Supporting Information

Organometallic Antitumor Compounds: Ferrocifens as Precursors to Quinone Methides

Yong Wang, Pascal Pigeon, Siden Top, * Michael J. McGlinchey, and Gérard Jaouen*

Chemical Synthesis
Biological studies
Tables SI1 - SI3
Figures SI1 - SI4
Reference
NMR and MS spectra

Chemical Synthesis

General Synthetic Methods. Unless otherwise stated, the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker $300-\mathrm{MHz}$ spectrometer. The data are reported in parts per million relative to the referenced solvent. The mass spectra were obtained on a DSQII and ITQ 1100 Thermo Scientific spectrometer for both electronic ionization (EI) and chemical ionization (CI) methods on API 3000 PE Sciex Applied Biosystems for electrospray ionization (ESI) method. The flash column chromatography was performed on silica gel Merck $60(40-63 \mu \mathrm{~m})$. Anhydrous solvents were obtained by standard procedure. The purity of products was more than 95% characterized by elemental analysis or analytical reverse phase HPLC (Shimadzu instrument) with Nucleodur C18 column ($4.6 \times 150 \mathrm{~mm}$) using MeOH as eluent, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$. Elemental analyses were performed by the Laboratory of Microanalysis at ICSN of CNRS at Gif sur Yvette, France.

2-Ferrocenyl-1-(4-hydroxyphenyl)-5-hydroxy-1-phenyl-pent-1-en, 3a

Methyl 4-ferrocenyl-4-oxo-butanoate

Ferrocene ($5 \mathrm{~g}, 26.9 \mathrm{mmol}$) was dissolved in dry dichloromethane. Aluminum trichloride ($3.58 \mathrm{~g}, 26.9$ mmol) was added in small portions. Then methyl 4-chloro-4-oxobutyrate ($2.76 \mathrm{~mL}, 22.4 \mathrm{mmol}$) was added dropwise. The stirring was continued overnight and then the solution was carefully poured into water. The aqueous layer was extracted with dichloromethane and the combined organic layers were washed with water, dried over MgSO_{4} and concentrated under reduced pressure. The crude mixture was separated on a silica gel column with dichloromethane/petroleum ether (50/50), then dichloromethane as an eluent. The second fraction (4.8 g , yield $=71 \%$) corresponded to the desired product. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta=2.7\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{COOMe}\right), 3.1\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{CO}-\right.$ Fc), 3.7 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} ; \mathrm{Me}$), $4.22(\mathrm{~s}, 5 \mathrm{H}, 5 \mathrm{xCH} ; \mathrm{Cp}), 4.5\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.8(\mathrm{t}, J=1.8$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta=27.9\left(\mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{COOMe}\right), 34.3\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}-\right.$

CO-Fc), $51.8\left(\mathrm{CH}_{3} ; \mathrm{Me}\right), 69.3\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.0(5 \mathrm{CH} ; \mathrm{Cp}), 72.3\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 78.6\left(\mathrm{C} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 173.7$ (C; COOMe), 202.1 (C; CO).

Methyl 4-en-4-ferrocenyl-5-(4-hydroxyphenyl)-5-phenyl-pentanoate, 2a

Titanium chloride ($2.2 \mathrm{~mL}, 20 \mathrm{mmol}$) was added dropwise to a suspension of zinc powder ($2.0 \mathrm{~g}, 30$ mmol) in dry THF at $0^{\circ} \mathrm{C}$. The mixture was heated at reflux for 2 hours. A second solution was prepared by dissolving each ketone in dry THF: the ferrocenyl ester ketone ($1.5 \mathrm{~g}, 5 \mathrm{mmol}$) and the 4hydroxybenzophenone ($2.0 \mathrm{~g}, 10 \mathrm{mmol}$). This latter solution was added dropwise to the first solution and then the reflux was continued overnight. After cooling to room temperature, the mixture was stirred with water and dichloromethane. The mixture was acidified with diluted hydrochloric acid until dark color disappeared and was decanted. The aqueous layer was extracted with dichloromethane and the combination of organic layers was dried on MgSO_{4}. After concentration under reduced pressure, the crude product was chromatographed on silica gel column with a mixture of cyclohexane/ethyl acetate as the eluent. The second fraction $(1.05 \mathrm{~g}$, yield $=45 \%)$ corresponded to the desired product. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; acetone- d_{6}): $\delta=2.43-2.54\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.87-3.05\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.60$ and $3.61(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} ; \mathrm{OCH}_{3}$), 3.92 and $3.99\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.11$ and $4.15(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH}$; $\mathrm{C}_{5} \mathrm{H}_{4}$), 4.18 and $4.19(\mathrm{~s}, 5 \mathrm{H}, 5 \mathrm{xCH} ; \mathrm{Cp}), 6.76$ and $6.87\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.90-7.44(\mathrm{~m}$, $7 \mathrm{H}, 7 \mathrm{xCH}$; Ar), 8.34 and $8.39(\mathrm{bs}, 1 \mathrm{H} ; \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz ; acetone $-d_{6}$): $\delta=31.1\left(\mathrm{CH}_{2}\right), 35.8$ and $35.9\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{OCH}_{3}\right), 69.7\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.7\left(7 \mathrm{CH} ; 5 \mathrm{xCH}(\mathrm{Cp})+2 \mathrm{xCH}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right), 88.1$ and 88.2 $\left(\mathrm{Cq} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 116.7$ and $116.9\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 127.8$ and $127.9\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.7$ and $130.0(2 x \mathrm{CH} ; \mathrm{Ar})$, 130.7 and $131.3(2 \mathrm{xCH} ; \mathrm{Ar}), 131.9$ and $132.4(2 \mathrm{xCH} ; \mathrm{Ar}), 134.9$ and 135.3 (C), 136.8 and 137.0 (C), $141.0(\mathrm{C}), 146.3$ and $146.7(\mathrm{C}), 157.7(\mathrm{C} ; \mathrm{C}-\mathrm{OH}), 174.3$ and $174.4(\mathrm{C}, \mathrm{CO}) . \mathrm{MS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}: 467$ $[\mathrm{M}+\mathrm{H}]^{+}, 484\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{FeO}_{3}: 466.1231$, found: 466.1235.

