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Abstract. It is well-known that taking into account communications
while scheduling jobs in large scale parallel computing platforms is a
crucial issue. In modern hierarchical platforms, communication times
are highly different when occurring inside a cluster or between clusters.
Thus, allocating the jobs taking into account locality constraints is a key
factor for reaching good performances. However, several theoretical re-
sults prove that imposing such constraints reduces the solution space and
thus, possibly degrades the performances. In practice, such constraints
simplify implementations and most often lead to better results.
Our aim in this work is to bridge theoretical and practical intuitions, and
check the differences between constrained and unconstrained schedules
(namely with respect to locality and node contiguity) through simula-
tions. We have developped a generic tool, using SimGrid as the base
simulator, enabling interactions with external batch schedulers to eval-
uate their scheduling policies. The results confirm that insights gained
through theoretical models are ill-suited to current architectures and
should be reevaluated.
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1 Introduction

Large scale high performance computing platforms are becoming increasingly
more complex. Determining efficient allocation and scheduling strategies that
can adapt to their evolutions is a strategic and difficult challenge. We are inter-
ested here in the problem of scheduling jobs in hierarchical and heterogeneous
large scale platforms. The application developers submit their jobs in a central-
ized waiting queue. The job management system aims at determining a suitable
allocation for the jobs, which all compete against each other for the available
computing resources. The performances are measured by some objectives like
the maximum completion times or the slowdown. The most common scheduling
policy is First Come First Served (FCFS) which takes the jobs one after the other
according to their arrival times with backfilling (BF), which is an improvement
mechanism that allows to fill idle spaces with smaller jobs while keeping the
original order of FCFS.



2

In practice the job execution times depend on their allocation (due to com-
munication interferences and heterogeneity in both computation and communi-
cation), while theoretical models of parallel jobs are usually considering jobs as
black boxes with a fixed execution time. Existing communications models do not
fully reflect the network complexity and thus, simulations are required to take
into account the impact of allocations.

Our goal within this work is to test existing heuristics dealing with allocation
constraints, namely contiguity and locality. Contiguity forces jobs to be allot-
ted on resources with a contiguous index (assuming that system administrators
numbered their resources by proximity) while locality is a stronger constraint
imposing some knowledge of the cluster structure to use allocations restricted
to clusters whenever possible.

Contributions We show in this paper that insights gained while studying
theoretical models are sometimes at odd with the practical results due to short-
comings in the models. Moreover, this was done through the development of a
framework as a layer above SimGrid. This framework is generic enough to enable
a large range of tests and is scheduled for a public release as an open source git
project, as soon as the basic documentation is completed.

More precisely, we ran wide range simulations on FCFS/BF focusing on the
impact of communications under several scenarios of locality constraints. The
main result is to show that taking communications into account matters, but
contrary to the intuition given by theoretical models, the most constrained sce-
narios are the best! In other words, the constrained policies allow greater gains in
performances than the overhead due to the cost of the locality constraint. More-
over, this work opens the possibility to study new functionalities in SimGrid
with our open access framework (like energy trade-off between speed scaling and
shutdown policies or considering release dates).

2 Related Work

Modeling the modern High Performance Computing platforms is a constantly
renewed challenge, as the technology evolves and quickly renders obsolete the
models developed for the previous generation. While interesting and powerful,
the synchronous PRAM model, delay model, LogP model and their variants
(such as hierarchical delay, see [2] for a description of these models) are ill-suited
to large scale parallelism on hierarchical and heterogeneous platforms.

More recent studies [12] are still refining these models to take into account
contentions accurately while remaining tractable enough to provide a useful tool
for algorithm design. Even with these models, all but the simplest problems are
difficult and polynomial approximations algorithms have mixed results [11].

With millions of processing cores, even polynomial algorithms are impractical
when every process and communication have to be individually scheduled. The
model of parallel tasks simplifies this problem in a way, by bundling many threads
and communications into single boxes, either rigid, rectangular or malleable
(see [6], chapters 25 and 26). However, these models are again ill-adapted to
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hierarchical and heterogeneous platforms, as the running time depends on more
than simply the number of allotted resources. Furthermore, these models hardly
match the reality when actual applications are used [3], as some of the basic
underlying assumptions on the speed-up functions (such as concavity) are not
often valid in practice.

