Angew. Chem. Int. Ed., **2015**, 54, 10230-10233 Angew. Chem., 2015, 127, 10368-10371

Supporting Information

Organometallic Antitumor Compounds: Ferrocifens as Precursors to Quinone Methides

Yong Wang, Pascal Pigeon, Siden Top, * Michael J. McGlinchey, and Gérard Jaouen*

Chemical Synthesis Biological studies Tables SI1 – SI3 Figures SI1 – SI4 Reference NMR and MS spectra

Chemical Synthesis

General Synthetic Methods. Unless otherwise stated, the ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 300-MHz spectrometer. The data are reported in parts per million relative to the referenced solvent. The mass spectra were obtained on a DSQII and ITQ 1100 Thermo Scientific spectrometer for both electronic ionization (EI) and chemical ionization (CI) methods on API 3000 PE Sciex Applied Biosystems for electrospray ionization (ESI) method. The flash column chromatography was performed on silica gel Merck 60 (40-63 µm). Anhydrous solvents were obtained by standard procedure. The purity of products was more than 95% characterized by elemental analysis or analytical reverse phase HPLC (Shimadzu instrument) with Nucleodur C18 column (4.6 × 150 mm) using MeOH as eluent, flow rate = 1 mL/min, λ = 254 nm. Elemental analyses were performed by the Laboratory of Microanalysis at ICSN of CNRS at Gif sur Yvette, France.

2-Ferrocenyl-1-(4-hydroxyphenyl)-5-hydroxy-1-phenyl-pent-1-en, 3a

Methyl 4-ferrocenyl-4-oxo-butanoate

Ferrocene (5 g, 26.9 mmol) was dissolved in dry dichloromethane. Aluminum trichloride (3.58 g, 26.9 mmol) was added in small portions. Then methyl 4-chloro-4-oxobutyrate (2.76 mL, 22.4 mmol) was added dropwise. The stirring was continued overnight and then the solution was carefully poured into water. The aqueous layer was extracted with dichloromethane and the combined organic layers were washed with water, dried over MgSO₄ and concentrated under reduced pressure. The crude mixture was separated on a silica gel column with dichloromethane/petroleum ether (50/50), then dichloromethane as an eluent. The second fraction (4.8 g, yield = 71%) corresponded to the desired product. ¹H NMR (300 MHz; CDCl₃): δ = 2.7 (t, *J* = 6.8 Hz, 2 H, CH₂; CH₂-COOMe), 3.1 (t, *J* = 6.8 Hz, 2 H, CH₂; CH₂-CO-Fc), 3.7 (s, 3 H, CH₃; Me), 4.22 (s, 5 H, 5xCH; Cp), 4.5 (t, *J* = 1.8 Hz, 2 H, 2xCH; C₅H₄), 4.8 (t, *J* = 1.8 Hz, 2 H, 2xCH; C₅H₄). ¹³C NMR (75 MHz; CDCl₃): δ = 27.9 (CH₂; CH₂-COOMe), 34.3 (CH₂, CH₂-CO

CO-Fc), 51.8 (CH₃; Me), 69.3 (2 CH; C₅H₄), 70.0 (5 CH; Cp), 72.3 (2 CH; C₅H₄), 78.6 (C; C₅H₄), 173.7 (C; COOMe), 202.1 (C; CO).

Methyl 4-en-4-ferrocenyl-5-(4-hydroxyphenyl)-5-phenyl-pentanoate, 2a

Titanium chloride (2.2 mL, 20 mmol) was added dropwise to a suspension of zinc powder (2.0 g, 30 mmol) in dry THF at 0 °C. The mixture was heated at reflux for 2 hours. A second solution was prepared by dissolving each ketone in dry THF: the ferrocenyl ester ketone (1.5 g, 5 mmol) and the 4hydroxybenzophenone (2.0 g, 10 mmol). This latter solution was added dropwise to the first solution and then the reflux was continued overnight. After cooling to room temperature, the mixture was stirred with water and dichloromethane. The mixture was acidified with diluted hydrochloric acid until dark color disappeared and was decanted. The aqueous layer was extracted with dichloromethane and the combination of organic layers was dried on MgSO₄. After concentration under reduced pressure, the crude product was chromatographed on silica gel column with a mixture of cyclohexane/ethyl acetate as the eluent. The second fraction (1.05 g, yield = 45%) corresponded to the desired product. ¹H NMR (300 MHz; acetone- d_6): $\delta = 2.43-2.54$ (m, 2H; CH₂), 2.87-3.05 (m, 2H; CH₂), 3.60 and 3.61 (s, 3H, CH₃; OCH₃), 3.92 and 3.99 (t, *J* = 1.9 Hz, 2H, 2xCH; C₅H₄), 4.11 and 4.15 (t, *J* = 1.9 Hz, 2H, 2xCH; C_5H_4), 4.18 and 4.19 (s, 5H, 5xCH; Cp), 6.76 and 6.87 (d, J = 8.7 Hz, 2H, 2xCH; C_6H_4), 6.90-7.44 (m, 7H, 7xCH; Ar), 8.34 and 8.39 (bs, 1H; OH). ¹³C NMR (75 MHz; acetone- d_6): $\delta = 31.1$ (CH₂), 35.8 and 35.9 (CH₂), 52.3 (OCH₃), 69.7 (2 CH; C₅H₄), 70.7 (7 CH; 5xCH (Cp) + 2xCH (C₅H₄)), 88.1 and 88.2 (Cq; C₅H₄), 116.7 and 116.9 (2 CH; C₆H₄), 127.8 and 127.9 (CH; C₆H₅), 129.7 and 130.0 (2xCH; Ar), 130.7 and 131.3 (2xCH; Ar), 131.9 and 132.4 (2xCH; Ar), 134.9 and 135.3 (C), 136.8 and 137.0 (C), 141.0 (C), 146.3 and 146.7 (C), 157.7 (C; C-OH), 174.3 and 174.4 (C, CO). MS (CI, NH₃) m/z: 467 $[M+H]^+$, 484 $[M+NH_4]^+$. HRMS calcd for C₂₈H₂₆FeO₃: 466.1231, found: 466.1235.