2-Ferrocenyl-1-(4-hydroxyphenyl)-5-hydroxy-1-phenyl-pent-1-ene, 3a

To a stirred suspension of $\mathrm{LiAlH}_{4}(0.114 \mathrm{~g}, 3 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of the previous ester $1 \mathbf{1 a}(0.466 \mathrm{~g}, 1 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$. The mixture was left stirring at RT for 3 hours then at reflux overnight. After cooling, it was poured into a saturated sodium bicarbonate solution and extracted five times with diethyl ether. The combination of organic layers was washed with water and dried over MgSO_{4}. After concentration under reduced pressure, the crude product was purified by semi-preparative HPLC using acetonitrile/water (70:30) as an eluent. (0.39 g , yield $=90 \%$) were obtained as an orange oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; acetone $-d_{6}$): $\delta=1.65-1.80\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right)$,
2.65-2.80 (m, $2 \mathrm{H} ; \mathrm{CH}_{2}$), 3.41-3.54 (m, $3 \mathrm{H}, \mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{O}+\mathrm{OH}$), 3.97 and $4.05(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.08$ and $4.12\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.16$ and $4.17(\mathrm{~s}, 5 \mathrm{H}, 5 \mathrm{xCH} ; \mathrm{Cp}), 6.77$ and $6.86\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.89-7.42(\mathrm{~m}, 7 \mathrm{H}, 7 \mathrm{xCH} ; \mathrm{Ar}), 8.32$ and $8.34(\mathrm{bs}, 1 \mathrm{H} ; \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz ; acetone- d_{6}): $\delta=32.6\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 63.2\left(\mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{O}\right), 69.5\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.7$ $(5 \mathrm{CH} ; \mathrm{Cp}), 70.9\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 88.7\left(\mathrm{Cq} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 116.7\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 127.6\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.7$ and $129.8(2 \mathrm{xCH} ; \mathrm{Ar}), 130.9$ and $131.4(2 \mathrm{xCH} ; \mathrm{Ar}), 132.0$ and 132.4 (2 xCH ; Ar), 136.7 and 137.0 (C), 137.5 and $137.8(\mathrm{C}), 139.4$ and $139.8(\mathrm{C}), 146.8(\mathrm{C}), 157.5$ and $157.6(\mathrm{C} ; \mathrm{C}-\mathrm{OH}) . \mathrm{MS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$: $439[\mathrm{M}+\mathrm{H}]^{+}$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FeO}_{2}: 438.1282$, found: 438.1288 .

2-Ferrocenyl-1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene, 3b

Methyl 4-en-4-ferrocenyl-5,5-bis-(4-hydroxyphenyl)-pentanoate, 2b

$\mathrm{TiCl}_{4}(3.8 \mathrm{ml}, 33 \mathrm{mmol})$ was added dropwise to a suspension of zinc powder ($4.5 \mathrm{~g}, 66 \mathrm{mmol}$) in 40 ml of THF at $0^{\circ} \mathrm{C}$. The dark grey mixture obtained was heated at refluxing for 2 hrs . A solution of THF (20 $\mathrm{ml})$ containing 4,4'-dihydroxybenzophenone $(4.91 \mathrm{~g}, 22 \mathrm{mmol})$ and 4-oxo-4-ferrocenylbutanoate (3.13 $\mathrm{g}, 10 \mathrm{mmol}$) was added dropwise to the first solution and the resulting mixture was heated overnight. After cooling to room temperature, the mixture was acidified by addition of diluted HCl solution. The aqueous layer was extracted with EtOAc for three times. The combined organic layer was dried over MgSO_{4} and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give methyl 4-en-4-ferrocenyl-5,5-bis-(4-hydroxyphenyl)-pentanoate as red solid 2.8 g , yield: 58%. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; acetone- d_{6}): $\delta=2.46\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.98$ $\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.12(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4}$), $4.18(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 6.74\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.86\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.89(\mathrm{~d}, J=8.7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.11\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz ; acetone $\left.-d_{6}\right): \delta=31.7\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{OCH}_{3}\right), 68.6\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.6(5 \mathrm{CH} ; \mathrm{Cp}), 70.7(2 \mathrm{CH}$; $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 88.8\left(\mathrm{Cq} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 116.6\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 116.8\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 131.9\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 132.5(2 \mathrm{CH}$; $\mathrm{C}_{6} \mathrm{H}_{4}$), 134.2 (C), 137.4 (C), 137.9 (C), 141.1 (C), 157.6 (2 C, C-OH), 174.4 (C, CO). MS (EI, 70 eV) $m / z: 482[M]^{+}$. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{FeO}_{4}: 482.1181$, found: 482.1196. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{FeO}_{4}$: C, 69.72; H, 5.43. Found: C, 69.79; H, 5.56.

2-Ferrocenyl-1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene, 3b

$\mathrm{LiAlH}_{4}(0.16 \mathrm{~g}, 4.2 \mathrm{mmol})$ was added slowly to the solution of methyl 5,5 -bis(4-hydroxyphenyl)-4-ferrocenylpent-4-enoate ($0.4 \mathrm{~g}, 0.83 \mathrm{mmol}$) in 10 ml of $\mathrm{Et}_{2} \mathrm{O}$. The mixture obtained was heated at reflux overnight. The reaction was then quenched by water. The aqueous layer was extracted with ethyl acetate for three times. The organic layer was dried over MgSO_{4} and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 2-ferrocenyl-1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene as brown solid 0.29 g , yield: 77%. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; acetone $-d_{6}$): $\delta=1.72-1.85\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.82\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.51-3.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$; $\left.\mathrm{CH}_{2}-\mathrm{O}+\mathrm{OH}\right), 4.10\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.17\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.23(\mathrm{~s}, 5 \mathrm{H}$, $5 \mathrm{xCH} ; \mathrm{Cp}), 6.82\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.93\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.99(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}$), 7.18 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}$), 8.32 (bs, $1 \mathrm{H} ; \mathrm{OH}$), 8.35 (bs, $1 \mathrm{H} ; \mathrm{OH}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz ; acetone- d_{6}): $\delta=32.7\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 63.3\left(\mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{O}\right), 69.4\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $70.6(5 \mathrm{CH} ; \mathrm{Cp}), 70.8\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 89.3\left(\mathrm{Cq} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 116.5\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 116.6\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 132.0$ ($2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}$), $132.5\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 136.0(\mathrm{C}), 138.0(\mathrm{C}), 138.3(\mathrm{C}), 139.9(\mathrm{C}), 157.3(\mathrm{Cq} ; \mathrm{C}-\mathrm{OH}), 157.4$ (Cq; C-OH). MS (EI, 70 eV) $\mathrm{m} / \mathrm{z}: 454[\mathrm{M}]^{+\bullet}, 389[\mathrm{M}-\mathrm{Cp}]^{+}, 121[\mathrm{CpFe}]^{+}$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FeO}_{3}$: 454.1232, found: 454.1237.

2-Ferrocenyl-1-(4-hydroxy-3,5-dimethyl-phenyl)-5-hydroxy-1-phenyl-pent-1-en, 3c

Methyl 4-en-4-ferrocenyl-5-(4-hydroxy-3,5-dimethyl-phenyl)-5-phenyl-pentanoate, 2c