With these limitations in mind, we decided to use simulations to really take
into account the communications taking place within the jobs on large scale
platforms. While writing a simple simulator is always possible, it appeared more
interesting to use a detailed simulator to open our work to a larger set of plat-
forms and job characteristics. Among the likely candidates, Simgrid [1] fulfills
all our needs. In particular, the communications can be modeled either with a
TCP-flow level model as used in this article or at the packet level for a fine
grained simulation. While simulation is not always perfect [4], the results we
present here are hopefully giving a better insight in the practical behavior of
heuristics than the theoretical models.

A complementary approach to ours is to take into account the communi-
cations within the jobs themselves by migrating processes depending on their
communication affinity [5]. This approach is rooted in the application, while we
are positionning ourselves at the resource and job management system level.

Most available open-source and commercial job management systems use an
heuristic approach inspired by FCFS with backfilling algorithms [9]. The job
priority is determined according to the arrival times of the jobs. Then, BF (the
backfilling mechanism) allows a job to run before another job with a highest
priority only if it does not delay it. There exist several variants of this algorithm,
like conservative backfilling [9] and EASY backfilling [7]. In the former, the
job allocation is completely recomputed at each new event (job arrival or job
completion) while in the second, the process is purely on-line avoiding costly
recomputations. More sophisticated algorithms have been proposed that consider
the routing schemes of the data (like topology aware backfilling introduced in
[10]). In our article, we consider that the scheduler has a very limited knowledge
of the platform, which is insufficient for topology-aware algorithms.

3 Problem Description

Our problem of interest in this paper is the problem of scheduling a set J of
independent and parallel jobs on a computing platform composed by a set M of
computational resources (nodes or processors).

Each job j ∈ J is characterized by a rigid number sizej of required resources,
a walltime wj (which bounds the execution time: j is killed after wj seconds),
a release date rj , a computation row matrix cj where each cjk represents the
amount of computation on the kth resource of job j, a square communication
matrix Cj of size sizej × sizej in which each element Cj [r, c] represents the
amount of communication from the rth resource to the cth resource of job j.

Each resource m ∈ M has a computational power pm. The resources are
connected via a network. The network links have both a bandwidth and a la-
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tency. Each resource m has a unique identification number idm between 0 and
card(M)− 1.

Since we are interested in the online version of this problem, the scheduler
only knows that job j exists once it is released. Two jobs cannot be processed at
the same time on the same computational resource. Each job must be computed
exactly once. The jobs cannot be preempted. The scheduling algorithms are
considered as oblivious about the jobs inner settings cj and Cj . Furthermore,
the algorithms know little about the platform i.e. they only know the number
of computational resources and their identification numbers.

4 Simulation Framework

As stated in section 2, we turned to simulations to evaluate many batch schedul-
ing algorithms to check if theoretical models match the practical experience. The
added benefit over real experiments is that simulation enables reproducibility,
and can easily be extended to test a very large number of parameters. The found-
ing principle of our work is to use an existing platform simulation framework
and to add a scheduling layer on the top of it. This approach allows us to take
advantage of the simulation accuracy and the scalability of recognized software
and allows separation of concerns since we are not simulation experts.

The survey [1] compares state-of-the-art simulators that could interest us.
We chose to use SimGrid because it allows heterogeneity in both computational
power and in network links latency and bandwidth, has a good TCP flow net-
work model, can be used easily (thanks to a good documentation and a lot of
examples), is fast, has little chance of becoming unmaintained (still actively de-
veloped after 10 years of existence) and comprises features that we may use in
the future e.g. MPI applications simulation.

One of our main objectives was to be able to use already-developed schedul-
ing algorithms without modifying their programming code a lot and to be able
to simply create new algorithms. For this purpose, we base our simulation frame-
work on two separate components: the simulating core and the scheduling mod-
ule. These two components communicate via an event-based synchronous net-
work protocol. When an event that may imply a scheduling decision occurs in
the simulating core, the simulating core tells the scheduling module what hap-
pened and waits for its decision. The main events that will interest us in the
scope of this paper are when jobs are released and when they complete their
execution. In the scope of this paper, scheduling decisions are either to allocate
some resources to some jobs or to do nothing.

