
HAL Id: hal-01230293
https://hal.science/hal-01230293v1

Submitted on 11 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved approximation algorithms for scheduling
parallel jobs on identical clusters

Marin Bougeret, Pierre-Francois Dutot, Denis Trystram, Klaus Jansen,
Christina Robenek

To cite this version:
Marin Bougeret, Pierre-Francois Dutot, Denis Trystram, Klaus Jansen, Christina Robenek. Improved
approximation algorithms for scheduling parallel jobs on identical clusters. Theoretical Computer
Science, 2015, 600, pp.70-85. �10.1016/j.tcs.2015.07.003�. �hal-01230293�

https://hal.science/hal-01230293v1
https://hal.archives-ouvertes.fr


Improved approximation algorithms for scheduling
parallel jobs on identical clusters

Marin Bougeret

LIRMM, Université Montpellier 2, 34095 Montpellier, France

Pierre-Francois Dutot, Denis Trystram

LIG, Laboratoire d’Informatique de Grenoble, 38334 Saint Ismier Cedex, France

Klaus Jansen, Christina Robenek

Department of Computer Science, Universitt Kiel, Christian-Albrechts-Platz 4, 24118 Kiel,
Germany

Abstract

The Multiple Cluster Scheduling Problem corresponds to minimize the maxi-

mum completion time (makespan) of a set of n parallel rigid (and non-preemptive)

jobs submitted to N identical clusters. It cannot be approximated with a ratio

better than 2 (unless P = NP). We present in this paper the methodology that

encompasses several existing results [1, 2]. We detail first how to apply it for

obtaining a 5
2 -approximation. Then, we use it to provide a new 7

3 -approximation

running in O(log (nhmax)N(n+ log(n))), where hmax is the processing time of

the longest job. Finally, we apply it to a restriction of the problem to jobs of

limited size, leading to a 2-approximation which is the best possible ratio since

the restriction remains 2-inapproximable.

Keywords: Scheduling, Parallel job, Strip packing, Approximation algorithm

1. Introduction

1.1. Problem statement

In the grid computing paradigm, several clusters share their computing re-

sources in order to better distribute the workload. Each cluster is composed

Preprint submitted to Elsevier June 10, 2015



of a set of identical processors connected by a fast local interconnection net-

work [3]. Jobs are submitted over time in successive packets called batches.

The objective is to minimize the time when all the jobs of a batch are com-

pleted, thus, minimizing the date when the next batch of jobs can be processed.

Many such computational grid systems are available all over the world, and the

efficient management of the resources is known to be one of the most important

challenge today. Let us start by stating the corresponding Multiple Cluster

Scheduling Problem (MCSP) more formally.

Definition 1 (MCSP). We are given n parallel rigid non-preemptive jobs Jj,

1 ≤ j ≤ n, and N clusters. A job Jj requires qj processors during pj units

of time, and each cluster owns m identical processors. The objective is to

schedule all the jobs in the clusters, minimizing the maximum completion time

(makespan). The constraints are:

1. the qj processors allocated to job Jj must belong to the same cluster

2. at any time, the total number of used processors in any cluster must be

lower or equal to m

This problem is closely related to the following Multiple Strip Packing prob-

lem (MSPP).

Definition 2 (MSPP). We are given n rectangles rj, 1 ≤ j ≤ n, and N strips.

Rectangle rj have height hj and width wj, and all the strips have width 1. The

objective is to pack all the rectangles in the strips such that the maximum reached

height is minimized under the following constraints.

1. a rectangle must be entirely packed into a strip (it cannot be split between

two strips)

2. at any level of any strips, the total width of packed rectangles must be lower

or equal to 1

3. a rectangle must be allocated “contiguously”

Thus, the only difference between MCSP and MSPP is constraint 3), which

in term of job scheduling amounts to force the jobs to use consecutive indexes

2



of processors (see Figure 1). Of course, the results for MCSP generally do not

apply to MSPP because of the additional contiguous constraints. The converse

is also not clear, since the approximation ratios for MSPP may not be preserved

when considering MCSP. However, as we can notice in Figure 2, many results

for MSPP directly apply to MCSP, as the proposed algorithms build contiguous

schedules that are compared to non-contiguous optimal solutions. In this paper,

the studied problem (MCSP) is seen as MSPP without constraint 3), and from

now on we use the vocabulary and notations of packing.

qj (or wj)

(or hj)

pjJ1

m

Figure 1: Example (for n = 9 jobs and N = 2 clusters) of a solution that is feasible for

MCSP and not feasible for MSPP. Notice there hat J1 is packed in a “non-continuous” way

(using non consecutive indexes of processors).

1.2. Related Work

As shown in [4] using a gap reduction from the Partition problem, MCSP (and

MSPP) are 2-inapproximable in polynomial time unless P = NP, even for

N = 2. The main positive results for MCSP are summarized in Figure 2. For

the sake of readability, we call “fast algorithm” algorithms with a running time

in O(np), with p ≤ 3 (the exact complexity of these algorithms is not relevant

here).

We must distinguish the 3-approximation in [7] and the 5
2 -approximation

in [1] that have a low cost from the costly 2-approximation in [6] and 2 + ε-

approximation in [5].

3



Problem Ratio Remarks Source

MCSP, MSPP 2 + ε Need solving P ||Cmax with a ratio

1 + ε
2

[5]

MCSP 5/2 Fast algorithm [1]

MSPP 2 Costly algorithm (at least

Ω(n256))

[6]

MCSP, MSPP AFPTAS Additive constant in O( 1
ε2 ), and in

O(1) for large values of N

[6]

MCSP 3 Fast (and decentralized) algo-

rithm that handles clusters of dif-

ferent sizes

[7]

MCSP 7/3 Fast algorithm This paper

MCSP 2 Requires maxj wj ≤ 1
2

Fast algorithm

This paper,

from [2]

Figure 2: Summary of existing results.

4



The 2-approximation does not apply to MCSP . Moreover, it is directly

obtained from asymptotic approximation algorithms when the number of strips

is larger than a constant N0, but requires algorithms that are exponential in N0

when the number of strips is lower than N0. Thus, the value of this constant

(≈ 104) makes this algorithm impossible to use for real size instances.

The 2+ε-approximation applies to MCSP , but requires to solve the famous

P ||Cmax problem (which is makespan minimization when scheduling sequential

jobs on identical machines) with a ratio 1 + ε
2 [8]. As all the well-known “fast”

approximation algorithms for P ||Cmax (like Longest Processing Time First or

Multifit [9]) have a ratio ρ such that 2ρ > 7
3 , using this black box technique to

get a 7
3 ratio for MCSP requires using a PTAS for P ||Cmax with ε′ = 1

6 . Even

if some recent advances in the PTAS design for P ||Cmax allowed to decrease

the asymptotic dependencies in 1
ε (like 2O( 1

ε2
log3( 1

ε )) in [10]), the running time

of these new algorithms remains very large due to the hidden constants.

Lastly, in [11] we extended MCSP for clusters of different sizes and provide

a polynomial time algorithm with ratio (2 + ε). Even if the complexity is poly-

nomial, the running time algorithm is not practical and does not compete with

the results presented here.

1.3. Motivations and contributions

In this paper, we recall the methodology that formalizes the common princi-

ples used in [1, 2], and we apply it to get a new 7
3 -approximation for MCSP run-

ning in O(log(nhmax)N(n + log(n))), which is clearly faster than the previous

mentioned algorithms.

The underlying principle consists in the discarding technique presented in

Section 2.2. What we call discarding technique is a classical framework in

scheduling problems. The idea is to define properly a set of “negligeable” items

(items are rectangles here), and to prove that it is possible to add these items

only at the end of the algorithm without degrading the approximation ratio.

Thus, the effort can be focused on the set I ′ of remaining “large” items, that

are generally more structured.

5



The 5
2 -approximation was obtained through a basic application (i.e. with a

set I ′ containing only really huge rectangles) of the technique. As we believe that

the discarding framework of Section 2.2 is well suited for MCSP, the objective

is to apply it using a more “challenging” set I ′. Thus, we present in Section 3

a new 7
3 -approximation, and we sketch in Section 4 the 2-approximation in [2]

for a restriction of MCSP. Both algorithms run in O(log(nhmax)N(n+log(n))),

and thus are very fast.

