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Non-linear Fano Interferences in Open Quantum Systems: an Exact Solution

We obtain an explicit solution for the stationary state populations of a dissipative Fano model, where a discrete excited state is coupled to a continumm set of states; both excited set of states are reachable by photo-excitation from the ground state. The dissipative dynamic is described by a Liouville equation in Lindblad form and the field intensity can take arbitrary values. We show that the continuum states population as a function of laser frequency can always be expressed as a Fano profile plus a Lorentzian function with effective parameters whose explicit expressions are given in the case of a closed system coupled to a bath as well as for the original Fano scattering framework. Although the solution is intricate, it can be elegantly expressed as a linear transformation of the kernel of a 4 × 4 matrix which has the meaning of an effective Liouvillian. We unveil key notable processes related to the optical nonlinearity and which had not been reported to date: electromagnetic induced-transparency, population inversions, power narrowing and broadening, as well as an effective reduction of the Fano asymmetry parameter.

The original Fano model was introduced by U. Fano in 1961 [1] to explain the asymmetric profile that was obtained when monitoring the photo-current as a function of the laser frequency used to ionize a gaz of Helium-like atoms. In parallel, Friederichs [2] developed the mathematical formalism to describe the essential feature of the Fano model: a discrete state coupled to a continuum set of states; both sets of states being reachable by photoexcitation from the ground state. The resulting photocurrent, which is proportional to the population of the continuum set of states, as a function of the excitation laser frequency ω L is known as the Beutler-Fano or Fano profile: f ( ; q) = (q + ) 2 /( 2 + 1), where q is the ratio of the transition dipole moment of the ground-discrete and ground-continuum transitions, and = (ω L -ω e )/γ where ω e is the energy of the discrete state relative to the ground state, ω L is te radiation field frequency, and γ = nπV 2 is the linewidth of the excited state, induced by its coupling (per unit of energy) nV 2 to the continuum set of states, n being the density of states.

Two extensions of the original model have been considered: inclusion of incoherent relaxation and dephasing processes and high field intensities. The motivation to include incoherent processes was first to describe the pressure broadening [3] due to elastic collisions, laser phase fluctuations [4] and spontaneous emission [5,6]. Nowadays, Fano profiles in nanoscale structures are standard [7,8], for example in plasmonic nanostructures [9][10][11], quantum dots, decorated nanoparticles [12] and spin filters [13]. The coherent coupling with the incident light induces large Rabi frequencies which in turn compete with the relaxation rates in order to modify the stationary state. The ability to predict the lineshape, and in general to investigate non linear optical phenomena in the presence of a continuum set of states are the main motivations to consider an arbitrary incident field intensity.

In spite of the ubiquity of the Fano interferences, to the best of our knowledge, explicit solutions for arbitrary laser intensities and including general relaxation processes have not been obtained. Even in Refs. [14,15], dealing with quantum dots, despite some approximations no analytical expressions are derived that afford a simple physical interpretation of the results.

In a recent work [16], we investigated the Fano interferences present in the emitted spectrum of a Fano system with a vibrational manifold. We obtained explicit expressions of spectroscopic observables like Rayleigh, Raman and fluorescence emission but restricted to the low intensity field limit where the lowest order of perturbation was enough to describe the laser-matter interaction. In this letter, we focus on the description of the non-linear Fano effect on the total population of the continuum excited state, the observable in the original Fano model, for the general case of arbitrary large intensities of the laser field and including dissipation process. Here, unlike Ref. [16], obtaining explicit expressions requires non perturbative calculations. We present a method that allows us to obtain such an explicit formulation for arbitrary field strengths and Markovian baths in an elegant and intuitive framework where the entire solution is formulated in terms of a 4 × 4 matrix corresponding to an effective Liouvillian acting in the space of the discrete states only. We calculate the usual Fano observable, that is, the total population of the continuum set of states, which is related to the optical absorption or to the photo-current, as a function of the incident laser frequency. The striking result is that such a function can be written exactly as a linear combination of a Fano profile and a Lorentzian function like in Ref. [16], but where the Fano q and coefficients become effective parameters that are functions of the field intensity and the decay rates.

