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A New Riemannian Averaged Fixed-Point
Algorithm for MGGD Parameter Estimation

Zois Boukouvalas, Salem Said, Lionel Bombrun, Yannick Berthoumieu, and Tülay Adalı

Abstract—Multivariate generalized Gaussian distribution
(MGGD) has been an attractive solution to many signal pro-
cessing problems due to its simple yet flexible parametric form,
which requires the estimation of only a few parameters, i.e., the
scatter matrix and the shape parameter. Existing fixed-point (FP)
algorithms provide an easy to implement method for estimating
the scatter matrix, but are known to fail, giving highly inaccurate
results, when the value of the shape parameter increases. Since
many applications require flexible estimation of the shape pa-
rameter, we propose a new FP algorithm, Riemannian averaged
FP (RA-FP), which can effectively estimate the scatter matrix for
any value of the shape parameter. We provide the mathematical
justification of the convergence of the RA-FP algorithm based
on the Riemannian geometry of the space of symmetric positive
definite matrices. We also show using numerical simulations that
the RA-FP algorithm is invariant to the initialization of the
scatter matrix and provides significantly improved performance
over existing FP and method-of-moments (MoM) algorithms for
the estimation of the scatter matrix.

Index Terms—Multivariate generalized Gaussian distribution,
maximum likelihood estimation, fixed-point algorithm, Rieman-
nian geometry, symmetric positive definite matrix

I. INTRODUCTION

MULTIVARIATE generalized Gaussian distributions be-
long to the family of elliptical distributions [1]. They

are defined by their probability density functions,
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where x ∈ Rp, m > 0 is the scale parameter, β > 0 is
the shape parameter, and Σ ∈ Rp×p is a symmetric positive
definite matrix, called the scatter matrix. In the case β = 1,
the MGGD is a multivariate Gaussian distribution, with Σ its
covariance matrix. In general, the shape parameter β controls
the peakedness and spread of the distribution. If β < 1 the
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distribution of the marginals is more peaky than Gaussian with
heavier tails, and if β > 1, it is less peaky with lighter tails.

Recently, the estimation of the parameters of MGGD has
received significant attention, due to the fact that MGGD
has numerous applications including those in video coding,
image denoising, and medical image analysis [2]–[6]. Existing
approaches to this problem, see e.g., [7]–[13], attempt to
estimate Σ for a given value of β. However, their accuracy
suffers when the value of β becomes large, which makes them
unsuitable for many applications. Our main contribution is
the presentation of an effective method that yields accurate
estimates of Σ for any value of β.

In [7], [8], method of moments (MoM) and maximum like-
lihood (ML) techniques were explored for the estimation of Σ.
With regard to ML estimators, it has become clear, from [9]–
[13], that they can be computed using FP algorithms. These
algorithms are relatively easy to implement, but numerical
results show that they provide highly inaccurate results when
β ≥ 2.

In this paper, we present a new FP algorithm, called Rie-
mannian averaged FP (RA-FP) that accurately estimates Σ for
any positive value of β. The basic idea of the RA-FP algorithm
is to implement successive Riemannian averages of fixed-
point iterates, in order to prevent them from diverging away
from the true value of Σ. Moreover, we present a theoretical
justification of the convergence of RA-FP, and using numerical
experiments, we verify that the basic assumptions of the main
proposition hold.

Section II describes the ML equations, which are to be
solved in order to estimate Σ. Section III defines the new
RA-FP algorithm, used to solve these equations. Sections
IV presents numerical experiments, using synthetic data, to
show the improved performance of the RA-FP algorithm in
comparison with existing methods. Finally, Section V provides
the proof of convergence of the RA-FP algorithm.

II. ML EQUATIONS

Let {x1,x2, ...,xN} be a random sample of N observation
vectors of dimension p, which are drawn from an MGGD with
parameters Σ, β, and m. The corresponding ML estimates β̂,
Σ̂, and m̂ are found by solving the ML equations, described
next.

Assume first β is known. The ML estimate Σ̂ is the solution
of the following equation [9]

Σ =
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for unknown Σ, where ui = x>i Σ−1xi. Once Σ̂ has been
computed, m̂ is immediately given by

m̂ =

(
1

N

N∑
i=1

ûβi

) 1
β

, (2)

where ûi = x>i Σ̂−1xi.
In the general case where β is unknown, Σ̂ and β̂ are found

by solving (1), along with
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whose solution is β̂. Here, Ψ is the digamma function. Once
the solutions Σ̂ and β̂ of (1) and (3) have been found, m̂ is
computed directly from (2).

