
HAL Id: hal-01230295
https://hal.science/hal-01230295

Submitted on 3 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A Scheduler-Level Incentive Mechanism for Energy
Efficiency in HPC

Yiannis Georgiou, David Glesser, Krzysztof Rzadca, Denis Trystram

To cite this version:
Yiannis Georgiou, David Glesser, Krzysztof Rzadca, Denis Trystram. A Scheduler-Level Incentive
Mechanism for Energy Efficiency in HPC. CCGrid 2015 - 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, May 2015, Shenzhen, China. pp.617–626, �10.1109/CC-
Grid.2015.101�. �hal-01230295�

https://hal.science/hal-01230295
https://hal.archives-ouvertes.fr

A Scheduler-Level Incentive Mechanism
for Energy Efficiency in HPC

Yiannis Georgiou
BULL

Yiannis.Georgiou@bull.net

David Glesser
BULL

and Univ. Grenoble-Alpes
David.Glesser@bull.net

Krzysztof Rzadca
Institute of Informatics
University of Warsaw
krz@mimuw.edu.pl

Denis Trystram
Univ. Grenoble-Alpes

and Institut Universitaire de France
trystram@imag.fr

Abstract—Energy consumption has become one of the most
important factors in High Performance Computing platforms.
However, while there are various algorithmic and programming
techniques to save energy, a user has currently no incentive
to employ them, as they might result in worse performance.
We propose to manage the energy budget of a supercomputer
through EnergyFairShare (EFS), a FairShare-like scheduling
algorithm. FairShare is a classic scheduling rule that prioritizes
jobs belonging to users who were assigned small amount of
CPU-second in the past. Similarly, EFS keeps track of users’
consumption of Watt-seconds and prioritizes those whom jobs
consumed less energy. Therefore, EFS incentives users to optimize
their code for energy efficiency. Having higher priority, jobs have
smaller queuing times and, thus, smaller turn-around time.

To validate this principle, we implemented EFS in a scheduling
simulator and processed workloads from various HPC centers.
The results show that, by reducing it energy consumption, a
user will reduce it stretch (slowdown), compared to increasing
it energy consumption. To validate the general feasibility of
our approach, we also implemented EFS as an extension for
SLURM, a popular HPC resource and job management system.
We validated our plugin both by emulating a large scale platform,
and by experiments upon a real cluster with monitored energy
consumption. We observed smaller waiting times for energy
efficient users.

Index Terms—Resource and Job Management Systems,
Scheduling, FairShare, Energy-Aware, Energy-Efficiency

I. INTRODUCTION

A modern large-scale supercomputer runs on huge amounts
of electrical power. For instance, Tianhe-2 (the leading system
of the TOP500) develops 33 Petaflop/s and consumes a power
of 18 MWatts [1]. About half of the cost of a Petascale system
comes from energy consumption, and today, it costs about 1
million dollars a year to run a 1 MWatts system. This means
that the electricity bill is roughly equal to the hardware cost
of such platforms. However, the cost of the electricity is not
the sole problem of high energy consumption. As the systems
are more and more densely integrated, the heat generated as a
direct result of energy consumption is more and more difficult
to disseminate. The energy consumption is the most important
obstruction for building exascale machines [2].

Various methods have been proposed for reducing energy
consumption. The design of an energy-efficient supercomputer
involves for instance accelerators (GPUs or Intel Phis), which
are more energy-efficient than standard CPUs for some regular

workloads; or, water cooling, which disseminates heat more ef-
ficiently than air-conditioning. Yet, once a system is built, such
“black-box” approaches have limited effects. For instance, by
reducing the speed of processors, we reduce their voltage, and
thus their power consumption. However, not only the speed-
scaling slows down the computations; more importantly, the
total savings are very limited. In our previous research [3], we
speed-scaled processors of a cluster while measuring run-time
and energy consumption of typical HPC applications, from
computationally-intensive LinPack to communication-bounded
Intel MPI benchmarks. Depending on the type of applications,
speed-scaling increased the runtime twice; yet, electricity used
was lowered by only up to 30%. Thus, we need to motivate
the user to actively participate in making her computations
energy efficient.

Significant savings can be made by designing energy-
efficient software. The methods range from changing algo-
rithms (e.g., by reducing communication [4]), to requesting
a lower processor voltage when the application enters a non-
computationally-intensive phase. The key to these savings is
that only the programmer is able to precisely decide when to
slow down the hardware without a large impact on the code’s
observed performance.

However, in a supercomputer shared by many users, there is
no incentive for users to adapt energy-efficient software—and
usual, minor deterrents from doing so, ranging from anxiety
about performance to a “If it ain’t broke, don’t fix it” attitude.

We propose to shift the focus of a scheduling policy from
processors to what is currently the true limit of large scale
supercomputers: energy. We assess this idea by creating En-
ergyFairShare (EFS) scheduling algorithm. EnergyFairShare
uses a well-known algorithm for sharing resources, FairShare;
but the resource that is to be shared fairly is the energy budget
of a supercomputer; not its processors. Consequently, users’
jobs are prioritized according to their past energy consumption.
Once a particular user exceeds her assigned share of the total
energy, the priority of her jobs is lowered; thus, in a loaded
system, the jobs stay longer in the queue. This mechanism
creates an incentive for users to save energy.

Moreover, EnergyFairShare may be used to achieve fair-
ness in large supercomputing centers managing heterogeneous
resources—from various kinds of cluster nodes (e.g., fat nodes,
accelerators, FPGAs) to machines (e.g., an x86 cluster, or a

BlueGene) to specialized equipment. Each resource type can
be abstracted and characterized by its energy consumption. In
a supercomputing center managing heterogeneous resources
under a common energy budget, a user would have an incentive
to choose the most energy-efficient resource for her needs.

We tested EnergyFairShare by simulation to assess the
impact of jobs’ energy efficiency on their queuing perfor-
mance. As there are no available workloads that show jobs’
energy consumption, we extended the standard workloads by
assigning to each job its simulated consumption which was
based on the job’s size. Our results show that the energy
efficient jobs have, on the average, a stretch (slowdown) lower
than the stretch of the standard and gluttonous jobs.

