
HAL Id: hal-01230292
https://hal.science/hal-01230292v1

Submitted on 3 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Adaptive Resource and Job Management for Limited
Power Consumption

Yiannis Georgiou, David Glesser, Denis Trystram

To cite this version:
Yiannis Georgiou, David Glesser, Denis Trystram. Adaptive Resource and Job Management for
Limited Power Consumption. IEEE International Parallel and Distributed Processing Symposium
Workshop, IPDPS 2015, Hyderabad, India, May 25-29, 2015, Hyderabad, India. pp.863–870,
�10.1109/IPDPSW.2015.118�. �hal-01230292�

https://hal.science/hal-01230292v1
https://hal.archives-ouvertes.fr

Adaptive Resource and Job Management
for limited power consumption

Yiannis Georgiou
BULL

Yiannis.Georgiou@bull.net

David Glesser
BULL

and Univ. Grenoble-Alpes

David.Glesser@bull.net

Denis Trystram
Univ. Grenoble-Alpes

Institut Universitaire de France

trystram@imag.fr

Abstract—The last decades have been characterized by an
ever growing requirement in terms of computing and storage
resources. This tendency has recently put the pressure on the
ability to efficiently manage the power required to operate the
huge amount of electrical components associated with state-of-
the-art computing and data centers. The power consumption of
a supercomputer needs to be adjusted based on varying power
budget or electricity availabilities. As a consequence, Resource
and Job Management Systems have to be adequately adapted
in order to efficiently schedule jobs with optimized performance
while limiting power usage whenever needed.

This paper introduces a new scheduling strategy that provides
the capability to autonomously adapt the executed workload to
a limited power budget. The originality of this approach relies
upon a combination of DVFS (Dynamic Voltage and Frequency
Scaling) and node shutdown techniques for power reductions. It is
implemented into the widely used resource and job management
system SLURM. Finally, it is validated through large scale
emulations using real production workload traces of the petaflopic
supercomputer Curie.

I. INTRODUCTION

Energy consumption has become one of the most crucial is-
sues in the evolution of High Performance Computing systems.
The increase in computation performance of such platforms
has come with an even greater increase in energy consumption,
turning energy an undisputed barrier towards the exascale
challenge. The power demand of such HPC systems has made
electricity one of the largest cost component for the lifetime of
these systems and it is important, almost critical, to improve
electrical system utilization and operation profiles. Since the
operational cost of a computing center for HPC systems is
directly related to the energy consumption, such centers have
additional motivations to regulate the energy usage. However,
controlling the energy for a certain duration demands novel
approaches to adjust the instantaneous power on a daily basis.

Research efforts upon all different abstraction layers of
Computer Science, from hardware, to middleware up to appli-
cations, strive to improve energy consumption and provide effi-
cient power management. The advances at the hardware layer
need to be followed by evolutions on systems software and
middleware in order to provide efficient results. Various tech-
niques such as speed scaling (DVFS) and node shutdown have
been broadly used for energy reductions [1,2]. Nevertheless,
the regulation of power needs to pass from a centralized system
middleware able to monitor power consumption and adjust it
through coordinated actions across the whole infrastructure.
The most adequate software for this type of coordination is the

Resource and Job Management System (RJMS) which plays a
crucial role in the HPC software stack since it is aware of both
the hardware components state and information, along with
details upon the users workloads and the executed applications.

In this work we propose a powercapping mechanism im-
plemented upon a Resource and Job Management System
based on a combination of offline and online job scheduling
approaches, making use of both DVFS and node shutdown
power-reduction techniques. We study a generic model which
shows that in some cases, the best solution is to mix both
techniques. As a consequence, the RJMS has to be adequately
adapted in order to efficiently schedule the jobs with optimized
performance while limiting power usage whenever needed.
More precisely, the main contribution is the introduction of
a new power consumption adaptive scheduling strategy that
provides the capability to autonomously adapt the executed
workload to the available or planned power budget. We have
studied the impact of DVFS on several actual applications
along with effects of using grouped shut-down of nodes and
considered them in our model. The new scheduling algo-
rithms have been implemented upon the widely used open
source workload manager SLURM. As our aim is to integrate
this mechanism into large-scale HPC supercomputers such as
Curie, we have validated our model, algorithms and imple-
mentations using large-scale experimentations based upon real
production workload traces of Curie petaflopic supercomputer.

The content of the paper is as follows. We start by an
overview of the most relevant approaches used so far for
reducing the energy consumption and powercapping in Sec-
tion II. Section III presents our model for determining the
best combination between DVFS and shutdown for power lim-
itations. The scheduling algorithm is presented in Section IV
while section VI provides the analysis of its implementation.
Section V presents the adaptation of the mechanisms using real
supercomputer’s characteristics. We evaluate our algorithms
and report the results of our experiments in Section VII.
Finally, conclusions and perspectives are discussed in Sec-
tion VIII.

II. RELATED WORKS

A. Controling the power

Dynamic Voltage and Frequency Scaling (DVFS in short)
is the most popular mechanism used so far for controlling the
power in computing systems and as a consequence, reduce the
energy. There exist a lot of works oriented toward theoretical
results on speed-scaling (for instance continuous speeds). We
are targeting here more realistic issues. The first series of

papers intended to determine the right frequency. Energy-
centric DVFS controlling method was proposed in [1] for
single CPU multi-core platforms. The idea was to monitor the
traffic of data from the cores to the memory and to update
the DVFS accordingly (i.e. reduce it if the traffic is high
or expand if it is low). This was extended in [3] for more
general platforms. Schöne and Hackenberg [4] used register
measurements for determining the frequency. Kimura et al. [5]
provided also a new mode of control of DVFS through a code-
instrumented DVFS control. Then, Gandhi et al. [6] considered
a mechanism that switch between the maximum DVFS to
the idle state, in order to minimize the energy consumption.
DVFS has also been studied to predict its impact on the
whole system. Rountree et al. [7] developed a performance
prediction model outperforming previous models. Etinski et
al. [8] studied how to improve the trade-off energy versus
completion time on applications. Freeh et al. [9] provided a
huge number of experiments for measuring the Energy over
Time. An interesting feature was studied in the case where a
node is removed from the system (moldable jobs).