2-Ferrocenyl-1-(4-hydroxyphenyl)-5-hydroxy-1-phenyl-pent-1-ene, 3a

To a stirred suspension of LiAlH₄ (0.114 g, 3 mmol) in diethyl ether (20 mL) at 0 °C was added dropwise a solution of the previous ester **1a** (0.466 g, 1 mmol) in THF (50 mL). The mixture was left stirring at RT for 3 hours then at reflux overnight. After cooling, it was poured into a saturated sodium bicarbonate solution and extracted five times with diethyl ether. The combination of organic layers was washed with water and dried over MgSO₄. After concentration under reduced pressure, the crude product was purified by semi-preparative HPLC using acetonitrile/water (70:30) as an eluent. (0.39 g, yield = 90%) were obtained as an orange oil. ¹H NMR (300 MHz; acetone-*d*₆): $\delta = 1.65$ -1.80 (m, 2H; CH₂), 2.65-2.80 (m, 2H ; CH₂), 3.41-3.54 (m, 3 H, CH₂; CH₂-O + OH), 3.97 and 4.05 (t, J = 1.9 Hz, 2H, 2xCH; C₅H₄), 4.08 and 4.12 (t, J = 1.9 Hz, 2H, 2xCH; C₅H₄), 4.16 and 4.17 (s, 5H, 5xCH; Cp), 6.77 and 6.86 (d, J = 8.7 Hz, 2H, 2xCH; C₆H₄), 6.89-7.42 (m, 7H, 7xCH; Ar), 8.32 and 8.34 (bs, 1H; OH). ¹³C NMR (75 MHz; acetone- d_6): $\delta = 32.6$ (CH₂), 35.6 (CH₂), 63.2 (CH₂; CH₂-O), 69.5 (2 CH; C₅H₄), 70.7 (5 CH; Cp), 70.9 (2 CH; C₅H₄), 88.7 (Cq; C₅H₄), 116.7 (2 CH; C₆H₄), 127.6 (CH; C₆H₅), 129.7 and 129.8 (2xCH; Ar), 130.9 and 131.4 (2xCH; Ar), 132.0 and 132.4 (2xCH; Ar), 136.7 and 137.0 (C), 137.5 and 137.8 (C), 139.4 and 139.8 (C), 146.8 (C), 157.5 and 157.6 (C; C-OH). MS (CI, NH₃) *m/z*: 439 [M+H]⁺. HRMS calcd for C₂₇H₂₆FeO₂: 438.1282, found: 438.1288.

2-Ferrocenyl-1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene, 3b

Methyl 4-en-4-ferrocenyl-5,5-bis-(4-hydroxyphenyl)-pentanoate, 2b

TiCl₄ (3.8 ml, 33 mmol) was added dropwise to a suspension of zinc powder (4.5 g, 66 mmol) in 40 ml of THF at 0 °C. The dark grey mixture obtained was heated at refluxing for 2 hrs. A solution of THF (20 ml) containing 4,4'-dihydroxybenzophenone (4.91 g, 22 mmol) and 4-oxo-4-ferrocenylbutanoate (3.13 g, 10 mmol) was added dropwise to the first solution and the resulting mixture was heated overnight. After cooling to room temperature, the mixture was acidified by addition of diluted HCl solution. The aqueous layer was extracted with EtOAc for three times. The combined organic layer was dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give methyl 4-en-4-ferrocenyl-5,5-bis-(4-hydroxyphenyl)-pentanoate as red solid 2.8 g, yield: 58%. ¹H NMR (300 MHz; acetone- d_6): $\delta = 2.46$ (t, J = 8.2 Hz, 2H, CH₂), 2.98 $(t, J = 8.2 \text{ Hz}, 2H, CH_2), 3.43 (s, 3H, OCH_3), 3.98 (t, J = 1.9 \text{ Hz}, 2H, C_5H_4), 4.12 (t, J = 1.9 \text{ Hz}, 2H, C_5H_4)$ $C_{5}H_{4}$), 4.18 (s, 5H, Cp), 6.74 (d, J = 8.7 Hz, 2H, $C_{6}H_{4}$), 6.86 (d, J = 8.7 Hz, 2H, $C_{6}H_{4}$), 6.89 (d, J = 8.7Hz, 2H, C₆H₄), 7.11 (d, J = 8.7 Hz, 2H, C₆H₄), 8.29 (s, 1H, OH), 8.35 (s, 1H, OH). ¹³C NMR (75 MHz; acetone- d_6): $\delta = 31.7$ (CH₂), 35.9 (CH₂), 52.3 (OCH₃), 68.6 (2 CH; C₅H₄), 70.6 (5 CH; Cp), 70.7 (2 CH; C₅H₄), 88.8 (Cq; C₅H₄), 116.6 (2 CH; C₆H₄), 116.8 (2 CH; C₆H₄), 131.9 (2 CH; C₆H₄), 132.5 (2 CH; C₆H₄), 134.2 (C), 137.4 (C), 137.9 (C), 141.1 (C), 157.6 (2 C, C-OH), 174.4 (C, CO). MS (EI, 70 eV) m/z: 482 [M]^{+•}. HRMS calcd for C₂₈H₂₆FeO₄: 482.1181, found: 482.1196. Anal. Calcd for C₂₈H₂₆FeO₄: C, 69.72; H, 5.43. Found: C, 69.79; H, 5.56.

2-Ferrocenyl-1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene, 3b

LiAlH₄ (0.16 g, 4.2 mmol) was added slowly to the solution of methyl 5,5-bis(4-hydroxyphenyl)-4-ferrocenylpent-4-enoate (0.4 g, 0.83 mmol) in 10 ml of Et₂O. The mixture obtained was heated at reflux overnight. The reaction was then quenched by water. The aqueous layer was extracted with ethyl acetate for three times. The organic layer was dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 2-ferrocenyl-1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene as brown solid 0.29 g, yield: 77%. ¹H NMR (300 MHz; acetone- d_6): $\delta = 1.72$ -1.85 (m, 2H; CH₂), 2.82 (t, J = 8.0 Hz, 2H; CH₂), 3.51-3.60 (m, 3 H, CH₂; CH₂-O + OH), 4.10 (t, J = 1.9 Hz, 2H, 2xCH; C₅H₄), 4.17 (t, J = 1.9 Hz, 2H, 2xCH; C₅H₄), 4.23 (s, 5H, 5xCH; Cp), 6.82 (d, J = 8.7 Hz, 2H, 2xCH; C₆H₄), 6.93 (d, J = 8.7 Hz, 2H, 2xCH; C₆H₄), 6.99 (d, J = 8.7 Hz, 2H, 2xCH; C₆H₄), 7.18 (d, J = 8.7 Hz, 2H, 2xCH; C₆H₄), 8.32 (bs, 1H; OH), 8.35 (bs, 1H; OH). ¹³C NMR (75 MHz; acetone- d_6): $\delta = 32.7$ (CH₂), 35.6 (CH₂), 63.3 (CH₂; CH₂-O), 69.4 (2 CH; C₅H₄), 132.0 (2 CH; C₆H₄), 132.5 (2 CH; C₆H₄), 136.0 (C), 138.0 (C), 138.3 (C), 139.9 (C), 157.3 (Cq; C-OH), 157.4 (Cq; C-OH). MS (EI, 70 eV) *m*/z: 454 [M]⁺⁺, 389 [M-Cp]⁺, 121 [CpFe]⁺. HRMS calcd for C₂₇H₂₆FeO₃: 454.1232, found: 454.1237.