To validate our ideas in real-world settings, we implemented
EnergyFairShare as a scheduling plugin for SLURM [5], a
popular HPC resource and job management system (RJMS).
Our plugin is compatible with existing FairShare policies.
It obtains jobs’ energy consumption data through SLURM
energy accounting framework. EFS rewards energy-efficient
executions with higher prioritization within the scheduler.

The remainder of this paper is organized as follows. Sec-
tion II presents related work, Section III provides the descrip-
tion of the EnergyFairShare algorithm along with the imple-
mentation details. In Section IV, we validate our algorithm and
implementation through several experimentations. Finally, we
conclude and discuss ongoing works in Section V.

II. RELATED WORK

The main contribution is to propose to treat the energy as the
limiting resource and to share the available energy budget in a
fair way using the classical FairShare algorithm. Thus, below
we argue that (1) in existing HPC resources, it is possible
to account to a job the energy it consumes; (2) users can
save energy by choosing energy-aware algorithms and libraries
(thus, it makes sense to provide an incentive to save energy);
(3) FairShare is a standard algorithm to achieve CPU fairness
between users (many alternative approaches and algorithms
exist, but some of them can be adapted to energy similarly to
our approach).

A. Measuring energy consumption

In order to manage the energy budget of a supercomputer,
we need to precisely measure the total energy consumed
by each job. Fortunately, energy consumption is, or quickly
becomes, a key issue in very diverse types of resources:
from mobile devices, in which the goal is to extend the
battery lifetime, to supercomputers. Thus, modern hardware
provides various interfaces to monitoring energy consumption.
Standards include the Intelligent Platform Management Inter-
face (IPMI, [6]) that uses a specialized controller (Baseboard
Management Controller, BMC) to monitor various hardware
parameters of a system, including power. Intel RAPL (Running
Average Power Limit, [7]) enables the operating system to
access the energy consumption information for each CPU
socket. This information is computed from a software model
driven by hardware counters. It is also possible to measure the

GPU power consumption [8]. Energy consumption of CPU and
each different component can be also approximated through
models [9], [10]. However, not all hardware components
(CPU, RAM, networks cards, switches, etc.) are equipped
with built-in sensors. Alternatively, external power meters can
monitor whole nodes (and also other equipment like switches
or routers): for instance, [11] describes a deployment of power
meters on three clusters; [12] proposes a software framework
that integrates power meters in datacenters. While an external
power meter should be more precise in measuring the total
consumption (as the information measured is closer to what the
electric utility measures through their electric meters), when a
few jobs share a single node, it is not clear how each job should
be accounted for the usage. Hackenberg et al. in [13] introduce
a high definition energy efficiency monitoring infrastructure
that focuses on the correctness of power measurements and
derived energy consumption calculations. This infrastructure
is based upon temporal resolution optimizations through in-
ternal BMC polling and querying via IPMI. They demonstrate
improved accuracy, scalability and low overhead with no usage
of external wattmeters. They also describe the architecture
of new FPGA based measurement infrastructure with spatial
granularity down to CPU and DRAM, temporal granularity
up to 1000 sample/s and accuracy target of 2% for both
power and energy consumptions. SLURM has recently been
enhanced by introducing the capability to regularly capture
the instantaneous consumed power of nodes [3]. Based upon
this power-aware framework, SLURM is the RJMS to provide
energy accounting and power profiling per job. However, we
argue that since power measurements take place only at the
node level, the derived energy calculation will not reflect
reality if jobs make use of nodes’ parts or if they share nodes
with other jobs.

B. Saving energy in HPC

Currently, there are two main approaches to improve energy
efficiency in HPC: static power management, or designing
hardware operating on efficient energy levels (e.g. low voltage
CPUs used in IBM BlueGenes); and dynamic power man-
agement in which software dynamically switches the voltage
and frequency (DVFS) used by a component [14]. Designing
efficient hardware is orthogonal to the scope of this paper as
we assume that an HPC platform is given; thus below we
review the dynamic approaches. The core idea is to lower the
frequency of the processor (which lowers the power consump-
tion) when the job enters a computationally-light phase (recent
surveys are [14], [15]). DVFS can be used by the cluster
scheduler without knowing the workload of an application
(the frequency is dynamically adapted to the load on each
processor); however, the energy savings of such black-box
approaches are limited (a review [14] reports energy savings
on NAS Parallel Benchmark of up to 20-25% with roughly
3-5% performance degradation).

Other methods complement DVFS. A simple, system-level
technique is to switch off unused processors—here the key
problem is the energy needed to switch the processor back

on [16]. The savings increase when a whole node, or a whole
rack is switched off.

Further savings require adapting the application. For in-
stance, in a distributed application that cannot be perfectly
load-balanced, processors assigned smaller loads can be
slowed down (by DVFS) to finish in roughly the same time
as more loaded processors [17]. In distributed algorithms,
communication between nodes is expensive in terms of en-
ergy; communication-optimal [4] or communication-avoiding
algorithms reduce communication (sometimes increasing the
amount of per-core computation).

To summarize, apart from black-box DVFS (which results
in limited gains) and switching off the idle resources (of
limited use, since most modern supercomputers are constantly
overloaded), the approaches require the programmer to instru-
ment the code, or even to change the algorithms. Moreover,
saving energy incurs performance loss. Thus, a user must have
incentives for saving energy. EnergyFairShare gives higher
priority, thus lower queuing times, for users with smaller
energy needs.