Another complementary mechanism consists in switching
off some nodes (also called shutdown). Lawson et al. [2] pro-
posed an opportunistic shutdown mechanism, which switches
off a node after a significant idle period. Aikema et al. [10]
studied the energy from the view point of a cost function. Here,
a node which becomes idle is considered as a zero-cost in term
of energy. Under the assumption of under-loaded cluster, Hikita
et al. [11] presented a batch scheduler that minimizes the
number of active nodes while keeping the same performances.
In [12], Demaine et al. took into account both the cost of
energy and of switching (off/on) the processors. They proposed
a theoretical algorithm that minimizes the number of such
switches.

Despite the two first mechanisms, other options have
been studied including network frequency scaling [13] or
temperature-aware scheduling [14]. An incentive mechanism
for reducing energy has also been proposed in [15].

B. Powercapping

In the following of this paper, we are focusing on powercap
as the main topic. Some papers are considering powercapping
at the node level, for instance [16] used a new feature available
in Intel processors to achieve a local powercap and [17] packed
threads together in order to tune the DVFS. Fan et al. defined in
[18] a methodology to reduce the global cost of data-centers by
buying more processors and capping their power consumption.
In the context of cloud computing, Geronimo et al. proposed a
virtual machine manager that can use DVFS, update the virtual
machine resources, migrate them and shutdownopportunisti-
cally some processors [19]. Powercap has been studied by
Etinski et al. in a series of papers [20]–[22] where DVFS is the
only mechanism used to achieve powercapping while keeping
good performances. We consider here a more sophisticated
mechanism including also shutdown.

To the best of our knowledge, there is no similar work
which consider DVFS and shutdown simultaneously in order
to adapt the power consumption of a cluster. Pierson and
Casanova proposed a theoretical approach based on mixed
Integer Linear Programs restricted to a single application [23].
We propose here a generic mechanism which selects the best
strategy among DVFS, shutdown or both together.

III. ENERGY AND POWER ANALYSIS

In this section, we describe a new model that enables to
determine when to switch off nodes and to determine the right
frequency.

A. Tradeoff Switch-off between DVFS

Let us define W as the maximum amount of computations
that could be performed during a given period of time T :

W = T.(
N −Noff −Ndvfs

1
+

Ndvfs

degmin

) (C1)

Where N is the total number of nodes; Noff is the total
number of nodes which are switched off and Ndvfs is the
total number of nodes whose frequency has been decreased.

degmin represents the percentage of degradation of the
completion time at the minimum frequency compared to the
maximum one. The justification to take degmin at the mini-
mum frequency is to consider the maximum possible impact
on applications. This choice will be discussed in Section VI.

Obviously,
Ndvfs +Noff ≤ N. (C2)

Without loss of generality, T will be set to 1.

The consumed power should be lower than the powercap:

Noff .Poff +Ndvfs.Pmin+

(N −Noff −Ndvfs).Pmax ≤ P
(C3)

Where Poff , Pmin and Pmax are respectively the power
consumed by a switched-off node, by a node in the lowest
frequency and by a node in the maximum frequency. P is the
powercap, i.e. the global available power at this moment.

The previous constraints C1 and C3 correspond respec-
tively a plane and an half-space in the 3 dimensional space (W ,
Noff and Ndvfs). We are looking for points that maximize
W within the previous constraints. The intersection of the two
previous surfaces is a segment. We then consider the point that
maximizes W on this segment. Then, there are four cases to
distinguish:

1) There is only some switched-off nodes (the best point
is on located on the plane (W , Noff).

2) There is only use of DVFS on some nodes (the best
point is on located on the plane (W , Ndvfs).

3) Both previous options lead to the same maximum
computational load (all the points of the segment are
eligible)

4) The powercap is too low and both mechanisms should
be used to reach the maximal W (the best point is
at the intersection of the segment and the constraint
C2).

The value for the two first cases can be easily computed thanks
to the following formulas:

{

Noff =
P−N.Pmax

Poff−Pmax

Ndvfs=0
or

{

Noff =0
Ndvfs=

P−N.Pmax

Pmin−Pmax

Let Wdvfs be available computational load available
using only the DVFS mechanism (similarly Woff for
the switch off mechanism). DVFS is better to use when
Wdvfs > Woff . Which is equivalent to ρ > 0, where

ρ = 1 − 1

degmin
−

Pmax−Pdvfs

Pmax−Poff
. In the third case, we choose

either one or the other mechanisms. Thus, for the three
first cases, it is easy to determine which mechanism to
use depending on ρ. Let us focus on the last case when the
powercap is too low. How low this powercap has to be to reach
this limit? The powercap is too low when P < N.Poff or
P < N.Pmin. The first expression can not happen practically
since the powercap will be less than the clusters completely
switched-off. Let us define P = λNPmax, where λ is the
powercap normalized by the maximum power consumption
of the cluster. The second expression becomes λ < Pmin

Pmax
,

which means that the powercap can not be less than Pmin

Pmax
if

DVFS is the only mechanism used to control power. In this
case, the best choice for Noff and Ndvfs is:

{

Noff =N −Ndvfs

Ndvfs=
P−N.Poff

Pmin−Poff

We are now able determine which mechanism to use
depending on the job, the cluster and the powercap. In the
following section we will present an optimization of the
switch-off mechanism. Then we will discuss the algorithm
from the the described model.

B. Power Bonus when switching off hardware components

In HPC clusters, there are several hardware levels from
a power consumption point of view. A level is defined as a
group of different hardware components that can be switched-
off simultaneously.

The configuration of which hardware components partici-
pate at each level depends on the architecture of the cluster.
For instance, if the architecture is such that nodes are grouped
in order to mutualize the first layer of administration and
interconnection networks switches, nodes belonging to a same
group can be powered off along with their respective switches
without preventing the correct usage of the remaining groups.
In this example, such a group will compose a particular power
level. The extra power consumption gained by the network
switches when powered off is then called a ’power bonus’. This
method allows us to reduce even more the power consumed
by a cluster when disabling part of its compute power.