Of course, it could possible to improve again the 7
3 ratio using the same

method (targeting for example a 9
4 ratio). However, we think this could be

a tough work as the relative performance improvement is getting smaller, and

of course the difficulty of proofs (typically the number of particular cases to

handle according to how many rectangles of each “type” remains) is likely to

increase. Thus, we concluded our study by looking at a reasonable restriction

of MCSP where the bounds could be tightened. In this spirit, the result in [2]

sketched in Section 4 holds on a restriction of MCSP where the width of all

rectangles are lower than 1
2 (i.e. jobs submitted to clusters do not require strictly

more than the half of the resources). Using the same framework, it leads to a

2-approximation. As this restriction remains 2-inapproximable unless P = NP,

this result is optimal in the sense of approximation theory.

2. General principles

In this section, we give some definitions and we provide a general methodol-

ogy which serves as a basis for the design of efficient algorithms, and in partic-

ular the new 7
3 -approximation of Section 3 and the restricted 2-approximation

of Section 4.

2.1. Preliminaries

Recall that our objective is to (non-contiguously) pack n rectangles rj into

N strips of width 1. Rectangle rj has a height hj and a width wj . We denote by

s(rj) = wjhj the surface of rj . These notations are extended to W (X), H(X)

6



and S(X) (where X is a set of rectangles), which denote the sum of the widths

(resp. heights, surfaces) of rectangles in X.

A layer is a set of rectangles packed one on top of the other in the same

strip (as depicted Figure 3). The height of a layer lay is H(lay), the sum of the

height of all the rectangles in lay. A shelf is a set of rectangles that are packed

in the same strip, such as the bottom level of all the rectangles is the same.

Even if it is not relevant for the non-contiguous case, we consider for the sake

of simplicity that in a shelf, the right side of any rectangle (except the right

most one) is adjacent to the left side of the next rectangle in the shelf. Given a

shelf sh (sh denotes the set of rectangles in the shelf), the value W (sh) is called

the width of sh. Packing a shelf at level l means that all the rectangles of the

shelf have their bottom at level l. A bin is a rectangular area that can be seen

as reserved space in a particular strip for packing rectangles. As a bin always

has width 1, we define a bin by giving its height hb, its bottom level lb and the

index ib of the strip it belongs to. Packing a shelf sh in a bin b means that sh

is packed in strip Sib at level lb. Moreover we always guarantee that the height

of any rectangle of sh is lower than hb.

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

������������
��
��
��
��

hb

lb

W (sh)

b (bin)

sh (shelf)

lay (layer)

H(lay)

r2 r1
u(l) = w1 + w2l

Figure 3: Example of a layer, a shelf, a bin and of the utilization function. sh is packed in b.

The utilization uπi (l) of a packing π in strip Si at level l (sometimes simply

denoted by u(l) or ui(l)) is the sum of the width of all the rectangles packed

in Si that cut the horizontal line-level l (see Figure 3). Of course we have

7



0 ≤ uπi (l) ≤ 1 for any l and i.

Let us now describe three useful procedures. The CreateLayer(X,h) proce-

dure creates a layer lay (using rectangles of X) of height at most h, using a Best

Fit (according to the height) policy (BFH). Thus, CreateLayer(X,h) adds at

each step the highest rectangle that fits. By definition, the layer produced by

the procedure is such that H(lay) ≤ h. Moreover, notice that we will always

pack the layers in the strips with the narrowest rectangles on the top.

The CreateShelf(X,w) creates a shelf sh (using rectangles of X) of width

at most w, using the Best Fit (according to the width) policy (BFW). Thus,

CreateShelf(X,w) adds at each step the widest rectangle that fits. Again,

by definition the shelf produced by the procedure is such that W (sh) ≤ w.

Throughout the paper, we consider that the procedures modify the sets of jobs

given as parameters.

Let us now state a standard lemma about the efficiency of the “best fit”

policies.

Lemma 1. Let sh denote the shelf created by CreateShelf(X,w). If the k

widest rectangles of X are added to sh and there is at least one rectangle in X

which cannot be added, then W (sh) > k
k+1w.

Proof. Let x be the cardinality of X. Let us assume that wi ≥ wi+1 for 1 ≤
i < x. Let i0 ≥ k + 1 be the first index such that ri0 is not in sh. Let

a = Σi0−1i=1 wi. We have W (sh) ≥ a ≥ (i0 − 1)wi0 > (i0 − 1)(w − a) leading to

a > i0−1
i0

w ≥ k
k+1w.

Finally, let us recall two useful results that we will use to claim that a set

select of rectangles (each of height at most v) of total surface at most 7v
6 can

be packed in one strip with a height at most 7v
3 .

Theorem 1 ([12]). Let L = {r1, . . . , rn} be a set of rectangles. Let wmax =

maxjwj and hmax = maxjhj. If wmax ≤ u, hmax ≤ v and

2S(L) ≤ uv −max(2wmax − u, 0) max(2hmax − v, 0)

8



then it is possible to pack L (in time O(n log2(n)/ log(log(n))) in a rectangular

box of width u and height v.

Notice also that in our particular case of non-contiguous packing, we can

simply use the Widest First algorithm (which runs in O(n log(n))) that scans

the strips upward from level 0 and packs the widest possible remaining rectangle

for every level. Indeed, let us recall the following simple lemma (proved in [13])

Lemma 2. Let X be a set of rectangles, λ ≥ 1 and v such that

• S(X) ≤ λv

• for all j ∈ X, hj ≤ v.

Then, the Widest first algorithm packs X in a strip with a height lower than

2λv.

2.2. Discarding technique applied to MCSP

2.2.1. How to pack all rectangles in three steps

Discarding techniques are common for solving packing and scheduling prob-

lems. As mentioned before, the idea is to define properly a set of “small” items

(rectangles here), and to prove that adding these small items only at the end

of the algorithm will not change the approximation ratio. Thus, the effort can

be focused on the remaining “large” items. In this section, we present an adap-

tation of this general technique in the context of non-contiguous multiple strip

packing. Given an instance I, the set of big rectangles I ′(α, β) ⊂ I depends

on parameters (α and β here) that will be chosen carefully. The larger the set

I ′(α, β) is, the better the approximation ratio will be (as the remaining small

rectangles become really negligible).

In order to partition rectangles according to their height, we use the well-

known dual approximation technique [14], and we denote by v the guess of

the optimal value. Given an instance I, let LWD = {rj |wj > α} be the set

of wide rectangles, LH = {rj |hj > βv} be the set of high rectangles, and

I ′ = LWD ∪ LH be the set of big rectangles, with 0 < α < 1 and 0 < β < 1.

9



Let r(α, β) = ( 1
1−α + β) be the target approximation ratio (the origin of this

formula will be explained in Section 2.2.2).

Following the dual approximation technique, we will prove that either I is

packed with a resulting height lower than r(α, β)v, or v < Opt. Notice that for

the sake of simplicity we did not add the “reject” instructions in the algorithms.

Thus we consider in all the proofs that v ≥ Opt, and it is implicit that if one of

the claimed properties is wrong during the execution, the considered v should

be rejected.

We also need the following definition.

Definition 3. A packing is x-compact (see Figure 4) if and only if for every

strip Si there exists a level li such that for all l ≤ li, ui(l) > x and ui restricted

to l > li is non-increasing.

l3 = l4

l1

l2

α

≤ α
≤ βv

rj

S1 S2 S3 S4

Figure 4: Example showing a (1 − α) compact packing, and why step c) is simple. Indeed,

adding as soon as possible a small rectangle rj (with hj ≤ βv and wj ≤ α) to a (1−α) compact

packing cannot exceed v( 1
1−α + β). The li values are defined according to Definition 3.

Let us now describe the three main steps of our approach. Notice that what

we call a preallocation is a “normal” packing (i.e. consists in defining the bottom

level of each rectangle, which is sufficient to fully describe the solution) that is

based on simple structures like shelves and layers. We will prove that to get a

r(α, β) = ( 1
1−α + β) ratio, it is sufficient to:

a) construct a preallocation π0 of I ′ such that

– (prop. (1)) π0 fits in r(α, β)v

10



– (prop. (2)) wide rectangles of π0 (π0 ∩ LWD) are already packed in

a (1 − α)-compact way (in our case, all of these items are packed

in a layer together starting at the bottom of the strip, as depicted

Figure 3 for example).

b) turn π0 into a (1−α)-compact packing π1 (by keeping the large rectangles

as they were preallocated, and repacking greedily rectangles of I ′ \LWD)

c) add the small remaining rectangles (I \ I ′) using LS (see Lemma 4)

Step a) is the most difficult one. Indeed, building the preallocation becomes

harder when α and β are small, as the number of rectangles of I ′ increases and

r(α, β) decreases. Thus, Sections 3 and 4 are entirely devoted to the construction

of π0 (for (α, β) equal to ( 1
2 ,

1
3 ) and (1

3 ,
1
2 ), respectively).