C. Fairness in HPC resource management
Fairness, even restricted to HPC, is a vast research area.

The most popular approach is the max-min fairness [18], in
which the goal is to maximize the performance of the worst-off
user. Production schedulers like LSF [19], Maui/Moab [20],
TORQUE 1 or SLURM [5], use this approach through the
FairShare algorithm. Usually the scheduler accounts for each
CPU-second used by each user, decayed over time. Users
with small total CPU-second usage have priority over users
with large usage. Fair-share is compatible with the typical
workflow of a scheduler (assign priorities, sort jobs, schedule
according to priorities); moreover, the priorities can be further
modified by static site policies (e.g., weighting groups of users
in function of their payments to the site). EnergyFairShare
uses FairShare, but the users are accounted for joules (watt-
seconds), instead of CPU-seconds.

Many alternatives to FairShare were proposed; here we just
list a few recently proposed. Klusaček et al. [21] modify
conservative backfilling to improve fairness. Emeras et al. [22]
proposes an algorithm optimizing the slowdown (the stretch)
of each user’s workload. The algorithm uses the concept of
a virtual schedule, in which CPUs are assigned to users’
workloads; thus it can be modified to treat the energy as the
primary resource in a similar way as we modify FairShare.

EnergyFairShare can manage heterogeneous resources, as
each resource can be characterized by its energy needs.
Klusaček et al. [23] reviews multi-resource fairness. Papers
differ by their definition of what a multi-resource fair schedule
is [24], and more specifically on the properties that their algo-
rithm guarantee. The Dominant Resource Fairness algorithm
proposed by Ghodsi et al. [18] guarantees sharing incentive,
strategy proofness, envy freeness and Pareto efficiency. The
algorithm proposed by Klusaček et al. [23] guarantees multi-
resource awareness, heterogeneity awareness, insensitivity to

1http://www.adaptivecomputing.com/products/open-source/torque/

scheduler decisions, walltime normalization, support for multi-
node jobs. TORQUE and Maui/Moab support multi-resource
fairness by counting resource usage using a measure differ-
ent from CPU-seconds to count resource usage. TORQUE
computes distance to a standard (mean) job. Maui/Moab [20]
computes Processor-Equivalents, transforming consumption of
non-standard resources to normalized CPU-seconds.

To our best knowledge, there is no other work proposing
fair resource sharing based on energy. In the following section
we argue that a energy fairsharing implies a multi-resource
fairsharing.

III. ENERGYFAIRSHARE ALGORITHM

EFS modifies FairShare to consider energy instead of CPUs
as a main resource. Therefore, we start by describing the
environment in which EFS works (a resource management
system); then we describe the classic FairShare algorithm; and
finally—the principle and the implementation of our algorithm.
To better ground our discussion, next to discussing ideas
behind these, we will show how they are realized in SLURM
(the resource manager in which we implemented EFS).

A. Scheduling in Resource and Job Management Systems

Scheduling in a standard RJMS (such as SLURM, Maui,
etc.) consists of two successive phases. First, pending jobs
are prioritized according to some criteria. Then, picking jobs
one by one in order of the assigned priorities, the scheduler
assigns resources to jobs. EnergyFairShare is a prioritization
algorithm; thus existing, efficient algorithms (such as backfill-
ing [25]) may be used in the second phase.

The priorities computed in the first phase are usually a linear
combination of factors based on various parameters of a job.
Example factors include job’s waiting time (the longer the job
queues, the higher is its priority); job’s size (priority of long
jobs may be reduced to increase job throughput); job’s owner
(to prefer accounts associated with a project that funded the
supercomputer). Fair-share, described in the next section, may
be used as an additional factor. Usually, a weight is assigned
to each of the above factors. Weights allow to enact a policy
that blends a combination of any of the above factors in any
desired portion. For example, a site could configure FairShare
to be the dominant factor while setting job size and age factors
to each contribute a smaller part.

B. Computing Priorities by Fair-Share

The FairShare algorithm computes queued jobs’ factor (pri-
ority) based on the amount of resources consumed by the job’s
owner in the past. The job’s FairShare factor is commonly
added to other factors described in the previous section. The
FairShare factor serves to prioritize queued jobs such that those
jobs charging accounts that are under-serviced are scheduled
first, while jobs charging accounts that are over-serviced are
scheduled when the machine would otherwise go idle. Also,
FairShare generalizes to hierarchies of accounts so that not
only the owner’s usage, but her group’s, or her supergroup’s, is
taken into account (here, for simplicity of presentation we will

not discuss it; we assume that each user has a single account
and that the scheduling policy is based on these accounts).

Basically there are two parameters that influence SLURM
FairShare factor: i) the normalized shares as defined in the
associations of the database; and ii) the normalized usage
of computing resources as a continuously evolving parameter
computed from the accounting database.

A scheduling policy defines a target share su of a system
for each account u. The algorithm computes, for each account
u, the normalized share Su as

Su = su/(
∑
v

sv). (1)

Su expresses the share of the system that, on the average, user
u is entitled to use.

The usage is computed as a total amount of consumed
resources normalized by the amount of available resources;
usually, recent usage counts more than the past (the usage is
decayed over time). To compute the normalized usage, once
every job completes, a RJMS stores in an accounting database
the job’s runtime multiplied by the amount of CPUs assigned
(CPUs, as historically this was the most contested resource).
The raw usage Ru for user u is computed based on a half-life
formula that favors the most recent usage data. Past usage data
decreases based on a single decay factor, D:

Ru = Ru(δ0) +D ·Ru(δ1) +D2 ·Ru(δ2) + . . . , (2)

where δi is the ith measurement period counting from the
current time moment (e.g.: δ0 is the last 24 hours; δ1 is the
previous 24 hours etc.); and Ru(δi) is the number of CPU-
seconds used by u during period δi. To get the normalized
usage Uu, Ru is normalized by the total amount of available
resources decayed over time,

Uu = Ru/(δ0 ·m+D · δ1 ·m+D2 · δ2 ·m. . .), (3)

where m is the number of available CPUs. For instance,
assume that on a m = 50 CPU system only the last 100 hours
are taken into account (δ0 = 100·3600, D = 0). If, during this
period, a user completed 5 jobs (30-hour long) each taking 10
CPUs, her normalized usage is (5 · 30 · 10)/(50 · 100), or 0.3.

