: we fix a complete (k, | · |)
valued field and a k-algebraic group G. Nevertheless there is no need for us to
assume that (k, | · |) is separable, so we will refrain from doing so.

Definition 4.1. A subset of k is called bounded if its image under | · | is bounded
in R. For a k-variety V, a subset of V(k) is called bounded if its image by any
regular function is bounded in k.

Remark 4.2. Note that the collection of bounded sets on a k-variety forms a
bornology.

Remark 4.3. For a k-variety V it is clear that a subset of V(k) is bounded if and
only if its intersection with every k-affine open set is bounded, so in what follows
we will lose nothing by considering exclusively k-affine varieties. We will do so.

Remark 4.4. Note that if (k′, | · |′) is a field extension of k endowed with an
absolute value extension of | · | and V is a k-variety, we may regard V(k) as a
subset V(k′) and, as one easily checks, a subset of V(k) is k-bounded if and only
if it is k′-bounded. Thus it causes no loss of generality assuming k is algebraically

closed since k̂ is so. Nevertheless, we will not assume that.
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It is clear that every k-regular morphism of k-varieties is a bounded map in the
sense that the image of a bounded set is bounded. For a k-closed immersion of
k-varieties f : U→ V also the converse is true: a subset of U(k) is bounded if and
only if its image is bounded, as f∗ : k[V] → k[U] is surjective. This is a special
case of the following lemma.

Lemma 4.5. For a finite k-morphism f : U → V a subset of U(k) is bounded if
and only if its image is bounded.

Proof. Assume there exists an unbounded set L in U(k) with f(L) being bounded
in V(k). Then we could find p ∈ k[U] and a sequence un ∈ L with |p(un)| →
∞. The function p is integral over f∗k[V] so there exist q1, . . . qm ∈ f∗k[V] with
pm +

∑m
i=1 qip

m−i = 0. Thus,

1 =

∣∣∣∣∣ m∑
i=1

qi(un)

pi(un)

∣∣∣∣∣ ≤ m∑
i=1

|qi(un)|
|pi(un)|

→ 0,

as the sequences qi(un) are uniformly bounded. This is a contradiction. �

Recall that a seminorm on a k-vector space E is a function ‖ · ‖ : E → [0,∞)
satisfying

(1) ‖αv‖ = |α|‖v‖, for α ∈ k, v ∈ E.
(2) ‖u+ v‖ ≤ ‖u‖+ ‖v‖, for u, v ∈ E.

A seminorm on E is a norm if furthermore we have

(3) ‖v‖ = 0 ⇔ v = 0, for v ∈ E.

Two norms on a vector space, ‖ ·‖, ‖ ·‖′, are called equivalent if there exists some
C ≥ 1 such that

C−1‖ · ‖ ≤ ‖ · ‖′ ≤ C‖ · ‖.
It is a general fact that any linear map between two Hausdorff topological (k, |·|)-

vector spaces of finite dimensions is continuous [Bou87, I, §2,3 Corollary 2] and thus
we get easily the following.

Theorem 4.6. All the norms on a finite dimensional k-vector space are equivalent.

Proof. It suffices to use that the identity map (E, || · ||)→ (E, || · ||′) is continuous
and observe that every continuous linear map is bounded. The latter is an easy
exercise in case | · | is trivial, and standard if it is not. �

Recall that, if (e1, . . . , en) is a basis, then the norm || · ||∞ (relative to this basis)
is defined as ||

∑
xiei||∞ = max{|xi|}.

Corollary 4.7. For a subset B ⊂ E = kn the following properties are equivalent.

(1) B is a bounded set of An.
(2) All elements of E∗ are bounded on B.
(3) All the coordinates of the elements of B are uniformly bounded.
(4) The norm || · ||∞ is bounded on B.
(5) Every norm on E is bounded on B.
(6) Some norm on E is bounded on B.

Theorem 4.8. For a subgroup L of GLn(k) the following are equivalent:

(1) L is bounded in GLn(k).
(2) L is bounded as a subset of Mn(k).
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(3) L preserves a norm on kn.
(4) L preserves a spanning bounded set in kn.