Let us now see how steps b) and c) lead to a r(α, β) ratio.

2.2.2. Steps b) and c)

In this section, we suppose that we are given a guess v, and a preallocation

π0 of I ′ = LWD ∪ LH that satisfies property (1) and (2). Let us consider step

b): how to turn π0 into a (1− α)-compact packing.

Lemma 3 (Step b)). Let π0 be the preallocation of I ′ constructed in Step a)

that satisfies hypothesis (1) and (2). Let π̂1 = π0∩LWD denote π0 when keeping

only rectangles of LWD (π̂1 is already a (1− α)-compact packing).

Then, we can complete π̂1 into a (1−α)-compact packing π1 of I ′, such that

the height of π1 is lower or equal to the height of π0.

Proof. Let us define the LSπ0 algorithm that packs rectangles of I ′ \LWD. Let

us consider a single strip Si. Let π0
i denote π0 restricted to Si, and π̂1

i denote

π̂1 restricted to Si. Let X = {r1, . . . , rp} be the set of preallocated rectangles

of I ′ \ LWD that should be added to Si. We assume that lvl(j) ≤ lvl(j + 1),

where lvl(j) is the bottom level of rj in π0.

For the considered strip Si, the LSπ0 algorithm executes AddAsap(rj , π̂
1
i ),

for 1 ≤ j ≤ p, where AddAsap(r, π̂1
i ) adds rectangle r to π̂1 (in Si) at the

11



smallest possible level. Notice first that adding a rectangle rj with AddAsap

(with wj ≤ α) to a (1 − α)-compact packing creates another (1 − α)-compact

packing. Thus it is clear that π1 is (1− α)-compact.

For any 1 ≤ j ≤ p, let (π̂1
i , j) denote the packing in Si just before adding rj

with AddAsap, and let (π0
i , j) denote the packing π0

i ∩ (LWD ∪ {r1, . . . , rj−1}).
Let us prove by induction on j ∈ {1, . . . , p} that u(π̂

1
i ,j)(l) ≤ u(π

0
i ,j)(l), for any

l ≥ lvl(j). The definition of π̂1 gives the property for j = 1 (we even have an

equality).

Let us suppose that the property is true for j, and prove it for j + 1. Let

l ≥ lvl(j + 1). The induction property for rank j implies that rj is added by

AddAsap at a level lower or equal to lvl(j). Thus, if rj intersects l in (π̂1
i , j+1),

then it also occurs in (π0
i , j + 1). Thus in this case we have

u(π̂
1
i ,j+1)(l) = u(π̂

1
i ,j)(l) + wj

≤ u(π
0
i ,j)(l) + wj

= u(π
0
i ,j+1)(l)

If rj does not intersect l in (π̂1
i , j), then clearly u(π̂

1
i ,j+1)(l) = u(π̂

1
i ,j)(l) ≤

u(π
0
i ,j)(l) ≤ u(π0

i ,j+1)(l).

Thus we proved that for any 1 ≤ j ≤ p we have u(π̂
1
i ,j)(l) ≤ u(π

0
i ,j)(l) for

any l ≥ lvl(j), implying that every rj is added by AddAsap at a level lower or

equal to lvl(j). Thus, the height of π1 is lower or equal to the height of π0.

We now prove in Lemma 4 that after adding rectangles in step c), the height

of the packing does not exceed r(α, β)v = ( 1
1−α + β)v. This explains why the

height of the preallocation should also be bounded by r(α, β)v.

Lemma 4 (Step c)). Let π1 be a (1− α)-compact packing of I ′. Adding to π1

rectangles of I \ I ′ with a List Scheduling algorithm (LS) leads to a packing π

whose height is lower than max(height(π1), v( 1
1−α + β)).

Proof. The LS algorithm scans all the strips from level 0, and at any level adds

12



any rectangle of I\I ′ that fits. Notice that the final packing π is (1−α)-compact,

since we add rectangles rj with wj ≤ α to an (1− α)-compact packing.

Let us assume that the height of π is due to a rectangle rj ∈ I \ I ′, whose

bottom is at level s. This implies that when packing rj we had li ≥ s for

any strip i (with li defined as in Definition 3). According to this definition we

have ui(l) > 1 − α for any l ≤ li. Thus, we have S(I) >
∑N
i=1 li(1 − α) ≥

N(1 − α)s, implying that s < v 1
1−α . Therefore, the height of π is bounded by

s+maxj∈I\I′hj ≤ v( 1
1−α + β).

We give in the next section an example on how to apply this framework to

obtain a 5/2-approximation (using (α, β) = ( 1
2 ,

1
2 )). In section 3 we will apply

this framework with (α, β) = ( 1
2 ,

1
3 ) to get a new 7

3 -approximation. Finally,

we give in section 4 the sketch of a 2-approximation (for a special case of the

problem where wj ≤ 1
2 for all j), with (α, β) = (1

3 ,
1
2 ).

Remark 1. Notice that for the sake of clarity we will only focus on property

(1): build a preallocation that fits in r(α, β)v. It is sufficient to notice that the

simple structure used for LWD will directly implies property (2). Indeed, LWD

will be preallocated using only

• one layer (for the 7/3-approximation where LWD = {rj |wj > 1/2}) or two

layers “in parallel” (for the 2-approximation where LWD = {rj |1/2 ≥ wj >
1/3}, see Figure 8 Page 27)

• layers starting at level 0

• layers having narrowest rectangles on the top

Thus, packing rectangles of LWD as they were preallocated is 1/3 (or 1/2) com-

pact.

2.3. Example for a 5/2-approximation

Let us show how to build a preallocation π0 for (α, β) = ( 1
2 ,

1
2 ) that fits in

r(α, β)v = 5
2v (again, we skip property (2) as it will be obvious that rectangles of

13



LWD are preallocated in a 1/2-compact way). Recall that according to Lemma 3

and 4 this is sufficient to get a 5/2-approximation. We only provide here a sketch

of the construction of π0, and refer the reader to [1] for more details.

Let us consider the following partition

• let LWD = {rj |wj > 1/2} be the set of wide rectangles

• let LXH = {rj |hj > 3v/4} be the set of extra high rectangles

• let LH = {rj |3v/4 ≥ hj > v/2} be the set of high rectangles

• let LB = LWD ∩ (LXH ∪ LH) be the set of huge rectangles

• let I ′ = LWD ∪ LXH ∪ LH be the set of big rectangles that we have to

preallocate

We start creating π0 by packing LWD. We create one layer layi of rectangles

of LWD per strip, until LWD gets empty (let us say using strip 1 to i1). Each

layer is constituted by adding first one huge rectangle, and then rectangles of

LWD \ LB until H(layi) ≥ 2v. Thus, if we do not run out of rectangles (this

particular case is treated in [1]) all the layers except the last one have a surface

greater than 2v × 1
2 = v and fit in 5

2v (as the height of rectangles of LWD \ LB
is lower than v

2 ) .

Let us now pack the remaining rectangles of LXH ∪LH by creating two kind

of shelves. Notice first that

• an “extra high” shelf sh created by CreateShelf(LXH , 1) has a width of

at least 2
3 (as LWD is empty we know that at least two rectangles fit in the

shelf, and we apply Lemma 1), and thus a surface greater than 3
4v× 2

3 = v
2

• a “high” shelf shH created by CreateShelf(LH , 1) has a width of at least

2
3 (for the same reason) and thus a surface greater than 1

2v × 2
3 = v

3

Thus, we fill empty strips (from N to i1) using either two extra high shelves or

three high ones. In both cases the total surface packed in each strip is greater

than v, and the packing fits in 5
2v. Notice that details about how packing the

14



last shelves in strip i1 and how mixing the two kind of shelves (when we run

out of rectangles of LXH) are skipped here, but can be treated quite simply.

The previous analysis provides the main arguments to pack an optimal area

in a strip using layers or shelves, and thus build the preallocation to get the

following theorem.

Theorem 2 ([1]). There is a 5
2 -approximation for MCSP running in O(log(nhmax)N(n+

log(n)))

Let us now improve this result using a finer decomposition.

3. 7
3
-approximation algorithm

3.1. Definition of the considered partition

As presented in Section 2.2, we define several sets of rectangles. We have

to define the set of high rectangles more precisely than {rj |hj > v/3} as we

will treat differently “extra high” rectangles having height larger than 2v/3 and

“medium” rectangles having height between v/3 and v/2.