2-Ferrocenyl-1-(4-hydroxy-3,5-dimethyl-phenyl)-5-hydroxy-1-phenyl-pent-1-en, 3c

Methyl 4-en-4-ferrocenyl-5-(4-hydroxy-3,5-dimethyl-phenyl)-5-phenyl-pentanoate, 2c

TiCl₄ (1.8 ml, 16 mmol) was added dropwise to a suspension of zinc powder (2.1 g, 32 mmol) in 20 ml of THF at 0 °C. The dark grey mixture obtained was heated at reflux for 2 hrs. A solution of THF (10 ml) containing (4-hydroxy-3,5-dimethylphenyl)(phenyl)methanone (1.2 g, 5 mmol) and methyl 4-oxo-4-ferrocenylbutanoate (1.2 g, 4 mmol) was added dropwise to the first solution and the resulting mixture was heated overnight. After cooling to room temperature, the mixture was acidified by addition of dilut-ed HCl. The aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give methyl methyl 4-en-4-ferrocenyl-5-(4-hydroxy-3,5-dimethyl-phenyl)-5-phenyl-pentanoate as a light yellow solid 1.5 g, yield 76%. ¹H NMR (300 MHz; acetone-*d*₆): δ = 2.12 and 2.15 (s, 6H, 2xCH₃; CH₃), 2.46 (m, 2H; CH₂), 2.86 and 2.95 (m, 2H; CH₂), 3.56 and 3.58 (s, 3H, OCH₃), 3.87 and 3.95 (t, *J* = 1.9 Hz, 2H, 2xCH; C₅H₄), 4.12 and 4.14 (s, 5H, 5xCH; Cp), 6.70 and 6.85 (s, 2H, 2xCH; C₆H₂), 7.06 and 7.08 (t, *J* = 1.9 Hz, 1H, CH; C₆H₅), 7.16 - 7.37 (m, 4H, 4xCH; C₆H₅). ¹³C NMR (75 MHz; acetone-*d*₆): δ

= 16.7 (2xCH₃), 30.9 (CH₂), 35.2 (CH₂), 51.6 (OCH₃), 68.9 (4 CH; C₅H₄), 69.9 (5 CH; Cp), 87.4 (Cq; C₅H₄), 124.5 and 124.7 (CH; C₆H₅), 127.0 (C), 127.1 (C), 128.9 and 129.2 (2 CH; C₆H₅), 129.8 and 129.9 (2 CH; C₆H₅), 130.3 and 130.5 (2 CH; C₆H₂), 133.8 and 134.1 (C), 136.3 and 136.6 (C), 140.5 and 140.6 (C), 145.7 and 146.1 (C), 152.9 (C; C-O), 173.6 and 173.7 (C, CO). MS-CI (NH₃) m/z: 495 (M+H)⁺. HRMS calcd for C₃₀H₃₀FeO₃: 494.1544, found: 494.1536.

2-Ferrocenyl-1-(4-hydroxy-3,5-dimethylphenyl)-5-hydroxy-1-phenyl-pent-1-ene, 3c

LiAlH₄ (0.3 g, 5 mmol) was added slowly to the solution of methyl 4-ferrocenyl-5-(4-hydroxy-3,5dimethylphenyl)-5-phenylpent-4-enoate (0.5 g, 1 mmol) in 10 ml of THF. The mixture obtained was heated at reflux overnight. And then the reaction was quenched by water. The aqueous layer was extracted with ethyl acetate for three times. The organic layer was dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 2-ferrocenyl-1-(4-hydroxy-3,5-dimethylphenyl)-5-hydroxy-1-phenyl-pent-1-ene as a light vellow solid 0.4 g, yield 86%. ¹H NMR (300 MHz; acetone- d_6): $\delta = 1.65$ and 1.77 (m, 2H; CH₂), 2.15 and 2.21 (s, 6H; 2xCH₃), 2.63 and 2.72 (m, 2H; CH₂), 3.40 – 3.48 (m, 3H; OH and CH₂), 3.91 and 4.01 (t, J = 1.9 Hz, 2H, 2xCH; C₅H₄), 4.03 and 4.06 (t, J = 1.9 Hz, 2H, 2xCH; C₅H₄), 4.12 (s, 5H, 5xCH; Cp), 6.70 and 6.84 (s, 2H, 2xCH; C_6H_2), 7.06 and 7.08 (t, J = 1.9 Hz, 1H, CH; C_6H_5), 7.13 - 7.36 (m, 4H, 4xCH; C₆H₅). ¹³C NMR (75 MHz; acetone- d_6): $\delta = 16.7$ (2xCH₃), 31.7 and 31.9 (CH₂), 34.9 and 35.0 (CH₂), 62.6 (OCH₂), 68.7 (2 CH; C₅H₄), 69.9 (5 CH; Cp), 70.1 (2 CH; C₅H₄), 87.7 and 88.0 (Cq; C₅H₄), 124.5 (2C), 126.8 (CH; C₆H₅), 128.9 and 129.0 (2 CH; C₆H₅), 129.9 and 130.0 (2 CH; C₆H₅), 130.4 and 130.6 (2 CH; C₆H₂), 135.5 and 135.8 (C), 136.8 and 137.1 (C), 139.4 and 139.5 (C), 146.2 and 146.5 (C), 152.6 and 152.7 (C; C-O). MS-CI (NH₃) m/z: 467 (M+H)⁺. HRMS calcd for C₂₉H₃₀FeO₂: 466.1595, found: 466.1586.

1,1-bis-(4-Hydroxyphenyl)-5-hydroxy-pent-2-phenyl-1-ene, 4b

Methyl 4-en-5,5-bis-(4-hydroxyphenyl)-4-phenyl-pentanoate

TiCl₄ (6.6 ml, 60 mmol) was added dropwise to a suspension of zinc powder (5.9 g, 90 mmol) in 60 ml of THF at 0 °C. The dark grey mixture obtained was heated at refluxing for 2 hrs. A solution of THF (20 ml) containing 4,4'-dihydroxybenzophenone (3.2 g, 15 mmol) and methyl 3-benzoylpropionate (2.9 g, 15 mmol) was added dropwise to the first solution and the resulting mixture was heated overnight. After cooling to room temperature, the mixture was acidified by addition of diluted HCl solution. The aque-

ous layer was extracted with EtOAc for three times. The combined organic layer was dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give methyl 4-en-5,5-bis-(4-hydroxyphenyl)-4-phenyl-pentanoate as white solid 3.2 g, yield: 57%. ¹H NMR (300 MHz; acetone- d_6): $\delta = 2.32$ (t, J = 7.9 Hz, 2H, CH₂), 2.82 (t, J = 7.9 Hz, 2H, CH₂), 3.55 (s, 3H, OCH₃), 6.53 (d, J = 8.5 Hz, 2H, C₆H₄), 6.75 (d, J = 8.5 Hz, 2H, C₆H₄), 6.89 (d, J = 8.5 Hz, 2H, C₆H₄), 7.14 (d, J = 8.5 Hz, 2H, C₆H₄), 7.15 – 7.27 (m, 5H, C₆H₅), 8.16 (s, 1H, OH), 8.41 (s, 1H, OH). ¹³C NMR (75 MHz; acetone- d_6): $\delta = 32.8$ (CH₂), 34.5 (CH₂), 52.3 (OCH₃), 115.8 (2 CH; C₆H₄), 116.6 (2 CH; C₆H₄), 127.7 (CH; C₆H₅), 129.5 (2 CH; CH_{arom}), 131.3 (2 CH; CH_{arom}), 132.0 (2 CH; CH_{arom}), 133.4 (2 CH; CH_{arom}), 136.1 (C), 136.4 (C), 138.4 (C), 141.9 (C), 143.8 (C), 157.1 (C, C-OH), 158.0 (C, C-OH), 174.2 (C, CO).