For a subgroup L of G = G(k) the following are equivalent:

(1) L is bounded.
(2) L preserves a norm in all k-linear representations of G.
(3) L preserves a norm in some injective k-linear representation of G.
(4) L preserves a spanning bounded set in some injective k-linear representation

of G.

Proof. Note that the second part of the theorem follows from the first once we
recall that any injective homomorphism of algebraic groups is a closed immersion.
We prove the equivalence of the first four conditions.

(1) ⇔ (2) : Clearly, if L is bounded in GLn then it is bounded in Mn. Assume
L is bounded in Mn. Then it has a bounded image under both morphisms

GLn
ι−→ GLn ↪→ Mn, GLn ↪→ Mn

det−−→ A1,

where GLn
ι−→ GLn is the group inversion. We conclude that L has a bounded

image under the product morphism GLn → Mn×A1. But the latter morphism is

the composition of the isomorphism ι and the closed immersions GLn
id⊕ det−1

−−−−−−→
Mn⊕A1. Thus L is bounded in GLn.

(2) ⇔ (3) : If L is bounded in Mn then, by Corollary 4.7(3) all its matrix
elements are uniformly bounded, hence for all v ∈ kn, supg∈L ‖gv‖∞ is finite. This
expression forms a L-invariant norm. On the other hand, if L preserves a norm
on kn, by the equivalence of this norm with ‖ · ‖∞, all matrix elements of L are
uniformly bounded, thus it is bounded in Mn.

(3)⇔ (4) : If L preserves a norm then it preserves its unit ball which is a bounded
spanning set. If L preserves a bounded spanning set B than it also preserves its
symmetric convex hull:{

n∑
i=1

αivi

∣∣∣∣∣ vi ∈ B, αi ∈ k, n∑
i=1

|αi| ≤ 1

}
.

The latter is easily seen to be the unit ball of an L-invariant norm. �

Note that if L is a compact subgroup of G then L is bounded, as the k-regular
functions of G are continuous on G.

Corollary 4.9. Every bounded subgroup of G admits a bi-invariant metric.

Proof. Let L be a bounded subgroup of G. Fix an injective k-linear representation
G → GL(V ) and consider L as a subset of Endk(V ). Endk(V ) is a representation
of G×G, hence admits a norm which is invariant under the bounded group L×L.
This norm gives an L× L invariant metric on Endk(V ) and on its subset L. �

Proposition 4.10. Assume V is an affine k-variety with a k-affine action of G.
Let B ⊂ V(k) be a bounded set and denote by B its Zariski closure. Then the image
of StabG(B) is bounded in the k-algebraic group StabG(B)/FixG(B).

Proof. Without loss of generality we may replace G by StabG(B) and then assume
V = B. We then may further assume G = StabG(B)/FixG(B). We do so. By
[Bor91, Proposition 1.12] there exists an k-embedding of V into some vector space,
which we may assume having a spanning image, equivariant with respect to some
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k-representation G → GLn, which we thus may assume injective. The proof then
follows from Theorem 4.8. �

Corollary 4.11. Let L < G be a bounded subgroup. Then NG(L)/ZG(L) is
bounded.

5. The space of norms and seminorms

In this section we study a compact space on which an algebraic group over
a complete valued field acts by homeomorphisms, the space of seminorms. This
space was already considered in the case when k is local, in [Wer04].

We fix a finite dimensional vector space E over k. Given two norms n, n′ on E
we denote

d(n, n′) = log sup

ß
n(y)n′(x)

n′(y)n(x)

∣∣∣∣ x, y ∈ E \ {0}™ .
This number is finite by the fact that n and n′ are equivalent norms. Recall that
two seminorms on E are called homothetic if they differ by a multiplicative positive
constant. The relation of being homothetic is an equivalence relation. We denote
the set consisting of all homothety classes of norms on E by I(E). Observe that
d(n, n′) only depends on the homothety classes of n and n′ and thus define a function
on I(E).

Lemma 5.1. The function d : I(E) × I(E) → [0,∞) defines a metric on I(E).
The group PGL(E) acts continuously and isometrically on I(E) and the stabilizers
in PGL(E) of bounded subsets in I(E) are bounded as well.