• let LWD = {rj |wj > 1/2} be the set of wide rectangles

• let LXH = {rj |hj > 2v/3} be the set of extra high rectangles

• let LH = {rj |2v/3 ≥ hj > v/2} be the set of high rectangles

• let LM = {rj |v/2 ≥ hj > v/3} be the set of medium rectangles

• let LB = LWD ∩ (LXH ∪ LH ∪ LM ) be the set of huge rectangles

• let I ′ = LWD ∪ LXH ∪ LH ∪ LM

• let L̄XH = LXH \ LWD, and let L̄H and L̄M be defined in the same way

According to our framework, it is sufficient to provide a 1
2 -compact preallo-

cation for rectangles of I ′. We recall that according to the dual approximation

technique, we will prove that either I is packed with a resulting height lower

than 7v/3, or v < Opt.

15



3.2. Counting the width of packed rectangles

We start by giving a bound on the total width of extra high, high and

medium rectangles.

Lemma 5. If v ≥ Opt, then

• W (LXH) +W (LH) ≤ N

• 2W (LXH) +W (LH) +W (LM ) ≤ 2N .

Proof. Let us suppose that I can be packed in v. Let us consider an arbitrary

packing of height at most v in a fixed strip S. We define abscissa x (with

x ∈ [0, 1]) as the infinite vertical slice of the strip located at x, considering that

the left part of the strip is at abscissa 0 and the right part at abscissa 1. Using

the scheduling vocabulary, a fixed abscissa corresponds to a fixed processor x.

Let kXH be the number of rectangles of LXH packed in S that cut abscissa

x. Again, in scheduling vocabulary kXH would be the number of jobs of LXH

that are processed by processor x. We define kH and kM in the same way.

Let h be the total height of rectangles packed in Si at abscissa x. By our

assumption we have h ≤ v. Moreover, we have h > kXH
2v
3 + kH

v
2 + kM

v
3 . This

implies 4kXH + 3kH + 2kM < 6. From this we deduce 2kXH + kH + kM ≤
2kXH + 3

2kH + kM < 3 and kXH + kH ≤ 4
3kXH + kH + 2

3kM < 2. As the

leftmost member of each inequality is an integer, we get 2kXH + kH + kM ≤ 2,

and kXH + kH ≤ 1. Then, by summing over all the abscissas and strips we get

the desired result.

We will sometimes use the bounds of Lemma 5 to prove that I ′ must be

packed by counting the total width of extra high, high and medium rectangles

packed by the algorithm. Given a packing πi (of strip Si), let us define functions

f? such that fXH(πi) = W (πi ∩ LXH), fH(πi) = W (πi ∩ LH) and fM (πi) =

W (πi ∩ LM ). We can now define the notion of dominating packing.

Definition 4. A packing in one strip (or simply a set) πi is dominating iff

2fXH(πi) + fH(πi) + fM (πi) > 2. A packing π = (π1, . . . , πx) of x strips is

dominating iff all the πi are dominating.

16



Remark 2. This notion of domination should not be confused with area domi-

nation. A packing πi is said area-dominating iff S(πi) > v.

We now state a Lemma that emphasizes why dominating packings are inter-

esting.

Lemma 6. Let π be a dominating packing of I ′ in x strips. Then x < N .

Proof. We have 2N ≥ 2W (LXH)+W (LH)+W (LM ) = 2
∑x
i=1W (LXH ∩πi)+∑x

i=1W (LH ∩πi)+
∑x
i=1W (LM ∩πi) =

∑x
i=1(2fXH(πi)+fH(πi)+fM (πi)) >

2x.

Finally, let us show how to create a dominating packing in an empty strip.

Lemma 7. If we do not run out of rectangles, it is always possible to create

a dominating packing (which fits in 7
3v) in an empty strip using rectangles of

I ′ \ LWD.

Proof. Let us consider a fixed strip. If L̄XH is such that W (L̄XH) > 1, then

we just create two shelves sh1 and sh2 (such that W (sh1) +W (sh2) > 1) using

rectangles of L̄XH , that we pack at level 0 and v. This packing is dominating.

Otherwise (see Figure 5), we pack L̄XH in one shelf sh1 at level 0. Then,

we complete shelf sh1 by adding greedily (in any order) remaining rectangles of

I ′ \ LWD at level 0, until a rectangle (say r1) does not fit. We pack r1 at level

v. Notice that we have W (sh1) + w1 > 1. As r1 /∈ L̄XH we know that the top

of r1 is at level at most 5
3v.

Then, we create a shelf sh2 by adding greedily (in any order) remaining

rectangles of I ′ \ LWD (that belong to L̄H ∪ L̄M ) at level 5v
3 , until a rectangle

(say r2) does not fit. Notice that the top of shelf sh2 does not exceed 7
3v. Finally,

r2 is packed at level v (r1 and r2 both fit at level v as we consider rectangles of

I ′ \ LWD). Notice that we have W (sh2) + w2 > 1.

17



����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

�����
�����
�����

�����
�����
�����

sh2

sh1

v

r1
r2

5v
3

Figure 5: Example of a dominating packing built in Lemma 7.

The packing is dominating since

2fXH(πi) + fH(πi) + fM (πi) ≥ 2W (L̄XH) +
(
W (sh1)−W (L̄XH)

)
+ w1

+W (sh2) + w2

> 2 +W (L̄XH)

3.3. Description of the algorithm

We now describe a three phases algorithm that builds the preallocation π0

of the rectangles of I ′. Remind that π0
i denotes the set of rectangles packed in

Si. The description of the BuildPreallocation is in Algorithm 1, Page 19, and

uses several Lemmas which are detailed later. An overall example of packing

(preallocation and re-packing) is depicted in Figure 6. Notice that there is one

special case in phase 3 where we pack all the rectangles of I, and not only the

ones in I ′.

To prove that Algorithm 1 packs I ′ (or even sometimes I), we will either use

area-domination (i.e. area argument) or domination (i.e. counting argument).

Thus, the key ideas of this algorithm are the following.

• Creating a dominating packing with rectangles of LWD ∩ LXH is easy as

packing 2 such rectangles is sufficient. Thus, Phase 1 starts with rectangles

of LWD ∩ LXH , and requires that |LWD ∩ LXH | ≥ 2.

18



Algorithm 1 BuildPreallocation

1: i← 0

2: —————————- phase 1 —————————-

3: while |LWD ∩ LXH | ≥ 2 do

4: i← i+ 1

5: layi = CreateLayer(LWD, 7v/3)

6: Pack layi in Si with the narrowest rectangles on the top

7: end while

8: —————————- phase 2 —————————-

9: while (|LWD ∩ LH | ≥ 2) and (W (L̄XH) > 1 or W (L̄H ∪ L̄M ) > 3
2 ) do

10: i← i+ 1

11: Create a packing πi in Si such that πi is dominating and area-dominating

using Lemma 8

12: end while

13: —————————- phase 3 —————————-

14: few high← (|LWD ∩ LH | < 2)

15: while LWD is not empty do

16: i← i+ 1

17: layi = CreateLayer(LWD, 7v/3)

18: Pack layi in Si with the narrowest rectangles on the top

19: end while

20: if few high = true then

21: if (S(πx) ≥ v for every x ≤ i− 1) then //we target area-domination

22: //in this case we even pack I

23: for l = i+ 1 to N do

24: pack in Sl an area of rectangles of I greater than v (if there are

enough remaining rectangles) using Lemma 9

25: end for

26: pack in Si all the remaining rectangles of I and the rectangles already

contained in Si using Steinberg’s (or Widest First) algorithm using

Lemma 10.

27: else //we target domination

28: pack all the remaining rectangles of I ′ using Lemma 11

29: end if

30: else

31: pack all the remaining rectangles of I ′ using Lemma 12

32: end if

19



Retangles of I \ I ′ added in step )

π1 : retangles of I
′
ompated during step b)

Retangles added by BuildPrealloation line 27

r1

7v
3

7v
3

Phase 1 Phase 2

Phase 3

r0

Step b) and )

Step a) : the prealloation π0 of I
′

Retangles added by BuildPrealloation between line 15 and 18

Figure 6: Example of the overall algorithm with α = 1
2

and β = 1
3

. Notice that during step

b), r1 is packed in a non contigous way.

