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Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable
them to move forward. We investigate the effect of confinement on a minimal model of amoeboid
swimmer. A complex picture emerges: (i) The swimmer’s nature (i.e. either pusher or puller) can
be modified by confinement thus suggesting that this is not an intrinsic property of the swimmer.
This swimming nature transition stems from intricate internal degrees of freedom of membrane
deformation. (ii) The swimming speed might increase with increasing confinement before decreasing
again for stronger confinements. (iii) A straight amoeoboid swimmer’s trajectory in the channel can
become unstable, and ample lateral excursions of the swimmer prevail. This happens for both
pusher and puller-type swimmers. For weak confinement, these excursions are symmetric, while
they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of
the two walls. In this study, we combine numerical and theoretical analyses.

PACS numbers: 47.63.Gd, 47.15.G-,47.63.mf

Some unicellular micro-organisms move on solid sur-
faces or swim in liquids by deforming their body instead
of using flagella or cilia, this is known as amoeboid mo-

tion. Algae like Eutreptiella Gymnastica [1], amoeba such
as dictyostelium discoideum [2, 3], but also leucocytes
[2, 3] and even cancer cells [4] use this specific way of
locomotion. This is a complex movement that recently
incited several theoretical studies [5–12] since it is inti-
mately linked to cell migration involved in several dis-
eases. Some experimental results indicate that adhesion
to a solid substratum is not a prerequisite for cells like
amoeba [2] to produce an amoeboid movement during
cell migration and suggest that crawling close to a sur-
face and swimming are similar processes. Recently, it was
shown that integrin (a protein involved in adhesion pro-
cess) should no longer be viewed as force transducers dur-
ing locomotion but as switchable immobilizing anchors
that slow down cells in the blood stream before transmi-
gration. Indeed, leukocytes migrate by swimming in the
absence of specific adhesive interactions with the extra-
cellular environment [13].

When moving, all micro-organisms are sensitive to
their environments. Most microswimmers can follow gra-
dients of chemicals (chemotaxis), some micro-algae can
move toward light sources (phototaxis) [14] or orient
themselves in the gravity field (gravitaxis) [15], some
other bacteria move along adhesion gradients (hapto-
taxis) [16, 17], etc. Spatial confinement is another ma-
jor environmental constraint which strongly influences
the motion of micro-organisms. As a matter of fact,
in the low-Reynolds number world, amoeboid motion
generally occurs close to surfaces, in small capillaries
or in extracellular matrices of biological tissues. Micro-
organisms swim through permeable boundaries, cell walls
or micro-vasculature. Therefore, the effect of walls on
motile micro-organisms has been a topic of increasingly

active research [18–27]. It has been calculated long
time ago by Katz [28] and more recently pointed out
[21, 23, 25, 27, 29] that swimmers can take advantage of
walls to increase their motility. Understanding the be-
havior of microswimmers in confinement can also pave
the way to novel applications in microfluidic devices
where properly shaped microstructures can interfere with
swimming bacteria and guide, concentrate, and arrange
populations of cells [30]. Living microswimmers show a
large variety of swimming strategies [29] so do theoretical
models aiming at describing their dynamics in confine-
ment.

Felderhof [18] has shown that the speed of Taylor-like
swimmer increases with confinement. Zhu et al. [21] used
the squirmer model to show that (when only tangential
surface motion are included) the velocity decreases with
confinement and that a pusher crashes into the wall, a
puller settles in a straight trajectory, and a neutral swim-
mer navigates. When including normal deformation they
found an increase of velocity with confinement. Liu et

al. [25] analyzed a helical flagellum in tube and found
that except for a small range of tube radii, the swim-
ming speed, when helix rotation rate is fixed, increases
monotonically as the confinement becomes tighter. Ace-
moglu et al. [24] adopted a similar model but, besides
the flagellum, they included a head and found a decrease

of velocity with confinement. Bilbao et al.[22] treated nu-
merically a model inspired by nematode locomotion and
found that it navigates more efficiently and moves faster
due to walls. Ledesma et al.[23] reported on a dipolar
swimmer in a rigid or elastic tube and found a speed
enhancement due to walls.