$\mathrm{TiCl}_{4}(1.8 \mathrm{ml}, 16 \mathrm{mmol})$ was added dropwise to a suspension of zinc powder ($2.1 \mathrm{~g}, 32 \mathrm{mmol}$) in 20 ml of THF at $0{ }^{\circ} \mathrm{C}$. The dark grey mixture obtained was heated at reflux for 2 hrs . A solution of THF (10 ml) containing (4-hydroxy-3,5-dimethylphenyl)(phenyl)methanone ($1.2 \mathrm{~g}, 5 \mathrm{mmol}$) and methyl 4-oxo-4ferrocenylbutanoate ($1.2 \mathrm{~g}, 4 \mathrm{mmol}$) was added dropwise to the first solution and the resulting mixture was heated overnight. After cooling to room temperature, the mixture was acidified by addition of diluted HCl . The aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over MgSO_{4} and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give methyl methyl 4-en-4-ferrocenyl-5-(4-hydroxy-3,5-dimethyl-phenyl)-5-phenyl-pentanoate as a light yellow solid 1.5 g , yield 76%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$; acetone $\left.-d_{6}\right): \delta=2.12$ and $2.15\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3} ; \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.86$ and $2.95\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right)$, 3.56 and $3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87$ and $3.95\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.06$ and $4.09(\mathrm{t}, J=1.9$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}$), 4.12 and $4.14(\mathrm{~s}, 5 \mathrm{H}, 5 \mathrm{xCH} ; \mathrm{Cp}), 6.70$ and $6.85\left(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.06$ and $7.08\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.16-7.37\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz ; acetone- d_{6}): δ
$=16.7\left(2 \mathrm{xCH}_{3}\right), 30.9\left(\mathrm{CH}_{2}\right), 35.2\left(\mathrm{CH}_{2}\right), 51.6\left(\mathrm{OCH}_{3}\right), 68.9\left(4 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.9(5 \mathrm{CH} ; \mathrm{Cp}), 87.4(\mathrm{Cq}$; $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 124.5$ and $124.7\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 127.0(\mathrm{C}), 127.1(\mathrm{C}), 128.9$ and $129.2\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.8$ and $129.9\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 130.3$ and $130.5\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{2}\right), 133.8$ and $134.1(\mathrm{C}), 136.3$ and $136.6(\mathrm{C}), 140.5$ and $140.6(\mathrm{C}), 145.7$ and $146.1(\mathrm{C}), 152.9(\mathrm{C} ; \mathrm{C}-\mathrm{O}), 173.6$ and $173.7(\mathrm{C}, \mathrm{CO})$. MS-CI $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}: 495$ $(\mathrm{M}+\mathrm{H})^{+}$. HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{FeO}_{3}: 494.1544$, found: 494.1536 .

2-Ferrocenyl-1-(4-hydroxy-3,5-dimethylphenyl)-5-hydroxy-1-phenyl-pent-1-ene, 3c

$\mathrm{LiAlH}_{4}(0.3 \mathrm{~g}, 5 \mathrm{mmol})$ was added slowly to the solution of methyl 4-ferrocenyl-5-(4-hydroxy-3,5-dimethylphenyl)-5-phenylpent-4-enoate ($0.5 \mathrm{~g}, 1 \mathrm{mmol}$) in 10 ml of THF. The mixture obtained was heated at reflux overnight. And then the reaction was quenched by water. The aqueous layer was extracted with ethyl acetate for three times. The organic layer was dried over MgSO_{4} and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 2-ferrocenyl-1-(4-hydroxy-3,5-dimethylphenyl)-5-hydroxy-1-phenyl-pent-1-ene as a light yellow solid 0.4 g , yield 86%. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; acetone $-d_{6}$): $\delta=1.65$ and $1.77\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.15$ and $2.21\left(\mathrm{~s}, 6 \mathrm{H} ; 2 \mathrm{xCH}_{3}\right), 2.63$ and $2.72\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.40-3.48\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{OH}\right.$ and $\left.\mathrm{CH}_{2}\right), 3.91$ and 4.01 (t, J = $1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}$), 4.03 and $4.06\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.12(\mathrm{~s}, 5 \mathrm{H}, 5 \mathrm{xCH}$; $\mathrm{Cp}), 6.70$ and $6.84\left(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.06$ and $7.08\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.13-7.36(\mathrm{~m}$, $\left.4 \mathrm{H}, 4 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz ; acetone- d_{6}): $\delta=16.7\left(2 \mathrm{xCH}_{3}\right), 31.7$ and $31.9\left(\mathrm{CH}_{2}\right), 34.9$ and $35.0\left(\mathrm{CH}_{2}\right), 62.6\left(\mathrm{OCH}_{2}\right), 68.7\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.9(5 \mathrm{CH} ; \mathrm{Cp}), 70.1\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 87.7$ and $88.0(\mathrm{Cq}$; $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 124.5(2 \mathrm{C}), 126.8\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.9$ and $129.0\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.9$ and $130.0\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 130.4 and $130.6\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{2}\right), 135.5$ and $135.8(\mathrm{C}), 136.8$ and $137.1(\mathrm{C}), 139.4$ and $139.5(\mathrm{C}), 146.2$ and $146.5(\mathrm{C}), 152.6$ and $152.7(\mathrm{C} ; \mathrm{C}-\mathrm{O}) . \mathrm{MS}-\mathrm{CI}\left(\mathrm{NH}_{3}\right) m / z: 467(\mathrm{M}+\mathrm{H})^{+}$. HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{FeO}_{2}$: 466.1595, found: 466.1586.

1,1-bis-(4-Hydroxyphenyl)-5-hydroxy-pent-2-phenyl-1-ene, 4b

Methyl 4-en-5,5-bis-(4-hydroxyphenyl)-4-phenyl-pentanoate

$\mathrm{TiCl}_{4}(6.6 \mathrm{ml}, 60 \mathrm{mmol})$ was added dropwise to a suspension of zinc powder $(5.9 \mathrm{~g}, 90 \mathrm{mmol})$ in 60 ml of THF at $0^{\circ} \mathrm{C}$. The dark grey mixture obtained was heated at refluxing for 2 hrs . A solution of THF (20 $\mathrm{ml})$ containing 4,4'-dihydroxybenzophenone ($3.2 \mathrm{~g}, 15 \mathrm{mmol}$) and methyl 3-benzoylpropionate (2.9 g , 15 mmol) was added dropwise to the first solution and the resulting mixture was heated overnight. After cooling to room temperature, the mixture was acidified by addition of diluted HCl solution. The aque-
ous layer was extracted with EtOAc for three times. The combined organic layer was dried over MgSO_{4} and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate ($2: 1$) to give methyl 4-en-5,5-bis-(4-hydroxyphenyl)-4-phenyl-pentanoate as white solid 3.2 g , yield: 57%. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; acetone $-d_{6}$): $\delta=2.32\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.82(\mathrm{t}, J=$ $\left.7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.53\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.75\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $6.89\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.14\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.15-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.16(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz ; acetone- $\left.d_{6}\right): \delta=32.8\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{OCH}_{3}\right)$, $115.8\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 116.6\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 127.7\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.5\left(2 \mathrm{CH} ; \mathrm{CH}_{\text {arom }}\right), 131.3(2 \mathrm{CH}$; $\mathrm{CH}_{\text {arom }}$), $132.0\left(2 \mathrm{CH} ; \mathrm{CH}_{\text {arom }}\right), 133.4\left(2 \mathrm{CH} ; \mathrm{CH}_{\text {arom }}\right), 136.1(\mathrm{C}), 136.4(\mathrm{C}), 138.4$ (C), $141.9(\mathrm{C}), 143.8$ (C), 157.1 (C, C-OH), 158.0 (C, C-OH), $174.2(\mathrm{C}, \mathrm{CO})$.