The simulating core is fully written in C and is based on SimGrid, which is
in charge of simulating what happens on the computational resources and on
the network. All SimGrid platforms may be used by our simulating core as long
as the user specifies which resources are used for the scheduling processes and
which ones are used to compute jobs. Since SimGrid allows to create a wide range
of simulators, it cannot be used directly to simulate a complex batch system.
The purpose of the simulating core is thus to make the use of SimGrid easier
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in conjunction with event-based batch scheduling algorithms. Our core basically
handles the input jobs, asks the scheduling module for decisions, ensures that
jobs are simulated by SimGrid according to the topology and produce some
output traces and statistics. Since this is a work in progress and not the main
point of this paper, it will not be further described in the present paper. It will
be published and put at the disposal of the community once mature enough.

The scheduling module can be developed in any programming language that
allows network programming via Unix Domain Sockets. This component can be
seen as an iterative process which consists in waiting an event from the simu-
lating core, updating some data structures then making a scheduling decision.
Therefore, existing algorithms which are based on events like job releases or
completions can easily be plugged with the simulating core.

5 Evaluation

5.1 Platform and Jobs Description

Since we would like to know how the algorithms presented in [8] behave within
realistic simulations, we use the same kind of platforms that the paper described.
Our platforms include sets of closely located computational resources called clus-
ters. Each cluster c is a tree formed by a switch sc and a set of computational
resources which are all directly connected to it. The cluster switch sc has an
internal bandwidth bwsc and an internal latency latsc . All resources within the
cluster c have the same computational power cpc, the same bandwidth bwc and
latency latc between the resource and sc. The clusters are connected together
via a unique switch b whose shared bandwidth is bwb and whose latency is latb.
The implementation of the algorithms presented in [8] constrain all the clusters
to have the same size. We chose to keep the parameters they used which are 8
clusters of 16 computational resources each, leading to a total of 128 resources
per platform.

In the following experiments, each run instance consists of a platform, a
workload and a scheduling algorithm. Every generated workload consists of 300
jobs extracted from the cleaned trace (in the SWF format) of the CEA-Curie
supercomputer. Our job selection criteria were to remove jobs that cannot fit
entirely in one cluster and, in order to obtain interesting workloads, to ensure
the resulting schedule makespan is not fixed by the longest job. Tiny jobs fit
easily in the backfilling and very big ones are usually in specific queues, we
then decided to only keep jobs whose execution time tj is between two bounds
lt ≤ tj ≤ ut. Typical values for the bounds are lt = 1 hour and ut = 1 day. The
method used to select the jobs is to first remove every job that does not fit our
criteria then to randomly pick 300 jobs depending on a given random seed.

Since the trace only contains the execution time, without any detail of actual
computations or communications patterns, we chose to use basic homogeneous
patterns and to create the amounts from the real execution time of the jobs. Let
retj be the real execution time of job j in the trace file. Let rwj be the user-given
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walltime of job j. Let Fcomp, Fcomm and Fw be respectively the computation
factor, the communication factor and the walltime factor. For each job j, the
computation row matrix cj is computed via cj = R1

sizej
× retj × Fcomp where

R1
sizej

is a row matrix of sizej columns of 1. For each job j, the communication

square matrix Cj is obtained with the following formula Cj = S1
sizej

× retj ×
Fcomm where S1

sizej
is a square matrix of size sizej × sizej of 1. For example,

R1
3 =

(
1 1 1

)
and S1

2 =

(
1 1
1 1

)
. For each job j, sizej is read from the trace and wj

is chosen big enough to ensure the job won’t be killed via the following formula
wj = max(rwj , retj ×Fw). With small walltimes, the jobs allocations would not
matter since jobs would not be allowed to complete and would simply be killed
after the same amount of time in any placement. Finally, the release date of each
job j is set to 0 to remain in the same experimental setting as in [8], which will
allow us to analyse the difference between our results and the previous ones.

5.2 Competing Heuristics

The scheduling algorithms we will compare are variants of the well-known conser-
vative backfilling algorithm [9] targeting the minimization of makespan (comple-
tion time of the last running job). This algorithm maintains two data structures.
The first one is a list of queued jobs and the times at which they are guaran-
teed to start execution. The other is a profile which stores the expected future
processor usage. This profile is usually a list of consecutive time slices which
store the resources status for each period. When a new job jn is submitted, the
profile is traversed in order to find a hole in the resource usage in which jn
may fit (depending on the job width wjn and height sizejn). Let us suppose the
profile traversal is done by ascending date and that this procedure will return
different holes in which jn may fit. When a fitting hole is found, it may either be
accepted or rejected. If accepted, the scheduling algorithm must select which re-
sources within the hole will be allocated to jn. Otherwise, if the hole is rejected,
the profile traversal continues and future fitting holes will be found until one is
accepted. The algorithms that will be studied in the present paper differ in their
last phase, which consists in accepting or rejecting the current hole and selecting
which resources are allocated to jn in case of acceptance. A detailed description
of these variants and their pseudo-code is given in [8]. In the remaining of this
section, let jn be the newly submitted job, H ⊆M the set of available resources
in the current hole and S ⊆ H the selection of resources within H on which the
job jn will be executed.