• Creating a dominating packing with rectangles of LWD ∩ LH is hard. In-

deed, if the width and height of all the remaining rectangles of LWD ∩LH
are 1

2 + ε and 2v
3 − ε′, only three such rectangles could be packed in a

strip. For appropriate ε and ε′ values, such a packing is neither dominat-

ing nor area-dominating. Thus, phase 2 associates smaller rectangles to

rectangles of LWD ∩LH and creates “perfect” strips (i.e. dominating and

area-dominating)

• Then, two cases are possible at the beginning of phase 3. In the first

case (few high = true), phase 2 stopped because of a lack of rectangles

of LWD ∩ LH . Thus, in this case the problem of packing these “tricky”

rectangles of LWD ∩ LH is “solved”, as almost all these rectangles have

been packed with smaller ones, avoiding the previous counter example. In

20



the other case (few high = false), at most one strip will be necessary to

pack rectangles of L̄XH ∪ L̄H ∪ L̄M (as (W (L̄XH) ≤ 1 and W (L̄H ∪ L̄M ) ≤
3
2 )). Thus, we only have to focus on rectangles of LWD and prove that

they will be packed in at most N − 1 strips.

Let us now prove the feasibility of the different phases of Algorithm 1. Notice

that it is obvious that phase 1 stops, and that it uses at most bN2 c strips since

|LXH ∩ LWD| ≤ N .

3.4. Feasibility of phase 2

Lemma 8 (Feasibility of Line 11). Let us suppose that (|LWD ∩ LH | ≥ 2) and

((W (L̄XH) > 1 or (W (L̄H ∪ L̄M ) > 3
2 )). Then, it is possible to create a packing

πi such that πi is dominating and area-dominating.

Proof. Let r1 and r2 be in LWD ∩ LH , with w1 ≥ w2. We pack r1 and r2 right

justified, with r1 at level 0 and r2 at level h1. As both are in LH , h1 + h2 > v.

We could have packed r2 at level 2
3v and still have its top side at or below level

4
3v. However, this would not create a layer as required by Remark 1 (Page 13).

Let us proceed by case analysis, and first suppose that W (L̄XH) > 1. In this

case we create a shelf sh1 using CreateShelf(L̄XH , 1), and we pack it at level

4v
3 . Then, we try to pack a rectangle rj ∈ L̄XH \ sh1 at level 0. Notice that

W (sh1) ≥ 2wj as CreateShelf uses the Widest First order (hence the two

widest rectangles of L̄XH were packed in sh1 and wj is narrower than both). If

rj fits at level 0, then S(πi) > (h1 + h2) 1
2 + 2v

3 (W (sh1) + wj) >
v
2 + 2v

3 > v.

Moreover, 2fXH(πi) + fH(πi) + fM (πi) ≥ 2fXH(πi) > 2. If rj does not fit,

w1 > 1− wj and since W (sh1) ≥ max(2wj , 1− wj) we get:

S(πi) > h1w1 + h2w2 +
2v

3
W (sh1)

> h1(1− wj) + (v − h1)
1

2
+

2v

3
max(2wj , 1− wj)

= h1(
1

2
− wj) +

v

2
+

2v

3
max(2wj , 1− wj)

>
3v

4
+ max(

5wjv

6
,

2v

3
− 7wjv

6
)

wj=
1
3≥ 3v

4
+

5v

18
> v

21



Moreover, 2fXH(πi) + fH(πi) + fM (πi) ≥ 2W (sh1) +w1 +w2 > 2W (sh1) + 1,

and as W (sh1) > 1
2 we get 2W (sh1) + 1 > 2.

2v
3

4v
3

11v
6

L̄M

L̄H

r2

r1

r′1
r′2

LWD ∩ LH

sh3

sh2

sh1

Figure 7: Example of packing built in phase 2 when W (L̄H ∪ L̄M ) > 3
2

.

Let us now suppose that W (L̄H ∪ L̄M ) > 3
2 (Figure 7). As previously, r1

and r2 (taken from LWD ∩ LH , with w1 ≥ w2) are packed right justified, with

r1 at level 0 and r2 at level h1. We then create at level 0 (using rectangles of

L̄H ∪ L̄M ) a shelf sh1, using a highest first order. Since r1 is already packed

right justified, the available space for sh1 is at most 1− w1. Let r′1 be the first

rectangle that does not fit. We pack r′1 right justified at level 4v
3 . Then we

create at level 2v
3 a second shelf sh2 using again a highest first order. Let r′2

be the first rectangle that does not fit. We pack r′2 right justified at level 4v
3 .

At this stage the packing is already dominating as fH(πi) + fM (πi) > 2.

We now prove that we can get an area dominating packing. Notice first that

if all rectangles of L̄H ∪ L̄M are packed, since by hypothesis we have W (L̄H ∪
L̄M ) > 3

2 and ∀rj ∈ L̄H ∪ L̄M , hj > v
3 , then S(πi) >

v
2 + 3

2
v
3 = v and the proof is

finished. Thus, let consider that all the rectangles of L̄H ∪ L̄M are not packed.

If r′2 ∈ LH , then S(πi) > 2 v2 = v.

If r′2 ∈ LM and r′1 ∈ LH , then all the remaining rectangles are in L̄M .

Thus, we create sh3 using CreateShelf(L̄M , 1 − w′1) which by definition uses

the widest first order, and we pack sh3 left justified at level 11v
6 (because sh3

cannot be stacked on the top of r′1). Again, either all rectangles of L̄H ∪ L̄M

22



are packed with this extra shelf and the packing is area dominating, or we get

W (sh3) >
1−w′

1

2 > 1
4 (using lemma 1 with k = 1). In this case

S(πi) > (w1 +W (sh1) + w′1)
v

2
+ w2

v

2

+(W (sh2) + w′2)
v

3
+W (sh3)

v

3

>
v

2
+ w2

v

2
+ (1− w2)

v

3
+

v

12

which for the 1
2 lower bound on w2 leads to v.

If r′2 and r′1 are in LM , we create sh3 using CreateShelf(L̄M , 1), and we

pack sh3 right justified at level 11v
6 . Thus, once more, either all the rectangles

are packed and the proof is complete, or we have W (sh3) > 2
3 (using lemma 1

with k = 2). Then, we get S(πi) > (w1 +w2) v2 + (1−w1 + 1−w2) v3 + 2
3
v
3 which

for the lower bound 1
2 on w1 and w2 leads to S(πi) > v.

3.5. Feasibility of phase 3: filling a strip with an area greater than v

Remember that in phase 3 (after Line 19) the problem gets easier as all the

rectangles of LWD have been packed.

Lemma 9 (Feasibility of Line 24). If we do not run out of rectangles, it is

always possible to pack in polynomial time an area of rectangles of I \ LWD

greater than v in an empty strip and with a height at most 7v
3 .

Proof. Let us first mention that we skip complexity considerations as it is clear

that the algorithm described below runs in polynomial time. Let select be an

empty set. We add to select some rectangles (in non increasing order of their

surface) until S(select) ≥ v or I \LWD is empty. Let select = {r1, . . . , rp}, with

S(rj) ≥ S(rj+1) for all j. If S(select) ≤ 7
6v, we know according to Steinberg’s

algorithm that select can be packed with a height at most 2× 7
6v.

Let us now suppose that S(select) > 7
6v (see Figure 8). This implies that the

last rectangle rp added to select has a surface strictly larger than v
6 (otherwise

the algorithm would have stopped before), and thus S(rj) >
v
6 for all j. More-

over, we get p ≤ 6, hj >
v
3 (as rj /∈ LWD), and wj >

1
6 for all j ∈ {1, . . . , p}.

23



Notice that for p ≤ 4 the lemma is straightforward as two shelves are suffi-

cient to pack select. Moreover, if four rectangles of select fit in one shelf, then

the lemma is also proved as there is at most two remaining rectangles that fit

in a second shelf. Thus, we consider now that p ≥ 5, and we sort rectangles

according to their width, implying now wj ≥ wj+1.

If w1 +w2 +w3 ≤ 1 then w4 +w5 +w6 is also lower than 1 and two shelves

are sufficient. Thus, we now assume that w1 +w2 +w3 > 1 and proceed with a

case by case analysis.

Case 1 : w1 + w2 + w3 > 1 and w3 + w4 + w5 ≤ 1.