1,1-bis-(4-Hydroxyphenyl)-5-hydroxy-pent-2-phenyl-1-ene, 4b

LiAlH₄ (0.9 g, 24 mmol) was added slowly to the solution of methyl 4-en-5,5-bis-(4-hydroxyphenyl)-4-phenyl-pentanoate (3 g, 8 mmol) in 30 ml of Et₂O. The mixture obtained was heated at reflux overnight. The reaction was then quenched by water. The aqueous layer was extracted with ethyl acetate for three times. The organic layer was dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-2-phenyl-1-ene as white solid 2.8 g, yield: 98%. ¹H NMR (300 MHz; acetone- d_6): $\delta = 1.49 - 1.64$ (m, 2H; CH₂), 2.56 (t, J = 8.1 Hz, 2H; CH₂), 3.45 (t, J = 6.8 Hz, 2H; CH₂), 6.51 (d, J = 8.7 Hz, 2H, 2xCH; C₆H₄), 6.73 (d, J = 8.7 Hz, 2H, 2xCH; C₆H₄), 6.86 (d, J = 8.7 Hz, 2H, 2xCH; C₆H₄), 7.12 - 7.24 (m, 5H, C₆H₅), 8.47 (br s, 2H; OH). ¹³C NMR (75 MHz; acetone- d_6): $\delta = 33.9$ (2xCH₂), 63.3 (CH₂; CH₂-O), 115.7 (2 CH; C₆H₄), 116.5 (2 CH; C₆H₄), 127.4 (CH; C₆H₅), 129.4 (2 CH; C₆H₄), 131.2 (2 CH; C₆H₅), 132.1 (2 CH; C₆H₄), 133.4 (2 CH; C₆H₅), 136.3 (C), 136.6 (C), 140.2 (C), 140.7 (C), 144.8 (C), 157.0 (Cq; C-OH), 157.8 (Cq; C-OH). MS (CI, NH₃) m/z: 347 [M+H]⁺, 364 [M+NH₄]⁺. HRMS calcd for C₂₃H₂₃O₃ [M+H]⁺: 347.1647, found: 347.1660.

1-(4-Hydroxy-3,5-dimethyl-phenyl)-5-hydroxy-pent-1,2-diphenyl-1-en, 4c

Methyl 4-en-5-(4-hydroxy-3,5-dimethyl-phenyl)-4,5-diphenyl-pentanoate

TiCl₄ (2.3 ml, 20 mmol) was added dropwise to a suspension of zinc powder (2.7 g, 42 mmol) in 30 ml of THF at 0 °C. The dark grey mixture obtained was heated at reflux for 2 hrs. A solution of THF (10

ml) containing (4-hydroxy-3,5-dimethylphenyl)(phenyl)methanone (1.4 g, 6.3 mmol) and methyl 4-oxo-4-phenylbutanoate (0.7 ml, 4.2 mmol) was added dropwise to the first solution and the resulting mixture was heated overnight. After cooling to room temperature, the mixture was acidified by addition of diluted HCl. The aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give methyl 4-en-5-(4-hydroxy-3,5-dimethyllphenyl)-4,5-diphenyl-pentanoate as a white solid 0.9 g, yield 58%. ¹H NMR (300 MHz; acetone- d_6): $\delta =$ 1.97 and 2.23 (s, 6H, 2xCH₃; CH₃), 2.30 (m, 2H; CH₂), 2.72 and 2.81 (m, 2H; CH₂), 3.50 and 3.52 (s, 3H, OCH₃), 6.50 and 6.88 (s, 2H, CH; C₆H₂), 6.90 - 7.04 (m, 2H), 7.06 - 7.22 (m, 5H), 7.25 - 7.33 (m, 2H), 7.38 (m, 1H). ¹³C NMR (75 MHz; acetone- d_6): $\delta =$ 16.5 and 16.7 (2xCH₃), 32.0 and 32.2 (CH₂), 33.6 and 33.8 (CH₂), 51.6 (OCH₃), 123.5 (C), 124.6 (C), 126.6 (CH), 127.1 (CH), 127.5 (CH), 128.1 (CH), 128.7 (CH), 129.1 (CH), 130.0 (CH), 130.5 (CH), 130.6 (CH), 131.3 (CH), 131.5 (CH), 134.7 (C), 135.2 (C), 138.0 (C), 138.8 (C), 141.5 (C), 141.7 (C), 142.7 (C), 142.9 (C), 144.2 (C), 144.5 (C), 152.4 (C), 153.2 (C), 173.4 (C, CO).

1-(4-Hydroxy-3,5-dimethylphenyl)-5-hydroxy-1,2-diphenyl-pent-1-ene, 4c

LiAlH₄ (0.2 g, 3.5 mmol) was added slowly to the solution of methyl 4-en-5-(4-hydroxy-3,5-dimethylphenyl)-4,5-diphenyl-pentanoate (0.38 g, 1 mmol) in 10 ml of THF. The mixture obtained was heated at reflux overnight. And then the reaction was quenched by water. The aqueous layer was extracted with ethyl acetate for three times. The organic layer was dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 1-(4-hydroxy-3,5-dimethylphenyl)-5-hydroxy-1,2-diphenyl-pent-1-ene as a white solid 0.3 g, yield 84%. ¹H NMR (300 MHz; acetone- d_6): $\delta = 1.54$ (m, 2H; CH₂), 1.96 and 2.23 (s, 6H; 2xCH₃), 2.42 - 2.62 (m, 2H; CH₂), 3.38 – 3.47 (m, 3H; OH and CH₂), 6.49 and 6.87 (s, 2H, 2xCH; C₆H₂), 6.89 - 7.39 (m, 10H, CH; 2xC₆H₅). ¹³C NMR (75 MHz; acetone- d_6): $\delta = 16.5$ and 16.7 (2xCH₃), 33.1 (CH₂), 33.2 (CH₂), 62.5 (OCH₂), 123.5 (C), 124.4 (C), 126.4 (CH), 126.7 (CH), 127.3 (CH), 128.1 (CH), 128.6 (CH), 128.9 (CH), 130.2 and 130.3 (2 CH), 130.4 and 130.5 (2 CH), 131.4 (CH), 131.6 (CH), 135.1 (C), 135.6 (C), 139.9 (C), 140.3 (C), 140.4 (C), 140.7 (C), 143.7 and 143.8 (C), 144.6 and 144.9 (C), 152.2 and 153.0 (C). MS-CI (NH₃) *m/z*: 359 (M+H)⁺, 376 [M+NH₄]⁺.