The basic variant always accepts the first fitting hole and selects the first
resources i.e. S ⊆ H such that card(S) = sizejn and

∑
s∈S ids is minimal. The

best effort contiguous always accepts the first fitting hole and selects a con-
tinuous block of resources if possible. In this context, the contiguity of the set
of resources S means that there exist resources with contiguous indexes. If there
is no contiguous set of resources of size sizejn in H, this variant selects the first
resources as the basic variant would do. The best effort local variant always
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accepts the first fitting hole and selects a local set of resources if possible. Oth-
erwise, it returns the first resources as the basic variant would do. In the context
of this paper, S is said to be a local set of resources if all the resources in S are
located in the same cluster. The contiguous variant forces the contiguity con-
straint on S. Consequently, this variant may reject the first fitting holes if they
do not match the constraint. The local variant forces the locality constraint on
S. Consequently, just as in the case of the contiguous variant, the local variant
may reject the first fitting holes if they do not match the locality constraint.
Thanks to the authors of the article [8], we were able to directly use their algo-
rithms implementation in conjunction with our simulator which avoided us to
reimplement them.

5.3 Homogeneous Platform Experiment

The goal of the first experiment was to compare the behaviour of the different
scheduling algorithms when the job amount of communication is increased on
the same homogeneous platform. The jobs of this experiment were generated
with the following parameters: 20 random seeds were used (0 to 19), leading to
20 different base workloads. We picked Fcomp = 106, Fw = 103, and 40 different
values for the Fcomm parameter have been used which correspond to a linear
variation starting from 0 with steps of 107. The length bounds to pick the jobs
were lt = 1 hour and ut = 4 hours in order to obtain jobs whose simulated
execution time is interesting (i.e. the resulting schedule makespan is not only
fixed by the biggest job) across the used values of Fcomm. All the clusters of
the platform used in this experiment are the same and defined by the following
parameters. bwsc = 1.25 · 109, latsc = 0, bwc = 1.25 · 106, latc = 24 · 10−9. The
platform main switch parameters are bwb = 1.25 · 109 and latb = 24 · 10−9. This
platform is derived from the existing Grid’5000 Griffon cluster whose platform
description was available in the SimGrid examples. The combination of these
parameters created 4000 instances (800 per scheduling algorithm variant).

Figure 1 shows the makespan Cmax of the resulting schedule of every run in-
stance of the first experiment. Additionally, a linear trendline has been computed
for a better comparison of the heuristics. The basic algorithm (as defined in the
previous section) depicted in the top left is completely without constraints, and
has the worst performance of all competing heuristics. Imposing contiguity with-
out any knowledge of the underlying structure gives better performances than
basic, while knowledge of locality further improves the results. More surpris-
ingly, the strict heuristics are outperforming the more relaxed heuristics, even
though strict heuristics delay some jobs if the constraints cannot be matched.
Furthermore, the makespan induced by the forced constraints are much more
stable than their best-effort counterparts.

5.4 Heterogeneous Platform Experiments

The goal of the following two experiments is the same as the homogeneous one:
seeing how the different scheduling algorithms behave when the amount of com-
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Fig. 1. The makespan Cmax of every run instance in function of the communication
factor Fcomm for the homogeneous platforms experiment. To each figure corresponds a
scheduling algorithm. Each point corresponds to a schedule (800 per scheduling algo-
rithm).



9

Fig. 2. Grid’5000 cluster architecture in Grenoble.

munication within jobs is increased. However, these experiments focus on many
heterogeneous platforms instead of one homogeneous platform, to more closely
reflect the existing clusters in our computing centers. For example, Figure 2 gives
an idea of the layout of the Grid’5000 cluster in Grenoble3. The red rectangles are
40 Gb/s Infiniband switches, orange rectangles are 20 Gb/s Infiniband switches,
while the blue rectangles are three different families of computing nodes.