It is seen from the above that the main difficulty, in the
computation of β̂, Σ̂ and m̂, lies in solving (1). This is a
nonlinear equation in the space of symmetric positive definite
matrices. As in [9], [13], it is possible to formulate (1) as
a fixed point equation. To do so, let Sp+ denote the space
of p × p symmetric positive definite matrices. Consider the
function f : Sp+ → S

p
+, given by

f(Σ) =
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Clearly, f(Σ), as given above, is just the right hand side of
equation (1). Therefore, this equation can be written as

Σ = f(Σ), (5)

which is indeed a fixed point equation. In other words, the
ML estimate Σ̂ is the solution of the fixed point equation (5)
associated with the function f defined in (4). It is well-known
that the solution of a fixed point equation, such as (5) may
be attempted using an FP algorithm, which gives successive
fixed point iterates

Σk+1 = f(Σk) k = 0, 1, 2, . . . (6)

Indeed, this algorithm was used in [9], [13]. Concretely, it
consists of repeating (6) until the iterates Σk stabilize, i.e.,
until there is no sensible difference between Σk and Σk+1.

The convergence of the FP algorithm (6) depends on the
function f being contractive, (in a sense to be made precise
in Section V). In the present context, numerical experiments
show that the function f , (which depends on β as can be
seen in (4)), is not contractive when β ≥ 2. The new RA-FP
algorithm, presented in the following section, overcomes this
difficulty.

III. RA-FP ALGORITHM

It has been shown in [9], [13], that the FP algorithm in
(6) gives accurate estimates of Σ when β < 2. The main

contribution of the present paper is to describe the new RA-
FP algorithm, which is a generalization of the FP algorithm
(6), and is capable of producing accurate estimates of Σ when
β ≥ 2.

The RA-FP algorithm uses the Riemannian geometry of
the space Sp+. Precisely, it implements successive Rieman-
nian averages of fixed point iterates. The definition of the
Riemannian average of P,Q ∈ Sp+ is the following, (a more
detailed discussion is given in Section V). For t ∈ [0, 1], the
Riemannian average with ratio t of P and Q is P#tQ, given
as in [13]

P#tQ = P1/2 (P−1/2QP−1/2)t P1/2, (7)

where, on the right hand side, the exponent (·)t denotes
elevation of a symmetric matrix to the power t. Note that

P#0Q = P P#1Q = Q. (8)

The RA-FP algorithm is defined as follows. When Σk is given,
instead of defining Σk+1 by (6), let

Σk+1 = Σk#tkf(Σk), (9)

where tk ∈ [0, 1]. The RA-FP algorithm given in (9) is indeed
a generalization of the FP algorithm in (6), since putting tk =
1 in (9) yields (6), as can be seen from (8). In our work, we
set

tk =
1

k + 1
. (10)

A pseudo-code description of the RA-FP algorithm is given in
Algorithm 1 below. The main part of this algorithm is the loop
described in lines 4-11. The algorithm exits this loop when
D(k) < tol, where D(k) is the relative difference between
two successive estimates, and tol is a tolerance bound, chosen
by the user. The loop is also terminated whenever the number
of iterations exceeds a pre-defined upper bound Nmax.

Algorithm 1 RA-FP
1: Input: X ∈ Rp×N , optionally β
2: Initialize Σ using either MoM or Σ = Ip
3: If β is not given initialize both Σ and β using MoM
4: Initialize k = 0
5: while (D(k) > tol) and (k < Nmax) do
6: k = k + 1
7: Estimate Σ using one iteration of (9)
8: Normalize Σ so that tr(Σ) = p
9: if β is not given then

10: Estimate β by applying Newton-Raphson to (3)
11: else
12: Go to step 5
13: end
14: end
15: Using Σ and β, estimate m with (2)
16: Output: Σ, β, m
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IV. EXPERIMENTAL RESULTS

To quantify the performance of RA-FP, we generate data
according to [9], [14] with Σ defined by

Σ(i, j) = σ|i−j|, i, j = {1, 2, ...p}, (11)

where σ belongs to the interval [0, 1) and controls the corre-
lations between the entries of the data. For these experiments,
we used p = 3, N = 10000, and σ uniformly selected from
the range (0.4, 0.6). Similar results are obtained for different
values of σ. All results are averaged over 500 runs.

Fig. 1 shows the Frobenius norm of the difference between
the estimated and the original scatter matrix as a function of β.
It can be observed that for β < 1, RA-FP and ML-FP provide
better results than the MoM, while for β ≥ 2 RA-FP performs
the best among the three algorithms.
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Fig. 1. Scatter matrix estimation performance for different values of the
shape parameter, for N = 10000, σ ∈ (0.4, 0.6).