. In this case it is possible to pack {r1, . . . , r5} in two shelves sh1 and sh2,

with sh1 = {r1, r2} and sh2 = {r3, r4, r5}. Then, we pack sh1 at level 0 and

the rectangles of sh2 top right justified, such that the highest rectangles are

on the right side (see the left case in Figure 8). If p = 5, all the rectangles

are packed and the proof is over. Let us now study case p = 6. We pack r6

left justified at level l6 := min{l|w6 processors are idle in the considered strip}.
If l6 = 0 the packing is clearly feasible, otherwise l6 = min(h1, h2). Let rj0

be the shortest (with the smallest hj) rectangle of sh2, and let us prove by

contradiction that r6 fits. If r6 intersects sh2, it implies that r6 intersects rj0 .

Thus, with γ = S(select \ {r6}) we have:

γ ≥ l6(1− w6)

+(
7

3
v − l6 − h6)(W (sh2))

= l6(1− w6)

+(
7

3
v − l6 − h6)(1− w6) + (

7

3
v − l6 − h6)(W (sh2)− (1− w6))

> l6(1− w6)

+(
4

3
v − l6)(1− w6) +

v

3
(W (sh2)− (1− w6))

>
4v

3
(1− w6) +

v(4w6 − 1)

3
as W (sh2) > 3w6

= v

which is a contradiction. Thus in this case r6 must fit.

24



Case 2 : w1 + w2 + w3 > 1 and w3 + w4 + w5 > 1.

.

Case 2.1 : p = 5.

. In this case, we will prove that we can pack the five rectangles in two layers

starting at level zero, one left justified and on right justified. First, as each of

these rectangles are not in LWD, their width is at most 1
2 and the two layers

won’t overlap. Since there are five rectangles, a natural idea is to place the three

smallest (according to height) rectangles in one layer and the two biggest in the

other. Since all heights are lower or equal to v, the layer with two rectangles

will fit in 7v
3 . Let us now prove by contradiction that the other layer also fits in

7v
3 . Let λ be the permutation which orders the five rectangles by non-increasing

height, i.e. hλ(j) ≥ hλ(j+1). If the layer with the three smallest rectangle

does not fit, we have hλ(3) + hλ(4) + hλ(5) >
7v
3 , and hence hλ(3) >

7v
9 (and

this also holds for the two taller rectangles rλ(1) and rλ(2)). Since hλ(3) ≤ v,

hλ(4) + hλ(5) >
4v
3 and hλ(4) >

2v
3 .

The total area of the four largest rectangles is
∑5
j=1 wλ(j)hλ(j)−minjwjhj >

(wλ(1) + wλ(2) + wλ(3))
7v
9 + wλ(4)

2v
3 . Let wmax = maxj≤4wλ(j). Notice that

depending on λ, wmax is either w1 or w2, which are both strictly larger than

1
3 since w3 + w4 + w5 > 1, and thus min(w1, w2) ≥ w3 >

1
3 . In both cases,

(wλ(1)+wλ(2)+wλ(3))
7v
9 +wλ(4)

2v
3 = (

∑4
j=1 wλ(j))

7v
9 −wλ(4) v9 = ((

∑4
j=1 wλ(j))−

wmax) 7v
9 +wmax

2v
3 + (wmax−wλ(4)) v9 > ((

∑4
j=1 wλ(j))−wmax) 7v

9 +wmax
2v
3 >

(w3+w4+w5) 7v
9 +w2

2v
3 > v. Hence, p cannot be equal to 5 if the three smallest

rectangles do not fit in 7v
3 .

We then repack these layers such that the narrowest rectangles are on the

top, implying that the utilization function u of the strip is decreasing.

Case 2.2 : p = 6.

. It remains now to handle the case where p = 6.

Let us first prove that:

(1) wj >
1
3 for 1 ≤ j ≤ 3

25



(2) w3 + w4 >
2
3

(3) hmin ≤ 3v
5 with hmin = Minj∈{1,...,5}hj

(4)
∑4
j=1 hj < 3v

The first inequality is true as for 1 ≤ j ≤ 3, 3wj ≥ w3 + w4 + w5 > 1.

If the second one were false we would have 2w4 ≤ w3 + w4 ≤ 2
3 and thus

w3 + w4 + w5 ≤ w3 + 2w4 ≤ 1. The third one is true since v > S(∪5j=1rj) ≥∑5
j=1 wjhmin >

5
3hmin. The last one is true since

v > S(∪4j=1rj)

≥ (h1 + h2 + h3)w3 + h4w4

= (h1 + h2 + h3 − h4)w3 + h4w3 + h4w4

> (h1 + h2 + h3 − h4)
1

3
+

2

3
h4

=
1

3
(h1 + h2 + h3 + h4)

Notice that if w6 >
1
3 then

∑6
j=1 hj < 4v (as v > S(∪5j=1rj) >

1
3

∑5
j=1 hj)

and as before the two layers are sufficient. Thus, we consider that w6 ≤ 1
3 . For

p = 6 we have h1 + h2 + h3 ≤ 2v, since v > S(∪5j=1rj) >
1
3 (h1 + h2 + h3) +

S(r4) +S(r5) > 1
3 (h1 +h2 +h3) +2 v6 (recall that S(rj) >

1
6 for any j), implying

min1≤j≤3hi ≤ 2v
3 (as h1 + h2 + h3 ≤ 2v).

If w6 ≤ 1
4 , then we use the same algorithm as for p = 5, and then we add r6

at level 4v
3 . Rectangle r6 must fit, otherwise u( 4v

3 ) > 3
4 and thus S(∪5j=1rj) >

u( 4v
3 ) 4v

3 > v. Thus, we consider now that 1
3 ≥ w6 >

1
4 .

If w4 > 1
3 (see Figure 8), we create (at level 0) a layer lay1 using

CreateLayer({r1, . . . , r4}, 7v3 ) and a layer lay2 containing all the remaining rect-

angle except r6. Notice that, as min1≤j≤3hj ≤ 2v
3 and as CreateLayer uses the

highest rectangles first, we get H(lay1) > 5v
3 . We repack these layers such that

the narrowest rectangles are on the top, implying that the utilization function

u of the strip is decreasing. Then, we add r6 at level 4v
3 . If {r1, . . . , r4} all fit in

lay1 then it is clear that r6 fits in 7v
3 (as lay2 = {r5}). Otherwise, let us prove

26



sh2

sh1

r6
h6

l6

w3 + w4 + w5 ≤ 1

r1
r2

r3
r4r5

���
���
���
���
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

2v
3

5v
3

4v
3

lay1

lay2

1
3 ≥ w6 >

1
4

w4 >
1
3

w3 + w4 + w5 > 1

r6

Figure 8: Example of two possible packings built in Lemma 9 when w1 + w2 + w3 > 1.

that lay2 fits:

H(lay2) ≤
5∑
j=1

hj −H(lay1)

≤ 4v −H(lay1) according to 4)

< 4v − 5v

3

If r6 does not fit, we have u( 4v
3 ) > 2

3 , and thus

S(∪5j=1rj) > u(
4v

3
)
4v

3
+ (min1≤j≤4wj)(H(lay1)− 4v

3
)

>
8v

9
+

1

3

v

3

= v

Finally, if w4 ≤ 1
3 (implying

∑6
j=4 wj ≤ 1), we create one shelf at level 0 with

{r4, r5, r6}, and two layers lay1 and lay2 using CreateLayer({r1, r2, r3}, 4v3 ),

that we pack at level v. Thus, given that H(lay1) > 1
2
4v
3 , we have H(lay2) ≤

h1 +h2 +h3−H(lay1) ≤ 2v−H(lay1) ≤ 4v
3 and thus all the rectangles fit. This

concludes the proof of the feasibility of Line 24.

3.6. Feasibility of phase 3: analysing the possible ends of algorithm

It remains now to study how to finish packing all the rectangles in cases

described Lines 26, 28 and 31. Remind that in case described Line 26 we pack

all the rectangles of I, and not only I ′.

27



Lemma 10 (First end of Algorithm 1). In the case Line 26, it is possible to

pack all the remaining rectangles of I.

Proof. Let i0 be the value of i at Line 19 when all wide rectangles are packed.

We have by definition here S(πx) ≥ v, for any x ≤ i0 − 1. Let X be the set

of remaining rectangles and X ′ = πi0 , at the beginning of Line 26. We will

prove that S(X ∪X ′) ≤ v, and thus Steinberg algorithm packs X ∪X ′ with a

height lower than 2v. If S(X ∪ X ′) > v, we never ran out of rectangles when

packing Sl, i0 + 1 ≤ l ≤ N and according to Lemma 9 we have S(πl) > v for

i0 + 1 ≤ l ≤ N , leading to S(I) > Nv.

Lemma 11 (Second end of Algorithm 1). In the case Line 28, it is possible to

pack all the remaining rectangles of I ′.