Proof. The fact that d is a metric and PGL(E) acts by isometries on I(E) is
a straightforward verification. To prove the continuity part, it suffices to show
that the orbit map g 7→ gn is continuous for all n ∈ I(E). Fix a norm n on
E. Let (gi) be a sequence converging to e in PGL(E). By an abuse of nota-
tions we identify gi with a elements of GL(E) such that gi → e ∈ GL(E), and
also still note n a norm whose homothety class is n. Using that d(gin, n) =

log sup
{
n(g−1

i
y)n(x)

n(g−1
i
x)n(y)

| x, y ∈ E \ {0}, n(x), n(y) < 1
}

and that g−1
i converges uni-

formly to e on the unit ball of E with respect to n, we see that indeed d(gin, n)→ 0.
Let L be the stabilizer of some bounded set N ⊆ I(E). Fix v 6= 0 and identify

N with a set N ′ of norms on E satisfying n(v) = 1 for every n ∈ N ′. The set
B = {x ∈ E | ∀n ∈ N ′, n(x) ≤ 1} is clearly bounded in E. By Theorem 4.8, its
stabilizer L′ ∈ GL(E) is bounded, hence also its image in PGL(E), namely L. �

Remark 5.2. The space I(E) actually contains the affine Bruhat-Tits building
I(E) associated to PGL(E) [Par00] and there is a metric d0 on I(E) such that
(I(E), d0) is CAT(0) —not necessarily complete. The metric d is similar to the
one considered by Goldman and Iwahori in [GI63]. The two metrics d and d0 are
Lipschitz-equivalent. This can be checked first on an apartment and extended to
the whole building using that any two points actually lie in some apartment. Thus,
Lemma 5.1 and Theorem 4.8 are a reminiscence of the Bruhat-Tits fixed point
theorem.

Let S′(E) be the space of non-zero seminorms on E, and S(E) be its quotient
by homothety. We endow S′(E) with the topology of pointwise convergence and
S(E) with the quotient topology.
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Proposition 5.3. The space S(E) is compact and metrizable. The action of
PGL(E) on S(E) is continuous.

Proof. Fix a norm | · | on E and observe that all seminorms are Lipschitz with
respect to | · |. Indeed, letting s be any seminorm, s+ | · | is a norm on E and thanks
to Theorem 4.6 there is λ > 1 such that s+ | · | ≤ λ| · |, thus s ≤ (λ− 1)| · |.

It follows that any seminorm is homothetic to a seminorm with Lipschitz constant
less than one. Thus, it suffices to prove that the set S1(E) of seminorms with
Lipschitz constant less or equal to 1 is compact and metrizable, and that the map
(g, s)→ gs is continuous from GL(E)× S1(E) to S′(E). Compactness comes from
the fact that S1(E) is homeomorphic to a closed subset of

∏
v∈E [0, |v|]. Given that

embedding, metrizability comes from the fact that elements of S1(E) are 1-Lipschitz
and E is separable.

Now, fix v ∈ E and let (gn, sn) be a sequence converging to (e, s) ∈ GL(E) ×
S1(E) then gnsn tends to s. Indeed, for every v ∈ E,

|sn(gnv)−s(v)| ≤ |sn(gnv)−sn(v)|+ |sn(v)−s(v)| ≤ |gnv−v|+ |sn(v)−s(v)| → 0.

�

Each non-zero seminorm s has a kernel ker(s) = {v ∈ E | s(v) = 0}, which is
a proper linear subspace of E depending only of the homothety class of s. The
map S(E)→ N, s 7→ dim(ker(s)) is obviously PGL(E)-invariant. Denote by Sd(E)
the space of homothety classes of seminorms s such that dim(ker(s)) = d. Note
that S0(E) = I(E). We denote by Grd(E) the Grassmannian of d-dimensional
linear subspaces of E. The map Sd(E) → Grd(E), s 7→ ker(s) is clearly PGL(E)-
equivariant. Grd(E) is the k-points of a k-algebraic variety, thus carries a Polish
topology by Proposition 2.2.