Various functions are used to convert share and usage to a
priority value. For instance, SLURM computes the FairShare
factor Fu for a user u as:

Fu = 2−Uu/Su/d, (4)

where d is an additional damping parameter. Consequently:
a user with no usage gets FairShare factor of 1; a user with
usage equal to her share gets the factor of 0.5; and a user
whose usage vastly exceeds her share gets the factor close to
0.

C. EnergyFairShare: the principle

EnergyFairShare, the algorithm we propose, uses the Fair-
Share algorithm described above, but counts Joules (energy
over time, Watts per second) instead of CPU-seconds. Thus,
the accounting module keeps track of the energy consumed by

each job, which requires it to get the data from the cluster’s
energy monitoring system. Then, the job’s EFS priority is
computed according to the owner’s energy usage and its
assigned share of the total energy budget (just as in the
FairShare algorithm). The resulting value may be treated just
as the FairShare priority is, so it may be added to other factors
(job age, size, or even classic, CPU FairShare), to get the final
priority.

D. EnergyFairShare as a SLURM scheduling feature

We implemented EFS upon the open-source resource and
job management system SLURM [5]. As of the June 2014
Top500 supercomputer list 2, SLURM was performing work-
load management on six of the ten most powerful computers
in the world including the number 1 system, Tianhe-2 with
3,120,000 computing cores.

SLURM is designed as a client-server distributed applica-
tion: a centralized server daemon, also known as the controller,
communicates with a client daemon running on each com-
puting node. Users can request the controller for resources
to execute interactive or batch applications, referred as jobs.
The controller dispatches the jobs on the available resources,
whether full nodes or partial nodes, according to a configurable
set of rules.

The SLURM controller also has a modular architecture
composed of plugins responsible for different actions and
tasks such as: job prioritization, resources selection, task
placement, or accounting. We modified two of these plugins:
the accounting plugin, to gather energy usage data; and the
job prioritization plugin, where EFS is implemented.

SLURM has a particular plugin dedicated to gather infor-
mation about the usage of various resources per node during
job execution. This plugin, which is called jobacct gather,
collects information such as memory or CPU utilization of
all tasks on each node. Then, the values are aggregated
across all the nodes on which a job is running; then, two
values per job are returned: the maximum and the average.
These values can be then used for accounting, monitoring or
scheduling. We extended this plugin to collect information
from energy consumption sensors (however, we recall that
measuring energy has its limitations, see Section II-A).

Various plugins can be used for job prioritization; we
implemented EFS as an extension to the multifactor plugin,
since the plugin uses the prioritization framework described in
Section III-A and since it implements the FairShare algorithm.
For a job, the result of EFS is treated as a factor, and added
to other factors for a job, such as age or size.

IV. EXPERIMENTS

We performed three different kinds of experiments with
EFS. First, we implemented EFS in a simulator to run various
traces and to check how changing jobs’ energy efficiency influ-
ences their stretch. Second, we tested the EFS implemented as
a SLURM extension: we emulated a particular supercomputer

2http://www.top500.org/list/2014/06/

Trace Config efficiency Stretch normalized by baseline
Min Mean Med Std Dev. Max

SDSC fs both 1.00 1.00 1.00 0.00 1.00
SDSC efs green 0.27 0.91 0.92 0.33 1.82
SDSC efs gluttonous 0.27 1.10 1.02 0.31 1.66
SDSC fs+efs green 0.27 0.89 0.95 0.24 1.17
SDSC fs+efs gluttonous 0.27 1.03 1.01 0.34 1.92
PIK fs both 1.00 1.00 1.00 0.00 1.00
PIK efs green 0.73 0.97 1.00 0.07 1.00
PIK efs gluttonous 0.97 1.03 1.00 0.11 1.47
PIK fs+efs green 0.89 1.00 1.00 0.03 1.00
PIK fs+efs gluttonous 1.00 1.03 1.00 0.10 1.45
Curie fs both 1.00 1.00 1.00 0.00 1.00
Curie efs green 0.14 1.08 1.00 0.64 3.44
Curie efs gluttonous 0.33 3.02 1.02 6.25 25.7
Curie fs+efs green 0.14 1.63 1.00 2.45 13.5
Curie fs+efs gluttonous 0.17 1.57 1.00 2.06 11.2

TABLE I: Results of the simulations. In each simulation, one
of the 20 most active users is either 30% more energy-efficient
(green) or 30% less energy-efficient (gluttonous) than the rest.
We compute the stretch for each job, normalized by the stretch
in the baseline scenario; then average it over all jobs belonging
to the same user. Rows presents statistics over 20 users.

(Curie, a 80640-core machine), and added to its trace users
with varying (simulated) energy efficiency. Third, we tested
the whole approach—from collecting energy usage to making
scheduling decisions—by running the EFS-SLURM extension
on a real, albeit small-scale, cluster.

A. Algorithm validation through simulations

We implemented EFS in Pyss [26], a discrete event simula-
tor of batch schedulers. Once jobs are prioritized, the simulator
uses the EASY backfilling to allocate resources. Waiting jobs
are prioritized by three different policies:

• FairShare (FS): jobs owned by the user with the smallest
recent CPU-second usage are prioritized (Section III-B).
We set equal target shares Su and the decay factor D to
one week, as it is the default value for SLURM.

• EnergyFairShare (EFS): jobs owned by the user with the
smallest recent energy (Watt-seconds) usage are priori-
tized (Section III-D). We set equal target shares and the
same decay factor as FS.

• FS+EFS: FairShare and EnergyFairShare are normalized
to their maximum current values and then summed.

All algorithms use job’s arrival order to break ties.
We simulated three traces from the Parallel Workloads

Archive 3. We selected traces with high average usage to stress
the scheduler (as in a lightly-loaded system, almost all jobs
can be started immediately). Traces span different scales of
HPC systems. The Curie trace is a 6 months trace of a 80640-
cores machine ranked 26th on the top500 list of June 2014.
The PIK trace is a 40 months trace of a 2560-cores cluster.
Finally, the SDSC SP2 trace is a 24 months trace of a 128-
cores cluster. We use the cleaned version of each trace. Results
are presented in Table I.

