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ONLY FOUR EULER INFINITY PRODUCTS ARE THETA-TYPE

FUNCTIONS

CHANGGUI ZHANG

Abstract. This paper follows our previous work [14]. A function is called

theta-type when its asymptotic behavior near any root of unity is similar like
as what happened for any Jacobi theta function. It will be shown that only

four Euler infinite products have this property. This will be obtained by inves-
tigating the analyticity obstacle of a Laplace-type integral of the exponential

generating function of Bernoulli numbers.
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1. Introduction

In his last letter to Hardy, Ramanujan wrote that he had discovered very inter-
esting functions that he called mock ϑ-functions. He claimed that these functions
enter into mathematics as beautifully as the ordinary ϑ-functions.

However, as said in Watson’s L.M.S. presidential address [9], the first three
pages where Ramanujan explained what he meant by a “mock ϑ-functions“ are
very obscure. Therefore, Watson quoted the following comment of Hardy: a mock
ϑ-function is a function defined by a q-series convergent when |q| < 1, for which
we can calculate asymptotic formulae, when q tends to a “rational point” e2rπi/s of
the unit circle, of the same degree of precision as those furnished for the ordinary
ϑ-functions by the theory of linear transformation.

One of the most important questions concerning Ramanujan’s mock ϑ-functions
would be to find a natural way which might lead one to meet and realize these
“modified” ϑ-functions. By writing the third order mock ϑ-functions into the form
of confluent q-hypergeometric series, we shall consider certain linear q-difference
equations that have a non-Fuchsian singular point in the Riemann sphere C∪{∞}
[8]. These functional equations are like those satisfied by theta functions and their
variants such as Appell-Lerch series or Mordell’s integral. So to speak, one can
decompose each Ramanujan’s third order mock ϑ-function into simple elements
among which the ordinary ϑ-functions and Euler infinity products will be appearing.
This transcendental analysis will allow one to compare mock ϑ-functions with the
ordinary ϑ-functions, and this general point-view will be cleared up in one series of
papers, including our previous work [14] and this one.

In [14], we gave a definition of what we call theta-type, false theta-type and mock
theta-type functions, in the direct line of the above-mentioned comment of Hardy.
It is shown that every Appell-Lerch series is mock theta-type except a very few
cases for which it becomes false theta-type.

In this paper, the values of x for which the associated Euler infinity product
(x; q)∞ is theta-type will be determined. Like as what done by Euler Γ-function for
the theory of hypergeometric functions, it is commonly recognized that the Euler
infinity products play a central role in the whole theory of q-series.

In the below, we will start with Ramanujan’s theta functions and outline some
principal results that will be established in this paper. We conclude this introduc-
tion by a plan of the sections that follow.

1.1. Ramanujan’s two-variable theta functions. Let D be the open disk |q| <
1 in the complex plane. As in [2, Chapter 16], we denote by f(a, b) the Ramanujan’s
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two-variable theta function defined by

(1.1) f(a, b) =

∞∑
n=−∞

an(n+1)/2 bn(n−1)/2

for ab ∈ D. Given (x, q) ∈ C∗ × D, we let θ(x; q) be the following Jacobi theta
function:

(1.2) θ(x; q) =
∑
n∈Z

qn(n−1)/2xn .

By using the Jacobi triple product identity, it follows that, letting q = ab,

(1.3) f(a, b) = θ(a; q) = (−a; q)∞ (−b; q)∞ (q; q)∞ .

Here, the expression (x; q)∞ denotes the Euler product defined by

(1.4) (x; q)∞ =
∏
n≥0

(1− xqn) .

Especially, the following functions are in the heart of the Ramanujan’s theory
about theta-functions and modular equations [2, Entry 22, p. 36]:

φ(q) = f(q, q) , ψ(q) = f(q, q3) , f(−q) = f(−q,−q2) .

By (1.3), one finds that (loc. cit.)

(1.5) φ(q) =
(−q; q2)∞ (q2; q2)∞
(q; q2)∞ (−q2; q2)∞

, ψ(q) =
(q2; q2)∞
(q; q2)∞

, f(−q) = (q; q)∞ .

In what follows, we will reserve the notation f for any general function under
consideration. In order to avoid any confusion, we will write π(q) instead of f(−q),
this is to say:

(1.6) π(q) = f(−q) = (q; q)∞ .

As in [2, Chapter 16], one adds the following Ramanujan’s χ-function to complete
the above list of φ, ψ and π:

(1.7) χ(q) = (−q; q2)∞ =
(q2; q4)∞
(q; q2)∞

=
π(q2)π(q2)

π(q)π(q4)
.

Here, the equality in the middle can be found by replacing (x, q) with (q, q2) in the
“duplication” formula

(1.8) (−x; q)∞ (x; q)∞ = (x2; q2)∞ ,

while the last one can be obtained by considering (x, q, n) = (q, q, 2) or (x, q, n) =
(q2, q2, 2) in the “decomposition” formula

(1.9) (x; q)∞ = (x; qn)∞ (xq; qn)∞ ... (xqn−1; qn)∞ , n ∈ Z>0 .

In a similar way as what done for (1.7), one deduces from (1.5) that φ(q) and
ψ(q) can be expressed as follows:

(1.10) φ(q) =
π(q2)3

π(q)2 π(q4)
, ψ(q) =

π(q2)2

π(q)
.

Definition 1.1. Let f(a, b) and π(q) be as in (1.1) and (1.6). We denote by Φ(q)
and Π(q) the respective multiplicative group of analytic functions in D which is
generated by the following sets:{

f(−qj ,−qk) : (j, k) ∈ Z2
>0

}
,

{
π(qk) : k ∈ Z>0

}
.
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It is clear from the above, therefore, that the Ramanujan’s functions φ, ψ and
χ belong to Π(q), as well as π itself. Furthermore, Π(q) is clearly a sub-group of
Φ(q). In the meanwhile, considering both (1.8) and (1.9) (with x = q and n = 2)
yields the following relations:

(1.11) (q; q)∞ = π(q) , (−q; q)∞ =
π(q2)

π(q)
,

(1.12) (q; q2)∞ =
π(q)

π(q2)
, (−q; q2)∞ =

π(q2)π(q2)

π(q)π(q4)
.

Here, the first equality is exactly the same as (1.6) and the last one has already been
in (1.7). It follows that the Euler products (±q; qk)∞, where k ∈ {1, 2}, belong to
both groups Π(q) and Φ(q).

In this paper, we will explain how to show that, modulo any ramification operator
q 7→ qk with k ∈ Z>0, the above Euler products included in (1.11) and (1.12) are
the only possible Euler products belonging to the group Φ(q). Namely, we have the
following

Theorem 1.1. Let x = x0q
β with x0 ∈ C, |x0| = 1 and β ∈ Z≥0, and let ζ be any

root of unity. The following conditions are equivalent.

(1) x ∈ {q,−q, q2,−q2}.
(2) (x; q2)∞ ∈ Π(q).
(3) (x; q2)∞ ∈ Φ(q).
(4) (x; q2)∞ ∈ Tζ \ {0}.
(5) (x; q2)∞ ∈ Eζ \ {0}.

In the above, Tζ \ {0} (resp. Eζ \ {0}) denotes the multiplicative group of germs
of non-zero functions satisfying the condition stated in (1.13) (resp. in (1.16) with
f0(t) ∈ tC[t] there). The above result will be proved in §6.3, by an analytical point
of view, with the help of Theorem 1.2 stated in the paragraph that follows.

1.2. Behavior of theta-type functions at all roots of unity. From now on,
we will let q = e2πiτ and τ ∈ H, where H denotes the usual Poincaré’s half-plane
=τ > 0. To simplify, we will write e(α) = e2πiα for all α ∈ C. Following our
previous work [14], we recall that, given ζ = e(r) with r ∈ Q or i∞, a function f(q)

is said theta-type as q
a.r.−→ ζ and one writes f ∈ Tζ , if there exist a quadruplet

(υ, λ, I, γ), composed of a couple (υ, λ) ∈ Q × R, a strictly increasing sequence I
without finite limit and a C∗-valued map γ defined on I, such that the following

relation holds for any N ∈ Z≥0 as τ
a.v.−→ r:

(1.13) f(q) =
( i
τ̂

)υ
e(λτ̂)

( ∑
k∈I∩(−∞,N ]

γ(k) qk1 + o(qN1 )
)
.

Here and in the following, τ̂ = τ − r and q1 = e(− 1
τ̂ ); if r = i∞, τ̂ = − 1

τ and
q1 = q.

In the above, the symbol “q
a.r.−→ ζ” (resp. “τ

a.v.−→ r”) could be read as “q
almost radially converges to ζ” (resp. “τ almost vertically converges to r”). When
ζ denotes a root of unity e(r), this means that q tends to ζ in some open sector
of vertex at ζ and symmetrical with respect to the radius Oζ of the unit circle
|q| < 1 (resp. τ tends to r in some open sector of vertex at r and symmetrical with
respect to the vertical half straight-line r+ iR+ in the half-plane =τ > 0). If ζ = 0
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and r = i∞, the above sectors are replaced by symmetrical sectors with respect to
half-lines from the origin of the complex plane or some vertical unbounded strips
in the Poincaré’s half-plane. See (2.7) for more details for the definition of T0.

By convention, f ≡ 0 if, and only if, I = ∅ in (1.13). When I 6= ∅, letting
k = min I and c = γ(k) there implies that

(1.14) f(q) = c
( i
τ̂

)υ
e
(
λ τ̂ − k

τ̂

) (
1 + f1(q)

)
.

Here, f1 denotes some exponentially small function as q
a.r.−→ ζ, this means that

f1 = o(e−κ/|τ̂ |) for some κ > 0.
The above relation in (1.14) suggests us to introduce a class of functions that

will be said to have one exponential–finite expansion. Let a = e(α), with α ∈
R ∪ {i∞}(= ∂H ∪ {i∞}). In the same way as what done for (1.13), we define the
radially symmetric sectors at a and vertically symmetric sectors at α. Let Ara and
Avα denote respectively the sheaf of germs of analytic functions in such symmetric
sectors at a and at α. The map f 7→ f ◦ e defines an one-to-one correspondence
from Ara onto Avα.

As before, let τ̂ = τ − α. We remember that the local coordinate τ̂ needs to be
read as − 1

τ if α = i∞. Let A≤−1α be the sub-sheaf of Avα consisting of exponentially

small functions for τ̂
a.v.−→ 0, and let A≤−1a = {f ∈ Ara : f ◦ e ∈ A≤−1α }. See also

(5.3) for a reformulation of A≤−1α , in line with [5, p. 175, 1.2.4]. If C{t} denotes
the ring of germs of analytic functions at t = α, it is well-known that

(1.15) A≤−1α ∩ C{τ̂} = {0} .

Definition 1.2. Let q = e(τ), τ ∈ H, a = e(α), α ∈ ∂H ∪ {i∞}, let f ∈ Ara.

(1) One says that f(q) admits an exponential–convergent expansion as q
a.r.−→

a and one writes f ∈ Ca, if there exist (c, υ, δ) ∈ C×Q× R, f0(t) ∈ tC{t}
and f1 ∈ A≤−1a such that the following relation holds for τ

a.v.−→ α:

(1.16) f(q) = c
( i
τ̂

)υ
e
( δ
τ̂

+ f0(τ̂)
) (

1 + f1(q)
)
.

(2) If, moreover, f0(t) ∈ tC[t] in (1.16), one will say that f(q) admits an

exponential–finite expansion as q
a.r.−→ a and write f ∈ Ea.

Let U be the set of all roots of unity. In view of the above definition combined
with the relations stated in (1.14) and in (1.15), it is easy to see the following

Remark 1.1. (1) For any ζ = e(r) ∈ U ∪ {0}, it follows that Tζ ⊂ Eζ ⊂ Cζ .
(2) The data (c, υ, δ, f0) appearing in (1.16) is unique. 2

A key point in the course of the proof of Theorem 1.1 will, therefore, consist of
proving that if (x; q2)∞ ∈ Eζ , then x ∈ {±q,±q2} necessarily. This will be obtained
by means of the following

Theorem 1.2 (Main Theorem). Let r ∈ Q ∩ [0, 1) and ζ = e(r) ∈ U. Given
any germ ω of analytic function at τ = r in C such that ω(r) ∈ R, one has
(ω(τ) | τ)∞ ∈ Cζ if, and only if, ω(τ) = 1

2 (n+mτ) for some (n,m) ∈ Z2.

In the above, the notation (. | .)∞ is defined as follows: if x = e(z) and q = e(τ),
we write

(1.17) (z | τ)∞ = (x; q)∞ .
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When r = 0, Theorem 1.2 will be deduced, in §5.4, from the modular-like formula
established by Theorem 1.3 in the below. The general case r ∈ (0, 1) ∩ Q will be
reduced to the previous case r = 0 by considering a finite number of linear fractional
transformations; see §6.2.