1,1-bis-(4-Hydroxyphenyl)-5-hydroxy-pent-2-phenyl-1-ene, 4b

$\mathrm{LiAlH}_{4}(0.9 \mathrm{~g}, 24 \mathrm{mmol})$ was added slowly to the solution of methyl 4-en-5,5-bis-(4-hydroxyphenyl)-4-phenyl-pentanoate ($3 \mathrm{~g}, 8 \mathrm{mmol}$) in 30 ml of $\mathrm{Et}_{2} \mathrm{O}$. The mixture obtained was heated at reflux overnight. The reaction was then quenched by water. The aqueous layer was extracted with ethyl acetate for three times. The organic layer was dried over MgSO_{4} and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-2-phenyl-1-ene as white solid 2.8 g , yield: 98%. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; acetone $\left.-d_{6}\right): \delta=1.49-1.64\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.56\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.45\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right)$, $6.51\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.73\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.11\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.12-7.24\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.47(\mathrm{br} \mathrm{s}, 2 \mathrm{H} ; \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR (75 MHz ; acetone- d_{6}): $\delta=33.9\left(2 \mathrm{xCH}_{2}\right), 63.3\left(\mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{O}\right), 115.7\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 116.5(2$ $\left.\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 127.4\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.4\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 131.2\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 132.1\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 133.4(2$ $\left.\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 136.3(\mathrm{C}), 136.6(\mathrm{C}), 140.2(\mathrm{C}), 140.7(\mathrm{C}), 144.8(\mathrm{C}), 157.0(\mathrm{Cq} ; \mathrm{C}-\mathrm{OH}), 157.8(\mathrm{Cq} ; \mathrm{C}-\mathrm{OH})$. MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}: 347[\mathrm{M}+\mathrm{H}]^{+}, 364\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} . \mathrm{HRMS}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 347.1647$, found: 347.1660.

1-(4-Hydroxy-3,5-dimethyl-phenyl)-5-hydroxy-pent-1,2-diphenyl-1-en, 4c

Methyl 4-en-5-(4-hydroxy-3,5-dimethyl-phenyl)-4,5-diphenyl-pentanoate

$\mathrm{TiCl}_{4}(2.3 \mathrm{ml}, 20 \mathrm{mmol})$ was added dropwise to a suspension of zinc powder ($2.7 \mathrm{~g}, 42 \mathrm{mmol}$) in 30 ml of THF at $0{ }^{\circ} \mathrm{C}$. The dark grey mixture obtained was heated at reflux for 2 hrs . A solution of THF (10
$\mathrm{ml})$ containing (4-hydroxy-3,5-dimethylphenyl)(phenyl)methanone ($1.4 \mathrm{~g}, 6.3 \mathrm{mmol}$) and methyl 4-oxo-4-phenylbutanoate ($0.7 \mathrm{ml}, 4.2 \mathrm{mmol}$) was added dropwise to the first solution and the resulting mixture was heated overnight. After cooling to room temperature, the mixture was acidified by addition of diluted HCl . The aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over MgSO_{4} and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give methyl 4-en-5-(4-hydroxy-3,5-dimethyl-phenyl)-4,5-diphenyl-pentanoate as a white solid 0.9 g , yield 58%. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; acetone- d_{6}): $\delta=$ 1.97 and $2.23\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3} ; \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.72$ and $2.81\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.50$ and $3.52(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.50 and 6.88 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{2}$), 6.90-7.04 (m, 2H), 7.06-7.22(m,5H), 7.25-7.33(m, $2 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz ; acetone- d_{6}): $\delta=16.5$ and $16.7\left(2 \mathrm{xCH}_{3}\right), 32.0$ and $32.2\left(\mathrm{CH}_{2}\right)$, 33.6 and $33.8\left(\mathrm{CH}_{2}\right), 51.6\left(\mathrm{OCH}_{3}\right), 123.5(\mathrm{C}), 124.6(\mathrm{C}), 126.6(\mathrm{CH}), 127.1(\mathrm{CH}), 127.5(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 128.7(\mathrm{CH}), 129.1(\mathrm{CH}), 130.0(\mathrm{CH}), 130.5(\mathrm{CH}), 130.6(\mathrm{CH}), 131.3(\mathrm{CH}), 131.5(\mathrm{CH}), 134.7$ (C), 135.2 (C), 138.0 (C), 138.8 (C), 141.5 (C), 141.7 (C), 142.7 (C), 142.9 (C), 144.2 (C), 144.5 (C), 152.4 (C), 153.2 (C), 173.4 (C, CO).

1-(4-Hydroxy-3,5-dimethylphenyl)-5-hydroxy-1,2-diphenyl-pent-1-ene, 4c

$\mathrm{LiAlH}_{4}(0.2 \mathrm{~g}, 3.5 \mathrm{mmol})$ was added slowly to the solution of methyl 4-en-5-(4-hydroxy-3,5-dimethyl-phenyl)-4,5-diphenyl-pentanoate ($0.38 \mathrm{~g}, 1 \mathrm{mmol}$) in 10 ml of THF. The mixture obtained was heated at reflux overnight. And then the reaction was quenched by water. The aqueous layer was extracted with ethyl acetate for three times. The organic layer was dried over MgSO_{4} and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 1 -(4-hydroxy-3,5-dimethylphenyl)-5-hydroxy-1,2-diphenyl-pent-1-ene as a white solid 0.3 g , yield 84%. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; acetone- d_{6}): $\delta=1.54\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.96$ and $2.23\left(\mathrm{~s}, 6 \mathrm{H} ; 2 \mathrm{xCH}_{3}\right), 2.42-2.62(\mathrm{~m}$, $2 \mathrm{H} ; \mathrm{CH}_{2}$), $3.38-3.47\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{OH}\right.$ and CH_{2}), 6.49 and $6.87\left(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{2}\right), 6.89-7.39(\mathrm{~m}, 10 \mathrm{H}$, $\left.\mathrm{CH} ; 2 \mathrm{xC}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$; acetone- $\left.d_{6}\right): \delta=16.5$ and $16.7\left(2 \mathrm{xCH}_{3}\right), 33.1\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 62.5$ $\left(\mathrm{OCH}_{2}\right), 123.5(\mathrm{C}), 124.4(\mathrm{C}), 126.4(\mathrm{CH}), 126.7(\mathrm{CH}), 127.3(\mathrm{CH}), 128.1(\mathrm{CH}), 128.6(\mathrm{CH}), 128.9$ $(\mathrm{CH}), 130.2$ and $130.3(2 \mathrm{CH}), 130.4$ and $130.5(2 \mathrm{CH}), 131.4(\mathrm{CH}), 131.6(\mathrm{CH}), 135.1(\mathrm{C}), 135.6(\mathrm{C})$, 139.9 (C), 140.3 (C), 140.4 (C), 140.7 (C), 143.7 and 143.8 (C), 144.6 and 144.9 (C), 152.2 and 153.0 (C). MS-CI $\left(\mathrm{NH}_{3}\right) m / z: 359(\mathrm{M}+\mathrm{H})^{+}, 376\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Chemical Oxidation of $3 a, 3 b, 3 c$ and $4 c$