In modern architectures, typical HPC clusters will have
different ’power bonus’ related to the different levels of
components aggregation. Correctly selecting the computing
elements to switch-off when coping with a power constraint
will thus enable to sum up the different bonus at the different
levels and maximize the power available to the active compute
elements and their hardware dependencies. The lowest level
considered in the our model is the multicore node. No actual
power bonus is currently provisioned at this level. Individual
cores and sockets can not be switched-off individually, hence
they cannot comprise a lower level on their own.

In Section VI-A we provide more precise details for the
’power bonus’ related to the Curie cluster architecture.

IV. SCHEDULING UNDER POWER CONTROL

A. Preliminaries on scheduling features

From a high level point of view, scheduling in a Resource
and Job Management System can be decomposed into two
successive phases: first, the jobs should be selected after prior-
itization among the group of pending jobs, then, the resources
should be selected upon which the job will be dispatched. In

Scheduling
algoritm

Node selection
algoritm

Job
submissions

Reservation
submissions

Powercap
submissions

Launch
jobs

Offline
Algorithm

Online
Algorithm

Fig. 1: SLURM architecture. In grey, modified part.

more detail, the first phase may involve various mechanisms
to select the next job to be treated. For instance, the usual
backfilling [24] may be enriched with multifactor priorities
such as job age and job size or even more sophisticated
features like fair-sharing and preemption. The second phase
is related to the actual allocation of resources according to
their characteristics such as internal node topology, network
topology, usage of accelerators. The proposed powercapping
algorithm takes place during this second phase of scheduling.
One of the main building blocks of this algorithm relies on
the fact that power is treated as a new type of resources
characteristics. According to its state (PowerDown, Idle, Busy,
etc.), the resource will consume a different amount of power.
At any moment, the RJMS keeping the state of each resource
internally can deduce the power consumption of the whole
cluster. The characteristic of power can be related to any
different component of the cluster but for the sake of clarity,
we consider here the power of a whole node.

The calculation of the power consumption of the cluster
is simply obtained by summing up the power consumptions
of each node. For instance, the nodes that are executing
jobs will be counted with the maximum power consumption
(except in cases of DVFS usage); the nodes that are kept idle
will be counted with the minimum power consumption and
those that have been switched-off are counted with no power
consumption (it could be non-zero in case where the BMC
(Baseboard Management Controller) is still on). The algorithm
goes one step further by considering the setting of the different
CPU frequencies as different power states. Hence, the power
consumption of each node will change depending on the CPU
frequency at which the job is running.

The power values related to the state of each node can
either be measured or be given by the constructor (this infor-
mation can be configured and kept internally into the RJMS).

B. Scheduling algorithm for powercapping

The powercapping algorithm that we propose is composed
of two successive parts: A first offline part where the decisions
for power management are taken in advance (to better prepare
future actions) followed by an online part where the power
distribution and management take place.

The algorithm is activated as soon as a powercap reser-
vation is provided. This powercap value can be either set for
now (i.e. the moment when the command is launched) with

no time restriction/limitation or as a reservation for a certain
time window in the future. When a new job arrives during
the allocation phase, the algorithm examines if there is any
powercap limit for the time being or if the job may overlap
with any future reservation of power at some point in the
future. If any of these cases holds, the power consumption of
the cluster is computed by considering as busy the nodes that
the job will use. Then, the different values of the a-posteriori
power consumption of the cluster are examined by measuring
the power with all the different CPU frequencies where the
allocated nodes may run. If there is no CPU frequency to allow
the future power consumption of the cluster to be less than the
power budget then the job remains pending. In the opposite
case, the job is executed at the maximum CPU frequency that
allows the job to be executed keeping the cluster in the power
budget.

Input: The user creates a powercap reservation,
indicating the interval time and the value of the
powercap (P).

if P < N.Pmin then

Ndvfs =
P−N.Poff

Pmin−Poff

Noff = N −Ndvfs

Make a switch-off reservation of Noff nodes during
the powercap.

else

ρ = 1− 1

degmin
−

Pmax−Pdvfs

Pmax−Poff

if ρ <= 0 then

Noff = P−N.Pmax

Poff−Pmax

Make a switch-off reservation of Noff nodes
during the powercap.

end
end

Algorithm 1: Offline algorithm to control the nodes switch-
off reservations.

One of the important parts of the algorithm is the selection
of the CPU frequency. Selecting a value close to the maximum
will make the power consumption of the cluster to increase
faster (some nodes will have to be kept idle) producing
starvation of following jobs and dropping the utilization of
the system. Considering that jobs may run at a lower CPU
frequency (which means that nodes will consume less power)
gives us extra flexibility for scheduling more jobs. However,
since only one job is treated at a time and we cannot know
how many jobs will follow, we need to select the best possible
value of CPU frequency whenever the powercapping is acti-
vated. The optimal CPU frequency is the maximum allowed
frequency that all idle nodes could run such that the total power
consumption of the cluster remain within the powercap value.
Since the number of idle nodes may change, the optimal CPU
frequency may also change from one job to another.

The adequate energy saving mechanism is chosen in the
offline step. System administrators can force one or another
mechanism. We defined three policies SHUT, DVFS and MIX.
SHUT means that the system will have the possibility to
switch-off nodes and keep others in an idle state if needed.
DVFS policy means that the system will have the possibility to
oblige jobs to be executed at lower CPU frequencies. Finally,
MIX is a mixed DVFS and SHUT strategy, which considers
both possibilities of saving power. In DVFS, SHUT or MIX

Input: The job trying to be scheduled.
job.DVFS = highest possible DVFS
while
currentPower+Njob.DV FS ∗job.requiredNodes > P
do

if job.DV FS == minimumDV FSpossible then
return Impossible to schedule the job now.

end
job.DVFS = a slower value of job.DVFS

end
Algorithm 2: Simplified online algorithm to control the
DVFS of jobs.

modes, the system will decide which mechanism is the most
suitable one using the equations introduced in Section III-A.

If the powercap value is set for now then there could be a
problematic scenario where the cluster is currently above the
powercap. In this case, by default, no extreme actions are taken
with the running jobs. This means that no additional jobs will
be scheduled and the scheduler will wait until some jobs are
completed to eventually have the power consumption of the
cluster dropped to a value lower than the powercap. However,
we argue that the above default way may not be accepted by
some sites that may want to have extreme actions when the
powercap value is set. In this case, the necessary number of
jobs will be killed until the power consumption of the cluster
drops instantaneously.