1.3. Stokes phenomenon and analytic obstruction. Let us consider Theorem
1.2 with r = 0 and ζ = 1, and let f(q) = (ω(τ) | τ)∞. As ω(τ) is a germ of analytic
function at τ = 0, f(q) is defined only for τ near zero in H. This implies that f is
defined and analytic near q = 1 but |q| < 1. By (1.16), if f ∈ C1, then one can find

(c, υ, δ, f̃1) ∈ C×Q× R×A≤−11 such that

(1.18) F0(q) := c
(τ
i

)υ
e(− δ

τ
)
(
1 + f̃1(q)

)
f(q)

can be analytically continued into a germ of analytic function at τ = 0 in C, that
is to say, for q in some neighborhood of q = 1 in C. Here, it may be worthwhile to

notice that f̃1 denotes certain function defined only for q
a.r.−→ 1 inside the unit disc

|q| < 1, with (1 + f̃1(q))(1 + f1(q)) = 1 and f1 ∈ A≤−11 .
However, by putting z = ω(τ) − 1

2 into the formula in (1.22) in the below,
we will see that the function F0(q) like as in (1.18) can be expressed by means
of a Laplace-type integral; see (1.21). It is known that such integral admits an
asymptotic expansion that is generally a divergent power series, and this yields
the so-called Stokes phenomenon. The corresponding function becomes analytic in
some neighborhood of τ = 0 only when the Stokes multiplier is trivial, which gives
the necessary condition stated by Theorem 1.2 for f to belong in C1. All this will
be explained in Sections 3 and 5.

In order to get an expression as in (1.18) for any Euler infinite product, we let

(1.19) B(t) =
1

et − 1
− 1

t
+

1

2
,

what is an exponential generating function of Bernoulli numbers; see (3.1). Given
d ∈ (−π2 ,

π
2 ), define

(1.20) Vd = V +
d = {τ ∈ C : <(τeid) > 0} , Hd =

(
Vd −

1

2

)
∩
(
−Vd +

1

2

)
,

and consider the integral

(1.21) Bd(z | τ) =

∫ ∞eid
0

ezu − e−zu

eu/2 − e−u/2
B(τu)

du

u

for (z, τ) ∈ Hd × Vd. One can notice that Hd represents the strip delimited by two
straight lines passing respectively through the points of affix ± 1

2 and remaining all
perpendicular with the direction of argument −d. See Figure 1.

The following result will play an important role for the study of the asymptotic
behavior of an Euler infinite product.

Theorem 1.3. Let Ω = ∪d∈(−π2 ,π2 )Hd×Vd and let B(z | τ) be the analytic continu-

ation in Ω of the function Bd(z | τ) given by (1.21) for d ∈ (−π2 ,
π
2 ). The following

relation holds for all (z, τ) ∈ Ω with τ ∈ H:

(1.22) (z +
1

2
| τ)∞ = A(z | τ) eL2(z | τ)+B(z | τ) (

z − 1/2

τ
| − 1

τ
)∞ ,
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plane Vd − 1

2 with its opposite half-plane −Vd + 1
2

where

A(z | τ) = e(− τ

24
)
√

1 + e(z)

and

(1.23) L2(z | τ) =
Li2(−e(z))

2πiτ
=

i

2πτ

∫ 1

0

log
(
1 + e(z) t

) dt
t

In (1.23) in the above, log means the principal branch of the complex logarithm
function; Li2 denotes the traditional dilogarithm function as considered in [11]. The
proof of the above theorem will be given in §3.4.

In [13], we found a modular-type relation for Euler infinite product (x; q)∞, that
is intimately linked with an asymptotic formula of Ramanujan. See Theorem 4.2
together with [3, p. 265 Entry 6 and p. 268 Entry 6’]. In §4.4, we will show that
this modular-type relation is equivalent to the statement given by Theorem 1.3.

1.4. Plan for the rest of the paper. This will be divided into five sections
and the paper will be concluded by the proof of Theorems 1.1 and 1.2 in §6.3.
Schematically, Sections 3 and 4 constitute one part that can be read together and
independently of the rest of the paper, but they will be used in the sections that
follow. Here are some key-stages of what follows.

In §2, we will start with some general remarks about Theta-type functions.
Special properties of the Ramanujuan’s two-variables theta function f(a, b) will
be found in §2.2 for = a0q

α and b = b0q
β . Thus, one can get, in Theorem 2.2,

a family of Euler infinite products that have an exponential-finite expansion at a
given root of unity. This gives a proof for one simple part of Theorem 1.2. After
that, we will make use of the θ-modular formula to find that all composite Jacobi
theta functions satisfy Definition 1.2; see Theorem 2.4.

Sections 3 and 4 are mainly devoted to two integrals related to the exponential
generating function of Bernoulli numbers; see (3.2) and (1.21). These integrals can
be read as of Laplace-type, and they depend of the choice of the path starting
from 0 to infinity. Two types of singularities are contained there: fix and movable
singularities. Theorem 3.1 says that the two branches of the function defined by
the first integral have a difference that can be expressed in terms of Euler infinite
products.

In §3.2, by considering the integral in (1.21) as a symmetrical form of the integral
in (3.2), we shall propose an analysis in line with the so-called Stokes’ phenomenon.
This gives an expression relating any Euler infinite product into its modular counter-
part; see Theorem 1.3. In a previous work [13] (see also [12]), we obtained a similar
expression that makes an analytic sense to an asymptotic formula of Ramanujan. In
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order to clarify the relation between this result and the above-mentioned Theorem
1.3, we consider, in §4, the analytic continuation of all these functions used there.
Finally, it will be shown that these two expressions are equivalent; see Theorem
4.3.

It may be of interest to notice that the approaches used in our previous paper [13]
allow one to unify eta and theta-modular relations and other modular-type relations
for Lambert series. But in the present paper, Theorem 1.3 is established with the
help of classical modular formulas.

The remaining two sections are putting behind the hard part of the proof of
Theorem 1.2. In §5, we shall give the necessary condition to an Euler infinite
product to have an exponential-convergent expansion at q = 1, i.e. τ = 0. The
crucial point in our strategy is to express this condition in terms of the analyticity
(obstacle) of the functions introduced above with Bernoulli integrals. Fortunately,
one can make use of Ramis-Sibuya’s Theorem to find that all these functions have
in general a divergent but Gevrey asymptotic expansion; see Theorems 5.2, 5.3 and
5.4. In this way, one obtains a few family of Euler infinite products that belong to
C1, as stated by Theorem 5.1.

The lastest section will permit to pass any root of unity to 1 by means of modular
transforms based upon continued fractions. For doing this, we shall investigate, in
§6.1, the degenerate cases of Bernoulli integrals when τ goes to the real axis. This
is to say that the general elliptic curve will be replaced by a circle, with only a
period. Thanks to Theorems 6.2 and 6.3, one knows that, while τ tends to a real
point from H, the related Bernoulli integrals remain analytic and one can iterated
modular transforms until the last τ -variable goes to zero. This is done, in §6.2,
by representing any rational number into continued fraction. In 6.3, we outline
a summary about previously-stated results related to Theorem 1.2 and complete,
therefore, the proof of Theorem 1.1 with the help of Theorem 1.2.

2. Theta-type functions and exponential-convergent expansions

Let (z | τ)∞ be as in (1.17). For any n ∈ Z≥0, it follows that

(2.1) (z | τ)∞ = (z | τ)n (z + nτ | τ)∞ ,

where (z | τ)0 = 1 and (z | τ)n =
(
1− e(z)

)
...
(
1− e(z + (n− 1)τ)

)
for n ≥ 1. This

is equivalent to say that

(x; q)∞ = (x; q)n (xqn | q)∞ ,

where (x; q)n = (z | τ)n. Similarly like as in (1.17), define

(2.2) θ(z | τ) = θ(x; q)

for x = e(z) and q = e(τ).

2.1. Preliminary commentaries on Theta-type functions. As before, let U
denote the set of roots of unity. We start with commentaries about the real meaning

of the relation given in (1.13) as q
a.r.−→ 0. First of all, given ζ ∈ U, we will say that

“q
a.r.−→ 0” along the direction ζ if there exists (ε, R) ∈ (0, π)×R>0 such that q → 0

in the open sector V (ζ; ε, R) defined in the punctuated plane C \ {0} as follows:

(2.3) V (ζ; ε, R) = {q ∈ C∗ : | arg
q

ζ
| < ε, |q| < R} .
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When V = V (ζ; ε, R), we let T(V ) denote the set of analytic functions satisfying
the condition in (1.13) for q → 0 in V . Consider f ∈ T(V ); since τ̂ = − 1

τ and

τ = 1
2πi log q, one obtains that

(2.4) f(q) = (2π log
1

q
)υ eλ

′/ log q
( ∑
k∈I∩(−∞,N ]

γ(k) qk + o(qN )
)
,

where λ′ = 4π2λ. In view of the fact that eλ
′/log q = 1 + o(qN ) for all N ∈ Z≥0

as |q| → 0, it follows that the exponent λ′ in (2.4) can be arbitrarily chosen.
Furthermore, in the whole theory of q-series including mock-theta functions, the
functions are generally analytic at q = 0 in the unit disc. For this reason, it will be
convenient to take simply λ = λ′ = 0. In this way, (1.13) will be read as follows for
q → in V :

(2.5) f(q) = (2π log
1

q
)υ
( ∑
k∈I∩(−∞,N ]

γ(k) qk + o(qN )
)
.

Similarly, (1.16) needs to be interpreted in the following fashion, with f0 = 0:

(2.6) f(q) = c (2π log
1

q
)υ q−δ

(
1 + o(qκ)

)
,

where κ > 0. This implies that C(V ) = E(V ). Moreover, one can notice that (2.6)
remains in accordance with (1.15); see Remark 1.1 (2).

The “global sheaves” located at zero for all directions can be defined as follows:

(2.7) X0 = ∪(ε,R)∈R2
>0

(
∩ζ∈UX(V (ζ; ε, R))

)
for X ∈ {T,E,C}. It is easy to see the following

Remark 2.1. (1) One has ∪n∈Z≥0
q−nC{q} ⊂ T0 ⊂ E0 = C0.

(2) One has C(q) ⊂ Cζ and C(q) ∩ Eζ = C(q) ∩ Tζ = C for all ζ ∈ U.

In the above, ∪n∈Z≥0
q−n C{q} is the fraction field of the ring of the germs of

analytic functions at q = 0, which is simply the set of all meromorphic functions at
the origin. To see the second assertion of this remark, one can easily observe that
all meromorphic function at q = ζ ∈ U belongs to Cζ . By considering the logarithm
of any non zero f(q) ∈ C(q), one obtains that C(q) ∩ Eζ = C(q) ∩ Tζ = C for all
ζ ∈ U.

We will call ramification operator of order ν 6= 0 the application ρν that sends
each function f(q) into ρνf(q) = f(qν). When ζ ∈ U, we write

(2.8) ρν,ζ : f(q) 7→ ρν,ζf(q) = f(ζqν) .

It follows that ρν = ρν,1.
Given X ∈ {T,E,C}, define

(2.9) X = ∩ζ∈U∪{0}Xζ , X∗ = X \ {0} .

It may be useful to observe that X∗ = ∩ζ∈U∪{0}X∗ζ where X∗ζ = Xζ \ {0}, due to
the analytic character of the functions included in each set under study.

Lemma 2.1. Let X ∈ {T,E,C}.
(1) X is stable under any given operator ρν,ζ with (ν, ζ) ∈ Q>0 × U.
(2) Given ζ ∈ U ∪ {0}, X∗ζ constitutes a multiplicative group.
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Proof. (1) Using (2.8), one finds that Xζ = ρν,ζ1
(
Xζ2

)
for (ζ, ζ1, ζ2, ν) ∈ U3 ×Q>0

such that ζ1 ζ
ν
2 = ζ. Thus, one obtains that

ρν,ζ
(
∩ζ2∈UXζ2

)
= ∩ζ2∈UXζ ζν2

= ∩ζ′∈UXζ′ .

This implies the invariance of X by ρν,ζ , for ρν,ζX0 = X0 (see (2.7)).
(2) When ζ ∈ U, this comes directly from the respective definition of Tζ , Eζ and

Cζ in (1.13) and (1.16) with f0 ∈ tC{t} or t ∈ tC[t]. For ζ = 0, see (2.5) – (2.7).
This finishes the proof. �

2.2. Case of Ramanujan’s two-variables theta-function. Let f(a, b) be the
Ramanujan’s two-variables theta-function given by (1.1).

Theorem 2.1. Let (α0, α1, β0, β1) ∈ Q4 such that α1 + β1 ∈ Q>0, and let a =
e(α0 + α1τ) and b = e(β0 + β1τ). Then f(a, b) ∈ T.

Proof. Let θ(z | τ) be as in (2.2), and let ν = α1 +β1. From (1.3), one deduces that
f(a, b) = θ(α0 + α1τ | τ ′) with τ ′ = α0 + β0 + ντ . Letting ζ = e(α0 + α1), one can
find suitable (λ, µ) ∈ Q2 such that

(2.10) f(a, b) = ρν,ζg(q) , g(q) = θ(λ+ µτ | τ) .

By [14, Theorem 1.1], one knows that θ(z | τ) ∈ T for any given z ∈ R⊕Rτ . So,
considering both Lemma 2.1 (1) and equality (2.10) gives that f(a, b) ∈ T. �

Consequently, one obtains easily the following

Corollary 2.1. (1) One has Π(q) ⊂ Φ(q) ⊂ T∗ ⊂ T∗ζ for all ζ ∈ U.

(2) If x ∈ {±q,±q2}, then (x; q2)∞ ∈ E∗.