Quinone 3a-QM. Freshly made $\mathrm{Ag}_{2} \mathrm{O}^{1}(0.25 \mathrm{~g}, 1.1 \mathrm{mmol})$ was added to a solution of 2-ferrocenyl-1-(4-hydroxyphenyl)-5-hydroxy-1-phenyl-pent-1-ene ($0.08 \mathrm{~g}, 0.18 \mathrm{mmol}$) in 8 ml of acetone. The dark grey mixture obtained changed to be dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (40 minutes). Filtration was followed by removal of the solvent under reduced pressure to give $\mathbf{3 a - Q M}$ as a dark red solid 65 mg , yield 83%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone $-d_{6}$): $\delta=2.08-2.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.21-2.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.95-4.05(\mathrm{~m}$, $\left.2 \mathrm{x} 1 \mathrm{H}, \mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{O}\right), 4.14-4.20\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.21(\mathrm{~s}, 5 \mathrm{H}, 5 \mathrm{xCH} ; \mathrm{Cp}), 4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$; $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.01\left(\mathrm{dd}, J=10.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.30(\mathrm{dd}, J=10.4,2.2 \mathrm{~Hz}$, $\left.1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.59\left(\mathrm{dd}, J=10.2,2.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.72\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.31(\mathrm{~m}, 2 \mathrm{H}$, $2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{5}$), $7.44\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{xCH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 8.83 (dd, $J=10.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- $\left.d_{6}\right): \delta=25.6\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 67.7\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.0\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.1\left(\mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{O}\right)$, $69.2\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.8(5 \mathrm{xCH} ; \mathrm{Cp}), 70.1\left(\mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 88.9(\mathrm{C} ; \mathrm{Cq}-\mathrm{O}), 96.3\left(\mathrm{C} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 128.3(\mathrm{CH}$; $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 128.4\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.5\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.6\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.7\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.4\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $129.5\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 130.3(\mathrm{C}), 138.2\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 139.9\left(\mathrm{C} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 140.8\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 165.4(\mathrm{C}), 186.4$ (C, $\mathrm{C}=\mathrm{O}$). MS-CI $\left(\mathrm{NH}_{3}\right) m / z: 437(\mathrm{M}+\mathrm{H})^{+}$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{FeO}_{2}: 436.1126$, found: 436.1135.

Quinone 3b-QM. Freshly made $\mathrm{Ag}_{2} \mathrm{O}(0.47 \mathrm{~g}, 2.1 \mathrm{mmol})$ was added to a solution of 2-ferrocenyl-1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene $(0.19 \mathrm{~g}, 0.41 \mathrm{mmol})$ in 6 ml of acetone. The dark grey mixture obtained changed to be dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (10 minutes). Filtration was followed by removal of the solvent under reduced pressure to give $\mathbf{3 b - Q M}$ as a dark red solid 170 mg , yield 89%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}): $\delta=1.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.06-2.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.02-4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.15-4.18\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{xCH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.19(\mathrm{~s}, 5 \mathrm{H}, 5 \mathrm{xCH}$; $\mathrm{Cp}), 4.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.02\left(\mathrm{dd}, J=10.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.26$ (dd, $\left.J=10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.56\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.70\left(\mathrm{dd}, J=10.2,2.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.79(\mathrm{br} \mathrm{s}$, $1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}$), 6.91 (br s, $1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}$), $7.09\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.80(\mathrm{dd}, J=10.4,2.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- d_{6}): $\delta=25.7\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 67.7\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.0$ $\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.2\left(\mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{O}\right), 69.1\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.8(5 \mathrm{xCH} ; \mathrm{Cp}), 70.0\left(\mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 89.1(\mathrm{C} ; \mathrm{Cq}-\mathrm{O})$, $96.4\left(\mathrm{C} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 115.3\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.2\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.3\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.8\left(\mathrm{C} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 131.1(\mathrm{C}$; $\mathrm{C}=\mathrm{C}), 138.5\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 141.4\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 158.2(\mathrm{C} ; \mathrm{C}=\mathrm{C}), 166.4\left(\mathrm{C} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 186.6(\mathrm{C}, \mathrm{C}=\mathrm{O})$. MSEI $m / z: 452(\mathrm{M})^{+} ;$HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{FeO}_{3}(\mathrm{M})^{+}: 452.1075$, found: 452.1082.

Quinone 3c-QM. Freshly made $\mathrm{Ag}_{2} \mathrm{O}(0.25 \mathrm{~g}, 1.1 \mathrm{mmol})$ was added to a solution of 2-Ferrocenyl-1-(4-hydroxy-3,5-dimethylphenyl)-5-hydroxy-1-phenyl-pent-1-ene ($0.08 \mathrm{~g}, 0.18 \mathrm{mmol}$) in 8 ml of acetone. The dark grey mixture obtained changed to be dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (60 minutes). Filtration was followed by removal of the solvent under reduced pressure to give $\mathbf{3 c} \mathbf{c} \mathbf{Q M}$ as a dark red solid 65 mg , yield $83 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}): $\delta=1.68\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.94-1.97(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), $1.98\left(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16-2.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.91-4.00$ (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{O}\right), 4.02-4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.12-4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.20(\mathrm{~s}, 5 \mathrm{H}$, $5 \mathrm{xCH} ; \mathrm{Cp}), 4.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.42(\mathrm{dd}, J=2.7,1.24 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$; $\mathrm{C}_{6} \mathrm{H}_{2}$), $6.76\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.23-7.56\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.60\left(\mathrm{dd}, J=2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta=16.5\left(\mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 67.6\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $68.0\left(\mathrm{CH}_{2} ; \mathrm{CH}_{2}-\mathrm{O}\right), 68.3\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.9\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.8(5 \mathrm{xCH} ; \mathrm{Cp}), 69.9\left(\mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 88.7(\mathrm{C} ; \mathrm{Cq}-$ $\mathrm{O}), 96.9\left(\mathrm{C} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 128.3\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{2}\right), 128.5\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{2}\right), 129.8\left(\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 130.5\left(\mathrm{C} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 134.5(2$ $\left.\mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 135.0(\mathrm{C}), 130.3(\mathrm{C}), 135.2(\mathrm{C}), 136.9\left(2 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 140.4\left(\mathrm{C} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 161.7(\mathrm{C}), 186.8(\mathrm{C}$, $\mathrm{C}=\mathrm{O})$. MS-CI $\left(\mathrm{NH}_{3}\right) m / z: 465(\mathrm{M}+\mathrm{H})^{+}$. HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{FeO}_{2}: 464.1439$, found: 464.1455 .

Quinone 4c-QM. Freshly made $\mathrm{Ag}_{2} \mathrm{O}(0.16 \mathrm{~g}, 0.7 \mathrm{mmol})$ was added to a solution of 1-(4-hydroxy-3,5-dimethylphenyl)-5-hydroxy-1,2-diphenyl-pent-1-ene ($0.05 \mathrm{~g}, 0.14 \mathrm{mmol}$) in 3 ml of acetone- d_{6}. The reaction was monitored by TLC until complete conversion of the starting material (90 minutes). Filtration was followed by ${ }^{1} \mathrm{H}$ NMR spectra directly. ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}): $\delta=1.91(\mathrm{~d}, J=1.3$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.00\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57-2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79(\mathrm{dt}, J=11.3,5.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{O}\right), 3.89(\mathrm{t}, 1 \mathrm{H}, \mathrm{OH}), 6.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 6.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{2}\right), 6.80-7.38(\mathrm{~m}, 10 \mathrm{H}$, $10 x C H ; \mathrm{C}_{5} \mathrm{H}_{5}$), $7.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{2}\right)$.