Fig. 2 displays the Frobenius norm of the difference between
the estimated and the original scatter matrices, when Σ and β
are jointly estimated. When β < 1, the two ML techniques
perform better than MoM, and for β > 4, again RA-FP
provides the best performance.
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Fig. 2. Scatter matrix estimation performance for different values of the
shape parameter when Σ and β have been jointly estimated. N = 10000,
σ ∈ (0.4, 0.6).

Finally, Fig. 3 shows the number of iterations for RA-FP
to successfully converge to the true value as a function of
β for different initializations. Here, the tolerance parameter,
called tol in Algorithm 1, is chosen as 0.05. As observed in
the figure, RA-FP converges for any value of β ∈ (0.25, 8),
and remains invariant to several choices of initialization. When
β = 1, the MGGD reduces to the Gaussian distribution, where

the ML estimator of the scatter becomes the covariance matrix,
hence, only one iteration of RA-FP is sufficient. In addition,
it is worth noting that the number of iterations depends on the
value of β, and decreases as β becomes large.
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Fig. 3. Number of iterations needed for RA-FP to converge as a function of
β. N = 10000, σ ∈ (0.4, 0.6).

V. PROOF OF CONVERGENCE

This section provides the proof of convergence of the RA-
FP algorithm, which was presented in Section III.

The proof essentially relies on the Riemannian geometry of
the space Sp+, the space of symmetric positive definite, p ×
p real matrices [15], [16]. The main geometric property to
be used is the strong convexity of Riemannian distance [17],
which is now explained.

To begin, the length of a differentiable curve c : [0, 1]→ Sp+
is defined as [15]

L(c) =

∫ 1

0

‖c−1(t)ċ(t)‖F × dt, (12)

where ‖ · ‖F denotes the Frobenius norm. Let P and Q be
two points in Sp+. A curve c is said to connect P and Q if
c(0) = P and c(1) = Q. Among all curves connecting P and
Q, there exists a unique curve γ, whose length is minimum,
(recall length is defined by (12)). This curve γ is called the
geodesic connecting P and Q. Its equation, in the notation of
(7), is [16], [13]

γ(t) = P#tQ. (13)

In particular, this exhibits the geometric meaning of the
Riemannian average of P and Q, defined in Section III. The
Riemannian average with ratio t of P and Q is the point γ(t)
lying on the geodesic γ connecting P and Q.

Riemannian distance between P and Q, denoted d(P,Q)
is the length of the geodesic curve γ, defined by (13). Using
(12), it can be found analytically [15],

d(P,Q) = ‖ log(P−1/2QP−1/2)‖F , (14)

The main property of Riemannian distance, used in the proof
of convergence of the RA-FP algorithm is its strong convex-
ity [17]. This is defined as follows. Let R,P,Q ∈ Sp+ and
γ : [0, 1] → Sp+ the geodesic connecting P and Q, given by
(13). Then,

d2(R, γ(t)) ≤ t d2(R,Q) + (1− t) d2(R,P)

−t(1− t)d2(P,Q). (15)
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This inequality simply means the function t 7→ d2(R, γ(t)),
which is a real-valued function of the real variable t, is a
strongly convex function.

Consider now, once more, the fixed point equation (5). The
FP algorithm (6), produces iterates Σk which converge to
the unique fixed point Σ̂ of the function f , whenever f is
contractive. That is, whenever [18]

d(f(P), f(Q)) ≤ λ× d(P,Q) λ < 1 (16)

for all P,Q ∈ Sp+. On the other hand, the FP algorithm (6)
has no guarantee of convergence when λ = 1, in which case
f is said to be non-expansive. Precisely, in this case [18],

d(f(P), f(Q)) ≤ d(P,Q), (17)

for all P,Q ∈ Sp+. For function f as defined in (4), numerical
experiments have shown that, in a neighborhood of the true
value Σ, this function is contractive when β < 2, but only non
expansive, when β ≥ 2. In this case, as shown in Section IV,
the FP algorithm (6) fails to converge to Σ, while the RA-FP
algorithm (9) converges systematically.

The mathematical explanation of this convergence is given
in the following proposition.

Proposition 1: Let f : Sp+ → S
p
+ be a function, which has

a fixed point Σ̂. Assume there exists a neighborhood U of Σ̂,
such that Σ̂ is the unique fixed point of f in U . Assume also
f is non-expansive in U . That is, for P,Q ∈ U , inequality
(17) holds. If Σ0 ∈ U and, Σk+1 is defined by the RA-FP
algorithm (9), for k = 0, 1, 2, . . . , then the sequence {Σk}
remains in U and converges to Σ̂, as k →∞.
Proof : Assume Σk ∈ U . Since Σ̂ ∈ U , it follows from (17),

d(f(Σ̂), f(Σk)) ≤ d(Σ̂,Σk).