Proof. (1) It suffices to remember that π(q) = f(−q) = f(q, q2) as stated in (1.5).
(2) By (1.11) and (1.12), it follows that (x; q2) ∈ Π(q), this together with Remark

1.1 (1) implies the wanted result. �

We shall prove the part “if” of Theorem 1.2 in the below.

Theorem 2.2. Assume ω(τ) = 1
2 (n+mτ), where n ∈ {0, 1} and m ∈ Z.

(1) One has (ω(τ) | τ)∞ ∈ C .
(2) Moreover, (ω(τ) | τ)∞ ∈ E∗ζ for some ζ ∈ U if, and only if, ω(τ) ∈ {τ, τ2 ,

1
2 +

τ, 12 + τ
2}.

Proof. Let ∆τ = {τ, τ2 ,
1
2 + τ, 12 + τ

2}. By applying Corollary 2.1 (2) and replacing

q2 with q there, one obtains from Lemma 2.1 (2) that, for z ∈ ∆τ , (z | τ)∞ ∈ E∗,
so (z | τ)∞ ∈ E∗ζ for all ζ ∈ U.

Now, assume that ω(τ) = 1
2 (n+mτ), where n ∈ {0, 1} and m ∈ Z. One can find

a unique z ∈ ∆τ such that ω(τ) = z +m′τ with some m′ ∈ Z. Let

g(q) =
(ω(τ) | τ)∞

(z | τ)∞
.

By using (2.1), one finds that g(q) ∈ C(
√
q).

(1) One remembers that (z | τ)∞ ∈ E∗ ⊂ C∗. Since g(q) represents a rational
function of the variable

√
q, one obtains from Lemma 2.1 (2) and (3) that g(q) ∈ C,

so (ω(τ) | τ)∞ ∈ C.
(2) By using Lemma 2.1 (2) and Remark 2.1 (2), one finds that g(q) ∈ Eζ for

some ζ ∈ U if, and only if, g(q) is a constant function. In this way, one gets that
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(ω(τ) | τ)∞ ∈ Eζ if, and only if, ω(τ) ∈ ∆τ , which completes the proof of Theorem
2.2. �

2.3. Exponential-convergent behaviour of composite Euler infinite prod-
ucts. Thanks to Euler [1, p. 490, Corollary 10.2.2 (b)], one can write that, for all
x ∈ C,

(2.11) (x; q)∞ =
∑
n≥0

qn(n−1)/2

(q; q)n
(−x)n .

Lemma 2.2. Given ω ∈ C{τ} and δ ∈ C, if ω(0) > 0, then (−ω(τ)τ | δ−
1
τ )∞ ∈ C1.

Proof. By using (2.11), one gets that

(−ω(τ)

τ
| δ − 1

τ
)∞ = 1 +

∑
n≥1

(−1)ne(−nω(τ)τ )

(δ − 1
τ | δ −

1
τ )n

e
(n(n− 1)

2
(δ − 1

τ
)
)
,

where (. | .)n is defined as in (2.1). Since e(δ − ν
τ ) ∈ A≤−10 for any ν > 0, it follows

that, when ω(0) > 0,

(−ω(τ)

τ
| δ − 1

τ
)∞ = 1−

e(−ω(τ)τ )

1− e(δ − 1
τ )

mod A≤−10

= 1 mod A≤−10 .

This finishes the proof. �

Proposition 2.1. Let ω ∈ C{τ}, δ ∈ C, and let

f(q) = (−ω(τ)

τ
| δ − 1

τ
)∞

for all q = e(τ) with τ
a.v.−→ 0 in H. One supposes that ω(0) ∈ R.

(1) One has f ∈ C1.
(2) One has f ∈ E1 in each of the following cases:

(a) ω(0) > 0.
(b) ω ∈ C[τ ] and ω(0) ∈ R<0 \ Z.
(c) ω = a+ bτ ∈ Z≤0 ⊕ (C \ Z)τ .

Proof. Let n be the smallest non-negative integer such that n = nω > −ω(0). For
simplify, we define

ω∞(τ) = ω(τ) + n(1− δτ) , f∞(q) = (−ω∞(τ)

τ
| δ − 1

τ
)∞

and

fk(q) = 1− e
(
kδ − ω(τ) + k

τ

)
, k = 0, ..., n− 1.

Thus, one can write

f(q) = (−ω(τ)

τ
| δ − 1

τ
)n (−ω∞(τ)

τ
| δ − 1

τ
)∞

= f0(q) f1(q) ... fn−1(q) f∞(q) .(2.12)

Since ω∞(0) > 0, Lemma 2.2 implies that f∞ ∈ E1 ⊂ C1. In view of Lemma 2.1
(1), one needs only to show that the statements of Proposition 2.1 remain true with
each fk instead of f .
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If w(0) + k < 0, one writes

1− e(−ω(τ) + k

τ
) = −e(−ω(τ) + k

τ
)
(
1− e(ω(τ) + k

τ
)
)
.

This gives that

(2.13) log
(
fk(q)

)
= −2πi

ω(τ) + k

τ
mod C⊕A≤−10 .

Otherwise, if ω(0) + k = 0, one obtains that ω(0) ∈ Z≤0 and k = nω = −ω(0).
When fk 6≡ 0, it follows that ω(τ) 6= `τ for any ` ∈ Z. In this case, one finds that

(2.14) log
(
fk(q)

)
= log

(
1− e(−ω(τ)− ω(0)

τ
)
)

= ν log τ mod C{τ},

where ν ∈ Z≥0.
(1) By considering both relations in (2.13) and (2.14), it follows that fk ∈ C1.

This implies the first assertion of Proposition 2.1.
(2) First of all, if ω(0) > 0, one notices that nω ≤ 0 and the relation in (2.12)

becomes f = f∞. Thus, f ∈ E1 as stated in (2) (a).
When ω(0) ∈ R<0 \Z, it follows that ω(0)+k < 0 for all integer k ∈ [0, n). Thus,

the relation in (2.13) implies that, as ω ∈ C[τ ], fk ∈ E1. This gives the assertion
in (2) (b).

Finally, if ω(0) ∈ Z≤0 and k = −ω(0), considering the relation in (2.14) yields
that fk ∈ E1 if, and only if, ω(τ) − ω(0) ∈

(
C \ Z

)
τ . This, together with (2.13),

gives (2) (c) and then completes the proof of Proposition 2.1. �

2.4. The exponential-finite behaviour of composite Jacobi Theta func-
tions. Let θ(z | τ) be as in (2.2). We shall understand in what manner the com-
posite function of θ with a real analytic function behaves in terms of Definition
1.2.

Theorem 2.3. Given any real-valued analytic function ω on R, θ(ω(τ) | τ) ∈ Cζ
for all ζ ∈ U.

The traditional four Jacobi theta-functions can be defined in terms of θ as follows:

(2.15) ϑ1(z | τ) = e(−z
2

+
τ

8
+

1

4
) θ(z +

1

2
| τ) , ϑ2(z | τ) = e(−z

2
+
τ

8
) θ(z | τ) ,

(2.16) ϑ3(z | τ) = θ(z +
τ

2
| τ) , ϑ4(z | τ) = θ(z +

τ

2
+

1

2
| τ).

For the definition of the above ϑ-functions, we are referred to [10, p. 464 &
p. 487], where πz and πτ need to be read as z and τ , respectively.

By taking into account Lemma 2.1 (2), it is easy to see that Theorem 2.3 is
equivalent to the following

Theorem 2.4. All the statements of Theorem 2.3 remain true if the θ-function is
replaced with anyone of the Jacobi ϑ-functions ϑj(z | τ), 1 ≤ j ≤ 4.

The proof of Theorem 2.3 will be based upon both the theta-modular formula
in (2.18) and Proposition 2.2 in the below. Indeed, let ζ = e( pm ), where (p,m) ∈
Z × Z>0 and p ∧m = 1; by convention, we write 0 ∧ 1 = 1. We fix α, β in Z in a
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such manner that βm − αp = 1; in other words, M =:

(
α −β
m −p

)
∈ SL(2;Z) .

As before, τ̂ = τ − p
m ; it will be convenient to define

(2.17) τ ′ = Mτ =
ατ − β
mτ − p

= − 1

m2τ̂
+
α

m
.

Lemma 2.3. Let p ∈ Z, m ∈ Z>0 such that p ∧m = 1, and let τ ′ be as in (2.17).
Then:

(2.18) θ(z +
1

2
| τ) =

ε1√
m

√
i

τ̂
e
(
− 1

2τ̂
(z +

1

2m
)2 +

z

2
− τ̂

8

)
θ(

z

mτ̂
+

1

2
| τ ′) ,

where ε1 = ε1(α,−β,m,−p) denotes an 8-th root of unity.

Proof. This follows from [6, Theorem (2), p. 179]. See also [14, (1.20)]. �

Proposition 2.2. Given δ ∈ C and ω(τ) ∈ C{τ} with ω(0) ∈ R, one has θ(−ω(τ)τ | δ−
1
τ ) ∈ C1. Furthermore, when ω(0) ∈ R \ Z and ω ∈ C[τ ], this function belongs to
E1.

Proof. Let τ ′ = δ − 1
τ . By the triple product formula (1.3), one can write

θ(−ω(τ)

τ
| δ − 1

τ
) = f0(q) f1(q) f2(q) ,

where

f0(q) = (τ ′ | τ ′)∞ , f1(q) = (−ω(τ)

τ
+

1

2
| τ ′)∞ , f2(q) = (τ ′ +

ω(τ)

τ
+

1

2
| τ ′)∞ .

One knows that f0(q) ∈ T, so f0(q) ∈ E1 ⊂ C1. In view of Lemma 2.1 (1),
Proposition 2.2 follows by applying Proposition 2.1 to each of f1(q) and f2(q). �

Proof of Theorem 2.3. Consider ζ = e( pm ), with (p,m) as in Lemma 2.3. By
using the relation τ = τ̂ + p

m , one finds that

(2.19) ω(τ) +
1

2m
− 1

2
= µ+ τ̂ F (τ̂) ,

where

(2.20) µ = ω(
p

m
) +

1

2m
− 1

2
, F (τ̂) =

ω(τ̂ + p/m)− ω(p/m)

τ̂
.

Thus, it follows that

− 1

2τ̂

(
ω(τ) +

1

2m
− 1

2

)2
+

1

2

(
ω(τ)− 1

2

)
− τ̂

8
= −λ0

τ̂
+ c0 + ϕ0(τ̂) ,

where

λ0 =
µ2

2
, c0 =

1

2

(
µ− 1

2m

)
− µF (0) = − 1

4m
+ µ

(1

2
− ω′( p

m
)
)

and

ϕ0(τ̂) = −µ
(
F (τ̂)− F (0)

)
− τ̂F (τ̂)2

2
∈ τ̂R{τ̂} .

Replacing z with ω(τ)− 1
2 in the modular relation (2.18) yields that

f(q) = C1

√
i

τ̂
e
(
−λ0
τ̂

+ ϕ0(τ̂)
)
f1(q) ,(2.21)
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where C1 and f1 are given as follows:

C1 =
ε1 e(c0)√

m
, f1(q) = θ(

ω(τ)− 1/2

mτ̂
+

1

2
| τ ′).

By using (2.17), one can write f1 in the following manner:

(2.22) f1(q) = θ(
ω1(m2τ̂)

m2τ̂
| α
m
− 1

m2τ̂
) ,

where

(2.23) ω1(t) = mω(
t+mp

m2
) +

t−m
2
∈ R{t}.

By using the following identification:

τ ↔ m2τ̂ , ω ↔ ω1, δ ↔ − α
m
,

one can apply Proposition 2.2 (1) to the above function f1 defined in (2.22). This
implies that f1 ∈ Cζ . �

3. Stokes’analysis and modular properties about Euler infinite
products

This section prepares §4 and §5, and aims at establishing an integral expression
of the Euler infinite product (x; q)∞ by means of the so-called Stokes’ analysis.
Indeed, we shall show that Euler infinite product (x; q)∞ is closely related with an
integral involving the exponential generating function of the Bernoulli numbers; see
(1.21) and Definition 3.2. This integral contains two species of singularities, one of
whom is fixed and the other one is mobile. By analyzing all these singularities, a
formula will be found to make the link between (x; q)∞ and its modular counter-
part (x1; q1)∞, in such a way that the modular part is considered as exponential
small-remainder.

The principal result of this section is Theorem 1.3, that will play a central role
in the proof of Theorem 1.2.

3.1. An integral associated with the exponential generating function of
Bernoulli numbers. Following [1, Definition 1.2.3, p. 12], we let B2n to denote
the Bernoulli numbers for positive integers n :

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, · · · .

Let B be the function defined by (1.19). One can notice that B represents the
exponential generating function of (B2n) as follows (cit. loc.):

(3.1) B(t) =
∑
n≥1

B2n

(2n)!
t2n−1 .

In what follows, we shall consider the following integral:

(3.2) bd(z | τ) =

∫ ∞eid
0

e−zu − 1

eu − 1
B(τu)

du

u
,

where d is a given number in (−π2 ,
π
2 ), z and τ are complex numbers such that the

associated integral bd converges.
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As B(t) = O(t) at t = 0 in C, the above integral in (3.2) converges at u = 0 for
all values of (z, τ) in C× C. With regard to the convergence at infinity, we define

(3.3) V +
d = {τ ∈ C : <(τeid) > 0} , V −d = {τ ∈ C : <(τeid) < 0}

and

(3.4) Ud = {z ∈ C : z + 1 ∈ V +
d } .