Chemical stability profile of 3b-QM

Freshly made $\mathrm{Ag}_{2} \mathrm{O}(0.22 \mathrm{~g}, 0.9 \mathrm{mmol})$ was added to a solution of 2-ferrocenyl-1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene $(0.1 \mathrm{~g}, 0.23 \mathrm{mmol})$ in 6 ml of acetone. The dark grey mixture obtained changed to be dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (10 minutes). Filtration was followed by removal most of the solvent under reduced pressure. The residue was kept at room temperature for around 1 week, there were four new spots appearing identified by TLC. The residue was purified by column chromatog-
raphy on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 4 compounds. 3b-A. 4,4'-(3-ferrocenyl-5,6-dihydro-2H-pyran-2,2-diyl)diphenol. A brown solid 15 mg , yield 15%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone $\left.-d_{6}\right) \delta=2.38\left(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.50\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{OCH}_{2}\right), 3.83\left(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{C}_{5} \mathrm{H}_{4}\right)$, 3.97 (s, 2H; C $\mathrm{C}_{5} \mathrm{H}_{4}$), 4.03 - 4.08 (m, 5H; Cp), 6.57 ($\mathrm{s}, 1 \mathrm{H} ; \mathrm{CH}=\mathrm{C}$), $6.75\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.20$ $\left(\mathrm{d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.32(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta=26.99\left(\mathrm{CH}_{2}\right), 59.20$ $\left(\mathrm{OCH}_{2}\right), 68.15\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.51\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.85(5 \mathrm{CH} ; \mathrm{Cp}), 84.11(\mathrm{C} ; \mathrm{C}-\mathrm{O}), 86.21\left(\mathrm{C} ; \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $114.70\left(4 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 125.73(\mathrm{CH} ; \mathrm{CH}=\mathrm{C}), 131.94\left(4 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 136.18\left(2 \mathrm{C} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 141.52(\mathrm{C}$; $\mathrm{CH}=\mathrm{C}), 157.41\left(2 \mathrm{C} ; \mathrm{C}_{6} \mathrm{H}_{4}\right)$. MS-EI $m / z: 452(\mathrm{M})^{+}$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{FeO}_{3}(\mathrm{M})^{+}: 452.1075$, found: 452.1090. 3b-B. 5-hydroxy-1,1-bis(4-hydroxyphenyl)-1-ferrocenylpentan-2-one. A brown solid 30 mg , yield 30%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone $-d_{6}$) $\delta=1.81\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.82-2.90(\mathrm{~m}, 2 \mathrm{H}$; CH_{2}), $3.55\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{OH}\right.$ and $\left.\mathrm{OCH}_{2}\right), 3.85\left(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.14(\mathrm{~s}, 5 \mathrm{H} ; \mathrm{Cp}), 4.25\left(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.77(\mathrm{~d}, J=$ $\left.8.8 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.92\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.37(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- d_{6}) δ $=28.89\left(\mathrm{CH}_{2}\right), 38.82\left(\mathrm{CH}_{2}\right), 61.90\left(\mathrm{OCH}_{2}\right), 66.26(\mathrm{C}), 68.65\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.17(5 \mathrm{CH} ; \mathrm{Cp}), 71.61(2$ $\left.\mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 92.19\left(\mathrm{C} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 114.96\left(4 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 131.79\left(4 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 135.95\left(2 \mathrm{C} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 156.96(2$ C; $\mathrm{C}_{6} \mathrm{H}_{4}$), $208.61(\mathrm{C}=\mathrm{O})$. MS-EI $m / z: 470(\mathrm{M})^{+}$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FeO}_{4}(\mathrm{M})^{+}: 470.1180$, found: 470.1198. 3b-C. 4-hydroxy-1-ferrocenylbutan-1-one. ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}) $\delta=1.81-1.93$ $\left(\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.86\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.62\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{OH}\right.$ and $\left.\mathrm{OCH}_{2}\right), 4.22(\mathrm{~s}, 5 \mathrm{H} ; \mathrm{Cp}), 4.50-4.54(\mathrm{~m}, 2 \mathrm{H}$; $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.78-4.82\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta=28.18\left(\mathrm{CH}_{2}\right), 36.49\left(\mathrm{CH}_{2}\right), 61.94$ $\left(\mathrm{OCH}_{2}\right), 69.97\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.46(5 \mathrm{CH} ; \mathrm{Cp}), 72.68\left(2 \mathrm{CH} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 80.56\left(\mathrm{C} ; \mathrm{C}_{5} \mathrm{H}_{4}\right), 203.75(\mathrm{C}=\mathrm{O})$. 3b-D. bis(4-hydroxyphenyl)methanone. A brown solid 16 mg , yield 34%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone $\left.-d_{6}\right) \delta=6.95\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.68\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 9.17(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- d_{6}) $\delta=115.78\left(4 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.83\left(2 \mathrm{C} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 132.97\left(4 \mathrm{CH} ; \mathrm{C}_{6} \mathrm{H}_{4}\right), 161.95$ (2 C; $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 193.98(\mathrm{C}=\mathrm{O})$.

X-ray crystal structure determinations for 3a, 3b, 3c-QM and 3b-A

Crystallographic data were recorded at 200 K on a Bruker APEX-II CCD diffractometer with graphite mono-chromated $\mathrm{Mo}_{\mathrm{Ka}}$ radiation $\left(\lambda \mathrm{Mo}_{\mathrm{K} \alpha}=0.71073 \AA\right)$ and the ω and Φ scan technique. Data were corrected for Lorentz and polarization effects, and semi-empirical absorption correction based on symmetry equivalent reflections was applied by using the SADABS program. ${ }^{2}$ Orientation matrix and lattice parameters were obtained by least-squares refinement of the diffraction data of 9985 reflections within the range of $2^{\circ}<\Theta<30^{\circ}(\mathbf{a}) .9893$ reflections within the range $3^{\circ}<\Theta<30^{\circ}(\mathbf{b})$. and 9712 reflections within
the range of $2^{\circ}<\Theta<32^{\circ}$ (c). The structure was solved by direct methods and refined with full-matrix least-squares technique on F^{2} using the CRYSTALS programs. ${ }^{3}$ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were either set in calculated positions and isotropically refined. These crystallographic data have been deposited at the Cambridge Crystallographic Data Centre: 3a (1052066), 3b (1052065) and 3c-QM (1052064), 3b-A (1057305). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ (Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk.

Biological studies

Lipophilicity. Measurements of the octanol/water partition coefficient ($\log \mathrm{Po} / \mathrm{w}$) were made by the HPLC technique according to a method described previously. ${ }^{4,5}$ Measurement of the chromatographic capacity factors (k) for each molecule was done at various concentrations in the range of 95-75\% methanol containing $0.25 \%(\mathrm{v} / \mathrm{v}) 1$-octanol and an aqueous phase consisting of $0.15 \%(\mathrm{v} / \mathrm{v}) \mathrm{n}$-decylamine in the buffering agent MOPS (3-morpholinopropane-1-sulfonic acid, prepared in 1-octanol saturated water) adjusted to pH 7.4 . These capacity factors (k^{\prime}) are extrapolated to 100% of the aqueous component given the value of $\mathrm{k}^{\prime} \mathrm{w}$. The $\log \mathrm{Po} / \mathrm{w}$ is obtained by the formula $\log \mathrm{Po} / \mathrm{w}=0.13418+0.98452 \log \mathrm{k}^{\prime}$.