Here, we investigate, by means of numerical and an-
alytical modeling, the effect of confinement on the be-
havior of an amoeboid swimmer, that is a deformable
object subjected to active forces along its inextensible
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FIG. 1: (Color online) Snapshots of an Axially Moving Swim-
mer over time (W = 6R0). The dashed profiles show a com-
plete period Ts of deformation and then a few shapes are
represented over a time of the order of 75Ts. Γ = 0.085.

membrane. Our model swimmer is found to reveal in-
teresting new features when confined between two walls.
(i) We find that straight trajectories might be unstable
independently of the nature of the swimmer (pusher or
puller). (ii) For weak confinement, the swimming speed
can either increase or decrease depending on the con-
finement strength. For strongly confined regimes, the
velocity decreases in all cases recalling previous results
on different models. (iii) The confined environnement is
shown to induce a transition from one to another type
of swimmer (i.e. puller or pusher). These behaviors are
unique to amoeboid swimming (AS) and point to a non-
trivial dynamics owing to the internal degrees of freedom
that evolve in response to various constraints.

The model Amoeboid swimming is modeled here by
taking a 1D closed and inextensible membrane, which
encloses a 2D liquid of certain viscosity η and is sus-
pended in another fluid taken to be of the same viscos-
ity, for simplicity. The extra computational complexity
of dealing with confined geometry restricts our study to
2D which draws already rich behaviors. The effective
radius of the swimmer is R0 =

√

A0/π where A0 is the
enclosed area. The swimmer has an excess normalized
perimeter Γ = L0/(2πR0)− 1 (L0 is the perimeter) with
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FIG. 2: Time-averaged velocity magnitudes (as a function of
confinement C) of an Axially Moving Swimmer for different
Γ values.

respect to a circular shape (Γ = 0 corresponds to a cir-
cle, whereas large Γ signifies a very deflated, and thus
amply deformable, swimmer). The strength of confine-
ment is defined as C = 2R0/W , with W the channel
width. Bounding walls are parallel to x-direction and y
denotes the orthogonal one.
A set of active forces is distributed on the membrane

that reacts with tension forces to preserve the local ar-
clength. The total force density is given by

F = Fan− ζcn+
∂ζ

∂s
t, (1)

where Fan is the active force to be specified below
(which we take to point along the normal n for sim-
plicity), ζ is a Lagrange multiplier that enforces local
membrane incompressibility, c is the curvature, t is the
unit tangent vector and s is the arclength. We im-
pose zero total force and torque. In its full general-
ity the active force can be decomposed into Fourier se-
ries Fa(α, t) =

∑k=kmax

k=−kmax

Fk(t)e
ikα with α = 2πs/L0.

We first consider the case kmax = 3, so that we are
left with two complex amplitudes F2 and F3. Other
configurations of the forces have been explored as well
(see below). We consider cyclic strokes represented by
F2 = F−2 = −A cos(ωt) and F3 = F−3 = A sin(ωt),
where A is force amplitude.
The Stokes equations with boundary conditions (force

balance condition, continuity of the fluid velocity and
membrane incompressibility) are solved using either the
boundary integral method (BIM) [31] or the immersed
boundary method (IBM) [32].
Besides Γ and C, there is an additional dimensionless

number S = A/(ωη), which is the ratio between the time
scale associated with swimming strokes (Ts = 2π/ω) and
the time scale of fluid flow due to active force (Tc =
η/A). Here we take S = 10.0 (shape has enough time to
respond to active forces) and explore the effects of Γ and
C. At large distance from the swimmer, the velocity field
is governed by σij =