Proof. Let i0 be the value of i Line 19. We know that there exists x ≤ i0 − 1

such that S(πx) < v. It means that we cannot use the same area argument as

in Lemma 10. Thus, we will rather use counting arguments (see Section 3.2).

Let i2 (resp. i3) be the value of the index of the first strip used in phase

2 (resp. 3). Let us first prove that πl is dominating (see Definition 4), for

1 ≤ l ≤ i0−1. All the strips packed in phase 1 are dominating since CreateLayer

packs at least two rectangles of LWD ∩LXH in each strip. According to Lemma

8, all the strips packed in phase 2 are also dominating. Thus, we know that all

the πl are dominating for 1 ≤ l ≤ i3 − 1.

We now prove that the layers created at the beginning of phase 3 are domi-

nating, i.e. πl is dominating for i3 ≤ l ≤ i0 − 1.

Remark 3. We never ran out of rectangles of LB when creating layl,for any l,

i3 ≤ l ≤ i0 − 1 (meaning that LB was not empty when starting creating layi0 .)

Proof. Let x be the smallest index such that S(πx) < v. We know that Sx can

only be a strip packed during phase 1 or phase 3. This implies that H(layx) <

2v, and thus the algorithm ran out of rectangles of LWD\LB when creating layx.

Then, there are only rectangles of LB in all the layers created after layx.

28



Thus, when starting phase 3 we know that

• |LWD ∩ LXH | < 2, as phase 1 finished

• |LWD∩LH | < 2, as by assumption of this lemma we have few high = true

• we did not run out of rectangles of LB when creating layl,for any l, i3 ≤
l ≤ i0 − 1 in Phase 3

Under these conditions, we will now prove that πl is dominating for i3 ≤ l ≤
i0 − 1. Let (aXH , aH , aM ) be the number of rectangles of LXH , LH and

LM added to a layer layl, for i3 ≤ l ≤ i0 − 1. We have (aXH , aH , aM ) ∈
{(1, 1, 1), (0, 1, 3), (0, 0, 4)}, implying that any layl for any l, i3 ≤ l ≤ i0 − 1 is

dominating.

Thus, πl is dominating for 1 ≤ l ≤ i0 − 1. Then, according to Lemma 7,

we can create (if we don’t run out of rectangles) dominating packing in empty

strips Sl, i0 + 1 ≤ l ≤ N . Finally, let X be the remaining rectangles after

filling these strips, and let X ′ be the rectangles of πi0 at Line 19. It remains

to pack X ∪ X ′ in Si0 . We prove by case analysis (according to rectangles of

LB packed in πi0) that if the remaining rectangles do not fit in Si0 , then I ′ is

partitioned in N sets of rectangles (π1, . . . , πi0−1, X ∪ X ′, πi0+1, . . . , πN ) that

are dominating, which is impossible according to Lemma 6. We only have to

consider cases where πi0 is not dominating. Let (bXH , bH , bM ) be the number

of rectangles of LWD ∩ LXH , LWD ∩ LH and LWD ∩ LM contained in πi0 . As

before we know that bXH and bH are strictly lower than 2. Moreover, as π0

must be non dominating, we must have 2bXH + bH + bM ≤ 4. Thus, the only

possible cases are (bXH , bH , bM ) ∈ {(1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, j), (0, 0, j′)},
for 0 ≤ j ≤ 2, 0 ≤ j′ ≤ 3. For each possible value of (bXH , bH , bM ), we have

to consider different cases according to what kind of rectangles remain in X.

For the sake of brevity, we only analyze here two different cases. Proofs for the

other cases can be directly adapted.

Let start with (bXH , bH , bM ) = (1, 1, 0). Let X ′ = {r1, r2} with r1 ∈ LWD ∩
LXH and r2 ∈ LWD ∩ LH . We start by repacking r1 and r2 from level 0, right

29



justified, such that the narrowest rectangle is on the top. In this case we do not

pack rectangles of X on the top of the one of X ′, since H(X ′) could be equal to

v+ 2v
3 , and we could haveX∩LXH 6= ∅. However, if all the rectangles ofX do not

fit at level lvl(r1) (which is the level where r1 is packed), then we get W (X) >

1−w1. Thus, we have
∑
l∈{XH,H,M} f

l(X ∪X ′) > 2w1 +w2 +(1−w1) > 2. Let

us now consider a case where we pack rectangles on top of the one of X ′. For

example with (bXH , bH , bM ) = (0, 1, 1). Let X ′ = {r1, r2} with r1 ∈ LWD ∩LH
and r2 ∈ LWD ∩ LM . We also start by repacking r1 and r2 from level 0, right

justified, such that the narrowest rectangle is on the top. We have h1 +h2 <
4v
3 .

If all the rectangles of X do not fit at level 4v
3 , then we get W (X) > 1, and∑

l∈{XH,H,M} f
l(X ∪X ′) > w1 + w2 + 1 > 2.

The other cases can be treated following the same arguments, and we con-

clude that we can pack X ∪X ′ in Si0 .

It remains now to analyze the last possible end of Algorithm 1.

Lemma 12 (Third end of Algorithm 1). In the case Line 31, it is possible to

pack all the remaining rectangles of I ′.

Proof. Let i3 be the value of the index of the first strip packed in Phase 3. As

we packed two rectangles of LXH ∩LWD or LH ∩LWD in each of the i3−1 first

strips, and as few high is false, we have 2(i3−1)+2 ≤ |LWD∩(LXH∪LH)| ≤ N ,

implying i3 ≤ bN2 c.
As few high is false at the beginning of phase 3) we get LWD ∩ LH ≥ 2,

implying W (L̄XH) ≤ 1 and W (L̄H ∪ L̄M ) ≤ 3
2 . Thus, we need at most one

empty strip to pack L̄XH ∪ L̄H ∪ L̄M . Let x be the number of strips packed

with rectangles of LWD in phase 3. We need i3 + x− 1 < N .

If x ≥ 2, we have

H(LWD) > v(i3 − 1) +

i3+x−3∑
j=i3

H(layj)

+H(layi3+x−2) +H(layi3+x−1)

> v(i3 − 1) + v(x− 2) + 2v

30



Thus, as H(LWD) ≤ Nv, and we get i3 + x − 1 < N . If x ≤ 1, then x + i3 ≤
bN2 c+ 1 < N + 1.

Thus, we proved that the three possible ends of BuildPreallocation are feasi-

ble. According to the main steps defined in Section 2.2, the BuildPreallocation

algorithm that preallocates I ′ is sufficient to get a 7/3-approximation. Indeed,

we simply add rectangles of I \ I ′ using list algorithms defined in Section 2.2

3.7. Complexity

Let us now bound the computational complexity of the algorithm. Remark

first that Phase 1 and Phase 2 of BuildPreallocation can be implemented in

O(Nn+n log(n)). Indeed, before Phase 1 we sort the wide rectangles according

to their height. Thus, all the calls to CreateLayer in phase 1 can be im-

plemented in O(n). Then, before Phase 2 we resort the remaining rectangles

according to their width. Thus, all the calls to CreateShelf in phase 2 can be

implemented in O(n) (remark that there is only a constant number of rectangles

that are packed in Phase 2 without using CreateShelf).

Phase 3 runs in O(n(N + log(n))), using Widest First rather than Stein-

berg algorithm. Indeed, this bound is clearly true for algorithms described

in Lemma 11 and 12. Applying algorithm described in Lemma 9 on strips

{Sa, . . . , Sa+x} requires O((x + 1)n + n log(n)). Indeed, we start by sorting

the rectangles according to their area, and then each “select” (as named in

Lemma 9) set can be created in O(n). Moreover, applying Widest First on each

strip can be done in O(
∑a+x
i=a ni log(ni)) = O(n log(n)), where ni is the number

of rectangles of select in Si. Thus π0 is constructed in O(n(N + log(n))).

Due to the simple structure of preallocation, the LSπ0 algorithm can be

implemented in O(n log(n)). Instead of scanning level by level and strip by

strip, this algorithm can be implemented by maintaining a list that contains the

set of “currently” packed rectangles. The list contains 3-tuples (j, l, i) indicating

that the top of rectangle rj (packed on strip Si) is at level l. Thus, instead of

31



scanning every level from 0 it is sufficient to maintain sorted this list according

to the l values (in non decreasing order), and to only consider at every step the

first element of the list. Then, it takes O(log(n)) to find a rectangle rj0 in the

appropriate shelf that fits at level l, because a shelf can be created as a sorted

array. It also takes O(log(n)) to insert the new event corresponding to the end

of rj0 in the list.