V. IMPLEMENTATION UPON SLURM

The above scheduling algorithm has been implemented
upon the open-source resource and job management system
SLURM [25]. As of the June 2014 Top 500 computer list
1, SLURM was performing workload management on six of
the ten most powerful computers in the world including the
number 1 system, Tianhe-2 with 3,120,000 computing cores.

In a nutshell, SLURM is designed as a client-server dis-
tributed application: a centralized server daemon, also known
as the controller, communicates with a client daemon running
on each computing node. Users can request the controller for
resources to execute interactive or batch applications, referred
as jobs. The controller dispatches the jobs on the available
resources, whether full nodes or partial nodes, according to a
configurable set of rules.

The power awareness of SLURM has recently been en-
hanced by introducing the capability to regularly capture the
instantaneous consumed power of nodes [26]. Coupled with
the introduction of a speed scaling logic, enabling to modify
the frequencies of the cores involved during the execution, this
new feature helps to identify the behavior of applications in
terms of power consumption when varying the frequency.

To achieve the targeted goal of powercapping, a new
parameter called PowerCap is added to the controller’s set of
states. It represents the allowed power budget of the cluster
in watts. Also, SLURM reservation characteristics have been
extended by a new Watts parameter in order to specify a
particular amount of power reserved for a specific time slot.

To compute the maximum power amount required to oper-
ate a cluster, new parameters are associated to the compute

1http://www.top500.org/list/2014/06/

nodes to provide the different maximum amounts of watts
consumed. Thus, IdleWatts, MaxWatts, DownWatts will re-
spectively correspond to the amounts of watts required to
operate a node in idle, fully used and down states. The down
state corresponds to the state the controller uses to characterize
a node not being currently accessible within SLURM (e.g. in
the case of node shutdown). Furthermore, other parameters
such as CpuFreqXWatts may be used to characterize a node
that its CPUs runs at a specific X Frequency. While computing
the instantaneous maximum amount of power of the cluster,
the controller will use the known states of the nodes in order to
sum up the individual maximum amounts of watts and produce
a global power value for the whole cluster.

The choice of powercap scheduling mode (SHUT, DVFS
or MIX) has been implemented as a configurable Sched-
ulerParameter option and can be dynamically altered by the
administrator without restarting SLURM services. The offline
part of the scheduling algorithm is triggered only in the case
of powercap reservations and has the ability to reserve the
shutdown of nodes. In our context, the goal is to regroup the
shutdown of contiguous nodes in order to benefit of power
bonus possibilities as described in Section III. Hence, we
coupled this feature in the offline scheduling part and the
shutdown of nodes is triggered through a specific type of
reservations in SLURM.

The online part is implemented in the central part of
SLURM scheduling mechanism upon the controller. When
evaluating the impact of the start of a pending job, the
controller will temporarily alter the states of the candidate
nodes, compute the resultant consumption and compare it
to the defined and planned powercap. In case of DVFS or
MIX scheduling mode, the evaluated job is controlled for all
different CPU-Frequencies and it stays pending only if the
estimated power consumption with the lower permitted CPU
Frequency is larger than the power envelope it may use. The
target CPU-Frequency is selected based on the Algorithm 1.
Since the DVFS is actually altered by the controller during
the online scheduling phase, the walltime of the job needs
to be adapted respectively. Based on similar studies [20], we
consider that the walltime should be increased up to 60%
for the minimum CPU Frequency, while intermediate values
of walltimes are linearly interpolated. Note that the current
code does not make any difference in power requirements
whether nodes are fully or partially used. The evaluation of
new jobs only filling partially used nodes will always pass the
powercapping criteria as no extra power will be required. As
a result, the scheduler will tend to fill the compute nodes up
to the targeted power budget.

VI. ADAPTING POWERCAPPING LOGIC FOR CURIE

The activation of the adaptive power control of SLURM for
a certain infrastructure requires an initial configuration where
the maximum power consumptions of each implicated compo-
nents, along with other important parameters are defined. In
this section we present the study made for the adaptation of
SLURM powercapping logic for Curie supercomputer.

A. Details on Curie

Curie2 is owned by GENCI3, it is the first french Tier-0
system opened to scientists through the participation into the
PRACE4 research infrastructure. Since its upgrade in February
2012, Curie consists of 280 Bullx B chassis housing 5,040
Bullx B510 nodes, each with two 8-core Intel Sandy Bridge
processors for a total of 80640 cores. Curie was ranked 26th
among the 500 most powerful supercomputers on June’s 2014
Top500 list5.

Configuration details and workload traces of Curie have
been extracted at some points of its early lifetime and are used
in this study to specify hardware characteristics and evaluate
the behavior of the proposed mechanisms.

We have seen in Section III-B that the architecture of an
HPC cluster plays an important role when considering which
nodes to switch-off in order to maximize the ’power bonus’.
In Curie, we distinguish 4 hierarchical levels that can be
switched-off. Table 2 gives the power consumption of each
level.

• The first one is the node level. A node is composed
of 2 sockets and each socket contains 8 processors.
When a node is powered-off the BMC is kept active
so that the node can be powered back on through the
network. This explains the consumption of 14W in
table 2 when a node is down.

• The second level is the chassis level. Each Chassis
contains 18 nodes and the power bonus is composed
by global cooling fans, network switches installations
such as Ethernet and Infiniband switches, optical
cables, network ports. These hardware components
consume an extra amount of power of 248 Watts with
a power bonus of 500 Watts as we see in 2.

• Rack level is the third one. It is composed of 5 chassis,
which contain fans and a cold door related to the
liquid cooling equipment. The power consumption of
these components is 900 Watts and the bonus when
switching off a complete rack will be 3400 Watts.

• Finally, the last level is the whole cluster, which is
composed of 56 racks.

Level
Power

consumption
Power bonus Acummulated

Power

Node (down) 14 W - -
Node (max) 358 W - 344 W
Chassis 248 W 248+18*14= 344*18+500=

(18 nodes) 500 W 6692 W
Rack 900 W 900+500*5= 6692*5+900=

(5 chassis) 3400 W 34360 W

Fig. 2: Power consumption and the possible saved watts when
various levels of the cluster are switched-off.