Culture cells. Stock solutions (10 mM) of the compounds to be tested were prepared in DMSO and were kept at $-20^{\circ} \mathrm{C}$ in the dark. Serial dilutions in Dulbecco's modified eagle medium (DMEM) without phenol red/Glutamax I were prepared just prior to use. DMEM without phenol red, Glutamax I and fetal bovine serum were purchased from Gibco; MDA-MB-231 cells were obtained from ATCC (Manassas, VA, USA). Cells were maintained in a monolayer culture in DMEM with phenol red/Glutamax I supplemented with 9% fetal bovine serum at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2} /$ air-humidified incubator. For proliferation assays, MDA-MB-231 cells were plated in 1 mL of DMEM without phenol red, supplemented with 9% decomplemented and hormone-depleted fetal bovine serum, 1% kanamycin, 1% Glutamax I and incubated. The following day (D0), 1 mL of the same medium containing the compounds to be tested was added to the plates. After 3 days (D3) the incubation medium was removed and 2 mL of the fresh medium containing the compounds was added. At different days (D4, D5), the protein content of each well was quantified by methylene blue staining as follows: cell monolayers were fixed for 1 h at room temperature with methylene blue ($1 \mathrm{mg} \mathrm{mL}-1$ in $50: 50$ water $/ \mathrm{MeOH}$ mixture), then washed with water. After addition of $\mathrm{HCl}(0.1 \mathrm{M}, 2 \mathrm{~mL})$, the plate was incubated for 1 h at $37^{\circ} \mathrm{C}$ and then the absorbance of each well (4 wells for each concentration) was measured at 655 nm with a Biorad spectrophotometer. The
results are expressed as the percentage of proteins versus the control. Two independent experiments, run in quadruplicate, were performed.

Figure SI1. Molecular structure of 3b (left) and 3b-A (right), thermal ellipsoids are shown at 50\%.

Table SI1. IC_{50} values measured for the isolated derivatives of 3b.

Compound	$\mathrm{IC}_{50}(\mu \mathrm{M})^{\mathrm{a}}$ MDA-MB-231
3b	0.11 ± 0.02
3b-QM	4.39 ± 1.47
3b-A	2.03 ± 0.79
3b-B	4.14 ± 1.33
3b-C	≈ 150

$$
\approx 295
$$

${ }^{\text {a }}$ Measured after 5 days of culture (mean of two independent experiments \pm SD).

Table SI2. Crystallographic Data for 3a, 3b, 3c-QM and 3b-A.

Compound	3a	3b	3c-QM	3b-A
Formula	$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FeO}_{2}$	$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FeO}_{3}$	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{FeO}_{2}$	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{FeO}_{3}$
Molecular Weight	438.34	454.35	464.39	452.33
Crystal description	Orange block	Red block	Orange block	Red block
Crystal size (mm)	$0.05 \times 0.09 \times 0.14$	$0.12 \times 0.14 \times 0.15$	$0.10 \times 0.12 \times 0.14$	$0.12 \times 0.14 \times 0.18$
$\lambda(\AA)$	0.710730	0.710730	0.710730	0.71073
Temperature (K)	$200(2)$	$200(2)$	$200(2)$	$200(2)$
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$	$\mathrm{P} 21 / \mathrm{c}$	$\mathrm{P}-1$	$\mathrm{P} 21 / \mathrm{n}$
$a(\AA)$	$9.6118(2)$	$9.2061(2)$	$8.6200(3)$	$12.9618(5)$
$b(\AA)$	$9.2344(2)$	$22.7012(5)$	$10.3366(3)$	$11.8081(4)$
$c(\AA)$	$23.8403(6)$	$10.5180(2)$	$13.2313(4)$	$14.6618(6)$
$\alpha\left({ }^{\circ}\right)$	90	90	$77.6250(10)$	90
$\beta\left({ }^{\circ}\right)$	$100.3440(10)$	$103.1070(10)$	$83.9340(10)$	$103.3520(10)$
$\gamma\left({ }^{\circ}\right)$	90	90	$77.3890(10)$	90
Volume $(\AA 3)$	$2081.66(8)$	$2140.89(8)$	$1121.61(6)$	$2183.39(14)$
Z	4	4	2	4
R	0.035	0.031	0.037	0.041
Rw	0.084	0.078	0.089	0.101
GOF	1.000	1.001	0.984	

Table SI3. Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for 3a, 3b, 3c-QM and 3b-A.

3a		3b		3c-QM		3c-QM	
$\mathrm{C}(1)-\mathrm{C}(2)$	1.3480(17)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.3591(14)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.5503(15)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.4350(15)
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.4953(17)$	$\mathrm{C}(1)-\mathrm{C}(11)$	$1.4918(14)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.3730(14)$	$\mathrm{C}(1)-\mathrm{C}(11)$	$1.4818(14)$
$\mathrm{C}(1)-\mathrm{C}(12)$	1.4918(17)	$\mathrm{C}(1)-\mathrm{C}(12)$	$1.4885(14)$	$\mathrm{C}(1)-\mathrm{C}(12)$	1.4980(15)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.3404(14)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5200(17)$	$\mathrm{C}(2)-\mathrm{C}(3)$	1.5182(14)	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5355(16)$	$\mathrm{C}(11)-\mathrm{C}(15)$	$1.5333(13)$
$\mathrm{C}(2)-\mathrm{C}(18)$	1.4811(17)	$\mathrm{C}(2)-\mathrm{C}(18)$	1.4791(13)	$\mathrm{C}(2)-\mathrm{C}(18)$	1.5011(16)	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.5269(13)$
$\begin{aligned} & \mathrm{Fe}(1)- \\ & \mathrm{C}(18) \end{aligned}$	2.0577(12)	$\mathrm{Fe}(1)-\mathrm{C}(18)$	$2.0585(10)$	$\mathrm{C}(6)-\mathrm{C}(7)$	1.4616(15)	$\mathrm{C}(15)-\mathrm{O}(1)$	1.4625(12)
$\begin{aligned} & \mathrm{Fe}(1)- \\ & \mathrm{C}(23) \end{aligned}$	2.0478(15)	$\mathrm{Fe}(1)-\mathrm{C}(23)$	2.0437(12)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.3488(16)	$\mathrm{Fe}(1)-\mathrm{C}(1)$	2.0519(10)
				$\mathrm{C}(8)-\mathrm{C}(9)$	$1.4746(18)$		
				$\mathrm{C}(2)-\mathrm{O}(1)$	$1.4273(13)$		
				$\mathrm{C}(5)-\mathrm{O}(1)$	1.4334(17)		
				$\mathrm{C}(9)-\mathrm{O}(2)$	$1.2293(16)$		
				$\begin{aligned} & \mathrm{Fe}(1)- \\ & \mathrm{C}(18) \end{aligned}$	2.0476(12)		
				$\begin{aligned} & \mathrm{Fe}(1)- \\ & \mathrm{C}(23) \end{aligned}$	2.0374(16)		
$\begin{gathered} \mathrm{C}(18)- \\ \mathrm{C}(2)-\mathrm{C}(3) \end{gathered}$	115.43(11)	$\begin{gathered} \mathrm{C}(18)-\mathrm{C}(2)- \\ \mathrm{C}(3) \end{gathered}$	114.87(8)	$\begin{gathered} \mathrm{C}(2)-\mathrm{C}(1)- \\ \mathrm{C}(6) \end{gathered}$	126.92(10)	$\begin{gathered} \mathrm{C}(1)-\mathrm{C}(11)- \\ \mathrm{C}(12) \end{gathered}$	120.70(9)
$\begin{gathered} \mathrm{C}(6)-\mathrm{C}(1)- \\ \mathrm{C}(12) \end{gathered}$	112.81(10)	$\begin{gathered} \mathrm{C}(11)-\mathrm{C}(1)- \\ \mathrm{C}(12) \end{gathered}$	114.59(8)	$\begin{gathered} \mathrm{C}(2)-\mathrm{C}(1)- \\ \mathrm{C}(12) \end{gathered}$	113.45(9)	$\begin{gathered} \mathrm{C}(1)-\mathrm{C}(11)- \\ \mathrm{C}(15) \end{gathered}$	118.77(8)