3http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

Job bursts

0e+00

2e+11

4e+11

6e+11

0 100 200
Time (days)

E
ne

rg
et

ic
Fa

irS
ha

re
 c

ou
nt

er
 v

al
ue

Fig. 1: Evolution over time of EnergyFairShare counter for
user 33 during the experiment simulating Curie with the EFS
policy. This user, even being 30% more energy-efficient than
other users, worsens her mean stretch by 344%.

As it is possible to measure the nodes’ energy consumption
only relatively recently, the traces do not have the information
about the energy consumption of jobs. In each experiment,
we set the energy consumption to be proportional to the job’s
CPU-seconds. To get the baseline result, we first simulate each
trace with each policy, where all job have the same energy
efficiency. Then, we select the 20 users that submit the biggest
number of jobs. For each selected user, we improve their jobs’
energy efficiency by 30% (thus, a conservative estimate, since
black-box DVFS report a 20-25% gain, Section II-B) and
run the whole simulation (keeping other users not modified).
Then, for each job of this user, we compare its stretch with
the stretch in the baseline result by computing the factor
stretch-green / stretch-baseline. Finally, to get
an influence of the policy on the user, we compute the average
of these factors (for all users’ jobs). In Table I, the “green”
rows show statistics (the minimum, the average, the median,
the standard deviation and the maximum) of average factor on
the sample of 20 users. Similarly, the “gluttonous” rows show
statistics when the efficiency is worsened by 30% for each
job.

As we expected, EFS (slightly) improves stretches of
energy-efficient users. The difference is most visible on the
SDSC trace, in which EFS reduces the mean stretch by 9%
for the green users; and increases by 10% for the inefficient
users. On the PIK trace, EFS reduces the mean stretch by 3%
for the green users; and increases by 3% for the inefficient
users. However, in the Curie trace, the results are less clear:
although EFS distinguishes between green and gluttonous
users (gluttonous users have, on the average, their stretch
increased 3 times), green users are apparently 8% worse-off
than in the baseline.

The worst-off “green” user has her stretch increased by
344%. We studied this user in detail. Figure 1 presents the
evolution of the internal EnergyFairShare usage counter (Uu)
through time. We see two peaks in the usage, corresponding
to huge amounts of energy consumed by the users’ jobs (we
annotate these moments as job bursts). This implies that even
with better energy efficiency, the user will have a high energy
penalty at this moment of the trace. To be launched by the
system, her jobs will have to wait until the usage decreases.
We observed similar effects for other users.

Another effect that influences the Curie results is that the
trace is very volatile—the standard deviations are, approxi-
mately, an order of magnitude greater than in SDSC and PIK.
In this large system a small change in the scheduling decision
can lead to a totally different schedule. For example, let us
imagine a queue with a small and a huge job (the trace has
quite a few jobs using 64.000 cores for more than an hour).
If the scheduler chooses the huge job to be launched first,
many other jobs will be delayed. Whereas if the small one is
choosen first, thanks to backfilling, more jobs will be able to
run before the huge job.

B. A Real implementation on an emulated platform

In this subsection, we test the implementation of our al-
gorithm as a SLURM extension by emulating a large-scale
supercomputer, Curie (a 5040 nodes, 80640 cores machine).
Our experimental platform enables us to emulate 5040 nodes
on 20 physical nodes by running multiple slurmd daemons
(each deamon corresponds to a single emulated node). We
run an unmodified SLURM to manage the emulated nodes,
but jobs are emulated using sleep commands. Thus, we had
to modify the way SLURM collects energy measurements: as
the platform is emulated, the energy consumed by each job is
not measured through sensors, but instead we inject it directly
based on the trace.

We use Light-ESP workload [27]. Light-ESP is based on
ESP [28], a synthetic benchmark workload consisting of 230
jobs of 14 types. Light-ESP reduces the runtime of these jobs,
so that the turnaround time of the whole log is 15 minutes.
We repeated Light-ESP workload 4 times.

We compared the job stretches under four prioritization
policies: FairShare (FS), EnergyFairShare (EFS), FS+EFS; and
FIFO, in which jobs’ priorities are based on their waiting
time. As in the previous experiment, and as in a default
SLURM configuration, an EASY backfilling algorithm is used
to allocate processors to jobs.

The Light-ESP workload does not specify jobs’ owners and
jobs’ energy consumption, thus we will study two cases. First,
we add three users having the same workload, but varying
energy efficiency. We expect that the energy-efficient user
should have a smaller stretch than the inefficient one. Second,
we add three users having different workload and the same
energy efficiency. We expect that EFS will work in the same
way as FS.

1) 3 users with the same workload and different energy
efficiency: In this experiment, we add to the Light-ESP trace

user1

user2

user3

user1

user2

user3

user1

user2

user3

user1

user2

user3

F
IF

O
F

S
E

F
S

F
S

+
E

F
S

0.00 0.25 0.50 0.75 1.00

A
cc

ou
nt Mean(Stretch)

Energy

CpuTime

Fig. 2: SLURM implementation. Emulation of Curie cluster
running 4 Light-ESP traces. Three users have the same work-
loads, but different energy efficiency. All values shown are
normalized.

user1

user2

user3

user1

user2

user3

user1

user2

user3

user1

user2

user3

F
IF

O
F

S
E

F
S

F
S

+
E

F
S

0.00 0.25 0.50 0.75 1.00

A
cc

ou
nt Mean(Stretch)

Energy

CpuTime

Fig. 3: SLURM implementation. Emulation of Curie cluster
running 4 Light-ESP traces. Three users have different work-
loads, but the same energy efficiency. All values shown are
normalized.