∮

Firjds. Only the (dimensionless)
stresslet Σ = (σxx−σyy)/(η/Ts) enters the velocity field
for symmetric swimmers. Σ > 0 defines a pusher and
Σ < 0 defines a puller. The force distribution defined
above is found to correspond to a pusher in the absence of
walls. Below we will see how to monitor a puller or pusher
and how the walls change the nature of the swimmer.
Results

Axially moving swimmers We first consider an
axially moving swimmer (AMS). We consider only di-
mensionless quantities (unless otherwise stated). For ex-
ample V̄ = V Tc/R0 will denote the magnitude of swim-
ming speed. We find an optimal confinement for swim-
ming velocity. Increasing C enhances the speed of the
swimmer until an optimal Co where the speed attains
a maximum before it decreases. Around the optimal
value Co, low (resp. high) viscous friction between the
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FIG. 3: (Color online) Snapshots of a Navigating Swim-
mer over time (W = 6R0). The dashed profiles show a com-
plete period Ts of deformation and then a few shapes are
represented over a navigation period T of the order of 50Ts.
Γ = 0.085.
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FIG. 4: Time-averaged velocity magnitudes (as a function of
confinement C) of different swimmers (Γ = 0.085): migrating
along one wall (black diamond dashed line), navigating be-
tween two walls (gray circle dotted dashed line) and moving
along the channel center (black square solid line). The insets
show characteristic trajectories.

swimmer and the walls during forward (resp. recovery)
phase of swimming promotes AMS speed. When the con-
finement is too strong, large amplitude deformations are
frustrated resulting in a loss of speed. The velocity
collapse at strong confinement was also reported for he-
lical flagellum [24, 25] and is expected to happen for all
swimmer models. Figure 2 shows the swimming velocity
magnitude for different Γ values. That the wall enhances
motility seems to be a quite general fact, as reported in
the literature [18, 19, 21–25]. However, we must stress
that this is not a systematic tendency. Close inspection
shows that at weak confinement velocity first decreases
before increasing, as shown in [33].

Swimmer nature evolution The value of the di-
mensionless stresslet Σ depends on the instantaneous
swimmer configuration and its sign teaches us on the na-
ture of the swimmer. We determine the average stresslet
over a navigation cycle. An interesting result is the ef-
fect of confinement on the pusher/puller nature of the
swimmer. For small C (< 0.5) the swimmer is found to
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FIG. 5: Time-averaged < Σ > as a function of confinement
C showing the transition from pusher to puller.

behave as a pusher, while it behaves as a puller for larger
C (C > 0.5). Fig. 5 shows the evolution of < Σ > as a
function of confinement, where a transition from pusher
to puller is observed.

Instability of the central position The central
position after a long time is found to be unstable. The
swimmer exhibits at small C (weakly confined regime)
a zig-zag motion undergoing large amplitude excursions
from one wall to the other. We refer to this as a navigat-

ing swimmer (NS). Figure 3 shows a snapshot, whereas
insets of Fig. 4 displays typical trajectories.

Despite this complex motion, the velocity in Fig. 4
behaves with C qualitatively as that of the central swim-
mer. The NS trajectory was recently reported [21, 34] in
the cases of squirmer and three-bead models and also ob-
served experimentally for paramecium (ciliated motility)
in a tube [19] pointing to the genericity of navigation.
This instability can be explained analytically (see [33]).

A remarkable property is that the navigation mode can
be adopted both by the pusher and the puller. This is in
contrast with non amoeboid motion [21] where a pusher
is found to crash into the wall whereas the puller settles
into a straight trajectory. These last two behaviors are
also recovered by our simulations, provided the stresslet
amplitude is large enough (Σ2 >> −V̄ DS, where D is
the dimensionless force quadrupole strength; see [33]).