Chemical Oxidation of 3a, 3b, 3c and 4c

Quinone 3a-QM. Freshly made Ag_2O^1 (0.25 g, 1.1 mmol) was added to a solution of 2-ferrocenyl-1-(4-hydroxyphenyl)-5-hydroxy-1-phenyl-pent-1-ene (0.08 g, 0.18 mmol) in 8 ml of acetone. The dark grey mixture obtained changed to be dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (40 minutes). Filtration was followed by removal of the solvent under reduced pressure to give **3a-QM** as a dark red solid 65 mg, yield 83%. ¹H NMR (300 MHz, acetone-*d*₆): $\delta = 2.08 - 2.21$ (m, 2H, CH₂), 2.21 - 2.38 (m, 2H, CH₂), 3.95 - 4.05 (m, 2x1H, CH₂; CH₂-O), 4.14 - 4.20 (m, 2H, 2xCH; C₅H₄), 4.21 (s, 5H, 5xCH; Cp), 4.28 (m, 1H, CH; C₅H₄), 6.01 (dd, *J* = 10.2, 2.2 Hz, 1H, CH; C₆H₄), 6.30 (dd, *J* = 10.4, 2.2 Hz, 1H; C₆H₄), 6.59 (dd, *J* = 10.2, 2.7 Hz, 1H; C₆H₄), 6.72 (d, *J* = 7.5 Hz, 1H, CH; C₆H₄). ¹³C NMR (75 MHz, acetone-*d*₆): $\delta = 25.6$ (CH₂), 39.1 (CH₂), 67.7 (CH, C₅H₄), 68.0 (CH, C₅H₄), 68.1 (CH₂; CH₂-O), 69.2 (CH, C₃H₄), 69.8 (5xCH; Cp), 70.1 (CH; C₅H₄), 88.9 (C; Cq-O), 96.3 (C; C₅H₄), 128.3 (CH; C₆H₄), 128.4 (CH; C₆H₅), 128.5 (CH; C₆H₄), 139.9 (C; C₆H₅), 140.8 (CH; C₆H₄), 165.4 (C), 186.4 (C, C=O). MS-CI (NH₃) *m*/z; 437 (M+H)⁺. HRMS calcd for C₂₇H₂₄FeO₂: 436.1126, found: 436.1135.

Quinone 3b-QM. Freshly made Ag₂O (0.47 g, 2.1 mmol) was added to a solution of 2-ferrocenyl-1,1bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene (0.19 g, 0.41 mmol) in 6 ml of acetone. The dark grey mixture obtained changed to be dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (10 minutes). Filtration was followed by removal of the solvent under reduced pressure to give **3b-QM** as a dark red solid 170 mg, yield 89%. ¹H NMR (300 MHz, acetone- d_6): $\delta = 1.97$ (m, 1H, CH₂), 2.06 – 2.18 (m, 1H, CH₂), 2.28 (m, 2H, CH₂), 3.96 (m, 1H, OCH₂), 4.02 – 4.06 (m, 1H, OCH₂), 4.15 - 4.18 (m, 2H, 2xCH; C₅H₄), 4.19 (s, 5H, 5xCH; Cp), 4.25 (m, 1H, CH; C₅H₄), 4.29 (m, 1H, CH; C₅H₄), 6.02 (dd, *J* = 10.2, 2.1 Hz, 1H, CH; C₆H₄), 6.79 (br s, 1H; C₆H₄), 6.91 (br s, 1H; C₆H₄), 6.56 (br s, 1H; C₆H₄), 6.70 (dd, *J* = 10.2, 2.7 Hz, 1H; C₆H₄), 6.79 (br s, 1H; C₆H₄). ¹³C NMR (75 MHz, acetone- d_6): $\delta = 25.7$ (CH₂), 39.2 (CH₂), 67.7 (CH, C₅H₄), 68.0 (CH, C₅H₄), 68.2 (CH₂; CH₂-O), 69.1 (CH, C₅H₄), 69.8 (5xCH; Cp), 70.0 (CH; C₅H₄), 89.1 (C; Cq-O), 96.4 (C; C₅H₄), 115.3 (2 CH; C₆H₄), 128.2 (CH; C₆H₄), 128.3 (CH; C₆H₄), 130.8 (C; C₆H₄), 131.1 (C; C=C), 138.5 (2 CH; C₆H₄), 141.4 (2 CH; C₆H₄), 158.2 (C; C=C), 166.4 (C; C₆H₄), 186.6 (C, C=O). MS-EI *m/z*: 452 (M)⁺; HRMS calcd for C₂₇H₂₄FeO₃ (M)⁺: 452.1075, found: 452.1082. **Quinone 3c-QM.** Freshly made Ag₂O (0.25 g, 1.1 mmol) was added to a solution of 2-Ferrocenyl-1-(4-hydroxy-3,5-dimethylphenyl)-5-hydroxy-1-phenyl-pent-1-ene (0.08 g, 0.18 mmol) in 8 ml of acetone. The dark grey mixture obtained changed to be dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (60 minutes). Filtration was followed by removal of the solvent under reduced pressure to give **3c-QM** as a dark red solid 65 mg, yield 83%. ¹H NMR (300 MHz, acetone- d_6): $\delta = 1.68$ (d, J = 1.3 Hz, 3H, CH₃), 1.94 - 1.97 (m, 1H, CH₂), 1.98 (d, J = 1.3 Hz, 3H, CH₃), 2.08 - 2.15 (m, 1H, CH₂), 2.16 - 2.38 (m, 2H, CH₂), 3.91 - 4.00 (m, 2H, CH₂; CH₂-O), 4.02 - 4.07 (m, 1H, CH; C₅H₄), 4.12 - 4.18 (m, 1H, CH; C₅H₄), 4.20 (s, 5H, 5xCH; Cp), 4.25 (m, 1H, CH; C₅H₄), 4.33 (m, 1H, CH; C₅H₄), 6.42 (dd, J = 2.7, 1.24 Hz, 1H, CH; C₆H₂), 6.76 (d, J = 7.4 Hz, 1H; C₆H₅), 7.23 - 7.56 (m, 4H; C₆H₅), 8.60 (dd, J = 2.7, 1.4 Hz, 1H; C₆H₂). ¹³C NMR (75 MHz, acetone- d_6): $\delta = 16.5$ (CH₃), 17.2 (CH₃), 25.8 (CH₂), 39.5 (CH₂), 67.6 (CH, C₅H₄), 68.9 (CH, C₅H₄), 69.8 (5xCH; Cp), 69.9 (CH; C₅H₄), 88.7 (C; Cq-O), 96.9 (C; C₃H₄), 128.3 (CH; C₆H₂), 128.5 (CH; C₆H₂), 129.8 (CH; C₆H₅), 130.5 (C; C₆H₅), 134.5 (2 CH; C₆H₅), 135.0 (C), 130.3 (C), 135.2 (C), 136.9 (2 CH; C₆H₅), 140.4 (C; C₆H₅), 161.7 (C), 186.8 (C, C=O). MS-CI (NH₃) m/z: 465 (M+H)⁺. HRMS calcd for C₂₉H₂₈FeO₂: 464.1439, found: 464.1455.

Quinone 4c-QM. Freshly made Ag₂O (0.16 g, 0.7 mmol) was added to a solution of 1-(4-hydroxy-3,5dimethylphenyl)-5-hydroxy-1,2-diphenyl-pent-1-ene (0.05 g, 0.14 mmol) in 3 ml of acetone- d_6 . The reaction was monitored by TLC until complete conversion of the starting material (90 minutes). Filtration was followed by ¹H NMR spectra directly. ¹H NMR (300 MHz, acetone- d_6): $\delta = 1.91$ (d, J = 1.3Hz, 3H, CH₃), 2.00 (d, J = 1.3 Hz, 3H, CH₃), 2.57 - 2.67 (m, 2H, CH₂), 3.79 (dt, J = 11.3, 5.0 Hz, 2H, CH₂-O), 3.89 (t, 1H, OH), 6.02 (t, J = 7.4 Hz, 1H, CH=C), 6.77 (s, 1H, CH; C₆H₂), 6.80 - 7.38 (m, 10H, 10xCH; C₅H₅), 7.80 (s, 1H, CH; C₆H₂).