Although the objectives and results of the present work differ from our previous one [16], the model is similar. As there are some differences and for the sake of introducing the notation in a self-contained way, we summarize it below. The ingredients of the model are schematically presented in Fig. 1. The Hamiltonian H = H 0 +H V +H F is exactly the same as in the original Fano model [1]:

H 0 = E 0 |g g| + E e |e e| + dk k |k k| H V = dkV (k)|e k| + V * (k)|k e| H F = F [µ e cos(ω L t)|g e| + µ * e cos(ω L t)|e g|] + F dk [µ k cos(ω L t)|g k| + µ * k cos(ω L t)|k g|] , (1) 
where H 0 is the site Hamiltonian, H V is the coupling of the excited state to the continuum. For simplicity, in the following, we will consider that

V (k) = e|H V |k is real.
H F is the interaction with the incident radiation field, allowing transitions from the ground state to the discrete excited state g ↔ e and to the continuum of states g ↔ k, µ ij = i|µ|j is the transition dipole moment between states i and j and F is the field amplitude. The relaxation and dephasing processes are introduced in an analogue way as in Ref. [16]. It consists in a Liouville equation in Lindblad form to insure complete positivity of the density matrix describing the quantum system. The dynamics of the system is given by:

∂ρ ∂t = L(t)ρ, where L(t) = L H (t) + L D , with L H = -i(1 1 ⊗ H T (t) -H(t) ⊗ 1 1) is the Hamiltonian conser- vative part and L D = L D pop + L D pure is the generator of dissipative dynamics. L D pop = dkΓ(k) A(k, g) ⊗ A(k, g) - 1 2 1 ⊗ A † (k, g)A(k, g) + A † (k, g)A(k, g) ⊗ 1
+ Γ e A(e, g) ⊗ A(e, g)

- 1 2 1 ⊗ A † (e, g)A(e, g) + A † (e, g)A(e, g) ⊗ 1 , (2) 
describes the population relaxation from the |k manifold and from the |e state to the ground state.

L D pure = -γ eg |e e| ⊗ |g g| + |g g| ⊗ |e e| -dkγ kg |k k| ⊗ |g g| + |g g| ⊗ |k k| -dkγ ke |k k| ⊗ |e e| + |e e| ⊗ |k k| , (3) 
describes pure dephasing, that is the dynamics of the non diagonal matrix elements of ρ. H T denotes the transpose of H, A(i, j) = |j i| are the jump operators and Γ(k) is the population relaxation rate from state |k to |g as is Γ e for the |e population. γ ij are the pure dephasing rates for the ij coherence relaxations. As in Ref. [16], we have used the correspondance: [17]. We use the rotatingwave approximation (RWA) on L = e iΩ L t L(t)e -iΩ L t and remove non-resonant terms such that L can be considered time independent. Ω L is a diagonal matrix whose matrix elements are equal to ±ω L for excited(ground)ground(excited) coherences, and zero elsewhere. The continuum states population, dkρ kk , where ρ is the full steady state density matrix can be obtained by finding the kernel of the time-independent operator (Ω L -L), that is (Ω L -L)ρ = 0. To solve this equation, we split L in two terms, L = L 0 + V where L 0 is diagonal and V is purely non diagonal, and proceed to Feshbach partitioning. For that, we introduce the projectors P = |g g| + |e e| Q = dk|k k|, with P + Q = 1. The corresponding projectors for the discrete and continuum parts in Liouville space are given by:

|l m| ↔ |l ⊗ |m ≡ ||lm
P = P ⊗ P ; Q = P ⊗ Q + Q ⊗ P + Q ⊗ Q. ( 4 
)
This allows us to rewrite the kernel equation as (Ω L -L)(P + Q)ρ = 0. By projecting on both P and Q and after some algebra, we obtain

P(Ω L -L eff )Pρ = 0, (5) 
with an effective Liouville operator,

L eff = PLP + PVQG Q QVP, (6) 
and

G Q = (QΩ L Q -QLQ) -1 .
G Q , which is the resolvent of QLQ, is not straightforward to calculate unless QLQ is diagonal. To achieve the calculation of G Q , we proceed to a sub-partition of the Q subspace until the projected liouvillian be diagonal [18]. PΩ L P -L eff acts on the P space only, but its kernel is equal to the exact stationary density matrix Pρ describing the discrete states coupled to the continuum. Once the density matrix Pρ on the discrete space has been obtained, the density matrix Qρ in the continuum subspace can be computed through the following equation:

Qρ = QG Q QVPρ. (7) 
L eff can be thought as a 4 × 4 matrix when Pρ is considered as a column vector with 4 elements. To obtain an explicit expression for L eff , the usual wide-band approximation is employed. It is also in this same approximation that an explicit expression was obtained in the original Fano problem [1]. It consists in assuming that the parameters of the model do not depend upon k. From now on, we consider this approximation and define Γ c ≡ Γ(k), µ c ≡ µ k as constants.