The last step, which turns π1 into the final packing can also be implemented

in O(n log(n)) using a similar global list of events. Notice that for any strip Si,

there exists a li such that below li the utilization is an arbitrary function strictly

larger than 1/2, and after li a non increasing after. Packing a small rectangle

before li would require additional data structure to handle the complex shape.

Thus we do not pack any small rectangle before li as it is not necessary for

achieving the 7/3 ratio. Therefore, we only add those events that happen after

li when initializing the global list for this step. To summarize, for this step we

only need to sort the small rectangles in non increasing order of their required

number of processors, and then apply the same global list algorithm.

The binary search on v to find the smallest v which is not rejected can be

done in O(log(nhmax)). Thus the overall complexity of the 7/3-approximation

is in O(log(nhmax)N(n+ log(n))).

4. 2-approximation for a special case

4.1. Motivation

As explained in the related work, the 2 + ε-approximation in [5] and the

2-approximation we recently proposed in [6] are rather complexity results than

practical algorithms. As for the previous 7
3 -approximation, we aim at construct-

ing a low cost algorithm that could be used in a practical context. Thus, we

are looking for a (reasonable) restriction of the MCSP that would help to tight

the bounds, and we consider that all the rectangles have width lower or equal

to 1/2.

32



Lemma 13 ([2]). The MCSP where every rectangle has width lower (or equal)

to 1
2 has no polynomial algorithm with a ratio strictly better than 2, unless

P = NP .

Sketch. As in [4] for the general version, we construct a gap reduction from the

partition problem to the (restricted) MCSP with N = 2 strips. We associate

one rectangle to each object of the partition instance. The width of a rectangle is

equal to the size of the associated object, and all the rectangles have height one.

Thus, a yes instance leads to an optimal packing of length one. Conversely, a no

instance implies that any packing of height at least two, as the width of rectangle

cannot be two partitioned, requiring to pack some rectangles at level one. The

condition wj ≤ 1
2 can be verified by simply scaling rectangles appropriately.

Therefore, the fast 2-approximation presented in this section is somehow

optimal in the sense of approximation theory.

4.2. Sketch of proof

Let us show how to build a preallocation π0 for (α, β) = ( 1
3 ,

1
2 ) that fits in

r(α, β)v = 2v (again, we skip property (2) as it will be obvious that rectangles of

LWD are preallocated in a 2/3-compact way). Recall that according to Lemma 3

and 4 this is sufficient to get a 2-approximation. We only provide here a sketch

of the construction of π0, and refer the reader to [2, 15] for more details.

Let us consider the following partition (recall that wj ≤ 1
2 for any j):

• let LWD = {rj |wj > 1/3} be the set of wide rectangles

• let LXH = {rj |hj > 2v/3} be the set of extra high rectangles

• let LH = {rj |2v/3 ≥ hj > v/2} be the set of high rectangles

• let LB = (LXH ∪ LH) ∩ LWD be the set of huge rectangles

• let I ′ = LWD ∪ LXH ∪ LH

Let us sketch how to construct a preallocation π0 depicted Figure 9.

33



?

Si2Si1 > v > v> (i1 − 1)v

?

2v

Figure 9: Example of a preallocation. The (i1 − 1) first strips are optimaly filled using

rectangles of LWD. Then, we optimally fill strips i1 + 1 to i2 − 1 using two shelves of extra

high rectangles in each strip, and strips i2 + 1 to N using three shelves of high rectangles in

each strip. Strips i1 and i2 will be carefully filled according to a case by case analysis.

We first pack the rectangles of LWD by packing two layers in parallel in each

strip using CreateLayer(LWD, 2v) (let us say using strip 1 to i1). Thus, if we

do not run out of rectangles (this particular case is treated in [1]) all the layers

except the last one have a surface greater than 3
2v × 1

3 = v
2 and fit in 2v.

Then, we pack the remaining rectangles of LXH ∪ LH by creating two kind

of shelves. Notice first that

• a “extra high” shelf sh created by CreateShelf(LXH , 1) has a width of

at least 3
4 (as LWD is empty and wj ≤ 1

2 we know that at least three

rectangles fit in the shelf, and we apply Lemma 1), and thus a surface

greater than 2
3v × 3

4 = v
2

• a “high” shH created by CreateShelf(LH , 1) has a width of at least 3
4

(for the same reason) and thus a surface greater than v
2 × 3

4 = 3
8v

Thus, we fill empty strips (from i1 + 1 to N) using either two extra high shelves

or three high ones. In both cases the total surface packed in each strip is greater

than v, and the packing fits in 2v. Notice that details about how packing the

last shelves in strip i1 and how mixing the two kind of shelves (when we run

out of rectangles of LXH) are skipped here.

The previous analysis provides the main arguments to pack an optimal area

34



in a strip using layers or shelves, and thus build the preallocation to get a

2-approximation running in O(log(nhmax)n(N + log(n))).

References

[1] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, D. Trystram, Approximating

the non-contiguous multiple organization packing problem, in: Proceedings

of the 6th IFIP International Conference on Theoretical Computer Science,

2010.

[2] M. Bougeret, P.-F. Dutot, K. Jansen, C. Robenek, D. Trystram, Tight

approximation for scheduling parallel jobs on identical clusters, in: 14th

Workshop on Advances in Parallel and Distributed Computational Models

APDCM, (IPDPS), 2012.

[3] I. Foster, C. Kesselman, The Grid 2: Blueprint for a New Computing In-

frastructure, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2003.

[4] S. Zhuk, Approximate algorithms to pack rectangles into several strips,

Discrete Mathematics and Applications 16 (1) (2006) 73–85.

[5] D. Ye, X. Han, G. Zhang, On-Line Multiple-Strip Packing, in: Proceedings

of the 3rd International Conference on Combinatorial Optimization and

Applications (COCOA), Springer, 2009, p. 165.

[6] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, D. Trystram, Approximation

algorithm for multiple strip packing, in: Proceedings of the 7th Workshop

on Approximation and Online Algorithms (WAOA), 2009.

[7] U. Schwiegelshohn, A. Tchernykh, R. Yahyapour, Online scheduling in

grids, in: IEEE International Symposium on Parallel and Distributed Pro-

cessing (IPDPS), 2008, pp. 1–10.

[8] R. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal

of Applied Mathematics 17 (1969) 263–269.

35



[9] D. Friesen, M. Langston, Evaluation of a multifit-based scheduling algo-

rithm, Journal of Algorithms 7 (1) (1986) 35–59.

[10] K. Jansen, An EPTAS for scheduling jobs on uniform processors: using an

MILP relaxation with a constant number of integral variables, Automata,

Languages and Programming (2009) 562–573.

[11] P.-F. Dutot, K. Jansen, C. Robenek, D. Trystram, A (2+ε)-approximation

for scheduling parallel jobs in platforms (2013).

[12] A. Steinberg, A strip-packing algorithm with absolute performance bound

2, SIAM Journal on Computing 26 (1997) 401.

[13] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, D. Trystram, A fast 5/2-

approximation for hierarchical scheduling, in: Proceedings of the 16th In-

ternational European Conference on Parallel and Distributed Computing

(EUROPAR), 2010.

[14] D. Hochbaum, D. Shmoys, A polynomial approximation scheme for schedul-

ing on uniform processors: Using the dual approximation approach, SIAM

Journal on Computing 17 (3) (1988) 539–551. doi:http://dx.doi.org/

10.1137/0217033.

[15] M. Bougeret, P.-F. Dutot, K. Jansen, C. Robenek, D. Trystram, Tight

approximation for scheduling parallel jobs on identical clusters, lIRMM

research report 12001 http://hal-lirmm.ccsd.cnrs.fr/

lirmm-00656780.

36

http://dx.doi.org/http://dx.doi.org/10.1137/0217033
http://dx.doi.org/http://dx.doi.org/10.1137/0217033

	Introduction
	Problem statement
	Related Work
	Motivations and contributions

	General principles
	Preliminaries
	Discarding technique applied to MCSP
	How to pack all rectangles in three steps
	Steps b) and c)

	Example for a 52-approximation

	73-approximation algorithm
	Definition of the considered partition
	Counting the width of packed rectangles
	Description of the algorithm
	Feasibility of phase 2
	Feasibility of phase 3: filling a strip with an area greater than v
	Feasibility of phase 3: analysing the possible ends of algorithm
	Complexity

	2-approximation for a special case
	Motivation
	Sketch of proof