The power bonus values of table 2 imply that if we switch
off a complete chassis this will allow us to completely use at
least 1 extra node where-as if we switch-off a complete rack
this will allow us to use at least 9 extra nodes. For example,
if our model needs a power reduction of 6600 Watts and we

2http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
3http://www.genci.fr/en/our-computers
4http://www.prace-project.eu/
5http://www.top500.org

 100

 150

 200

 250

 300

 350

 400

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

M
a

x
im

u
m

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 p

e
r

n
o

d
e

 (
w

a
tt

s
)

Normalized Execution Time

Maximum Power - Normalized Exeuction Time Trade-off for IMB, Stream, Linpack and Gromacs executions
 upon a 4 nodes cluster with different CPU Frequencies

Linpack

2.7

2.4

2.2

2.0

1.8

1.6

1.4

1.2

Stream
IMB

2.7

2.4

2.2
2.0

1.8

1.6

1.4

1.2

Gromacs

2.7

2.4 2.2

2.0
1.8

1.61.4

1.2

Fig. 3: Maximum Power - Execution Time Tradeoffs for
Linpack, Stream, IMB and Gromacs benchmarks at different
CPU frequencies

consider that when a node is powered-on it will be used with
the maximum consumption of 358 Watts then we need to
switch-off 20 single nodes to reduce the power for 6880 Watts
(=344*20). However if we make sure that we power off the
18 nodes of a complete chassis this will allow us to make use
of the bonus and reduce the power for 6692 Watts which is
even more than what we actually need. This allows us to use 2
extra nodes. In order to take advantage of the power bonus and
keep more nodes powered-on, we need to prepare an efficient
grouping of nodes to switch-off. Hence that is why the choice
of which nodes will be switched off takes place during the
offline part of the algorithm.

B. Control and Measure power

The power consumption of the different states of a node
may be given by the constructor or calculated through exper-
imentations. In our case we perform experiments of various
known benchmarks using the exact same models of computing
nodes and hardware components that are used on Curie.

We have run three different widely used benchmarks and
one application to measure the characteristics of Curie cluster.
We have chosen a first benchmark to stress all computing
resources (Linpack [27]), a second one targeting memory
(Stream [28]), one focused on network (IMB [29]) and the
last one is a widely used application for molecular dynamics
simulation (GROMACS [30]). Measurements have been done
through the IPMI6 interface of SLURM power profiling mech-
anisms which have been shown to provide precise results for
the consumption at the node level [26]. DVFS is a way to
obtain a trade-off between power and completion time. It has
been widely studied in the literature (see Section II). Figure 3
gives the evolution of the completion time and the maximum
watts consumed at different DVFS values.

Table 4 presents the maximum power consumption ob-
served on a node for each DVFS value based upon the results
of all 4 applications. We have also added the observed power
consumption of switched-off and idle states. These measure-
ments set the maximum Watts that a node can consume. There

6IPMI (Intelligent Platform Management Interface)

is huge gap between switched-off and idle nodes. Both of them
do not produce computational power but a switched-off node
consumes one order of magnitude less power.

Node state Maximum power consumption
Switch-off 14 W
Idle 117 W
DVFS 1.2 GHz 193 W
DVFS 1.4 GHz 213 W
DVFS 1.6 GHz 234 W
DVFS 1.8 GHz 248 W
DVFS 2.0 GHz 269 W
DVFS 2.2 GHz 289 W
DVFS 2.4 GHz 317 W
DVFS 2.7 GHz 358 W

Fig. 4: Table of the maximum power consumption of a Curie
node in different states.

Also, from these benchmarks we compute the performance
impact of DVFS. For simplicity, only the maximum and
minimum DVFS frequencies are taken into account. Thus,
in the following the degradation of performance is between
the maximum and the minimum DVFS values. As seen in
Section II, the degradation of performances has already been
studied. In [9], the authors measured the degradation for the
NAS benchmark, the SPEC float and integer benchmarks. A
degradation of 163% is assumed to be a good approxima-
tion [20]. Figure 5 summarizes the data obtained on Curie for
various benchmarks. Common values of degradation clearly
show that shutdown is the best mechanism to use, at least for
reasonable values of powercap.

Benchmark degmin ρ
Best
mechanism

NA 2.27 0 -
linpack 2.14 -0.027 Switch-off
IMB 2.13 -0.029 Switch-off
SPEC Float [9] 1.89 -0.088 Switch-off
SPEC Integer [9] 1.74 -0.134 Switch-off
Common value [20] 1.63 -0.174 Switch-off
NAS suite [9] 1.5 -0.225 Switch-off
STREAM 1.26 -0.350 Switch-off
GROMACS 1.16 -0.422 Switch-off

Fig. 5: Comparison between DVFS and switch-off in Curie for
various benchmarks.

In our context, the SHUT policy appears to be the best
one. Hence the offline algorithm would never mix DVFS
and SHUT modes. However, we observe in the benchmarks’
results that, unlike the power/performance trade-off, the en-
ergy/performance trade-off is not monotonic. The most optimal
points are between 2.7 GHz and 2.0 GHz. As a consequence,
we consider the MIX mode with higher DVFS values. The
aim of this MIX mode is to improve performance and energy
consumption while remaining under the power budget. This
algorithm is the same as the one previously described but the
minimum DVFS frequency is 2.0 GHz instead of 1.2 GHz.
Both mechanisms should be used together when the powercap
is inferior to 75% of the maximum power.In the remainder
of the paper all references to MIX policy consider always the
high DVFS values (2.0-2.7GHz).

In case we cannot switch-off nodes, the SHUT mode can
be implemented by keeping nodes idle. In this case, ρ becomes

0

20000

40000

60000

80000

0h 2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h

Time

C
o
r
e
s State

2.7 GHz

2.0 GHz

0

500000

1000000

1500000

0h 2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h

Time

W
a
t
t
s

State

2.7 GHz

2.0 GHz

Idle

Fig. 6: System utilization for the MIX policy in terms of cores (top) and power (bottom) during the 24 hours workload with a
reservation (hatched area) of 1 hour of 40% of total power. Cores switched-off represented by a dark-grey hatched area.

positive for all degradation values of benchmarks. Thus, DVFS
turns out to be the best policy in all cases.