three users with the same workload but with different energy
efficiency. User 1 is a user who optimized by 30% the energy
efficiency of her job, user 2 is a normal user, and user 3
is inefficient (by 30%). Figure 2 presents results. In FS and
FIFO policies, all users have roughly the same stretch which
is expected as all users have the same workload. EFS and
FS+EFS reward efficient users and punish the inefficient ones.
User 3, who consumed the most energy, has also the highest

Job Size (cores) Number of Jobs Run Time (sec)

Job Type Job size for cluster of 180 cores
(Fraction of job size relative to system size)/

Number of Jobs / Run Time (sec)

A 12 (0.03125) 75 22s
B 12 (0.06250) 9 27s
C 96 (0.50000) 3 45s
D 48 (0.25000) 3 51s
E 96 (0.50000) 3 26s
F 24 (0.06250) 9 154s
G 36 (0.12500) 6 111s
H 36 (0.15820) 6 89s
I 12 (0.03125) 24 119s
J 24 (0.06250) 24 60s
K 24 (0.09570) 15 41s
L 36 (0.12500) 36 30s
M 48 (0.25000) 15 15s
Z 180 (1.0) 2 20s

Total Jobs /
Theoretic Run Time 230 / 935s

TABLE II: Synthetic workload characteristics of Light-ESP
benchmark [27] as adapted for a 180 cores cluster with
exclusive nodes allocations.

mean stretch; whereas the efficient User 1 has a stretch reduced
by roughly 60%. Compared to EFS, FS+EFS policy has
smaller difference between each user’s mean stretch because
FS+ESF is a combination of the two above policies.

From a global point of view, policies perform equally well,
as they all achieve a utilization of about 89%.

2) 3 users with different workload and the same energy
efficiency: In this experiment, we add to the Light-ESP three
users with different workload (and the same energy efficiency).
Here, we want to show that our algorithm is equivalent to the
classic FairShare, if jobs have the same energy efficiency. On
Figure 3, we can see that, except for FIFO, each policy has the
same results. User 3, the user with the highest workload (and
also—the highest energy consumption) is penalized compared
to other users. These variation of stretch for each user time
does not change the global performance of the algorithm as
each policy have the same mean utilization of 89%.

C. Experiments on a real platform

In this subsection we perform experiments on a real, small-
scale cluster using monitored energy consumption data. Our
objective is to evaluate the new EFS scheduling strategy as
implemented upon SLURM and validate its effectiveness un-
der real-life conditions. The experiments have been performed
upon a small BULL cluster dedicated for R&D experiments.
The cluster is composed of 16 nodes with Intel Xeon CPU
E5649 (2 sockets/node and 6 cores/socket), 24GB of memory
and Infiniband network. For the sake of the experiments,
we installed our modified SLURM version, configured one
dedicated SLURM controller, 15 compute nodes and activated
the energy accounting framework with monitoring through
IPMI method.

Our experiments follow the same guidelines as the
emulation-based experiments in the previous subsection IV-B
using the 4x Light-ESP benchmark as an input workload. Table
II presents the characteristics of a single Light-ESP workload

 0.95

 1

 1.05

 1.1

 1.15

 20 25 30 35 40

N
o
rm

a
liz

e
d
 T

o
ta

l
E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Execution Time (sec)

JobType A 12cores
JobType B 24cores
JobType L 36cores
JobType E 96cores

2.5

2.4

2.3

2.1

2.0

1.9

1.7

1.6

JobType Z 180cores

Fig. 4: Performance vs. energy tradeoffs for Linpack applica-
tions as calibrated for Light-ESP job types (table II) running
on a 180-cores cluster at different frequencies.

as adapted for the 180 cores of our cluster. There are two
important differences compared to the workload used in IV-B:
i) The energy consumption, within SLURM, is measured at the
level of nodes (as described in Section III-D), which means
that only exclusive allocations can be considered (i.e., two jobs
cannot share a single node). Thus, the size of each job type
in Table II is a multiple of 12 cores. ii) In order to observe
actual energy consumption, instead of sleep commands, we
have to execute real jobs. We used Linpack MPI applications
that we calibrated to fit the target run-time of the benchmark.

Before starting the experiments we have also profiled
Linpack for the different job classes in terms of energy-
performance tradeoffs. Figure 4 provides graphs of the evo-
lution of these tradeoffs when changing CPU frequencies of
processors. We show just a representative part of table’s II
job types’ observed behaviour. It is interesting to see that
the lowest frequency is not the most energy-efficient. On
the contrary: the most energy efficient CPU frequency varies
between 2.3 Ghz and 2.2 Ghz for most cases; whereas the
lowest CPU frequency (1.6 Ghz) is usually the most energy-
consuming one. Note that this behavior might be specific to the
type of the job used—a heavily-optimized, computationally-
intensive Linpack. Also take into account that we are here
effectively using a black-box approach, as we are scaling the
whole application.

We divided the jobs from Light-ESP into three groups of
equal sizes; then, we assumed that each group corresponds to
a single user having different energy-efficiency.

The first user is “green”—she takes into account the trade-
offs analysis and adapts her CPU frequency to the optimal
value per each job type. The second user is “normal”—he
selects the highest frequency in order to optimize performance.
Finally, the third user is “gluttonous”—he chooses the slowest
CPU frequency resulting in the worst energy efficiency.

Each job is submitted in a particular moment in the work-
load. To be certain that the order of job submissions does
not influences the results, we are launching 4 times the same
workload (light-ESP); each time changing the attributed user

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Stretch

J
o

b
s
 [

%
]

green

normal

glutton

(a) CDF on Stretch with EFS

0 1000 2000 3000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Waiting time (sec)

J
o

b
s
 [

%
]

green

normal

glutton

(b) CDF on Waiting time with EFS

Fig. 5: Cumulated Distribution Function for Stretch and Waiting time with SLURM EnergyFairShare policy running LightESP
x4 workload with Linpack executions by 3 users with different energy efficiencies.