$\mathrm{C}(6)-\mathrm{C}(1)-$	$119.32(10)$	$\mathrm{C}(15)-$	$120.48(9)$
$\mathrm{C}(12)$		$\mathrm{C}(11)-\mathrm{C}(12)$	
$\mathrm{C}(1)-\mathrm{C}(2)-$	$105.24(9)$	$\mathrm{C}(16)-$	$110.20(8)$
$\mathrm{C}(18)$		$\mathrm{C}(15)-\mathrm{C}(11)$	
$\mathrm{C}(2)-\mathrm{O}(1)-$	$109.41(10)$	$\mathrm{C}(11)-$	
$\mathrm{C}(5)$		$\mathrm{C}(15)-\mathrm{O}(1)$	$109.18(7)$
$\mathrm{C}(3)-\mathrm{C}(2)-$	$102.12(9)$	$\mathrm{C}(14)-\mathrm{O}(1)-$	$113.85(8)$
$\mathrm{O}(1)$		$\mathrm{C}(15)$	

Figure SI2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b - Q M}$ in acetone $-d_{6}$.

Figure SI3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$-QM in DMSO- d_{6}.

Figure SI4. The oxidation of $\mathbf{4 c}-\mathbf{Q M}$ in acetone- d_{6}.

Reference

(1) Liu, H.; Liu, J.; van Breemen, R. B.; Thatcher, G. R. J.; Bolton, J. L., Chem. Res. Toxicol. 2005, 18, 162.
(2) Blessing, R. H. Acta Cryst. A 1995, 51, 33.
(3) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487.
(4) Minick, D. J.; Frenz, J. H.; Patrick, M. A.; Brent, D. A. J. Med. Chem. 1988, 31, 1923.
(5) Pomper, M. G.; Vanbrocklin, H.; Thieme, A. M.; Thomas, R. D.; Kiesewetter, D. O.; Carlson, K. E.; Mathias, C. J.; Welch, M. J.; Katzenellenbogen, J. A. J. Med. Chem. 1990, 33, 3143.

3b

/ / /

170	160	150	140	130	120	110	100	90	80	10	60	50	10	1	10	10
								（ppm）			6		40		20	10

$\stackrel{\circ}{i}$

3

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	10	30	2 C

3b-QM

3b-A

3b-B

3b-C

 | 1 | | | | | | | | | | | | | | | | | | | |
| :--- |
| 200 | 195 | 190 | 185 | 180 | 175 | 170 | 165 | 160 | 155 | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 |

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=9$
Monoisotopic Mass, Odd Electron Ions
422 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{lllll} \\ \text { C: } 0-100 & H: 0-150 & \mathrm{~N}: 0-5 & \mathrm{O}: 0-20 & \mathrm{Fe}: 1-1\end{array}$
$27-\mathrm{Feb}-2013$ 19:08:24 $\quad \mathrm{MeOH}+\mathrm{CH} 2 \mathrm{Cl} 2$
ENSCP_P681 21 (0.578) Cm (19:26)
$\mathrm{MeOH}+\mathrm{CH} 2 \mathrm{Cl} 2$

3b

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=9$

691 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used
$\begin{array}{lllll}\text { C: 1-100 } & \mathrm{H}: ~ 0-110 & \mathrm{~N}: ~ 0-10 & \mathrm{O}: ~ 0-15 & \mathrm{Fe}: 1-1\end{array}$
$27-\mathrm{Nov}-2014$ 16:40:34 $\quad \mathrm{MeOH}+\mathrm{CH} 2 \mathrm{Cl} 2$
ENSCP_WS925 $21(0.570) \mathrm{Cm}(17: 28) \quad$ LCT Premier XE KE483 $1:$ TOF MS ESt

3a-QM

Elemental Composition Report

Single Mass Analysis
olerance $=5.0$ PPM / DBE: $\min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=9$

28 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used
C: 1-100 $\mathrm{H}: 0-110 \quad \mathrm{~N}: 0-10 \quad \mathrm{O}: 0-15 \quad \mathrm{Fe}: 1-1 \quad \mathrm{MeOH}+\mathrm{CH}_{2} \mathrm{Cl} 2$
(
ENSCP_WY0206 $21(0.570) \mathrm{Cm}(18: 28) \quad 1:$ TOF MS ES+

3b-QM

Elemental Composition Report

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=9$
Monoisotopic Mass, Odd Electron Ions
53 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used
$\begin{array}{llll}\text { C: 1-110 } & \mathrm{H}: ~ 0-110 & \mathrm{O}: ~ 0-10 & \mathrm{Fe}: ~ 1-1\end{array}$
ENSCP_WY1107 17 (0.483) Cm (16:17)

3c-QM

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=9$
Monoisotopic Mass, Odd Electron Ions
689 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
$\begin{array}{lllll}\text { C: 1-100 Used: } & \mathrm{H}: 0-110 & \mathrm{~N}: 0-10 & \mathrm{O}: 0-15 & \mathrm{Fe}\end{array}$
$\square \mathrm{MeOH}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$
ENSCP_WO1009 21 (0.569) Cm (19:28)
$\mathrm{MeOH}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$
LCT Premier XE KE483
TO MS
$8.44 \mathrm{e}+004$

3b-A

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=9$
Monoisotopic Mass, Odd Electron Ions
53 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llll}C: \\ \text { C 1-110 } & \text { H: 0-110 } & \text { O: 0-10 } & \mathrm{Fe}: ~ 1-1\end{array}$
04-Mar-2014 11:22:40 MeOH
ENSCP_WY1022-1 $21(0.572) \mathrm{Cm}(20: 26) \quad$ MeOH \quad LCT Premier XE KE483

Minimum:			-1.5
Maximum:	10.0	5.0	100.0

Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
$\begin{array}{lllllllllllllllll}452.1090 & 452.1075 & 1.5 & 3.3 & 16.0 & 710.7 & 0.0 & \text { C27 } & \text { H24 } & 03 & \mathrm{Fe}\end{array}$

3b-B

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=9$
Monoisotopic Mass, Odd Electron Ions
54 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llll}\mathrm{C}: 1-110 & \mathrm{H}: 0-110 & \mathrm{O}: 0-10 & \mathrm{Fe}: 1-1\end{array}$
$\begin{array}{lll}\text { C: 1-110 } & \text { H: 0-110 } & \text { O: 0-10 } \\ \mathrm{Fe}: ~ 1-1\end{array}$

Minimum:			-1.5
Maximum:	10.0	5.0	100.0

Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
$\begin{array}{lllllllllllllllll}470.1198 & 470.1180 & 1.8 & 3.8 & 15.0 & 569.0 & 0.0 & \text { C27 } & \text { H26 } & 04 & \mathrm{Fe}\end{array}$