After tedious but straightforward calculations, the effective Liouvillian L eff defined in Eq. ( 5) can be written in a surprisingly simple form:

L eff = -i(1 1 ⊗ H eff -Heff ⊗ 1 1) + L D eff , (8) 
where H eff is an effective Hamiltonian ( Heff its complex conjugate) and L D eff is the dissipative part of the effective Liouvillian. The effective Hamiltonian can be written as:

H eff = P H 0 P + H field , with (9) 
H field = F 2 µ e -inπV µ c |g e| + |e g| .
It contains an Hermitian and an anti-Hermitian part arising from the imaginary component of the transition dipole moment which corresponds to the groundcontinuum transition.

Hamiltonians with an anti-Hermitian component are commonly used for the simulation of decay processes in which the population is not conserved [19,[START_REF] Moiseyev | Non-Hermitian Quantum Mechanics[END_REF]. The dissipative part of the effective Liouvillian is:

L eff = L D e + L D c + L D pure , with: L D e = (2nπV 2 + Γ e ) A(e, g) ⊗ A † (e, g) - 1 2 A † (e, g)A(e, g) ⊗ 1 + 1 ⊗ A † (e, g)A(e, g) L D pure = -γ eg |e e| ⊗ |g g| + |g g| ⊗ |e e| L D c = 2nπV µ c (||gg eg|| + ||gg ge||) -nπµ 2 c (||ge ge|| + ||eg eg||). (10) 
L D e is a dissipation superoperator in Lindblad form that describes the population decay with rate 2nπV 2 / + Γ e due to the coupling to the continuum and the natural decay rate Γ e , and L D pure is a pure dephasing superoperator. L D c is an additional part of the relaxation superoperator which cannot be put into a Lindblad form.

Finally, solving Eqs. ( 5) amounts to finding the kernel of a 4 × 4 matrix, which can be explicitely done with the help of a symbolic calculation software. Then, applying Eq. ( 7) along with the normalization condition ρ gg + ρ ee + dkρ kk = 1 gives us all of the populations and coherences.

The results will be given in terms of dimensionless quantities and γ = nπV 2 is taken as the unit of energy. In addition to the original dimensionless Fano parameters = (ω L -ω e )/γ and q = µ e /nπV µ c , we introduce the new parameter Ω = µeF 2q γ = µ c F/2V , which corresponds to a dimensionless Rabi frequency. Also, all relaxation rates will be given in units of γ, this amounts to perform the following replacement:

Γ c → Γ c /γ, Γ e → Γ e /γ, γ eg → γ eg /γ.
The main result of the paper is that the population of the excited state n c = dkρ kk can always be brought back to a Fano profile f , plus a Lorentzian term:

n c ( eff ; q eff ) = C f ( eff ; q eff ) + D 2 eff + 1 , ( 11 
)
where the dependence upon ω L is solely contained in eff = ω L -ω eff γ eff . ω eff , γ eff and q eff are effective Fano parameters that depend on all the parameters of the model but ω L . C is a measure of the total population and D indicates the relative weight of the Lorentzian term in comparison to the Fano profile.

Simple explicit expressions for the effective Fano parameters can be given when the relaxation and the dephasing rates concerning the |e state can be neglected, that is when Γ e = 0 and γ eg = 0 (see Eq. ( 12)). This is often a very good approximation in the context of semiconductor quantum dots or in hybrids consisting of an organic molecule adsorbed on metallic or semiconductor nanoparticles [START_REF] Raymond | [END_REF][22][START_REF] Turro | Modern Molecular Photochemistry[END_REF][START_REF] Piotrowiak | [END_REF][25] (1/Γ e ≈ nanoseconds, /nπV 2 ≈ 10 femtoseconds). In that case, the only relaxation process consists in the continuum states population decay to the ground state and the profile is given by a pure Fano profile and the Lorentzian term is absent, D = 0 and C = 2Ω 2 2Ω 2 +Γc . We have obtained:

γ eff γ = Γ c 1 + (q 2 + 1)Ω 2 (Ω 2 [(2Ω 2 + 4)/Γ c + 1] + 2/Γ c + 2) 1/2 2Ω 2 + Γ c ω eff γ = ω e γ + qΩ 2 1 - 2 2Ω 2 + Γ c ; q eff q = Γ c 2Ω 2 + Γ c 1 γ eff . (12) 
We now discuss each one of the parameters as a function of the Rabi frequency and illustrate them in Figure 2. The prefactor C which is proportional to the intensity of the field for weak fields (linear regime) saturates when 2Ω 2 Γ c . In Fig. 2a, we show the normalized Fano profiles at two intensities of the field (Ω = 0.001 and Ω = 0.1 for q = 5). As the field intensity increases, we see changes in all of the Fano parameters. The effective width γ eff increases or decreases (power narrowing or power broadening) depending on the value of the relaxation (see Fig. 2b and Eq. ( 12)). The effective q eff de-creases monotonically with q (see Figure 2c and Eq. ( 12)). As shown in the inset, the population of the continuum, even for modest values of Ω is significant, underlying the importance of a theory which can handle non-negligible population in the continuum set of state, contrary to the approximations in Ref. [15]. The decreases of q eff can be thought as a consequence of the saturation of the discrete excited state population. The energy shift (ω eff -ω e ) of the discrete state |e has an interesting behavior. For Γ c < 2, the shift is negative if 0 < Ω < (2 -Γ c )/2 and it is positive if Ω > (2 -Γ c )/2. Therefore, Γ c < 2, Ω = (2 -Γ c )/2 is a null point. On the contrary, for large relaxation rates such that Γ c > 2, the shift will be positive for all values of the field (see Fig. 2d).