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Stretch

J
o

b
s
 [

%
]

green

normal

glutton

(a) CDF on Stretch with FS

0 1000 2000 3000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Waiting time (sec)

J
o

b
s
 [

%
]

green

normal

glutton

(b) CDF on Waiting time with FS

Fig. 6: Cumulated Distribution Function for Stretch and Waiting time with SLURM FairShare policy running four LightESP
workloads with Linpack executions by 3 users with different energy efficiencies.

per group of jobs.
Figure 5a shows the cumulative distribution function (CDF)

of stretch with only EFS activated. “Green” user’s jobs have
smaller stretch than normal user. However, it appears that the
“green” and the “gluttonous” users have quite similar stretches.
Even if this may seem surprising at first it is explained by the
fact that in our context the gluttonous jobs are represented
by the lowest CPU-Frequency. This results in high energy
consumption because of very large run time. Hence even if
gluttonous jobs have larger queue waiting times than green
jobs because of EFS, they have also larger running times,
which results in lower stretches.

Figure 5b shows the CDF of jobs’ waiting time (the time
a job spends in the queue) in the case of EFS policy. We can
see that jobs are executed in groups according to the users’
EFS factor.

Jobs whom waiting time is up to approximately 1250
seconds have similar waiting time regardless of the energy
efficiency. The influence of the efficiency is visible on longer-
waiting jobs. When jobs are continously submitted, the EFS
policy translates to a scheduling policy that executes a few

jobs of one user; then a few jobs of another user, etc. When
a user becomes the one with the minimal EFS factor, the
remaining user’s jobs are started as long as the user’s EFS
factor remains lower than the other two users. Eventually,
the energy consumed by the newly started jobs adds up, and
another user becomes the one having the minimal factor. The
number of executed jobs per such “turn” depends on the
consumed energy. That is why the gluttonous user eventually
is waiting much longer than the other two users. The green
users’ jobs have slightly smaller waiting time than the normal
users’ jobs.

Figure 6 shows the CDF of stretch and waiting times with
the same workload and jobs execution as previously, but using
the original FairShare (FS). In this case we consider only CPU-
time for prioritization. Both in terms of stretch and waiting
times we can see that “normal” user’s jobs have the best results
since their jobs have the optimal performance. “Green” user’s
jobs have quite good results whereas “gluttonous” user’s jobs
have the worst result because of large run times.

In the following experiment we have activated both FS
along with EFS with equal weights within SLURM. This

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Stretch

J
o

b
s
 [

%
]

green

normal

glutton

(a) CDF on Stretch with FS + EFS

0 1000 2000 3000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Waiting time (sec)

J
o

b
s
 [

%
]

green

normal

glutton

(b) CDF on Waititng time with FS + EFS

Fig. 7: Cumulated Distribution Function for Stretch and Waiting time with SLURM FairShare plus EnergyFairShare policies
running four LightESP workloads with Linpack executions by 3 users with different energy efficiencies.

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Stretch

J
o

b
s
 [

%
]

green

normal−1

normal−2

(a) CDF on Stretch with EFS

0 200 400 600 800 1000 1200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Waiting time (sec)

J
o

b
s
 [

%
]

green

normal−1

normal−2

(b) CDF on Waiting time with EFS

Fig. 8: Cumulated Distribution Function for Stretch and Waiting time with SLURM EnergyFairShare policy running a
submission burst of 60 similar jobs with Linpack executions by 1 energy-efficient and 2 normal users

means that both CPU-time and energy consumption can play
equal role in the calculation of job’s priority. Figure 7 shows
the CDF of stretch and waiting times with light-ESP x4
workload with FS+EFS policies. “Gluttonous” user’s jobs have
an important disadvantage when compared to the other two
groups, especially in terms of waiting times. In contrast with
5a, figure 7a shows a significant degradation for “gluttonous”
user’s jobs and this is because the waiting times are much
longer in the FS+EFS case as we can see in 7b. Furthermore,
we can observe that “green” and “normal” user’s jobs provide
similarly good results. When “green” jobs gain in energy,
“normal” jobs gain equally in CPU-time. However, we can
observe a slight advantage of “normal” user’s jobs. This can
be explained by the fact that the difference in gained CPU-
time of “normal” jobs are more noticeable than the gains in
energy consumption by the “green” jobs.

Finally we performed another experiment with a simple
workload of 60 jobs executing the same Linpack application
upon 60 cores each. The jobs were separated into 3 groups
where one group is launched as energy efficient with the
optimal CPU-Frequency (2.3GHz) and the other two have been

launched both with normal characteristics (one with larger
CPU-Frequency 2.5GHz and one using on-demand governor).
All the jobs have been launched simultaneously on the cluster.
The difference with previous figures (in addition to having
of 2 normal users), was that we have calibrated Linpack to
be executed with good energy-efficiency when running with
DVFS of 2.3 GHz. The results are presented in form of CDF
on stretch and waiting times in figures 8a and 8b. The figures
show a significant improvement in both stretch and waiting
times for the green user’s jobs. Hence, in these figures, the
higher energy-efficiency of the green jobs is rewarded with
optimized stretch and waiting times.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed EnergyFairShare, an algorithm
to prioritize jobs based on their owners’ past energy usage.
The main goal of our policy is to explicitly manage what is
currently an important cost of running an HPC resource: the
electricity. In general, the more electricity a user consumed
in the past, the lower is the priority of her future jobs. We
implemented the algorithm in a simulator, and as a plugin for

SLURM, a popular HPC resource manager. Our implementa-
tion of scheduling policies will appear in the upcoming stable
release of SLURM (version 15.08). We verified experimentally
that more energy-efficient jobs have lower stretches. We claim
that EnergyFairShare should motivate users to make their jobs
more energy-efficient, in the same way as FairShare incen-
tives users to make their jobs more CPU-runtime efficient—
however, to test this claim, our mechanism would need to be
used in a production system.