Chemical stability profile of 3b-QM

Freshly made Ag_2O (0.22 g, 0.9 mmol) was added to a solution of 2-ferrocenyl-1,1-bis-(4-hydroxyphenyl)-5-hydroxy-pent-1-ene (0.1 g, 0.23 mmol) in 6 ml of acetone. The dark grey mixture obtained changed to be dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (10 minutes). Filtration was followed by removal most of the solvent under reduced pressure. The residue was kept at room temperature for around 1 week, there were four new spots appearing identified by TLC. The residue was purified by column chromatog-

raphy on silica gel eluting with cyclohexane/ethyl acetate (2:1) to give 4 compounds. 3b-A. 4,4'-(3ferrocenyl-5,6-dihydro-2H-pyran-2,2-diyl)diphenol. A brown solid 15 mg, yield 15%. ¹H NMR (300 MHz, acetone- d_6) $\delta = 2.38$ (q, J = 5.4 Hz, 2H; CH₂), 3.50 (t, J = 5.7 Hz, 2H; OCH₂), 3.83 (s, 2H; C₅H₄), 3.97 (s, 2H; C₅H₄), 4.03 - 4.08 (m, 5H; Cp), 6.57 (s, 1H; CH=C), 6.75 (d, J = 8.7 Hz, 4H; C₆H₄), 7.20 (d, J = 8.7 Hz, 4H; C₆H₄), 8.32 (s, 2H; OH). ¹³C NMR (75 MHz, acetone- d_6) $\delta = 26.99$ (CH₂), 59.20 (OCH₂), 68.15 (2 CH; C₅H₄), 70.51 (2 CH; C₅H₄), 70.85 (5 CH; Cp), 84.11 (C; C-O), 86.21 (C; C₅H₄), 114.70 (4 CH; C₆H₄), 125.73 (CH; CH=C), 131.94 (4 CH; C₆H₄), 136.18 (2 C; C₆H₄), 141.52 (C; CH=C), 157.41 (2 C; C₆H₄). MS-EI m/z: 452 (M)⁺. HRMS calcd for C₂₇H₂₄FeO₃ (M)⁺: 452.1075, found: 452.1090. 3b-B. 5-hydroxy-1,1-bis(4-hydroxyphenyl)-1-ferrocenylpentan-2-one. A brown solid 30 mg, yield 30%. ¹H NMR (300 MHz, acetone- d_6) $\delta = 1.81$ (m, 2H; CH₂), 2.82 – 2.90 (m, 2H; CH₂), 3.55 (m, 3H; OH and OCH₂), 3.85 (s, 2H; C_5H_4), 4.14 (s, 5H; Cp), 4.25 (s, 2H; C_5H_4), 6.77 (d, J =8.8 Hz, 4H; C₆H₄), 6.92 (d, J = 8.8 Hz, 4H; C₆H₄), 8.37 (s, 2H; OH). ¹³C NMR (75 MHz, acetone- d_6) δ = 28.89 (CH₂), 38.82 (CH₂), 61.90 (OCH₂), 66.26 (C), 68.65 (2 CH; C₅H₄), 70.17 (5 CH; Cp), 71.61 (2 CH; C₅H₄), 92.19 (C; C₅H₄), 114.96 (4 CH; C₆H₄), 131.79 (4 CH; C₆H₄), 135.95 (2 C; C₆H₄), 156.96 (2 C; C₆H₄), 208.61 (C=O). MS-EI m/z: 470 (M)⁺. HRMS calcd for C₂₇H₂₆FeO₄ (M)⁺: 470.1180, found: 470.1198. **3b-C. 4-hydroxy-1-ferrocenylbutan-1-one.** ¹H NMR (300 MHz, acetone- d_6) $\delta = 1.81 - 1.93$ (m, 2H; CH₂), 2.86 (m, 2H; CH₂), 3.62 (m, 3H; OH and OCH₂), 4.22 (s, 5H; Cp), 4.50 – 4.54 (m, 2H; C_5H_4), 4.78 – 4.82 (m, 2H; C_5H_4). ¹³C NMR (75 MHz, acetone- d_6) $\delta = 28.18$ (CH₂), 36.49 (CH₂), 61.94 (OCH₂), 69.97 (2 CH; C₅H₄), 70.46 (5 CH; Cp), 72.68 (2 CH; C₅H₄), 80.56 (C; C₅H₄), 203.75 (C=O). **3b-D.** bis(4-hydroxyphenyl)methanone. A brown solid 16 mg, yield 34%. ¹H NMR (300 MHz, acetone- d_6) $\delta = 6.95$ (d, J = 8.6 Hz, 4H; C₆H₄), 7.68 (d, J = 8.6 Hz, 4H; C₆H₄), 9.17 (s, 2H; OH). ¹³C NMR (75 MHz, acetone- d_6) $\delta = 115.78$ (4 CH; C₆H₄), 130.83 (2 C; C₆H₄), 132.97 (4 CH; C₆H₄), 161.95 (2 C; C₆H₄), 193.98 (C=O).

X-ray crystal structure determinations for 3a, 3b, 3c-QM and 3b-A

Crystallographic data were recorded at 200 K on a Bruker APEX-II CCD diffractometer with graphite mono-chromated M_{0Ka} radiation ($\lambda M_{0Ka} = 0.71073$ Å) and the ω and Φ scan technique. Data were corrected for Lorentz and polarization effects, and semi-empirical absorption correction based on symmetry equivalent reflections was applied by using the SADABS program.² Orientation matrix and lattice parameters were obtained by least-squares refinement of the diffraction data of 9985 reflections within the range of $2^{\circ} < \Theta < 30^{\circ}$ (**a**). 9893 reflections within the range $3^{\circ} < \Theta < 30^{\circ}$ (**b**). and 9712 reflections within

the range of $2^{\circ} < \Theta < 32^{\circ}$ (c). The structure was solved by direct methods and refined with full-matrix least-squares technique on F^2 using the CRYSTALS programs.³ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were either set in calculated positions and isotropically refined. These crystallographic data have been deposited at the Cambridge Crystallographic Data Centre: **3a** (1052066), **3b** (1052065) and **3c-QM** (1052064), **3b-A** (1057305). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ (Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk.

Biological studies

Lipophilicity. Measurements of the octanol/water partition coefficient (log Po/w) were made by the HPLC technique according to a method described previously.^{4,5} Measurement of the chromatographic capacity factors (k) for each molecule was done at various concentrations in the range of 95–75% methanol containing 0.25% (v/v) 1-octanol and an aqueous phase consisting of 0.15% (v/v) n-decylamine in the buffering agent MOPS (3-morpholinopropane-1-sulfonic acid, prepared in 1-octanol saturated water) adjusted to pH 7.4. These capacity factors (k') are extrapolated to 100% of the aqueous component given the value of k'w. The log Po/w is obtained by the formula log Po/w = $0.13418 + 0.98452 \log k'$.