Symmetry-breaking bifurcation At a critical C∗

the symmetric excursion of the swimmer becomes unsta-
ble and undergoes a bifurcation characterized by the loss
of the central symmetry in favor of an asymmetric ex-
cursion in the channel, as shown in the trajectories of
Fig.4 (see the supplemental movies in Ref. [33]). Figure
6 shows the average position in y of the center of mass as
a function of confinement: a bifurcation diagram. This
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FIG. 6: Average position of the center of mass over a naviga-
tion period as a function of confinement C. Γ = 0.085. Circles
(diamonds) correspond to symmetric (asymmetric) motion of
the swimmer. The vertical dotted line is the demarcation line
between a pusher and puller. Note that a puller can either
navigate or move close to either wall.

bifurcation is very abrupt, albeit it is of supercritical na-
ture. Both slightly before and beyond the bifurcation
the swimmer behaves on average as a puller, but still it
exhibits two very distinct modes of locomotion: naviga-
tion or settling to a quasi-straight trajectory (oscillation
of the center of mass in this regime is fixed by the amoe-
boid cycle). This complexity is triggered by the intricate
nature of the amoeboid degrees of freedom.

Other force distributions Including force distri-
butions up to sixth harmonics with various amplitudes
leaves the overall picture unchanged, pointing to the
generic character of AS. The next step has consisted
in linking the nature of the swimmer to its dynamics.
We have monitored a pusher or puller type of swimmer.
If F = 2[sin(ωt) cos(3α) − (β + cos(ωt)) cos(2α)]n, we
have a puller; while if F = 2[(−β + sin(ωt)) cos(3α) −
cos(ωt) cos(2α)]n, we have a pusher (with β > 0). β
monitors the strength of the swimmer nature (weak and
strong pusher or puller). We found that for a weak
enough stresslet symmetric and asymmetric navigations
prevail both for pullers and pushers. For a strong enough
stresslet amplitude (for β > βc ∼ 1) we find that the
pusher crashes into the wall, while a puller settles into a
straight trajectory. This means that there is a qualita-
tive change of behavior triggered by β, on which we shall
report on systematic study in the future.
Navigation period The navigation period T exhibits

a nontrivial behavior with C (Fig. 7). At small C, the
period scales as T ∼ C−1, and as T ∼ C−2 at interme-
diate confinement, before attaining a plateau at stronger
confinement. To dig into the reasons of this complex be-
havior, we provide here some heuristic arguments. In the
first regime, the NS swims in a straight and monotonous
manner towards the next wall. In that regime, the period
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FIG. 7: Period of navigation as a function of confinement
C. Γ = 0.085. Circles (diamonds) correspond to symmetric
(asymmetric) motion of the swimmer.

is limited by the distance traveled by the swimmer of the
order W = 2R/C. This yields naturally the C−1 scaling
of Fig. 7 for weak C. In the intermediate confinement
regime, the magnitude of velocity depends linearly on C,
so that the period scales as C−2 (see also [33]). After the
symmetry-breaking occurs, the NS stays close to one of
the two walls (inset of Fig.4), and its center of mass oscil-
lates with the intrinsic stroke period Ts. In this regime,
the period is independent of C (diamonds in Fig. 7).

Analytical results We have first performed a linear
stability analysis [33]. We find, for small C, that the sta-
bility of the swimmer is governed by the stresslet sign: for
Σ > 0 (pusher) the straight trajectory is unstable, while
it is stable otherwise (puller) . For a neutral swimmer
the trajectory is marginally stable (the stability eigen-
value Ω, for a perturbation of the form y ∼ eΩt, is purely
imaginary). We find that in the intermediate C regime
the navigation period behaves as C−2. Using a systematic
multipole expansion the complex behavior of the velocity
as a function of C (at low C) can be explained [33].

Discussion We believe that the global features re-
vealed by our study will persist in 3D although extending
our work to 3D simulations will be a challenging task.
Besides, in order to better match real cells performing
amoeboid swimming (e.g. leukocytes), cytoskeleton dy-
namics and its relation to force generation will be impor-
tant ingredients to be included in a 3D modeling.
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