By using (1.19), one finds that B(t)→ ±1/2 when <t→ ±∞. Therefore, bd(z | τ)
defines two analytic functions, one in Ud × V +

d and the other in Ud × V −d .
Geometrically, Ud represents the half-plane containing the point at origin and

delimited by the straight-line −1 + e−d+
π
2 R while V ±d are half-planes separated by

the straight line ei(−d+
π
2 )R. One can find that the interval (−1,∞) belongs to Ud

for every argument d ∈ (−π2 ,
π
2 ). See Figure 2.

-
−1 0 ∞

�
�
�
�*

H
H
H
Hj

Y

Y

j

j

Y

Y

d

−d

H

−d+ π
2

V +
dV −dUd

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 2. Half-planes Ud, V
−
d and V +

d

Let

(3.5) W+ = ∪d∈(−π2 ,π2 )Ud × V +
d , W− = ∪d∈(−π2 ,π2 )Ud × V −d .

Since
∪d∈(−π2 ,π2 )V

+
d = C \ (−∞, 0], ∪d∈(−π2 ,π2 )V

−
d = C \ [0,∞)

it follows that

(3.6) (−1,∞)×
(
C \ (−∞, 0]

)
⊂ W+ , (−1,∞)×

(
C \ [0,∞)

)
⊂ W− .

Definition 3.1. We call Bernoulli integral any expression bd(z | τ) as given in (3.2)
and we will define b+(z | τ) and b−(z | τ) respectively in W+ and W− by applying
the analytic continuation procedure to bd(z | τ) from Ud × V +

d and Ud × V −d as d
runs through (−π2 ,

π
2 ).

If no confusion is possible, we will write b(z | τ) instead of b+(z | τ).

We shall make use of the following result to express the difference b+(z | τ) −
b−(z | τ) in their common domain W+ ∩W−.

Lemma 3.1. If τ ∈ H and z ∈ H, then:

(3.7)
∑
n≥1

1

n

e(nz)

1− e(nτ)
= − log

(
(z | τ)∞

)
Proof. This follows from [2, p. 36, (21.1)]. �

By (3.6), one finds that
(
(−1,∞)× (C \ R)

)
⊂ W+ ∩W−. In what follows, we

will write C \ R = H ∪ (−H).

Theorem 3.1. Let (z, τ) ∈ W+ ∩W−. The following assertions hold.
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(1) If τ ∈ H, then:

(3.8) b+(z | τ)− b−(z | τ) = − log
(−(z + 1)/τ | − 1/τ)∞

(−1/τ | − 1/τ)∞
.

(2) If τ ∈ H− = (−H), then:

(3.9) b+(z | τ)− b−(z | τ) = − log
((z + 1)/τ | 1/τ)∞

(1/τ | 1/τ)∞
.

Proof. (1) By the standard argument of analytical continuation, it suffices to prove
(3.8) for (z, τ) ∈ (−1,∞)×H. Thus, one chooses d1 ∈ (−π2 , 0) and d2 ∈ (0, π2 ) such

that τ belongs both V +
d1

and V −d2 . The contour integral in (3.2) allows one to write
that

b+(z | τ)− b−(z | τ) = B+
d1

(z | τ)−B−d2(z | τ)

=
(∫ ∞eid1

0

−
∫ ∞eid2
0

)e−zu − 1

eu − 1
B(τu)

du

u
.(3.10)

Since both d1 and d2 belong to (−π2 ,
π
2 ), the two half straight-lines used in the

contour-integral (3.10) are separated in the u-plane by the half straight-line `τ
defined as follows:

`τ = {u ∈ C∗ : <(τu) = 0,<u > 0};
see Figure 3.

-
0
�
���
•τ

���
���`τ

? ? ?
? ? ?

?: poles of B(τu)

Z
Z

Z
Z

Z
Z
Z
Z

SS
SS
SSwd1

/
/

V +
d1



















�
�
�3
d2

s

s

V −d2

Figure 3. τ belongs to the common domain V +
d1
∩ V −d2 while the

directions d1 and d2 are separated by the half-line `τ

By observing that the function B(τu) admits simple poles u = 2nπi/τ (n ∈ Z>0)
on the line `τ , applying Residues Theorem to the second member of (3.10) yields
that

b+(z | τ)− b−(z | τ) =
∑
n≥1

1

n

e(−nz/τ)− 1

e(n/τ)− 1

=
∑
n≥1

1

n

e(−n(z + 1)/τ)

1− e(−n/τ)
−
∑
n≥1

1

n

e(−n/τ)

1− e(−n/τ)
.(3.11)

By using the relation in (3.7), the above expression in (3.11) implies that

b+(z | τ)− b−(z | τ) = − log
(
(−z + 1

τ
| − 1

τ
)∞
)

+ log
(
(−1

τ
| − 1

τ
)∞
)
,

so that one obtains (3.8).
(2) When τ ∈ H−, the above proof can be adopted as follows: choose d1 ∈ (0, π2 )

and d2 ∈ (−π2 , 0), and observe that the simple poles of B(τu) to which Resides
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Theorem is applied become u = −2nπi/τ (n ∈ Z>0). An direct calculation implies
finally (3.9), what ends the proof of Theorem 3.1. �

3.2. A symmetrical Bernoulli integral. Consider the integral given in (1.21)
for Bd(z | τ), where d ∈ (−π2 ,

π
2 ). One can observe two species of singularities for

this integral:

(1) The fixed singularities over the imaginary axis iR, due to the simple zeros
of the denominator eu/2 − e−u/2.

(2) The mobile or parametric singularities that depend of the value of τ , due
to the simple poles of the generating function B(τu).

The choice of the direction argument d needs to avoid the first singularities; once a
suitable argument d given, the analytic continuation on the corresponding sectors
V ±d is made up of an analysis about the second family of singularities. See Figure
4 in the below, which is to be compared with Figure 3.

-
0
�
���
•τ

���
��� `τ

? ? ?
? ? ?

?: poles of B(τu)
SS
SS
SSwd1

�
�
�3
d2

�
�
�
�
�
�
�
�
�
�
�

�: zeros of
eu/2 − e−u/2

Figure 4. Fixed singularities on the imaginary axis and mobile
singularities depending of τ viewed in the u-plane

We shall explore these singularities to find global relations about the function
B(z | τ) considered in Theorem 1.3. One will see that each of both types of sin-
gularities allows one to get a functional equation, as stated in Theorems 3.2 and
3.3 respectively. Our approach is inspired by the so-called Stokes’ analysis for the
analytic theory of ordinary differential equations; see [?].

First of all, comparing this integral Bd(z | τ) with bd(z | τ) in (3.2) yields

(3.12) Bd(z | τ) = bd(−z −
1

2
| τ)− bd(z −

1

2
| τ) .

One deduces that Bd(z | τ) is well-defined for all (z, τ) such that τ ∈ V ±d and

±z + 1/2 ∈ V +
d or, equivalently, for (z, τ) ∈ Hd × V ±d . See (1.20) for the definition

of Hd and Vd, where Vd = V +
d .

In this way, one obtains two analytic functions whose domains of definition are
respectively Hd × V +

d and Hd × V −d ; these functions will be denoted by B+
d (z | τ)

and B−d (z | τ).

Lemma 3.2. The following relations hold for all d ∈ (−π2 ,
π
2 ):

(3.13) B+
d (z | τ) = B+

d+π(z | − τ) = −B−d+π(z | τ)

and

(3.14) B−d (z | τ) = B−d+π(z | − τ) = −B+
d+π(z | τ).

Proof. By (3.3) and (1.20), it follows that V +
d+π = V −d = −V +

d and Hd+π = Hd

for all d ∈ (−π2 ,
π
2 ). Thus, one deduces (3.13) and (3.14) directly from the identity

B(−t) = −B(t). �
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The symmetry stated in Lemma 3.2 allows us to deal with only the case of
d ∈ (−π2 ,

π
2 ) most of the time. Thus, as what happened for the functions b±(z | τ),

the families (B+
d )d∈I and (B−d )d∈I , where I = (−π2 ,

π
2 ), yields two global functions

by the analytic continuation procedure.

Definition 3.2. Let

(3.15) Ω+ = ∪d∈(−π2 ,π2 )Hd × V +
d , Ω− = ∪d∈(−π2 ,π2 )Hd × V −d .

We will denote by B+(z | τ) and B−(z | τ) the respective function defined in Ω+ and
Ω− by the corresponding family (B+

d )d∈(−π2 ,
π
2 ) and (B−d )d∈(−π2 ,

π
2 ). If there is no

possible confusion, we will simply write B(z | τ) instead of B+(z | τ).

By (3.12), it follows that

(3.16) B±(z | τ) = b±(−z − 1

2
| τ)− b±(z − 1

2
| τ) .

3.3. Two types of singularities for Bernoulli integral. Let us start with the
fixed singularities contained in the integral (1.21) that defines Bd(z | τ). If one
writes

V ± = ∪d∈(−π2 ,π2 )V
±
d ,

one can easily see that

V + = C \ (−∞, 0], V − = C \ [0,+∞) .

So, the common domain V + ∩ V − contains two components as follows:

(3.17) V + ∩ V − = H ∪ (−H) .

Theorem 3.2. The following relation holds for all (z, τ) ∈ Ω+ ∩ Ω− such that
τ ∈ H:

(3.18) B+(z | τ) +B−(z | τ) = −πiz − β(z)

2πiτ
+ γ(z | τ) ,

where β(z) and γ(z | τ) are given as follows:

(3.19) β(z) =
π2

6
− 2π2z2 + 2 Li2

(
−e(z)

)
and

(3.20) γ(z | τ) = log
(z + 1/2 | τ)∞

(−z + 1/2 | τ)∞
.

Proof. Let ∆ = (−1/2, 1/2) ×H; by (1.20) and (3.15), one can observe that ∆ ⊂(
Ω+∩Ω−

)
. By taking into account the standard argument of analytic continuation,

we shall only prove Theorem 3.2 in ∆.
Let (z, τ) ∈ ∆. By (3.17), τ ∈ V + ∩ V −, thus both B+(z | τ) and B−(z | τ) can

be expressed by means of the integral in (1.21) as follows:

(3.21) B+(z | τ) = B+
d1

(z | τ) , B−(z | τ) = B−d2(z | τ) ,

where d1 ∈ (−π2 , 0) and d2 ∈ (0, π2 ). By (3.14), it follows that

B−d2(z | τ) = −B+
d′2

(z | τ) , d′2 = d2 + π ∈ (π,
3π

2
).

This implies that

B+(z | τ) +B−(z | τ) = B+
d1

(z | τ)−B+
d′2

(z | τ)
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=
(∫ ∞eid1

0

−
∫ ∞eid′2
0

) ezu − e−zu
eu/2 − e−u/2

B(τu)
du

u
.

In the above, d1 can be chosen enough near to −π2 while d2 can be infinitely
closed to π

2 , so that d1 and d′2 are “infinitely near” one to other but are separated
by the axis (0,−i∞). See Figure 5 in the below.
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Figure 5. The integral-contour rotates around the negative
imaginary-axis

Therefore, by Residues Theorem, one finds that

B+(z | τ) +B−(z | τ) = −2πi
∑
n≥1

e(−zn)− e(zn)

(−1)n
B(−2πinτ)

1

−2nπi

=
∑
n≥1

(−1)n
e(−zn)− e(zn)

n
B(−2πinτ) .(3.22)

By using the definition of B in (1.19), one can notice that

B(−2πinτ) =
1

2
+

1

2πiτn
+

1

e(−τn)− 1
.

Since =τ > 0, e(−τn) becomes exponentially large as n→ +∞; thus, the series in
the right hand side of (3.22) converges and can be expressed as follows:

B+(z | τ) +B−(z | τ) =
α(z)

2
− β0(z)

2πiτ
+ γ0(z | τ) ,(3.23)

where α(z), β0(z) and γ(z | τ) are defined in the following manner:

α(z) = log(1 + e(z))− log(1 + e(−z)) ,

β0(z) = Li2
(
−e(z)

)
− Li2

(
−e(−z)

)
and

γ0(z | τ) =
∑
n≥1

(−1)n

n

e(−zn)− e(zn)

e(−τn)− 1
.

On the one hand, because of z ∈ (−1/2, 1/2), it is easy to see that α(z) = 2πiz.
On the other hand, by using the following relation [11, §2]:

Li2(− 1

x
) = −Li2(−x)− π2

6
− 1

2
log2 x ,

one finds that β0(z) is exactly the same as β(z) in (3.19).
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Moreover, with the help of the relation in (3.7), one finds that the last term
γ0(z | τ) in (3.23) can be expressed as follows:

γ0(z | τ) = log
(z + τ + 1/2 | τ)∞

(−z + τ + 1/2 | τ)∞
= −α(z) + γ(z | τ) ,

where γ(z | τ) is as given in (3.20). Thus, one deduces (3.18) from (3.23) and this
finishes the proof of Theorem 3.2. �

We return to the second specie of singularities coming from the function B(τu):
this can be seen as a typical situation where Stokes phenomenon occurs.

Theorem 3.3. The following assertions hold for all (z, τ) ∈ Ω+ ∩ Ω−.

(1) If τ ∈ H, then:

(3.24) B+(z | τ)−B−(z | τ) = log
((−z − 1/2)/τ | − 1/τ)∞

((z − 1/2/τ | − 1/τ)∞
.