But Σ̂ is a fixed point of f , so f(Σ̂) = Σ̂. Replacing (18) in
the above inequality, it follows that

d(Σ̂, f(Σk)) ≤ d(Σ̂,Σk). (18)

Now, apply the strong convexity property (15), with R = Σ̂,
P = Σk, Q = f(Σk), and t = tk. Using (9) and (13), this
gives

d2(Σ̂,Σk+1) ≤ tk d2(Σ̂,Σk) + (1− tk) d2(Σ̂, f(Σk))

−tk(1− tk)d2(Σk, f(Σk)).

Replacing (18) in this last inequality, it follows after a short
calculation

d2(Σ̂,Σk)−d2(Σ̂,Σk+1) ≥ tk(1− tk)d2(Σk, f(Σk)). (19)

This shows that d(Σ̂,Σk+1) ≤ d(Σ̂,Σk). So if Σk belongs to
U , so does Σk+1. Thus, if Σ0 ∈ U , then the sequence {Σk}
remains in U . To prove this sequence converges to Σ̂, sum
(19) over k = 0, . . . , n− 1. This gives,

d2(Σ̂,Σ0)−d2(Σ̂,Σn) ≥
n−1∑
k=0

tk(1−tk)d2(Σk, f(Σk)) (20)

The right hand side of this inequality is bounded above by
d2(Σ̂,Σ0), which does not depend on n. Therefore,

∞∑
k=0

tk(1− tk)d2(Σk, f(Σk)) < +∞. (21)

To complete the proof, take the neighborhood U of Σ̂ to be
compact. This can be done without any loss of generality.

The sequence Σk converges to Σ̂ if and only if d(Σ̂,Σk)→
0. It is now shown that assuming this is not true would lead
to a contradiction.

By (19), the sequence of distances d(Σ̂,Σk) is decreasing.
Therefore, if it does not converge to 0, there exists a positive
number δ such that d(Σ̂,Σk) ≥ δ for all k.

Let C be the set of matrices Σ such that d(Σ̂,Σ) ≥ δ.
This is a closed set. Therefore, the set U ∩ C is compact.
Note the function Σ 7→ d(Σ, f(Σ)) is continuous. Therefore,
this function reaches its minimum, say c, over U ∩ C. Since
U ∩ C does not contain any fixed points of f , it follows that
c > 0.

It has been proved that Σk ∈ U for all k, and that, assuming
Σk does not converge to Σ̂, Σk ∈ C for all k. In this case,
Σk ∈ U ∩C for all k. This implies d(Σk, f(Σk)) ≥ c for all
k. Replacing in the right hand side of (21),

∞∑
k=0

tk(1− tk)d2(Σk, f(Σk)) ≥ c2
∞∑
k=0

tk(1− tk).

Since tk = 1
1+k , this sum is infinite, which contradicts (21).

Since the assumption that d(Σ̂,Σk) does not converge to
zero has lead to a contradiction, it follows that d(Σ̂,Σk)→ 0,
which means that Σk converges to Σ̂. �

Recall that function f is defined by (4) within the ML frame-
work for the estimation of MGGD parameters. As discussed
right after (5), the maximum likelihood estimate Σ̂ of the
scatter matrix Σ is a fixed point of this function. Moreover,
as discussed after (17), numerical experiments have shown
that this function verifies the assumption of non-expansivity
in a small neighborhood of the true value, and since for
sufficiently large sample size the maximum likelihood estimate
Σ̂ is expected to be close to the true value, Proposition 1
asserts that the RA-FP algorithm (9) applied to function f
converges to Σ̂, if it is initialized in a small neighborhood of
the true value. This is in full agreement with the numerical
results of Section IV.

VI. CONCLUSION

This paper presented a new FP algorithm, for the estimation
of MGGD parameters, Σ, β and m. This new algorithm, called
RA-FP, unlike the ones existing in current literature, is able
to estimate Σ for any value of β. It is based on the idea of
implementing Riemannian averages of successive fixed point
iterates, preventing them from diverging when the value of
β increases. Numerical results show that for any value of β,
and any initialization of the RA-FP algorithm, this algorithm
converges to the true value of Σ. Finally, we have proved that
RA-FP converges when initialized in the neighborhood of any
fixed point, assuming that the mapping f is non-expansive in
that neighborhood. Numerical simulations provide empirical
support of this assumption, and enable the mathematical proof
of the convergence of the RA-FP algorithm.
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