Culture cells. Stock solutions (10 mM) of the compounds to be tested were prepared in DMSO and were kept at -20°C in the dark. Serial dilutions in Dulbecco's modified eagle medium (DMEM) without phenol red/Glutamax I were prepared just prior to use. DMEM without phenol red, Glutamax I and fetal bovine serum were purchased from Gibco; MDA-MB-231 cells were obtained from ATCC (Manassas, VA, USA). Cells were maintained in a monolayer culture in DMEM with phenol red/Glutamax I supplemented with 9% fetal bovine serum at 37°C in a 5% CO₂/air-humidified incubator. For proliferation assays, MDA-MB-231 cells were plated in 1 mL of DMEM without phenol red, supplemented with 9% decomplemented and hormone-depleted fetal bovine serum, 1% kanamycin, 1% Glutamax I and incubated. The following day (D0), 1 mL of the same medium containing the compounds to be tested was added to the plates. After 3 days (D3) the incubation medium was removed and 2 mL of the fresh medium containing the compounds was added. At different days (D4, D5), the protein content of each well was quantified by methylene blue staining as follows: cell monolayers were fixed for 1 h at room temperature with methylene blue (1mg mL-1 in 50:50 water/MeOH mixture), then washed with water. After addition of HCl (0.1 M, 2 mL), the plate was incubated for 1 h at 37 °C and then the absorbance of each well (4 wells for each concentration) was measured at 655 nm with a Biorad spectrophotometer. The

results are expressed as the percentage of proteins versus the control. Two independent experiments, run in quadruplicate, were performed.

Figure SI1. Molecular structure of 3b (left) and 3b-A (right), thermal ellipsoids are shown at 50%.

Compound	$IC_{50} \left(\mu M\right)^{a}$
Compound	MDA-MB-231
3b	0.11 ± 0.02
3b-QM	4.39 ± 1.47
3b-A	2.03 ± 0.79
3b-B	4.14 ± 1.33
3b- C	≈ 150

Table SI1. IC₅₀ values measured for the isolated derivatives of **3b**.

^a Measured after 5 days of culture (mean of two independent experiments \pm SD).

Compound	3 a	3b	3c-QM	3b-A			
Formula	$C_{27}H_{26}FeO_2$	$C_{27}H_{26}FeO_3$	$C_{29}H_{28}FeO_2$	C ₂₇ H ₂₄ FeO ₃			
Molecular Weight	438.34	454.35	464.39	452.33			
Crystal description	Orange block	Red block	Orange block	Red block			
Crystal size (mm)	0.05 x 0.09 x 0.14	0.12 x 0.14 x 0.15	0.10 x 0.12 x 0.14	0.12 x 0.14 x 0.18			
λ (Å)	0.710730	0.710730	0.710730	0.71073			
Temperature (K)	200(2)	200(2)	200(2)	200(2)			
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic			
Space group	P 21/c	P 21/c	P -1	P 21/n			
<i>a</i> (Å)	9.6118(2)	9.2061(2)	8.6200(3)	12.9618(5)			
<i>b</i> (Å)	9.2344(2)	22.7012(5)	10.3366(3)	11.8081(4)			
<i>c</i> (Å)	23.8403(6)	10.5180(2)	13.2313(4)	14.6618(6)			
α (°)	90	90	77.6250(10)	90			
β (°)	100.3440(10)	103.1070(10)	83.9340(10)	103.3520(10)			
γ (°)	90	90	77.3890(10)	90			
Volume (Å3)	2081.66(8)	2140.89(8)	1121.61(6)	2183.39(14)			
Z	4	4	2	4			
R	0.035	0.031	0.037	0.041			
Rw	0.084	0.078	0.089	0.101			
GOF	1.000	1.001	1.000	0.984			

Table SI2. Crystallographic Data for 3a, 3b, 3c-QM and 3b-A.

3	a	3	b	3c-0	QM	3c-QM			
C(1)-C(2)	1.3480(17)	C(1)-C(2)	1.3591(14)	C(1)-C(2)	1.5503(15)	C(1)-C(2)	1.4350(15)		
C(1)-C(6)	1.4953(17)	C(1)-C(11)	1.4918(14)	C(1)-C(6)	1.3730(14)	C(1)-C(11)	1.4818(14)		
C(1)-C(12)	1.4918(17)	C(1)-C(12)	1.4885(14)	C(1)-C(12)	1.4980(15)	C(11)-C(12)	1.3404(14)		
C(2) - C(3)	1.5200(17)	C(2) - C(3)	1.5182(14)	C(2)-C(3)	1.5355(16)	C(11)-C(15)	1.5333(13)		
C(2)-C(18)	1.4811(17)	C(2)-C(18)	1.4791(13)	C(2)-C(18)	1.5011(16)	C(15)-C(16)	1.5269(13)		
Fe(1)- C(18)	2.0577(12)	Fe(1)-C(18)	2.0585(10)	C(6)-C(7)	1.4616(15)	C(15)-O(1)	1.4625(12)		
Fe(1)- C(23)	2.0478(15)	Fe(1)-C(23)	2.0437(12)	C(7)-C(8)	1.3488(16)	Fe(1)-C(1)	2.0519(10)		
				C(8)-C(9)	1.4746(18)				
				C(2)-O(1)	1.4273(13)				
				C(5)-O(1)	1.4334(17)				
				C(9)-O(2)	1.2293(16)				
				Fe(1)- C(18)	2.0476(12)				
				Fe(1)- C(23)	2.0374(16)				
C(18)- C(2)-C(3)	115.43(11)	C(18)-C(2)- C(3)	114.87(8)	C(2)-C(1)- C(6)	126.92(10)	C(1)-C(11)- C(12)	120.70(9)		
C(6)-C(1)- C(12)	112.81(10)	C(11)-C(1)- C(12)	114.59(8)	C(2)-C(1)- C(12)	113.45(9)	C(1)-C(11)- C(15)	118.77(8)		

Table SI3. Bond Lengths (Å) and Bond Angles (°) for 3a, 3b, 3c-QM and 3b-A.

15

C(6)-C(1)- C(12)	119.32(10)	C(15)- C(11)-C(12)	120.48(9)
C(1)-C(2)- C(18)	105.24(9)	C(16)- C(15)-C(11)	110.20(8)
C(2)-O(1)- C(5)	109.41(10)	C(11)- C(15)-O(1)	109.18(7)
C(3)-C(2)- O(1)	102.12(9)	C(14)-O(1)- C(15)	113.85(8)

Figure SI2. ¹H NMR spectrum of **3b-QM** in acetone- d_6 .

Figure SI3. ¹H NMR spectrum of **3b-QM** in DMSO-*d*₆.

Figure SI4. The oxidation of 4c-QM in acetone- d_6 .

Reference

(1) Liu, H.; Liu, J.; van Breemen, R. B.; Thatcher, G. R. J.; Bolton, J. L., *Chem. Res. Toxicol.* 2005, *18*, 162.

- (2) Blessing, R. H. Acta Cryst. A **1995**, *51*, 33.
- (3) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Crystallogr.
 2003, 36, 1487.
- (4) Minick, D. J.; Frenz, J. H.; Patrick, M. A.; Brent, D. A. J. Med. Chem. 1988, 31, 1923.
- (5) Pomper, M. G.; Vanbrocklin, H.; Thieme, A. M.; Thomas, R. D.; Kiesewetter, D. O.; Carlson, K.
- E.; Mathias, C. J.; Welch, M. J.; Katzenellenbogen, J. A. J. Med. Chem. 1990, 33, 3143.