VII. EXPERIMENTAL EVALUATIONS

Our choices for experimental evaluations were to: i) use
the real workload trace of Curie for approximating production
executions of a large-scale supercomputer, ii) take into account
the real power consumption data of Curie as discussed in
Section III and iii) make use of an emulation technique to study
SLURM by using only a small fraction of physical machines.

A. Platform and Testbed

The experiments have been performed upon Nova2 plat-
form which is an internal BULL cluster dedicated for exper-
imentations. The cluster is composed by Intel Sandy Bridge
processors with 65 GB of Memory and Infiniband network.

In order to enable real-scale experiments of Curie’s work-
loads with SLURM we need to deploy a configuration of the
same size. This is done by making use of an internal SLURM
emulation technique called multiple-slurmd. This technique is
described and validated in [31]. In our context, we deploy 5040
nodes of Curie with only 16 physical nodes of our experimental
platform Nova2.

B. Methodology

We propose to replay time intervals extracted from a real
workload trace of Curie supercomputer in 20127. In more
detail, we select three intervals of 5 hours and one interval
of 24 hours with high utilization (most cores are used for
computations), big number of jobs in the queue and short inter-
arrival time. The intervals used in the following experiments
are: i) medianjob, with jobs that are representative of the
whole workload, ii) smalljob, with more small jobs than
in the medianjob interval, iii) bigjob, with more big jobs
than in the medianjon interval, iv) 24h, with jobs that are
representative of the whole workload. In the extracted traces,
Curie is overloaded: there are always at least enough jobs in
the submission queues to fill a second cluster of the same
size. Most of the jobs are small compared to Curie size,
69% are jobs that need less than 512 cores and ran for less

7http://www.cs.huji.ac.il/labs/parallel/workload/l cea curie/index.html

than 2 minutes. 0.1% of jobs are huge, these jobs use more
than the equivalent of the whole cluster for 1 hour. It is
important to note that in these particular traces, users estimate
runtimes badly. In average, they request about 12670 times
more walltime than needed (median: 12000). This leads to
difficulties for the system to schedule correctly jobs [32].

As we are only interested in the RJMS internal decisions,
hence the jobs are replaced by simple “sleep” commands.
On the original workload, all the jobs were run at maximum
DVFS. If our powercap scheduling algorithm decides to run
a job at a lower speed, the emulated job will be executed
slower. We choose to use a performance degradation of 1.63
(1.29 with MIX) for all jobs, as our experiments and related
works agree that it is a reasonable value (see Section VI-B).
This performance degradation is computed with the maximum
speed (2.7 GHz) and minimum speed (1.2 GHz or 2.0 GHz
with MIX), the intermediate values have been linearly interpo-
lated.

The replay of the time interval is based on the four
following phases: i) the environment setup: SLURM is set
in the closest state of the original run. We put in place the
original SLURM configuration of Curie and modified only the
parameters that allow our replay (node names, characteristics
and power values), ii) the interval initial state setup: runtime
characteristics are put in place (queued and running jobs,
fairshare values for each user), iii) the actual workload replay:
jobs are submitted with the same characteristics as they were
on the original run (simple ’sleep’ jobs, not real executions),
iv) data post-treatment: once the replay of the time interval
end, we stop SLURM and then collect and gather information
about the replay by the end of the interval (jobs state, outputs
and characteristics).

This methodology has some limitations. The initial place-
ment of jobs is not always respected, and we do not replay
node failures. Furthermore, job submissions depend of the
response time experienced by users [33]. These limitations
imply that comparisons to the original traces can not be
conducted, but, as the replay is deterministic, we can compare
the different replays.

In the experiments reported in the next section, we are eval-

0

20000

40000

60000

80000

0h 2h 4h

Time

C
o
r
e
s

State

2.7 GHz

0

500000

1000000

1500000

0h 2h 4h

Time

W
a
t
t
s State

2.7 GHz

Idle

(a) Powercap of 60% with mainly big jobs and SHUT policy

0

20000

40000

60000

80000

0h 2h 4h

Time

C
o
r
e
s

State

2.7 GHz

2.0 GHz

1.8 GHz

1.6 GHz

1.4 GHz

1.2 GHz

0

500000

1000000

1500000

0h 2h 4h

Time

W
a
t
t
s

State

2.7 GHz

2.0 GHz

1.8 GHz

1.6 GHz

1.4 GHz

1.2 GHz

Idle

(b) Powercap of 40% with mainly small jobs and DVFS policy

Fig. 7: System utilization for the diferent runs in terms of cores (top) and power (bottom) during 5 hours workload with a
powercap reservation (hatched area) of 1 hour of 60% or 40% of total power. Cores belonging to switched-off nodes are in cross
hatched area.

uating the three different policies DVFS, SHUT and MIX. The
policies are tested under three powercap scenarios reserving
respectively 80%, 60% and 40% of the available power budget
for one hour in the middle of the replayed interval. Powercap
reservations are made in the beginning of the workload replay.
All experimental results are compared between them along
with a simple run where no powercapping takes place. Our
goal is to compare system utilization in terms of CPUs and
power usage along with the effective work for each scenario.

C. Analysis of results

Figure 6 shows the system utilization (top) and power
consumption (bottom) during the replay of the 24h workload
using the MIX policy. The grey area in the top figure represents
the system utilization of jobs executed upon cores with CPU
Frequency of 2.0 GHz whereas the black area represents those
running with 2.7 GHz. In the bottom figure the light grey area
represents the minimum power consumption of the system if
all nodes are idle and no jobs are executed, the grey area
represents the additional power consumption of jobs whom
the cores compute with 2.0 GHz and the black area reflects
the additional power consumed by jobs that compute with
2.7 GHz. The reserved power, is represented by the hatched
area in the bottom figure, thus the allowed powercap budget,
for that period, is the remaining power below that area. The
powercap is triggered in the beginning of workload that is why
we observe that jobs are launched with lower CPU frequency
directly from the start. Since we are in a MIX policy the offline
part of the scheduling has reserved a certain number of nodes
to shutdown. This can be viewed by the cross hatched area
in the top figure during the period of powercap. The small
blue cross hatched rectangle below the powercap reservation
rectangle represents the bonus power gained back by the
grouped shutdown of continuous nodes. This is actually gained
power being used by the system for computations but it is
plotted upon the reserved power hatched area to better reflect

the proportions between them.