q eff /q q =5 q =10 q =50 c Ω q 0 10
Inclusion of population relaxation (Γ e = 0) or pure dephasing processes (γ eg = 0) results into heavy expressions of the states populations that we provide in [18]. The main qualitative features remain unchanged except for the appearance of a Lorentzian term.

Until now, we have focused on the stationary population of the continuum set of states dkρ kk . Another quantity that can be measured is the photocurrent, that is the total flow of electrons in the continuum. Assuming that all the electrons emitted in the continuum |k states are collected by an electrode, in the limit of low bias voltage, the current intensity I can be obtained from the stationary populations as I = lim Γc→0 |e| Γc dkρ kk ρgg [26], where e is the electron charge. It turns out that I can also be brought into the form of a Fano factor and a Lorentzian factor as in equation (11). Explicit expressions for the Fano and Lorentzian parameters can be given with both the population relaxation and dephasing included:

γ tr eff = (1 + Γ e ) -1 Ω 4 Γ e (q 2 + Γ e + 1) + Ω 2 (1 + Γ e )(q 2 + 2Γ e + 1)(Γ e + γ eg + 1) + (1 + Γ e ) 2 (Γ e + γ eg + 1) 2 1/2 (13) D tr = (1 + Γ e ) -2 Ω 4 Γ e (q 2 + Γ e + 1) + Ω 2 (1 + Γ e )(q 2 + 2Γ e + 1)(Γ e + γ eg ) + (1 + Γ e ) -1 Γ 3 e + Γ 2 e + γ eg (2Γ 2 e + Γ e γ eg + q 2 + 2Γ e + γ eg + 1) , (14) 
ω tr eff γ = ω e γ + qΩ 2 1 + Γ e ; q tr eff = 1 γ tr eff ; C tr = 2Ω 2 . ( 15 
)
These expressions give an exact description of the scattering problem, as formulated by Fano in its original work [1], but extended to arbitrary field intensities and dissipation processes.

An interesting consequence of the nonlinear Fano effect, is electromagnetic-induced transparency [27]. Indeed, in the absence of discrete state relaxation and dephasing (Γ e = γ eg = 0), the continuum population goes through zero when eff = -q eff (see Eq. ( 11)). It can be shown that this is equivalent to Ω 2 = 1 + q either for the light absorption or the photocurrent intensity. This phenomenon is shown in Fig. 3.a for the case = 0, q = 15 for different values of Γ e , and q = 15, and Fig. 3.b Γ e = 0 for different values of . This phenomenon provides an interesting tool for devices as well as a means for determining the system parameters. For example, irradiating at the discrete level resonance ( = 0) in weak field and increasing the intensity until the induced transparency is found determines the ratio of transition dipole moment µ c to the coupling V such that µ c /2V = 1/F . In the presence of pure dephasing or of relaxation from the discrete state, the zero becomes a minimum but its position does not change appreciably (see Figure 3 (left)).

We have no doubt that the generality of the model, and the derived expressions given here will open new horizons in the analysis of Fano profiles under intense fields as well as in applications and devices that exploit the new phenomena we have reported in this letter.
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 1 FIG. 1: Energy levels and transitions of a Fano-type model with dissipation (see main text for notations)
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 2 FIG.2: Effect of the field on the Fano profiles and parameters: (a) Fano profiles for q = 5 for Ω = 0.001 and Ω = 0.1 (b) γ eff for different values of Γc (c) q eff /q for different values of q. Inset show nc as a function of q and Ω. Upper end (red) corresponds to nc = 1 and lower end (blue) corresponds to nc = 0 (d) ω eff for different values of Γc and ωe = 10
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 3 FIG. 3: Population in the continuum showing electromagnetically induced transparency (EIT) for a) = 0, q = 15 with different values of Γe and b) for q = 15, Γe = 0 different values of
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