(2) If τ ∈ H− = (−H), then:

(3.25) B+(z | τ)−B−(z | τ) = log
((z + 1/2)/τ | 1/τ)∞
((−z + 1/2/τ | 1/τ)∞

.

Proof. This follows immediately from (3.16) together with (3.8) and (3.9). �

When τ
a.v.−→ 0 in H, e(−1/τ) is exponentially small et it follows that the right-

hand side of (3.24) represents an infinitely small function. This implies that both

B+(z | τ) and B−(z | τ) have the same asymptotic expansion as τ
a.v.−→ 0 in their

respective domain of definition; see §5.1.

3.4. Modularity found by means of Stokes’ analysis on Euler products.
The strategy is to express the function B(z | τ) by making use of both Theorem 3.2
and Theorem 3.3. The proof will be completed with the help of the classical θ and
η-modular formulas.

Proof of Theorem 1.3. By putting together the relations in (3.18) and (3.24), one
finds that

(3.26) 2B(z | τ) = 2B+(z | τ) = −πiz − β(z)

2πiτ
+ δ(z | τ) ,

where β(z) is as given in (3.19) and

δ(z | τ) = log
(z + 1/2 | τ)∞

(−z + 1/2 | τ)∞
+ log

((−z − 1/2)/τ | − 1/τ)∞
((z − 1/2/τ | − 1/τ)∞

.

We shall use the θ-modular formula to simplify the expression of δ(z | τ), observing
that

(3.27) δ(z | τ) = log
(z + 1/2 | τ)∞

((z − 1/2/τ | − 1/τ)∞
+ log

((−z − 1/2)/τ | − 1/τ)∞
(−z + 1/2 | τ)∞

.

If p = 0, m = 1 and z is replaced with z − 1/2 in the general θ-modular relation
(2.18), one gets that τ ′ = τ , τ̃ = −1/τ and

θ(z +
1

2
| τ) =

√
i

τ
e
(
− 1

2τ
(z − τ

2
)2
)
θ(
z − 1/2

τ
+

1

2
| − 1

τ
).
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Thus, by the triple product formula (1.3), it follows that

(3.28)
(−z + 1/2 | τ)∞

((−z − 1/2)/τ | − 1/τ)∞
= C(z | τ)

((z − 1/2)/τ | − 1/τ)∞
(z + 1/2 | τ)∞

,

where

C(z | τ) =

√
i

τ

(
1 + e(−z)

)
e
(
− 1

2τ
(z − τ

2
)2
) (−1/τ | − 1/τ)∞

(τ | τ)∞
.

Moreover, from the classical η-modular relation, one obtains that√
i

τ

(−1/τ | − 1/τ)∞
(τ | τ)∞

= e
(
(τ +

1

τ
)/24

)
.

Therefore, the coefficient C(z | τ) in (3.28) can be read as follows:

(3.29) C(z | τ) =
(
1 + e(−z)

)
e
(
− 1

2τ
(z − τ

2
)2
)
e
(
(τ +

1

τ
)/24

)
.

By gathering together (3.27) and (3.28), one finds that

δ(z | τ) = 2 log
(z + 1/2 | τ)∞

((z − 1/2/τ | − 1/τ)∞
− log

(
C(z | τ)

)
.

Finally, the equality in (3.26) implies that

B(z | τ) = −πiz
2
− β(z)

4πiτ
+ log

(z + 1/2 | τ)∞
((z − 1/2/τ | − 1/τ)∞

− 1

2
log
(
C(z | τ)

)
.

So, one finds that

(3.30) log
(z + 1/2 | τ)∞

((z − 1/2/τ | − 1/τ)∞
= B(z | τ) +

πiz

2
+
β(z)

4πiτ
+

1

2
log
(
C(z | τ)

)
.

An direct calculation using the definition of β(z) in (3.19) and that of C(z | τ) in
(3.29) shows that the above equation in (3.30) yields (1.22), thus one finishes the
proof of Theorem 1.3. �

4. Analytic continuation and Ramanujan’s asymptotic formula

The goal of this section consists to bring about as much light as possible about
the set of singularities of the function B(z | τ) in the complex z-plane each time
when τ is fixed in the upper half-plane H. This will be done either by using
the functional equation deduced from integral representation (1.21) or by putting
analytic continuation process of A(z | τ) and L2(z | τ) into the relation (1.22) of
Theorem 1.3. See Theorem 4.1 in §4.1 and Proposition 4.1 in §4.2.

In our previous works [12] and [13], we found a modular-type relation for Euler
infinite product (x; q)∞, that is intimately linked with an asymptotic formula of
Ramanujan. Compare Theorem 4.2 in the below with [3, p. 265 Entry 6 and p.
268 Entry 6’]. In §4.3, we will deal with some properties of the key-term P (z | τ)
appearing in Theorem 4.2. It will be shown that this function is closely linked with
both b+(z | τ) and B(z | τ) considered in the previous section. We will conclude
this section by Theorem 4.3, which states that Theorems 1.3 and 4.2 are really
equivalent.
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4.1. Branch points and analytic continuation domain of Bernoulli inte-
gral. Consider the analytic continuation of the function B appearing in (1.22).
Unless expressly stated otherwise, τ will be fixed in H and our analysis will be a
priori done about the variable z.

As B(z | τ) = B+(z | τ) and this last one is related with b+(z | τ) by (3.16), we
shall start with the analytic continuation of b+(z | τ). By the definition of W+

in (3.5), it follows that for all given τ ∈ H, with arg τ = δ ∈ (0, π), the relation
(z, τ) ∈ W+ means exactly z ∈ V +

d for some suitable d ∈ (−π2 ,
π
2 − δ). Thus, one

obtains the following equivalence:

(4.1) (z, τ) ∈ W+ ⇐⇒ z ∈ H ∪ Zτ ,
where Zτ is the half-plane associated with τ in the following manner:

Zτ = {z ∈ C : =z + 1

τ
< 0} .

One may notice that if z ∈ Zτ , then z+ z0 ∈ Zτ for all positive real z0. See Figure
6 in the below.
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Figure 6. The half-plane Zτ contains both the point τ and the
segment (−1,∞)

Lemma 4.1. Let (z, τ) ∈ W+, b(z | τ) = b+(z | τ) as in Definition 3.1 and let
s = z/τ . One supposes that τ ∈ H. If (z − 1, τ) ∈ W+, then s /∈ (−∞, 0] and

(4.2) b(z − 1 | τ)− b(z | τ) = log Γ(s)− (s− 1

2
) log s+ s− 1

2
log 2π .

Proof. Since (z − 1, τ) ∈ W+, relation (4.1) implies that either z ∈ H ∪ (0,∞) or
z ∈ H− but =(z/τ) < 0, so that s /∈ (−∞, 0].

By observing that

b(z − 1 | τ)− b(z | τ) =

∫ ∞eid
0

B(t) e−zt
dt

t
,

relation (4.2) follows immediately from Binet’s formula [1, Theorem 1.6.3 (i), p. 28]
on log Γ(x):

(4.3) log Γ(x) = (x− 1

2
) log x− x+

1

2
log 2π +

∫ ∞eid
0

B(t) e−xt
dt

t
.

Here, first of all, one supposes that <x > 0, so the integration path is the half-axis
(0,+∞). By using an open interval (0,∞eid) in the half-plane <t > 0, this integral
representation can then be valid for all x ∈ C \ (−∞, 0]. �



ONLY FOUR EULER INFINITY PRODUCTS ARE THETA-TYPE FUNCTIONS 23

It should be noted that the above relation (4.2) is valid for any (z, τ) ∈ H×H. If
z /∈ H, we have to avoid the poles of the Gamma function, and the right-hand side
of (4.2) continues to be well-defined over the Riemann surface of log while s /∈ Z≤0.
Thus, Lemma 4.1 allows one to make the analytic continuation of the function b+

at (z, τ) provided that (z+n)/τ /∈ Z≤0 for all n ∈ Z≥1. In other words, one obtains
the following

Remark 4.1. For any fixed τ ∈ H, b(z | τ) can be continued into an analytic
function on the universal covering of C \∆τ , where

(4.4) ∆τ = Z≤−1 ⊕ τZ≤0 .

In what follows, to each τ ∈ H will be associated the half-lattice Lτ in the
following manner:

(4.5) Lτ =
(
(Z≤0 −

1

2
)⊕ τZ≤0

)
∪
(
(Z≥0 +

1

2
)⊕ τZ≥0

)
.

See Figure 7 in the below.

− 7
2 −

5
2 −

3
2 −

1
2

−3 −2 −1 0 1
2

3
2

5
2

7
2

���
•
τ

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

�

�

�

�

�

�

�

�

�

�

�

�

� ∈ ∆τ

? ∈ Lτ

Figure 7. The set ∆τ contains all negative integers while all half-
integers belong to Lτ

Thus, one can state the following

Theorem 4.1. Let τ ∈ H and let Lτ be the half-lattice given as in (4.5). The func-
tion B(z | τ) can be extended into an analytic function over the universal covering
of C \ Lτ in such a manner that the following relations hold.

(1) If (z + 1/2)/τ ∈ H, then:

(4.6) B(z + 1 | τ) = B(z | τ)− log
(
1− e(z + 1/2

τ
)
)
.

(2) If (z + 1/2)/τ ∈ H−, then:

(4.7) B(z + 1 | τ) = B(z | τ)− log
(
1− e(−z + 1/2

τ
)
)
.

Proof. Since B(z | τ) is linked with b(±z − 1/2 | τ) by (3.16), the analytic contin-
uation of B(z | τ) follows the same way as what done for b(z | τ) in Lemma 4.1.
Particularly, by using (4.4), one obtains the expression in (4.5) about the set Lτ of
singularities of B(z | τ).

In order to prove (4.6) and (4.7), one makes use of (3.16) together with (4.2).
In this way, it follows that

B(z + 1 | τ)−B(z | τ) =
(
b(−z − 3

2
| τ)− b(−z − 1

2
| τ)
)
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+
(
b(z − 1

2
| τ)− b(z +

1

2
| τ)
)

= I(−z + 1/2

τ
) + I(

z + 1/2

τ
) ,(4.8)

where I(s) denotes the right-hand side of (3.16) for s ∈ C \ (−∞, 0], that is to say,

(4.9) I(s) = log Γ(s)− (s− 1

2
) log s+ s− 1

2
log 2π .

(1) One supposes that s ∈ H; as −s ∈
(
C \ (−∞, 0]

)
, one writes −s = e−πis. By

using Euler’s reflection formula, one finds that

Γ(s)Γ(−s) =
1

−s
π

sinπs
=
eiπ

s

π

sinπs
,

which implies that

I(s) + I(−s) = log Γ(s) + log Γ(−s)− πis− πi

2
+ log s− log 2π

= log
1

2 sinπs
− πis+

πi

2

= − log
(
1− e(s)

)
.(4.10)

Here, for the last implication, one has used the following relations:

2 sinπs =
e(s/2)− e(−s/2)

i
=
e(−s/2)

−i
(
1− e(s)

)
.

By (4.8), putting s = (z + 1/2)/τ into (4.10) yields finally (4.6).
(2) By an argument of the symmetry, one can easily see that if s ∈ H−, then:

I(s) + I(−s) = − log
(
1− e(−s)

)
,

and this allows one to end the proof of Theorem 4.1. �

4.2. Functional equations satisfied by A(z | τ) and L2(z | τ). Another way to
prove Theorem 4.1 consists of making use (1.22) together with the following fact.

Proposition 4.1. Let A(z | τ) and L2(z | τ) be as given in Theorem 1.3. The
following assertions hold for all τ ∈ H.

(1) If z ∈ H, then

(4.11) A(z + 1 | τ) = A(z | τ)

and

(4.12) L2(z + 1 | τ) = L2(z | τ) .

(2) If z ∈ H− = (−H), then:

(4.13) A(z + 1 | τ) = eπiA(z | τ)

and

(4.14) L2(z + 1 | τ) = L2(z | τ)− 2πi

τ
(z +

1

2
) .
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Proof. (1) Let z ∈ H and let

x = x(t) = 1 + e(z + t)

for t ∈ [0, 1]. Since

|e(z)| = |e(z + t)| < 1 ,

it follows that <
(
x(t)

)
> 0 when t ∈ [0, 1]; in other words,

√
x(t) does not have

monodromy as t goes from 0 to 1, so one obtains the relation in (4.11) for A(z | τ).
The relation in (4.12) comes from the fact that, for t ∈ [0, 1], e(z+ t) belongs to

the unit disc, in which the dilogarithm is well-defined and analytic.
(2) By writing

1 + e(z) = e(z)
(
1 + e(−z)

)
,

one finds that the following identity holds for all z ∈ H−:

(4.15) A(z | τ) = e(
z

2
)A(−z | τ) .

Thus one gets (4.13), by combing (4.15) together with (4.11).
The relation in (4.14) follows from the monodromy property of the dilogarithm

Li2(x) at x = 1. Indeed, let z ∈ H− and define

x = x(t) = −e(z + t)

for t ∈ [0, 1]. Since <(z) < 0, x will describe a circle of radius > 1 when t runs
through [0, 1]. Thus, Li2(x(1)) can be expressed as the analytic continuation of
Li2(x(0)) along a circle centered at x = 1 and of radius < 1 in the anti clock-wise
direction.