It is interesting to observe how while approaching the pow-
ercap reservation the system prepares itself for limited power
usage by launching more jobs with 2.0 GHz. Similarly after
the powercap has passed, utilization of 2.7 GHz cores increases
because new jobs are launched with maximum frequency,
while older jobs launched with 2.0 GHz, launched before or
during the powercap, still remain but gradually decrease. After
the powercapped period, we see that the system utilization in
terms of cores increases directly to nearly 100%. It seems that
a large job allocating more than 40000 cores was scheduled
directly after the powercap period. This large job seems to be
blocking other smaller jobs that follow and backfilling does
not seem to work since thick gaps are witnessed during the
powercap interval. Based on previous observations; backfilling
is not efficient because of wrong walltime estimations.

If we take a look at other 24h runs with a powercap of 40%,
DVFS and MIX show similar results: a work around 85% of
the total possible work, while SHUT has a work of 94% of
the total possible work. It is interesting to note that the energy
consumption is a the lowest in the MIX mode.

Figures 7a and 7b represent the system utilization for
the smalljob and bigjob workloads with different use cases.
They are based on the same representations as the previous
figure. The difference is that the left one provides results with
SHUT policy whereas the right one with DVFS policy for
60% and 40% powercaps respectively. In the left figure we
can observe how the shutdown of nodes makes big space in
order to adapt the workload without wasting un-utilized cores.
In addition, we can see the value of power bonus due to the
regrouping of nodes to be switched-off. Without the offline part
of the scheduler this bonus would not be possible. Furthermore,
we see how the system utilization increases directly after
the powercap interval to 100%. It is interesting to see how
backfilling does not take place a lot while preparing for the

Energy Jobs Launched Work

40%/MIX

40%/DVFS

40%/SHUT

60%/MIX

60%/DVFS

60%/SHUT

80%/DVFS

80%/SHUT

100%/None

40%/MIX

40%/DVFS

40%/SHUT

60%/MIX

60%/DVFS

60%/SHUT

80%/DVFS

80%/SHUT

100%/None

40%/MIX

40%/DVFS

40%/SHUT

60%/MIX

60%/DVFS

60%/SHUT

80%/DVFS

80%/SHUT

100%/None

b
ig

jo
b

m
e

d
ia

n
jo

b
s
m

a
lljo

b

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

re
la

ti
v
e
 p

o
w

e
rc

a
p

/p
o

li
c
y

type

None

SHUT

DVFS

MIX

Fig. 8: Comparison of different scenarios of policies and powercaps based on normalized values of total consumed energy,
launched jobs and accumulated cpu time during the 5 hours workload interval.

powercap period. This is due to the nature of type of jobs
which is mainly big jobs along with the walltime problems
that we explained before. In the right figure, different tones
of grey represent the different frequencies until the black area
which is 2.7GHz. We can see how the appearance of low CPU
Frequencies increase while approaching to the powercap period
with a total disappearance of 2.7GHz frequencies in close
regions to the powercap interval. DVFS policy manages to
obtain high system utilization with a low power consumption.

We also have done several run with DVFS and switch-off
mechanisms deactivated. The only solution for our algorithm is
to let nodes idle. As expected, this solution has the worst work
(about 40% lower than other modes), while keeping about the
same energy consumption.

Let us now look at the impact of the policies for the
performances. Figure 8 provides the different runs executed to
compare the performance of the different powercap scheduling
modes for 5 hours workload. Considering columns we observe
the total consumed energy, the number of launched jobs and
the total work. In terms of rows we have different groups.
The groups based on the workload (left): bigjob, medianjob
and smalljob along with the groups representing powercap
reservations: 100%, 80%, 60% and 40% which reflect the
system power which is allocated for computation. Furthermore
distinctions between the different scheduling modes is also
made in groups of particular rows in the figure. Only jobs
that were running during the replayed time interval are taken
into account, and all measures are normalized to the maximal
possible value. In the histograms we observe that DVFS mode’s
work is always larger than SHUT mode’s work and that is

because jobs run with lower CPU Frequency and hence the
walltime is increased. The MIX mode provides most of the
time the best energy consumption, while having a work in the
same order of others modes.

In the medianjob workload, 100%/None and 80%/DVFS
runs launched less jobs than others run, while having a high
utilization. It seems that in these runs, the algorithm chooses
to schedule a huge job preventing a large number of other jobs
to be launched.

If we take a look at each mode independently we can see
that for every type of workload work and energy decrease
proportionally to the powercap diminution. Furthermore, DVFS
mode seems to be decreasing more rapidly below 60% whereas
SHUT and MIX modes appear to be more consistent. Switch-
off mechanism (SHUT, MIX) seems to be more efficient if we
consider the tradeoffs energy/work and this is basically related
to the in-advance preparation in the offline part and the gained
power due to the bonus.

VIII. CONCLUSIONS AND FUTURE WORKS

We presented in this paper a new scheduling algorithm for
dealing with power limitations in large scale HPC clusters. The
algorithm was developed for a resource and job management
system and implemented upon SLURM. It is composed of
two phases: an offline part where the planning takes place
(choice of policy, selection of group of nodes to be switched-
off, etc.) followed by an online part where the power reduction
is applied. The implementation upon SLURM resulted into the
design of three powercap policies, namely DVFS, SHUT and
MIX which respectively take advantage of CPU Frequency
scaling, nodes shut down and mixed capabilities in order

to achieve power reductions whenever needed. One of our
main objectives was to enable the scheduler to determine
automatically the best powercap mechanism for the nodes
and we showed how this depends on the architecture, the
power consumption of the components and the actual work-
load. The new developments will appear on the main branch
of SLURM in the upcoming version 15.08. As far as our
knowledge, this is the first work that considers powercapping
techniques in the level of job scheduling for a resource and
job management system in HPC. The study allowed us to
validate the algorithms and evaluate the different policies
through real-scale emulation of a petaflopic supercomputer. In
particular we performed experiments with emulation of Curie’s
characteristics and calculated power values using replay of a
real workload trace collected from the production of Curie on
2012. The experimental results validate the model and provide
interesting initial insights. Switching-off nodes appear to be
the most efficient policy in our use cases of less than 60%
powercaps, mixed policy seems to be the more consistent one
and finally frequency scaling provides better results with large
powercaps of 80%.