In order to remain realistic in the kind of platform heterogeneity to simulate,
we analyzed the network of several Grid’5000 sites and ran a linear algebra
benchmarking tool on many machines to have an idea of how much the node
computational power may vary within one site. Our results on the Rennes and
Grenoble site showed that the network bandwidth might vary between 1 and
4 and that the node computational power may vary between 1 and 3. More
precisely, with our benchmark the computational power in the Rennes site were
1, 2.02 and 2.94 times more powerful than the lowest one. On Grenoble we
obtained computational powers of 1.24, 1.61 and 1.72 times the lowest one. We
then decided to create a set of lowly heterogeneous platforms and a set of highly
heterogeneous platforms and see how the different scheduling variants behave on
such platforms.

The two heterogeneous experiments use six clusters whose parameters can be
found in Table 1. The first heterogeneous experiment uses four platforms formed
by 3 clusters c1, 3 clusters c2 and 2 clusters c3. The four platforms differ by
the ordering in which the clusters are in the platform. The used orderings are
by ascending computational power o1 = (c1, c1, c1, c2, c2, c2, c3, c3), by descend-
ing computational power o2 = (c3, c3, c3, c2, c2, c2, c1, c1) and other orderings
o3 = (c1, c2, c2, c3, c3, c2, c1, c1) and o4 = (c3, c1, c2, c3, c1, c2, c1, c2). The work-
loads of this experiment have been generated with the following parameters: 10

3 For more details, a larger version of the figure is available at:
https://www.grid5000.fr/mediawiki/index.php/Grenoble:Network
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Fig. 3. The makespan Cmax of every run instance in function of the communication
factor Fcomm for the heterogeneous platforms experiment. To each figure corresponds
a scheduling algorithm. Each point corresponds to a schedule (1600 per scheduling
algorithm).
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Table 1. The parameters of the clusters used in heterogeneous experiments. These
values are multiplication factors of our base cluster b whose values are bwsb = 10 Gbits·
s−1, latsb = 0 s, cpb = 286.097 · 103 flop · s−1, bwb = 10 Gbits · s−1, latb = 24 · 10−9 s.

c bwsc latsc cpc bwc latc
c1 2 0 1 1 1
c2 4 0 2.02 1 1
c3 1 0 2.94 1 1

c bwsc latsc cpc bwc latc
c4 1 0 1.24 1 1
c5 2 0 1.61 1 1
c6 1 0 1.72 1 1

random seeds have been used (0 to 9). We used Fcomp = 106, Fw = 103, and
20 different values for the Fcomm parameter have been used which correspond
to a linear variation starting from 0 with steps of 2 · 107. The length bounds
to pick the jobs were lt = 1 hour and ut = 4 hours. The second heterogeneous
experiment is exactly the same as the first but its platforms use clusters c4, c5, c6
instead respectively of clusters c1, c2 and c3. We call the first experiment highly
heterogeneous because the resource computational power varies from 1 to 3 and
the network bandwidth from 1 to 4 within it. We call the second experiment
lowly heterogeneous because these amounts doesn’t vary as much as in the first
experiment. Each experiment consists of 4000 run instances (800 per scheduling
algorithm variant).

Figure 3 shows the makespan of the different scheduling algorithm variants
when the amount of communication is increased in the heterogeneous experi-
ments. These graphs do not differ greatly from the homogeneous case: for the
makespan, the forced constraint variants scale better and are more stable than
their best-effort counterparts when the amount of communication within jobs
is increased. Furthermore, we did not notice any impact of the cluster ordering
within one platform on the resulting schedules makespan. We did not notice
a great difference between the slightly heterogeneous platforms and the highly
heterogeneous ones neither, that is why the results of the two experiments have
been plotted together. The most notable result is that in a heterogeneous set-
ting, the locality knowledge is much more important as the gap between the
basic heuristic and the locality aware is greatly increased.

6 Conclusion

The purpose of this work was to show through simulations if theoretical mod-
els are giving pertinent insight on job scheduling on large scale hierarchical and
heterogeneous platforms. The main hypothesis we tested was that enforcing con-
tiguity or locality would not degrade the performance. The results clearly show
that the constraints are beneficial to the schedules, by reducing the communica-
tion times. More broadly, this shows that models where internal communications
are hidden within parallel tasks are very ill-suited to current architectures, and
should be reevaluated. The tool we developed is very general and relies on a pow-
erful simulator, which will in the near future enable studies on different network
topologies, and assess the impact of scheduling policies on a variety of objectives.
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