3b

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 fl (ppm)

ullight hallow

22

3a-QM

3b-QM

3b-A

3b-C

29

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Odd Electron Ions 422 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-150 N: 0-5 O: 0-20 Fe: 1-1 27-Feb-2013 19:08:24 ENSCP_P681 21 (0.578) Cm (19:26) MeOH+CH2Cl2

i7-Feb-2013 19:08:24 INSCP_P681 21 (0.578) Cm (19:26)							MeOH+	LCT Premier XE KE483 1: TOF MS ES+				
100 %- 0	433,2565	434.3	734 435.1354	436.1335	437.1395	438.1288 438.65	339.1350 440.1398 50 439.3351 139.0 440.0	441.1417 441.0	442.1503 442.0	443.1544 443.0	444,5478, 445.065 444.0 445.0	7 446.9140 447.8584,448.2437 445.0 447.0 447.8584,448.2437
Minimum: Maximum:			5.0	5.0	-1.5 100.0							
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	i-FIT (Nor	m) Formul	la			
438.1288	438.1	282 301	0.6	1.4	15.0 2.0	778.6 781.0	0.1	C27 H C15 H	H26 O2 H30 N2	Fe O9 Fe		

Page 1

31

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Odd Electron Ions 691 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 1-100 H: 0-110 N: 0-10 O: 0-15 Fe: 1-1 27-Nov-2014 16:40:34 ENSCP_WS925 21 (0.570) Cm (17:28) MeOH+CH2Cl2

27-Nov-2014 ENSCP_WS	H. 0-110 4 16:40:34 5925 21 (0.5	70) Cm (17:2	8)		MeOH+CH2Cl2											LCT Premier XE KE483 1: TOF MS ES+ 1 14e+005			
100					466.1586	467.1651												1.146.003	
%	462.1400	463 1539	464.1637	465.1654	466	.2811 46	468.1709	469.1744	4 47	0.1674	47	1.1916	471.8829	473.3557	473.9120	475 3237	475.6673		
0-4-1-1-1	462.0	463.0	464.0	465.0	466.0	467.0	468.0	469.0	47	0.0	471	.0	472.0	473.0	474.0	475.0	476.0	477.0	
Minimum: Maximum:			10.0	5.0	-1.5 100.0														
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Form	ula									
466.1586	466.1 466.1 466.1	595 568 587	-0.9 1.8 -0.1	-1.9 3.9 -0.2	15.0 16.0 3.0	1238.8 1240.3 1242.3	0.2 1.7 3.7		C29 C25 C13	H30 H26 H30	02 N6 N8	Fe Fe O7	Fe						

3a-QM

Elemental	Composition Re	eport															Page 1
Single Ma Tolerance = Element pre Number of it	Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9 Monoisotopic Mass. Odd Electron Ions																
Monoisotopic 628 formula (Elements Us C: 1-100 H 27-Nov-2014 1 ENSCP_WY02	Mass, Odd Electron e) evaluated with 3 re ed: H: 0-110 N: 0-10 (6:46:31 206 21 (0.570) Cm (18:2	lons esults within O: 0-15 ²⁸)	limits (all res Fe: 1-1	ults (up to 1	000) for eac	h mass) Me	OH+CH2	2CI2								LCT	Premier XE KE483 1: TOF MS ES+ 3 59e+004
100			435 436.1135	438.122			454.12	22 455.1	284								3.556+004
0 415.0	419.1119 424.0902 420.0 425.0	430.1103 430.0	435.1208 435.0	439.13 440.0	269 442.1541 445.0	450.1291 45:	2.1256	456. 5.0	.1308 460.	464.14	158 4 465	68.1357 5.0	471.1352 470.0	477.108	6 482.11 480.0	31 486.1161 485.0	487.6237 490.0
Minimum: Maximum:		10.0	5.0	-1.5 100.0													
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Form	ula								
436.1135	436.1126 436.1144 436.1117	0.9 -0.9 1.8	2.1 -2.1 4.1	16.0 3.0 4.0	1097.0 1098.1 1098.9	0.4 1.5 2.3		C27 C15 C11	H24 H28 H24	02 N2 N8	Fe 09 07	Fe Fe					

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Odd Electron Ions 53 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 1-110 H: 0-110 O: 0-10 Fe: 1-1 04-Mar-2014 11:19:38 ENSCP_WY1107 17 (0.483) Cm (16:17)

3c-QM

Elemental	Composition I	Report															Page 1
Single Mas Tolerance = Element pre Number of is	ss Analysis 5.0 PPM / DBI diction: Off sotope peaks use	E: min = -1.5 ed for i-FIT =	5, max = 9	100.0													
Monoisotopic 689 formula(e Elements Use C: 1-100 H 27-Nov-2014 1 ENSCP_W010	Mass, Odd Electro e) evaluated with 3 ed: 1: 0-110 N: 0-10 6:43:36 009 21 (0.569) Cm (1	on lons results within) O: 0-15 9:28)	limits (al Fe: 1-1	results (up to	1000) for ea	ch mass) M	eOH+CH2	2012								LCT F	Premier XE KE483 1: TOF MS ES+
100					465. 464.1455	466.1573											8.44e+004
0 454.3 454.0	455.3088 456.0	458.1384 458.0	460.1349 460.0	462.1464 463. 462.0	1553 464.0	467	.1613 41 468.0	58.166(469.32 470.0	88 47	71.055 472	1 473 0	4097	475.9355 477.172 476.0	9 478.1622 478.0	480.1624 480.0	482.1556 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Minimum: Maximum:		10.0	5.0	-1.5 100.0													
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Form	nula								
464.1455	464.1439 464.1457 464.1471	1.6 -0.2 -1.6	3.4 -0.4 -3.4	16.0 3.0 8.0	1201.2 1202.5 1202.6	0.4 1.7 1.8		C29 C17 C18	H28 H32 H28	02 N2 N6	Fe 09 05	Fe Fe					

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Odd Electron Ions 53 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 1-110 H: 0-110 O: 0-10 Fe: 1-1 0-Mar-2014 11:22:40 ENSCP_WY1022-1 21 (0.572) Cm (20:26)

04-Mar-2014 11 ENSCP_WY10	4-Mar-2014 11:22:40 NSCP_WY1022-1 21 (0.572) Cm (20:26)				MeOH											LCT Premier XE KE48 1: TOF MS ES4 1 18e+00		
100- 	447.8637 448.0	449.172 449.0	450.119 450.0	91 451.1225 +++++++ 451.0	452.1090	453.1148 453. 453.0	454.1213 1946 454.0	3 455.1244 +	456.42	205 457 457.0	.6146 458. 458.0	4893 4 459.0	59.7276 460.0	460.8969 461.0	462.0	462.8292 463.0	464.1729 464.0	⊤ m/z
Minimum: Maximum:		1	0.0	5.0	-1.5 100.0													
Mass	Calc. Mass	TC	Da	PPM	DBE	i-FIT	i	-FIT (Nor	m) Form	ula								
452.1090	452.1075	1	.5	3.3	16.0	710.7	0	.0	C27	H24 O	3 Fe							

Page 1