The studies will continue to correlate the proposed model
with application preferences concerning DVFS. Indeed, if an
application is able to provide optimized DVFS values, this
should be taken into account by the algorithm. Then, the global
performance of the cluster will be improved while respecting
the powercap. SHUT policy makes an offline selection of the
group of nodes to be switched-off in order to take advan-
tage of the power bonus. Nevertheless, this might increase
the fragmentation of the system in case of un-homogeneous
infrastructures. Hence, deeper studies are needed to compare
the rigidity of the selection of the nodes to be switched-off with
a more flexible selection of nodes. For future improvements
on the code for DVFS, we will consider to dynamically change
the CPU frequencies while the jobs are running, this will allow
nodes to adjust the power consumption instantly whenever
it is needed. This will eventually result into faster power
decrease when a powercap period is approaching and lower
jobs’ turnaround time after a powercap period is over. The
optimal DVFS choice for the best power/performance trade-
offs could be also determined through a particular profiling run
as proposed in [34]. In addition, exploring other techniques to
limit power consumption upon utilized nodes, such as RAPL,
will be also studied. Finally, we would like to adapt the
powercapping algorithm in order to consider the real-time
power consumption measures of the nodes [26], instead of
considering the static values defined during the initialization
phase.

REFERENCES

[1] S.-g. Kim, C. Choi, H. Eom, H. Yeom, and H. Byun, “Energy-centric
DVFS controling method for multi-core platforms,” in SCC 2012.

[2] B. Lawson and E. Smirni, “Power-aware resource allocation in high-end
systems via online simulation,” in SC 2005.

[3] D. C. Snowdon, S. Ruocco, and G. Heiser, “Power management and
dynamic voltage scaling: Myths and facts,” in PARTS 2005.

[4] R. Schöne and D. Hackenberg, “On-line analysis of hardware perfor-
mance events for workload characterization and processor frequency
scaling decisions,” in ICPE 2011.

[5] H. Kimura, M. Sato, T. Imada, and Y. Hotta, “Runtime DVFS control
with instrumented code in power-scalable cluster system,” in Cluster

2008.

[6] A. Gandhi, M. Harchol-Balter, R. Das, J. O. Kephart, and C. Lefurgy,
“Power capping via forced idleness,” 2009.

[7] B. Rountree, D. Lowenthal, M. Schulz, and B. De Supinski, “Practical
performance prediction under dynamic voltage frequency scaling,” in
IGCC 2011.

[8] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Understanding
the future of energy-performance trade-off via DVFS in HPC environ-
ments,” Journal of Parallel and Distributed Computing, 2012.

[9] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L.
Rountree, and M. E. Femal, “Analyzing the energy-time trade-off in
high-performance computing applications,” TPDS, 2007.

[10] D. Aikema, C. Kiddle, and R. Simmonds, “Energy-cost-aware schedul-
ing of HPC workloads,” in WoWMoM, 2011, pp. 1–7.

[11] J. Hikita, A. Hirano, and H. Nakashima, “Saving 200kw and $200 k/year
by power-aware job/machine scheduling,” in IPDPS 2008, 2008.

[12] E. D. Demaine, M. Ghodsi, M. T. Hajiaghayi, A. S. Sayedi-Roshkhar,
and M. Zadimoghaddam, “Scheduling to minimize gaps and power
consumption.”

[13] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with
links for power optimization of interconnection networks,” in HPCA-9

2003.

[14] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma, “Making
scheduling” cool”: Temperature-aware workload placement in data
centers.” in USENIX annual technical conference, General Track, 2005.

[15] T. Singh and P. K. Vara, “Smart metering the clouds,” 2009.

[16] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond DVFS: a first look at performance under a
hardware-enforced power bound,” in IPDPSW 2012.

[17] S. Reda, R. Cochran, and A. K. Coskun, “Adaptive power capping for
servers with multithreaded workloads,” IEEE Micro, 2012.

[18] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” SIGARCH 2007.

[19] G. A. Geronimo, J. Werner, R. Weingartner, C. B. Westphall, and
C. M. Westphall, “Provisioning, resource allocation, and DVFS in green
clouds.”

[20] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “BSLD threshold
driven power management policy for HPC centers,” in 2010 IPDPSW,
2010.

[21] ——, “Optimizing job performance under a given power constraint in
HPC centers,” in IGCC 2010.

[22] ——, “Parallel job scheduling for power constrained HPC systems,”
Parallel Computing, 2012.

[23] J.-M. Pierson and H. Casanova, “On the utility of dvfs for power-aware
job placement in clusters,” in Euro-Par 2011.

[24] A. Mu’alem and D. Feitelson, “Utilization, predictability, workloads,
and user runtime estimates in scheduling the ibm sp2 with backfilling,”
TPDS 2001.

[25] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
utility for resource management,” in JSSPP, 2003.

[26] Y. Georgiou, T. Cadeau, D. Glesser, D. Auble, M. Jette, and
M. Hautreux, “Energy accounting and control with slurm resource and
job management system,” 2014.

[27] “http://www.netlib.org/linpack/.”

[28] J. D. McCalpin, “A survey of memory bandwidth and machine balance
in current high performance computers,” IEEE TCCA Newsletter, 1995.

[29] “https://software.intel.com/en-us/articles/intel-mpi-benchmarks.”

[30] H. J. Berendsen, D. van der Spoel, and R. van Drunen, “Gromacs: A
message-passing parallel molecular dynamics implementation,” Com-

puter Physics Communications, 1995.

[31] Y. Georgiou and M. Hautreux, “Evaluating scalability and efficiency
of the resource and job management system on large hpc clusters,” in
JSSPP, 2012.

[32] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling user runtime
estimates.” Springer, 2005.

[33] E. Shmueli and D. G. Feitelson, “Uncovering the effect of system
performance on user behavior from traces of parallel systems,” in
MASCOTS, 2007.

[34] A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer, H. Huber,
R. Panda, F. Thomas, and T. Wilde, “A case study of energy aware
scheduling on supermuc,” in ISC 2014.