By using the following relation between Li2(x0) and Li2(1− x0) [11, §2]:

Li2(1− x0) = −Li2(x0) +
π2

6
− log x0 log(1− x0) ,

one finds that the monodromy of Li2 around x = 1 can be expressed as follows:

(4.16) Li2(1 + x0e
2πi) = Li2(1 + x0)− 2πi log(1 + x0) .

Thus, one obtains that

(4.17) Li2
(
−e(z + 1)

)
= Li2

(
−e(z)

)
− 2πi log

(
−e(z)

)
.

If z → 1/2 from H−, this last equation becomes

Li2
(
−e(−1

2
)
)

= Li2
(
−e(−1

2
)
)
− 2πi log

(
−e(−1

2
)
)

;

hence, (4.17) can be read as follows:

Li2
(
−e(z + 1)

)
= Li2

(
−e(z)

)
− 2πi log

(
e(z +

1

2
)
)
.

With the definition of L2 in (1.23) one deduces immediately the expected relation
in (4.14). �

It should be noted that, in all the relations stated in Proposition 4.1, the analytic
continuation is performed in such a way that the continuation-path linking z to
z+ 1 remains entirely either in the upper plane H or in its opposite side. Over the
real axis, A(z | τ) vanishes for all half-integers, or more precisely, this function has
branch points there as well as the function L2(z | τ). So, one arrives at the following
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Remark 4.2. The above relations in Proposition 4.1 remain valid even for z ∈
R \ (Z + 1/2), provided that one adopts the following convention: Assertion (1) or
(2) will be applied in case jumping the ramification point situated between z and
z + 1 is made in the upper or lower plane H or H−.

Accordingly, replacing z with z+1 in (1.22) and applying Proposition 4.1 allows
one to find the relations in (4.6) and (4.7) of Theorem 1.3. We omit the details.

4.3. Non-modular term in a Ramanujan asymptotic formula. As in [12]
and [13], let U denote the domain defined in C×H by the relation

(4.18) U = ∪δ∈(0,π)Cδ ×Hδ .
Here, Hδ is the open sector {τ ∈ H : arg τ ∈ (0, δ)} and Cδ is the domain in C
containing the interval (−1, 1) and whose complementary equals to the closure of
the union (1 +Hδ) ∪ (−1−Hδ). See Figure 8 in the below.

−1 0 1
�
�
�
�

�
���

��

��
��

�
�

H

Cδ = C \
(
(1 +Hδ) ∪ (−1−Hδ)

)
1 +Hδ

−1−Hδ

δ

Figure 8. The domain Cδ contains (−1, 1) and is symmetrical
with respect to 0

The following equivalent relations hold for any (z, τ) ∈ C×H:

(4.19) (z, τ) ∈ U ⇐⇒ (−z, τ) ∈ U ⇐⇒ (
z

τ
,−1

τ
) ∈ U .

Theorem 4.2 ( [12, Theorem 3.2], [13, Theorem 2.9]). Let (z, τ) ∈ U and let
s = z/τ . If s /∈ (−∞, 0] and log s denotes the principal branch of the logarithm,
then:
(4.20)

(z | τ)∞ =

√
2πs(1− e(z))

Γ(s+ 1)
e(− τ

24
) es(log s−1)+

Li2(e(z))
2πiτ +P (z | τ) (

z − 1

τ
| − 1

τ
)∞ ,

where Γ denotes the Euler Gamma function, Li2 denotes the dilogarithm, and where
P (z | τ) denotes the function defined in U by the analytic continuation procedure
from the following integral:

(4.21) P d(z | τ) =

∫ ∞eid
0

sin( ztτ )

eit/τ − 1

(
cot

t

2
− 2

t

) dt
t
,

with −π < d < 0.

In the following, we shall discuss the link between P (z | τ) and b(z | τ). In view
of the fact that

cot
t

2
− 2

t
=
eit/2 + e−it/2

eit/2 − e−it/2
i− 2

t
= 2i

( 1

eit − 1
+

1

2
− 1

it

)
,

it follows that

cot
t

2
− 2

t
= 2iB(it) ,
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where B is the generating function given in (1.19). Thus, replacing the integration
path (0,∞eid) with (0, i∞eid) in the integral in (4.21) yields that

(4.22) P d(z | τ) =

∫ ∞eid′
0

ezt/τ − e−zt/τ

et/τ − 1
B(t)

dt

t
,

with d′ = d+ π
2 ∈ (−π2 ,

π
2 ). For all (z, τ) in U , it follows that

|<(z
eid
′

τ
)| < <(

eid
′

τ
) ,

so that P d yields an analytic function P (z | τ) in the domain U of C×H.
Comparing the integral in (4.22) with (3.2) allows one to observe immediately

the following

Remark 4.3. Let W+ and b(z | τ) = b+(z | τ) be as in Definition 3.1. The function
P (z | τ) can be expressed as follows:

(4.23) P (z | τ) = −b(z | τ) + b(−z | τ) .

Accordingly, it follows that

(4.24) U = {(z, τ) ∈ W+ : τ ∈ H, (−z, τ) ∈ W+} .

By Remark 4.1 and the above equation in (4.23), one can observe that, for every
given τ ∈ H, P (z | τ) can be extended into an analytic function on the universal
covering of C\∆sym

τ , where ∆sym
τ denotes the symmetrization of ∆τ , that is to say,

(4.25) ∆sym
τ = ∆τ ∪ (−∆τ ) =

(
Z≤−1 ⊕ τZ≤0

)
∪
(
Z≥1 ⊕ τZ≥0

)
.

See (4.4) for the definition of ∆τ and Figure 7 for the illustration of ∆sym
τ . Fur-

thermore, by gathering together (4.23) with (4.3) and (4.9), it follows that

(4.26) P (z + 1 | τ)− P (z | τ) = I(−s)− I(s+
1

τ
) ,

where s = z/τ and I(s) denotes the function defined by (4.9) with the help of
Binet’s formula (4.3).

4.4. Equivalence between Theorem 4.2 and Theorem 1.3. In the follow-
ing, we will express the function B(z | τ) in terms of P (z | τ) to find our previous
Theorem 1.3 from Theorem 4.2, and vice versa.

Let Ω = Ω+ be the definition domain of B(z | τ) as given in Definition 3.2, and
let (z, τ) ∈ Ω∩ (C×H). Then, (z, τ) ∈ Hd × V +

d for some d ∈ (−π2 ,
π
2 ) if, and only

if, letting d′ = π
2 − d, all of the following conditions are satisfied:

=(
z − 1/2

eid′
) < 0, =(

z + 1/2

eid′
) > 0, 0 < arg τ < d′ .

Thus, one arrives at the following

Remark 4.4. Let Ω = Ω+ be as given in (3.15). The domain Ω∩(C×H) is strictly
included in the above U defined by (4.18), particularly with the following relation:

(4.27) Ω ∩ (C×H) = {(z +
1

2
, τ) ∈ U : =(

z + 1/2

τ
) < 0 ,=(

z − 1/2

τ
) > 0} .
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Let Lτ be the set of singularities of B(z | τ) as given in (4.5). Comparing this
with the definition of ∆sym

τ in (4.25) yields that

(4.28) Lτ =
(1

2
+ ∆sym

τ

)
∪
(1

2
⊕ τZ≥0

)
.

This goes back to Remark 4.4, including particularly the relation stated in (4.27).
See Figure 9 in the below and compare this with Figure 7.
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Figure 9. The set ∆sym
τ contains all non-zero integers while all

half-integers belong to the half-lattice Lτ

Moreover, by observing that

ezt/τ − e−zt/τ

et/τ − 1
=
e(z−1/2)t/τ − e−(z−1/2)t/τ

et/2τ − e−t/2τ
+ e−zt/τ ,

one obtains that

(4.29) B(z | τ) = P (z +
1

2
| τ)− I(

z + 1/2

τ
) .

This is the key-point that permits one to see in what manner both Theorems 1.3
and 4.2 are really equivalent.

Theorem 4.3. Theorem 4.2 implies Theorem 1.3, and vice versa.

Proof. In view of the above consideration about the respective domain of definition
of B(z | τ) and P (z | τ), and by the argument of analytic continuation, one needs
only to prove Theorem 4.3 for z ∈ (−1/2, 1/2) and τ ∈ H. Thus, by replacing z
with z + 1/2, the relation in (4.20) takes the following form:

(4.30) (z +
1

2
| τ)∞ = A(z | τ)D(z | τ) eL2(z | τ)(

z − 1/2

τ
| − 1

τ
)∞ ,

where A(z | τ) and L2(z | τ) are the same as in (1.22) of Theorem 1.3 and where we
write

(4.31) D(z | τ) =

√
2π

s′
1

Γ(s′)
es
′(log s′−1)+P (z+1/2 | τ)

together with

s′ =
z + 1/2

τ
= s+

1

2τ
.

If one takes the logarithm for both sides of the equation in (4.31), using the
function I(s) defined by the expression in (4.9) gives that

(4.32) logD(z | τ) = P (z +
1

2
| τ)− I(

z + 1/2

τ
) .
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Finally, by (4.29), it turns out that

logD(z | τ) = B(z | τ).

In other words, the equation in (4.30) allows (4.20) to imply (1.22), and vice versa.
By this way, one ends the proof of Theorem 4.3. �

5. Conditions for an Euler product to have an
exponential-convergent expansion

In this section, we shall establish the inverse of Theorem 2.2 (1) with ζ = 1 as
follows.

Theorem 5.1. Given ω ∈ C{τ} such that ω(0) ∈ R, one has f ∈ C1 only if
ω(τ) = 1

2 (n+mτ) for some integers n, m ∈ Z.

The strategy we shall elaborate in this paragraph comes from the following ob-
servation: Replacing z by ω(τ) in both Theorems 1.3 and 4.2 allows one to obtain,
modulo an exponentially small remainder, the analyticity obstruction of f ◦ e by
the Stokes’s co-cycles on B± or P . In this way, one finds the very rare cases where
f(q) can be exponentially-convergent in the sense of Definition 1.2. This approach
is likely to be linked with Ecalle’s theory of resurgent functions.

So, in what follows, the approach we will make use of is of analytical nature and
it is natural to consider ω(τ) in the ring of germs of analytic functions at τ = 0.
In order to be able to treat globally the corresponding functions B± and P , we will
be led to the supplementary condition that requires the reality of ω(τ) at 0.

In §5.1, we shall recall Ramis-Sibuya’s Theorem on Gevrey asymptotic expan-
sions and deduce from that a result that will be applied to the previous functions
B± and P ; see Corollary 5.1. In §5.2, we shall deal with exponential smallness of
terms with −1/τ .

Paragraph 5.3 can be viewed as the heart of this section, in which we are led to
the equivalent conditions for the functions B and P to be analytic. See Theorems
5.3 and 5.4. In view of all that, we end this section by a proof of Theorem 5.1.

5.1. Ramis-Sibuya’s Theorem on Gevrey asymptotic expansions. Let x0 ∈
C and let Rx0

be the Riemann surface of the function x 7→ log(x − x0); let I =
(α1, α2) ⊂ R and let R > 0. We let Vx0(I;R) denote the sector of vertex at x0 in
Rx0 , with opening in I and radius R, that is to say:

(5.1) Vx0
(I;R) = {x0 + reiα : α ∈ I, r ∈ (0, R)} .

We will adopt the following terminologies for any given sector V = Vx0
(I;R):

(1) A germ of sector at x0 in V means any domain of the form Vx0(I; ρ) such
that ρ < R.

(2) A proper sub-sector of V means any domain of the form Vx0
(J ; ρ) such that

J̄ ⊂ I and ρ < R.

If the length of the open interval I is smaller than or equal to 2π, any sector
Vx0

(I;R) is not overlapped in C̃∗; in this case, one will consider Vx0
(I;R) as a

sector in C. When x0 = 0, we will remove the sub-index 0 and write simply
V (I;R) instead of V0(I;R).

Let V = V (I;R) be a sector in C at 0. By definition ( [5], [7], . . . ), a given
function f defined and analytic in V is said to have a power series

∑
n≥0 anx

n,
an ∈ C, as Gevrey or exponential asymptotic expansion at 0 in V if for any proper
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sub-sector U = V (J ; ρ), one can finds C > 0 and A > 0 such that the following
estimates hold for all n ∈ Z≥0:

(5.2) sup
x∈U

∣∣(f(x)−
n−1∑
m=0

amx
m)x−n

∣∣ ≤ C An n! .

As typical example, the Borel-sum function of a given divergent series, if exists,
admits this series as Gevrey asymptotic expansion. A Gevrey type asymptotic
expansion is also called exponential asymptotic expansion, due to the following fact.

Remark 5.1. [5, p. 175, Théorème 1.2.4.1 1)] A function f admits the identically
null series as Gevrey asymptotic expansion at 0 in V if, and only if, f is exponen-
tially small there, that means that, for all proper sub-sector U in V , there exists
C > 0 and κ > 0 such that, for all x ∈ U , |f(x)| ≤ C e−κ/|x|.

For any given sector V = Vx0
(I;R), we will denote by A≤−1(V ) the space of all

exponentially small functions as x→ x0 in V . It will be useful to observe that the
space A≤−1α introduced in §1.2 can be written as follows:

(5.3) A≤−1α =
⋃

I3π2 ,R>0

A≤−1(Vα(I;R)) .