Utilization of any resource implies energy consumption,
thus a possible objection to our work might be that we
penalize “large” jobs that should be executed anyway (after
all, the interest in doing HPC are large-scale calculations).
However, we use the same principle as the one already used
for managing CPU-seconds—FairShare. Scheduling policies
employing FairShare are very common in existing HPC cen-
ters; indeed, FairShare policies penalize users submitting large
jobs; but if a particular user demonstrates that the size of her
job is a consequence of a true, scientific need (and not —
inefficiency), the administrators can increase her target share.
Same argument applies to EnergyFairShare.

Not all resources consume the same amount of energy, thus
some resources may be more “costly” to users in terms of
EFS. We claim that this heterogeneity should push users to
run jobs on resources that are efficient for these jobs.

Of course, a scheduler-level prioritization mechanism is not
sufficient to make users save energy. First, users need to be
aware of the total energy consumption of each of her jobs;
and, perhaps additionally, about their average energy efficiency
(number of Watts consumed during an average CPU-second),
compared to other jobs in the system. EFS already stores
the information needed to compute these values; they can be
presented in addition to existing accounting. Second, energy
profilers should help to tune jobs for energy-efficiency (just as
standard profilers help to tune for the run-time).

Finally, to be energy-efficient, we must first precisely mea-
sure the consumed energy. Currently, it is possible to measure
either the whole node (which is a problem when a node is
shared by a few jobs), or some components (CPU, GPU)—
but not the others (network, memory, storage). However, as
energy efficiency is a key to performance and to low running
costs, we envision that more and more precise measures will
be available.
Acknowledgements: We thank the providers of the workload
logs we used in simulation: Joseph Emeras (Curie), Ciaron
Linstead (PIK IPLEX) and Victor Hazlewood (SDSC SP2).
The work is partially supported by the ANR project called
MOEBUS and by the Polish National Science Center grant
Sonata (UMO-2012/07/D/ST6/02440).

REFERENCES

[1] B. Subramaniam and W. Feng., “The green index: A metric for
evaluating system-wide energy efficiency in HPC systems,” in IPDPS
Workshops, 2012.

[2] J. Dongarra et al., “The international exascale software project roadmap,”
in International Journal of High Performance Computing Applications,
2011.

[3] Y. Georgiou, T. Cadeau, D. Glesser, D. Auble, M. Jette, and
M. Hautreux, “Energy accounting and control with SLURM resource
and job management system,” in ICDCN, 2014.

[4] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-
optimal parallel and sequential QR and LU factorizations,” SIAM Jour-
nal on Scientific Computing, 2012.

[5] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple linux utility
for resource management,” in JSSPP, Proc., 2003.

[6] Intel, “Intelligent platform management interface specification v2.0.”
[7] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-

mann, “Power-management architecture of the Intel microarchitecture
code-named Sandy Bridge,” IEEE Micro, 2012.

[8] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “Gpuwattch: Enabling energy optimizations
in gpgpus,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture, 2013.

[9] R. Basmadjian and H. de Meer, “Evaluating and modeling power con-
sumption of multi-core processors,” in Future Energy Systems: Where
Energy, Computing and Communication Meet (e-Energy), 2012 Third
International Conference on. IEEE, 2012.

[10] G. L. Tsafack Chetsa, G. Da Costa, L. Lefevre, J.-M. Pierson, O. Ariel,
and B. Robert, “Energy aware approach for HPC systems,” in High-
Performance Computing on Complex Environments, 2014.

[11] M. Assunção, J.-P. Gelas, L. Lefèvre, and A.-C. Orgerie, “The green
Grid’5000: Instrumenting and using a grid with energy sensors,” in
Remote Instrumentation for eScience and Related Aspects, 2012.

[12] F. Rossigneux, J.-P. Gelas, L. Lefevre, and M. D. de Assuncao, “A
generic and extensible framework for monitoring energy consumption
of OpenStack clouds,” arXiv preprint arXiv:1408.6328, 2014.

[13] Daniel Hackenberg et al., “Hdeem: High definition energy efficiency
monitoring,” in 2nd International Workshop on Energy Efficient Super-
computing, 2014.

[14] Giorgio Luigi Valentini et al., “An overview of energy efficiency
techniques in cluster computing systems,” Cluster Computing, 2013.

[15] S. Mittal, “Power management techniques for data centers: A survey,”
arXiv preprint arXiv:1404.6681, 2014.

[16] S. Albers, “Energy-efficient algorithms,” Communications of the ACM,
2010.

[17] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, “Just in time dy-
namic voltage scaling: Exploiting inter-node slack to save energy in
MPI programs,” in Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, 2005.

[18] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in NSDI, 2011.

[19] S. Kleban and S. Clearwater, “Fair share on high performance computing
systems: what does fair really mean?” in CCGrid, Proc., 2003.

[20] D. Jackson, Q. Snell, and M. Clement, “Core algorithms of the Maui
scheduler,” in JSSPP, Proc., 2001.

[21] D. Klusacek and H. Rudova, “Performance and fairness for users in
parallel job scheduling,” in JSSPP, Proc., 2013.

[22] J. Emeras, V. Pinheiro, K. Rzadca, and D. Trystram, “Ostrich: Fair
scheduling for multiple submissions,” in PPAM, Proc., 2014.

[23] D. Klusaček and H. Rudova, “Multi-resource aware fairsharing for
heterogeneous systems,” in JSSPP, Proc., 2014.

[24] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource alloca-
tion: Fairness-efficiency tradeoffs in a unifying framework,” IEEE/ACM
Trans. Netw., 2013.

[25] A. Mu’alem and D. Feitelson, “Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling,”
Parallel and Distributed Systems, IEEE Transactions on, 2001.

[26] Pyss, “https://code.google.com/p/pyss/.”
[27] Y. Georgiou and M. Hautreux, “Evaluating scalability and efficiency of

the resource and job management system on large HPC clusters,” in
JSSPP, Proc., 2013.

[28] A. T. Wong, L. Oliker, W. T. Kramer, T. L. Kaltz, and D. H. Bailey,
“ESP: A system utilization benchmark,” in SuperComputing, 2000.