Proposition 5.4. The maps S(E) → N, s 7→ dim(ker(s)) and Sd(E) → Grd(E),
s 7→ ker(s) are measurable.

Proof. We first note that the space S(E) is covered by (countably many) open sets
which are homeomorphic images of sets of the form {s ∈ S′(E) | s(v) = 1}, for
v ∈ E, under the quotient map S′(E) → S(E). It is therefore enough to establish
that the corresponding maps S′(E)→ N, S′d(E)→ Grd(E) are measurable (where
S′d(E) denotes the preimage of Sd(E)).

Fix a basis for E and countable dense subfield k0 < k. Let E0 = E(k0) be the
k0-span of the fixed basis of E. A subspace of E is said to be defined over k0 if
it has a basis in E0. E0 is a k0-vector space and it is a countable dense subset
of E. Note that for every d, Grd(E0) is countable. Observe that for s ∈ S′(E),
dim(ker(s)) ≤ d if and only if we can find a codimension d subspace F < E which
is defined over k0, such that s restricts to a norm on F . The latter condition is
equivalent by Theorem 4.6 to the condition that there exists n ∈ N such that for
every v ∈ F , s(v) ≥ |v|/n for some fixed norm | · |. Note that it is enough to check
this for every v ∈ F0 = F (k0), thus we obtain

{s ∈ S′(E) | dim(ker(s)) ≤ d} =
⋃

F0∈Grdim(E)−d(E0)

⋃
n

⋂
v∈F0

{s ∈ S′(E) | s(v) ≥ |v|/n}.

This shows that the map s 7→ dim(ker(s)) is measurable.
In order to prove that the map S′d(E) → Grd(E) is measurable, we make two

observations. We first observe that the topologies of pointwise convergence and
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uniform convergence give the same Borel structure on S′(E). In fact, for every
separable topological space X, the pointwise and uniform convergence topologies
on Cb(X) give the same Borel structure (as uniform balls are easily seen to be
Borel for the pointwise convergence topology), and S′(E) could be identified with a
closed (for both topologies) subspace of bounded continuous functions on the unit
ball of E. Our second observation is that we may identify Grd(E) with a subset of
the space of closed subsets of the unit ball of E. Endowing it with the Hausdorff
metric topology, we get a PGL(E)-invariant Polish topology on Grd(E). Since the
Polish group PGL(E) acts transitively on Grd(E), by Effros Lemma [Eff65, Lemma
2.5] the quotient topology is the unique PGL(E)-invariant Polish topology on this
space, thus the topology on Grd(E) given by the Hausdorff metric coincides with
the one discussed in Proposition 2.2.

The proof is now complete, observing further that with respect to the uniform
convergence topology on S′d(E) and the Hausdorff metric topology on Grd(E),
the map s 7→ ker(s) is in fact continuous (moreover, it is C-Lipschitz on {s ∈
S′d(E) | s is C-Lipschitz}). �

6. Existence of algebraic representations

This section is devote to the proof of Theorem 1.16, which we restate below for
the convenience of the reader.

Theorem 6.1. Let R be a locally compact group and Y an ergodic, amenable R
Lebesgue space. Let (k, | · |) be a valued field. Assume that as a metric space k is
complete and separable. Let G be a simple k-algebraic group. Let f : R×Y → G(k)
be a measurable cocycle.

Then either there exists a k-algebraic subgroup H � G and an f -equivariant
measurable map φ : Y → G/H(k), or there exists a complete and separable metric
space V on which G acts by isometries with bounded stabilizers and an f -equivariant
measurable map φ′ : Y → V .

Furthermore, in case k is a local field the G-action on V is proper and in case
k = R and G is non-compact the first alternative always occurs.

Proof. We first note that the isogeny G → Ḡ, where Ḡ is the adjoint group asso-
ciated to G, is a finite morphism. Thus, by Lemma 4.5 we may assume that G is
an adjoint group. We do so. By [Bor91, Proposition 1.10] we can find a k-closed
immersion from G into some GLn. By the fact that G is simple, we may assume
that this representation is irreducible. By the fact that G is adjoint, the associated
morphism G→ PGLn is a closed immersion as well. We will denote for convenience
E = kn. Via this representation, G acts continuously and faithfully on the metric
space of homothety classes of norms, I(E), and on the compact space of homothety
classes of seminorms, S(E), introduced in §5.