Remark 5.1 gives a necessary condition for two functions to have a same Gevrey
asymptotic expansion. In practice, one may want make sure a family of solutions
found for a given problem have a same Gevrey asymptotic expansion. The follow-
ing result shows the exponential smallness between each other of the family can
constitute a sufficient condition to the existence of such expansion provided that a
sufficient large number of functions are in our disposal.

Theorem 5.2. [5, p. 176, Théorème 1.3.2.1] Let V1, ..., Vm, Vm+1 be a family of
open sectors at 0 in C such that Vm+1 = V1, Vj ∩ Vj+1 6= ∅ for 1 ≤ j ≤ m and that
the whole union ∪mj=1Vj contains a neighborhood of 0 in C. For every j, let fj be a
given analytic and bounded function in Vj. If

fj+1 = fj mod A≤−1(Vj ∩ Vj+1) ,

then all fj’s admit the same Gevrey asymptotic expansion at 0.

The above result is currently called Ramis-Sibuya’s Theorem.

5.2. Exponentially small terms related with Euler infinite products. In
what follows, we will identify the upper half-plane H as the sector V (I;R) with
I = (0, π), R = ∞, and denote by A≤−1(H) the space of all analytic functions in

H possessing an exponential decrease towards 0 as τ
a.v.−→ 0. In this way, one can

reformulated Lemma 2.2 as follows.

Proposition 5.1. Let ω ∈ C{τ}, δ ∈ C, and let

ψ(τ) = log
(
(−ω(τ)

τ
| δ − 1

τ
)∞
)

for all τ enough near 0 in H. If ω(0) > 0, then ψ ∈ A≤−1(H).

Proof. One can take the same argument as that used in the proof of Lemma 2.2. �

In order to study the asymptotic expansion of our previous functions P (z | τ),
B(z | τ) and b±(z | τ) introduced in §3 and §4, we give the following simplified version
of Theorem 5.2.
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Corollary 5.1. Let R > 0 and let I1 and I2 be open intervals such that

[−ε, π − ε] ⊂ I1 ⊂ (−π, π), [π − ε, 2π − ε] ⊂ I2 ⊂ (0, 2π) ,

where ε denoted a fixed number in (0, π). Let

V1 = V (I1;R), V2 = V (I2;R),

and consider two analytic and bounded functions f1 and f2 defined respectively in
V1 and V2.

If f1 − f2 ∈ A≤−1(V1 ∩ V2), then f1 and f2 have the same Gevrey asymptotic
expansion and, moreover, the following statements are equivalent.

(1) One of the functions f1 and f2 can be continued into an analytic function
at 0 in C.

(2) Both f1 and f2 can be continued into an analytic function at 0 in C.
(3) f1 ≡ f2 in V1 ∩ V2.

Proof. The existence of Gevrey asymptotic expansion for f1 and f2 follows imme-
diately from Theorem 5.2.

Let f̂ =
∑
n≥0 anx

n be the common asymptotic expansion of f1 and f2. Since
the length of I1 and that of I2 are larger that π, one finds that f1 and f2 are the

respective Borel-sum functions of f̂ in V1 and V2. Thus, the above statement in (1)

implies that f̂ is really a convergent series, so that their two Borel-sums are equal
each other. In this way, one obtains that (1) implies all other statements.

On the other hand, if the statement in (3) is true, then both f1 and f2 equal
to a same analytic and bounded function in the punctuated disc {0 < |x| < R}.
By Riemann removable singularities Theorem, one finds the statements (1) and
(2). �

5.3. From asymptotics to analyticity for Bernoulli integral and related
functions. Let us come back to the functions b(z | τ), B(z | τ) and P (z | τ) given
respectively in Definition 3.1, Definition 3.2 and Theorem 4.2. By Theorem 2.2, one
can find that all these functions are analytic at τ = 0 when z takes these special
values ω(τ) given there. We shall prove that this is exclusively the only case.

Proposition 5.2. Let ω ∈ C{τ} and let I = (−π, π). If ω(0) > −1, then there ex-
ists R > 0 such that the composite functions b(ω(τ) | τ) is well-defined and analytic
in V (I;R) and is bounded in every proper sub-sector of V (I;R).

Proof. For all τ ∈ C∗, let Dτ be the sector containing 0 and bounded by (−∞,−1]∪
[−1,−1 −∞τ), where [−1,−1 −∞τ) denotes the half straight-line starting from
−1 to ∞ with the direction −τ . By combining (3.3) together with (3.4), one can
find that, for all fixed τ ∈ C \ (−∞, 0], the function b(z | τ) is defined and analytic
for z ∈ Dτ ; see the definition in (4.4) and Figure 7 for the set ∆τ of singularities
of b(z | τ) in the case τ ∈ H.

If ω(τ) > −1, one can easily see that ω(τ) belongs to this half-plane Dτ when
|τ | is enough small with τ /∈ R−. This implies that b(ω(τ) | τ) is well-defined and
analytic in some sector V (I;R), R > 0.

The boundedness of this function over any proper sub-sector comes from direct
estimates done for (3.2). �

In a similar way, one can find that the statement of Proposition 5.2 remains true
if b(z | τ) (= b+(z | τ)) and I are replaced with b−(z | τ) and (0, 2π) respectively.
Thus, one obtains the following
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Theorem 5.3. Let ω ∈ C{τ} and let b(z | τ) as in Definition 3.1. If ω(0) > −1,
then there exists R > 0 such that b(ω(τ) | τ) admits a Gevrey asymptotic expansion
in V (I;R) with I = (−π, π).

Moreover, b(ω(τ) | τ) can be continued into an analytic function at τ = 0 if, and
only if, ω(τ) = mτ for some m ∈ Z.

Proof. Let R > 0 be as in Proposition 5.2 and write

V1 = V ((−π, π);R), V2 = V ((0, 2π);R).

Define

f1(τ) = b(ω(τ) | τ) = b+(ω(τ) | τ), f2(τ) = b−(ω(τ) | τ)

for τ ∈ V1 and V2 respectively. By putting z = ω(τ) into both relations (3.8) and
(3.9) of Theorem 3.1, it follows that

(5.4) f1(τ)− f2(τ) = − log
(−(ω(τ) + 1)/τ | − 1/τ)∞

(−1/τ | − 1/τ)∞

if τ ∈ H ∩ V1 ∩ V2, and that

(5.5) f1(τ)− f2(τ) = − log
((ω(τ) + 1)/τ | 1/τ)∞

(1/τ | 1/τ)∞

if τ ∈ H− ∩ V1 ∩ V2.
One observes that V1 ∩ V2 ∩ R = ∅. Therefore, by considering Proposition 5.1,

relation (5.4) together with (5.5) imply that f1(τ)− f2(τ) is exponentially small in
the common domain V1∩V2. This allows us to apply Corollary 5.1 to get particularly
the common Gevrey asymptotic expansion of both f1 and f2.

Furthermore, Corollary 5.1 implies that f1 can be extended into an analytic
function at τ = 0 in C if, and only if,

(−ω(τ) + 1

τ
| − 1

τ
)∞ = (−1

τ
| − 1

τ
)∞

for all τ ∈ H, or equivalently,

−ω(τ) + 1

τ
= −1

τ
mod Z .

In this way, one finds the necessary and sufficient condition ω(τ) ∈ τZ in order to
have an analytic function b(ω(τ) | τ) at τ = 0 in C. This ends the proof of Theorem
5.3. �

In a similar way as in Theorem 5.3, one finds the following result aboutB(ω(τ) | τ)
and P (ω(τ) | τ).

Theorem 5.4. Let ω ∈ C{τ}, I = (−π, π), and let B(z | τ) and P (z | τ) be as in
Definition 3.2 and Theorem 4.2. Then, there exists R > 0 such that the composite
functions B(ω(τ) | τ) and P (ω(τ) | τ) represent each an analytic function in the
sector V = V (I;R) at 0 in C and admits a Gevrey asymptotic expansion as τ → 0
in V provided that ω(0) ∈ (−1/2, 1/2) and ω(0) ∈ (−1, 1) respectively.

Furthermore, the following conditions are equivalent.

(1) B(ω(τ) | τ) can be continued into an analytic function at τ = 0.
(2) P (ω(τ) | τ) can be continued into an analytic function at τ = 0.
(3) ω(τ) = mτ/2 for some m ∈ Z.
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Proof. By using (3.16) and (4.23), both B(ω(τ) | τ) and P (ω(τ) | τ) can be expressed
in terms of b(ω(τ) | τ) as follows:

B(ω(τ) | τ) = b(−ω(τ)− 1

2
| τ)− b(ω(τ)− 1

2
| τ)

and
P (ω(τ) | τ) = −b(ω(τ) | τ) + b(−ω(τ) | τ) .

Thus, Theorem 5.3 implies the existence of the sector V (I;R) in what B(ω(τ) | τ)
and P (ω(τ) | τ) are analytic and have a Gevrey asymptotic expansion as τ → 0
when ω(0) ∈ (−1/2, 1/2) and ω(0) ∈ (−1, 1) respectively.

In order to see that the conditions (1) and (3) are equivalent, one makes use of
the relations in (3.24), (3.25), observing that

z ∈ τ

2
Z ⇐⇒ z + 1/2

τ
=
−z + 1/2

τ
mod Z .

Finally, combining the expression of P (z | τ) in (4.23) with the Stokes’s relations
(3.8) and (3.9) allows one to obtain the following equation: for all τ ∈ H,

P (z | τ)− P−(z | τ) = log
(−(z + 1)/τ | − 1/τ)∞
−(−z + 1)/τ | − 1/τ)∞

,

where P−(z | τ) denotes the function defined by (4.22) with d ∈ (0, π). In this way,
a similar reasoning implies that both statements (3) and (2) are equivalent. �

5.4. Necessary conditions for an Euler product to have an exponential-
convergent expansion.

Proof of Theorem 5.1. By using (2.1), one can suppose, without any loss of gener-
ality, that ω(0) ∈ [−1/2, 1/2).

The rest of the proof will be composed of two parts, relatively independent, each
of which will be devoted to one case of the value of ω at 0.

Case (1): ω(0) ∈ (−1/2, 1/2). By putting z = ω(τ) into the expression given in
(1.22) by Theorem 1.3 yields that

(5.6) f̌(τ) =
1

2πi
log f(q) = A(τ) + L(τ) +

1

2πi
B(ω(τ) | τ) +R(τ),

where one introduces the following notation:

A(τ) =
1

2πi
log
(
e
(
− τ

24

)√
1 + e(ω(τ))

)
= − τ

24
+

1

4πi
log
(
1 + e(ω(τ))

)
,

L(τ) = −Li2(−ω(τ))

4π2τ
, R(τ) =

1

2πi
log(

ω(τ)− 1/2

τ
| − 1

τ
)∞ .

On the one hand, as ω(0)−1/2 < 0, relation Lemma 2.2 implies that R(τ) ∈ A≤−10 .
On the other hand, it is easy to see that

A(τ) ∈ C{τ}, L(τ) = −Li2(−ω(0))

4π2τ
mod C{τ} .

Thus, comparing (1.16) (α = 0) with (5.6) yields that, as f ∈ C1:

(5.7) B(ω(τ) | τ) = ν log τ +
λ

τ
+ ϕ(τ) + ψ(τ) ,

where ν, λ ∈ C, ϕ ∈ C{τ} and ψ ∈ A≤−10 .
By Theorem 5.4, one finds that B(ω(τ) | τ) has a Gevrey asymptotic expansion

as τ → 0 in some sector V = V (I;R), where I = (−π, π) and R > 0. One finds that
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ν = 0 and λ = 0 in (5.7). Furthermore, the germ of exponentially small function ψ
will be bounded in any proper sub-sector of V . As the openness of V is larger that
π, a classical argument such as Phragemen-Lindeloff Theorem implies that ψ ≡ 0;
see also [4] for this matter.

Consequently, all terms excepted ϕ are necessarily null in the expected expression
of B(ω(τ) | τ) in (5.7). This together with Theorem 5.4 (3) imply that ω(τ) = m

2 τ
with m ∈ Z.

Case (2): ω(0) = −1/2. Let ω1(τ) = ω(τ) + 1/2. If ω1(τ) = mτ with m ∈ Z≤0,
then f ≡ 0 and f ∈ C1. Suppose then that ω1(τ) 6= mτ for any m ∈ Z≤0. In view
of (2.1) and Lemma 2.1 (1), one can suppose that

ω1(τ) = µτ +O(τ2) (τ → 0 ∈ C),

where µ > 0.
Putting z = ω1(τ) in (4.20) of Theorem 4.2 gives that

f(q) =

√
2πs(1− e(ω1(τ)))

Γ(s+ 1)
e(− τ

24
) es(log s−1)+L(τ)+P (ω1(τ) | τ)R1(τ) ,

so that

(5.8) f̌(τ) =
1

4πi
log

τ

i
+G(τ) +A(τ) +

1

2πi
L(τ) +

1

2πi
P (ω1(τ) | τ) +R(τ) .

In the above, s = ω1(τ)/τ ,

G(τ) =
s

2πi
(log s− 1)− log Γ(s+ 1)

2πi
+

log 2π

2πi
,

A(τ) = − τ

24
+

1

4πi
log

e
(
ω1(τ)

)
− 1

2πi ω1(τ)
,

L(τ) =
Li2(e(ω1(τ)))

2πiτ
+ log

(
ω1(τ)

)
and

R(τ) =
1

2πi
logR1(τ), R1(τ) = (

ω1(τ)− 1

τ
| − 1

τ
)∞ .