By the amenability of the action of R on Y there exists a f -map φ : Y →
Prob(S(E)), which we now fix. By Proposition 5.4, there is a measurable par-
tition S(E) = ∪n−1

d=0Sd(E), given by the dimension of the kernels of the seminorms.
For a given d, the function Y → [0, 1] given by y 7→ φ(y)(Sd(E)) is R-invariant,
hence almost everywhere equal to some constant, by ergodicity. We denote this
constant by αd. Note that

∑n−1
d=0 αd = 1. We choose d such that αd > 0 and define

ψ : Y → Prob(Sd(E)), ψ(y) =
1

αd
φ(y)|Sd(E).
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Note that ψ is a f -map. We will consider two cases: either d > 0 or d = 0. This is
a first bifurcation leading to the two alternatives in the statement of the theorem.

We first consider the case d > 0. We use the map Sd(E)→ Grd(E) discussed in
Proposition 5.4 to obtain the push forward map Prob(Sd(E))→ Prob(Grd(E)). By
post-composition we obtain a f -map Ψ : Y → Prob(Grd(E)). By Theorem 1.7 the
action of G on Prob(Grd(E)) is almost algebraic (as the action of G on Grd(E) is al-
most algebraic by Proposition 2.2), and the quotient topology on G\Prob(Grd(E))
is T0. We claim that there exists µ ∈ Prob(Grd(E)) such that the set Ψ−1(Gµ) has
full measure in Y . The standard argument is similar to the prof of Proposition 1.12:
for a countable basis Bi for the topology of G\Prob(Grd(E)), the set⋂

{Bi | Ψ−1(Bi) is full in Y } ∩
⋂
{Bci | Ψ−1(Bi) is null in Y }

is clearly a singleton, whose preimage is of full measure in Y . Let µ be a preimage
of this singleton in Prob(Grd(E)).

By the fact that G acts almost algebraically on Prob(Grd(E)), we may identify
Gµ with a coset space G/L, for some almost algebraic subgroup L = StabG(µ) < G,
and view Ψ as a f -map from Y toG/L. By Proposition 1.9 there exists a k-subgroup
H0 < G which is normalized by L such that L has a precompact image in the Polish
group (NG(H0)/H0)(k) and such that µ is supported on the subvariety of H0 fixed
points in Grd(E). Note that by the irreducibility of the representation G → GLn
we have no G fixed points in Grd(E), thus H0 � G.

Assume moreover that H0 6= {e} and let H be the Zariski-closure of L. By
[Bor91, Theorem AG14.4], H is a k-subgroup of G. By the simplicity of G, H � G,
as H normalizes H0. Post-composing the f -map Ψ with the map G/L→ G/H(k)
we obtain a k-algebraic subgroup H � G and an f -equivariant measurable map
φ : Y → G/H(k), as desired.

Assume now H0 = {e}. In that case L is compact, and in particular bounded
in G. It follows by Theorem 4.8 that L fixes a norm on E. Thus we may map
the coset space G/L G-equivariantly into S0(E) = I(E). Using the δ-measure
embedding I(E) ↪→ Prob(I(E)) and obtain a new f -map Y → Prob(I(E)). We are
then reduce to the case d = 0, to be discussed below.

We consider now the case d = 0, that is we assume having a f -map Y →
Prob(I(E)). We set V = Prob(I(E)). By Lemma 5.1 G acts isometrically and
with bounded stabilizers on I(E). By Lemma 2.6, G acts isometrically on V . Let
us check that stabilizers are bounded. Fix µ ∈ Prob(I(E)), and let L be its stabilizer
in G. Since I(E) is Polish there is a ball B of I(E) such that µ(B) > 1/2. It follows
that for any g ∈ L, gB intersects B. Thus the set LB is bounded in I(E), and by
Lemma 5.1 its stabilizer is bounded in G. It follows that L is bounded. Thus we
have found a f -map from Y to a complete and separable metric space V on which
G acts by isometries with bounded stabilizers as desired. �
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