Since ω1(τ)/τ → µ > 0 for τ → 0 ∈ C, it follows that G ∈ C{τ}. And this is the

same for the function A(τ). Furthermore, by Lemma 2.2, one gets that R ∈ A≤−10 .
In order to compare (1.16) with the expression in (5.8), we shall consider L(τ)

and P (ω1(τ) | τ). When τ makes a complete rotation along a circle around τ = 0,
the image X = e

(
ω1(τ)

)
forms a circle around X = 1. By (4.16), one finds that

Li2

(
e
(
ω1(τe2πi)

))
− Li2

(
e
(
ω1(τ)

))
= −2πi log

(
e
(
ω1(τ)

))
,

so that

(5.9) L(τe2πi)− L(τ) = −2πi
(ω1(τ)

τ
− 1
)
.

Thus, if one defines

(5.10) L̃(τ) = L(τ)−
(ω1(τ)

τ
− 1
)

log τ ,

then L̃ is a function without monodromy at τ = 0.
Let

(5.11) P ∗(τ) =
ω1(τ)− (µ− 1)τ

τ
log τ + P (ω1(τ) | τ) .
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It follows that

L(τ) + P (ω1(τ) | τ) = L̃(τ) + P ∗(τ) .

By comparing (5.8) with (1.16) with the help of (5.9), (5.10) and the above analysis

for G(τ), A(τ) and R(τ), one finds that, if f ∈ C1, then P ∗(τ) mod A≤−10 can be
continued into an analytic function at τ = 0. This is possible only when both
condition in the below are fulfilled: (i) ω1(τ) = ατ for some α ∈ C and, (ii)

P (ω1(τ) | τ) mod A≤−10 can be continued into an analytic function at τ = 0. By
applying Theorem 5.4 as what done for B(ω(τ)|τ) in the above, one obtains finally
that ω1(τ) = 1

2 mτ , m ∈ Z.
In summary, in both cases (1) and (2), one finds that f ∈ C1 implies that

ω(0) = 1
2mτ + ε, with ε = 0 or − 1

2 . This ends the proof of Theorem 5.1. �

In the above, one can notice that the function L̃ given in (5.10) is analytic at
τ = 0 in C. At the same time, if ω1(τ) 6= µτ , the function P ∗(τ) defined in (5.11)
would contain two essentially different types of singularities, one being of log-type,
the other being Gevrey-type.

6. Asymptotic behaviour at an arbitrary root via continued
fractions

By taking into account Theorem 5.1 together with Theorem 2.2 (1), Theorem
1.2 will be established in full with the help the following

Theorem 6.1. Let r ∈ Q ∩ (0, 1), ζ = e(r), and let ω(τ) be a germ of analytic
function at τ = r in C such that ω(r) ∈ R. One has f(q) = (ω(τ) | τ)∞ ∈ Cζ if,
and only if, there exist n, m ∈ Z such that ω(τ) = 1

2 (n+mτ).

The key-point that permits us to pass an arbitrary rational value r to the case of
r = 0 consists of using continued fractions relative to r; see Theorem 6.4. In fact,
one will observe, in §6.1, that the above-introduced functions B and P are analytic
at each generic non-zero rational point.

6.1. Bernoulli integral and associated functions on real axis. We will dis-
cuss the degenerate case τ ∈ R>0 for each of the functions b(z | τ), B(z | τ) and
P (z | τ) considered in Sections §3, §4 and §5. In what follows, we will make use of
the following notations: on the one hand,

(6.1) ε ∈ (0,
π

2
), Wε = V ((−ε.ε);∞), W c

ε = C \ W̄ε ;

on the other hand, the letter r will always denote some given positive number.
First of all, we consider the function b(z | τ). By Definition 3.1 and Remark 4.1,

b(z | τ) is well-defined and analytic in the domain (−W c
ε − 1)×Wε, where

−W c
ε − 1 = C \

(
−W̄ε − 1

)
.

See Figure 10 in the below.
One observes that, if ε→ 0+, then:

Wε → (0,∞), −W c
ε − 1→ C \ (−∞,−1].

Let ∆τ be as given in (4.4) for all τ ∈ H. By replacing τ with r, we will continue
to write

(6.2) ∆r = {n+mr : n ∈ Z≤−1,m ∈ Z≤0} .
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Figure 10. b(z | τ) is analytic for z ∈ (−W c
ε − 1) and τ ∈Wε

If z0 ∈ (−∞,−1] \∆r, we define

(6.3) b̆(z0 | r) =
(
[−z0]− 1− 2

[−z0]−1∑
k=1

{z0 + k

r

})
πi .

where, for any α ∈ R, [α] denotes the integral part of α and {α} is the corresponding
fractional part, that is α− [α].

Theorem 6.2. Let r ∈ R>0 and let ∆r, b̆ be as in the above. Then b(z | r) is
analytic in C \ (−∞,−1] and can be continued to be an analytic function over the
universal covering of C \ ∆r such that the following relation holds for all z0 ∈
(−∞,−1] \∆r:

(6.4) lim
ε→0+

(
b(z0 + iε | r)− b(z0 − iε | r)

)
= b̆(z0 | r) .

Proof. Let D(z0) denote the expression in the left-hand side of (6.4). By putting
τ = r into (4.2), one finds that, if z /∈ (−∞, 0], then:

b(z − 1 | r) = b(z | r) + I(s) ,

where s = z/r and I(s) is as given in (4.9). Thus, one can write

D(z0 − 1) = D(z0) + lim
ε→0+

(
I(
z0
r

+ εi)− I(
z0
r
− εi)

)
for all z0 ∈ (−∞, 0] \∆r. By using (4.9), one gets that

(6.5) D(z0 − 1) = D(z0) + (1− 2z0
r

)πi+ lim
ε→0+

(
log Γ(

z0
r

+ εi)− log Γ(
z0
r
− εi)

)
.

Let n be any negative integer, say, n = −m, m > 0, and let s ∈ (n, n+ 1). From
the relation

Γ(x) =
Γ(x+m)

(x)m
and the fact that log Γ(x+m) is well-defined and analytic for <(x) > n, it follows
that

lim
ε→0+

(
log Γ(s+ εi)− log Γ(s− εi)

)
= − lim

ε→0+

(
log(s+ εi)m − log(s− εi)m

)
= 2πin .

Therefore, (6.5) yields that

(6.6) D(z0 − 1) = D(z0) + 2
(
n− z0

r

)
πi+ πi .

Letting z0 = (n + δ0)r with n0 ∈ Z<0 and δ0 ∈ (0, 1), the above expression in
(6.6) becomes

D(z0 − 1)−D(z0) = −2πiδ0 + πi .
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By replacing z0 with z0 + 1 and iterating this process, one obtains the finite se-
quences (nk) and (δk) associated with the pair (z0, r) in the following manner:

z0 + k = (nk + δk)r, nk ∈ Z<0

with δk = δk(z0 | r) = { z0+kr }. Since D(z0 + k) = 0 for k > −1− z0, one finds that

D(z0 − 1) = −2
(
δ0 + ...+ δ[−z0]−1

)
πi+ [−z0]πi .

Replacing z0 with z0 + 1 in this last relation gives D(z0) = b̆(z0 | r), where b̆ is as
given in (6.3), so one obtains the expected relation (6.4) and Theorem 6.2. �

Let ε ∈ (0, π2 ) and let Wε, W
c
ε be as in (6.1); see Figure 10. By using (3.16), one

finds that B(z | τ) is analytic in the domain
(
(1/2 + W c

ε ) ∩ (−1/2 −W c
ε )
)
×Wε.

Similarly, from (4.23) one obtains that P (z | τ) can be continued to be analytic in
the domain

(
(−1−W c

ε ) ∩ (1 +W c
ε )
)
×Wε. See Figure 11.
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Figure 11. P (z | τ) is analytic for z ∈ (−W c
ε − 1)∩ (W c

ε + 1) and
τ ∈Wε

By letting ε → 0+, one sees that, for any r > 0, B(z | r) is analytic for all
z ∈ C\(−∞,−1/2)∪(1/2,∞) while P (z | r) is analytic for z ∈ C\(−∞,−1]∪[1,∞).

Theorem 6.3. Let r > 0, let ∆r and b̆ be as in (6.2) and (6.3).

(1) The function B(z | r) can be continued to be analytic in the universal cov-
ering of C \

(
(1/2 + ∆r) ∪ (−1/2 −∆r)

)
, and the following relations hold

for all z0 ∈ R \
(
(1/2 + ∆r) ∪ (−1/2−∆r)

)
:

(6.7) lim
ε→0+

(
B(z0 + iε | r)−B(z0 − iε | r)

)
= −b̆(−|z0| −

1

2
| r) .

(2) The function P (z | r) can be continued to be analytic in the universal cover-
ing of C \

(
∆r ∪ (−∆r)

)
, in such a way that, for all z0 ∈ R \

(
∆r ∪ (−∆r)

)
,

(6.8) lim
ε→0+

(
P (z0 + iε | r)− P (z0 − iε | r)

)
= −b̆(−|z0| | r) .

Proof. This follows directly from Theorem 6.2 together with relations (3.16) and
(4.23). �

6.2. Continued fractions and modular transforms. Let (p,m) ∈ Z × Z>0,
p ∧m = 1, r = p

m , and let ζ = e(r). We will consider the asymptotic behavior of

the Euler product (z | τ)∞ when τ
a.v.−→ p

m , or equivalently, when q
a.r.−→ ζ = e( pm ).

The case p = 0 has just been previously treated in Section §5; without any loss of
generality, one will assume in what follows that p

m ∈ Q ∩ (0, 1).
As in (6.3), we will let [α] and {α} to denote respectively the integral and

fractional part of any given real α. The strategy that will be put into place consists

of making use of continued fractions to reduce the general case τ
a.v.−→ p

m into the

known case τ
a.v.−→ 0. This is possible because of the following
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Lemma 6.1. Let r ∈ (0, 1), ζ = e(r), ζ1 = e({− 1
r}), and let ω ∈ C{τ − r}.

Consider

f(q) = (ω(τ) | τ)∞ , g(q1) = (ω1(τ1) | τ1)∞ ,

where

q = e(τ) , τ1 = −1

τ
+
[
−1

r

]
, q1 = e(τ1)

and

ω1(τ1) =
(
τ1 −

[
−1

r

]) (
1− ω

(
− 1

τ1 − [−1/r]

))
.

Then f ∈ Cζ if, and only if, g ∈ Cζ1 .

Proof. Let d ∈ Z and let T (z, τ) to be given as follows:

(6.9) (z | τ)∞ = T (z, τ) (
z − 1

τ
| − 1

τ
+ d)∞ .

By (1.22) and (4.20), T (z, τ) can be expressed by means of each one of both func-
tions B(z − 1/2 | τ) and P (z | τ) in the following manner:

(6.10) T (z, τ) = A(z − 1

2
| τ) eL2(z−1/2 | τ)+B(z−1/2 | τ)

and

(6.11) T (z, τ) =

√
2πs(1− e(z))

Γ(s+ 1)
e(− τ

24
) es(log s−1)+

Li2(e(z))
2πiτ +P (z | τ)

Putting z = ω(τ), d = [−r] and τ = −1/(τ1 − d) in (6.9) gives

f(q) = T̃ (q) g(q1) , T̃ (e(τ)) = T (ω(τ), τ) .

Thanks to (2.1), one can suppose that ω(r) > 0, so that in (6.11), s→ ω(r)/r 6= 0

as τ
a.v.−→ r > 0. By means of Theorem 6.3, one can find ν ∈ C such that

(6.12) log T̃ (τ) = ν log(τ − r) mod C{τ − r} .

From (6.12), one obtains that T̃ ∈ Cζ . By Lemma 2.1 (1), it follows that f ∈ Cζ
if, and only if, f/T̃ ∈ Cζ , which is equivalent to say that g ∈ Cζ1 . �

The above operation (q, τ, ω) 7→ (q1, τ1, ω1) considered in Lemma 6.1 allows one
to link two limit rationals r and r1 as follows. For any given r ∈ Q∩ (0, 1), one can
iterate the process

(6.13) (r, z, τ) −→
({
−1

r

}
,
z − 1

τ
, [−1

r
]− 1

τ

)
and, after a finite number of steps, one arrives at the case where τ

a.v.−→ 0. This
iteration procedure requires to write r into continued fraction. Thus, to any given
r = p

m ∈ Q ∩ (0, 1) will be associated the sequences rj ∈ Q ∩ [0, 1) and dj ∈ Z>0 in
the following manner:

(6.14) r0 =
p

m
, d0 = 0; rj =

{
− 1

rj−1

}
, dj =

[
−1

r

]
( 1 ≤ j ≤ ν) ,

where ν denotes the smallest index such that rν = 0, i.e. 1/rν−1 ∈ Z>0. With the
standard notation for the continued fractions, one can notice that

(6.15) r = [0, d1,−d2..., (−1)ν−1dν ] =
1

d1 − |
1

d2 − |
· · · 1

|dν
.
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Let r be as in (6.15) and let (z, τ) ∈ C×H. In the same fashion as in (6.13), we
introduce the r-depending sequence (zj , τj)0≤j≤ν as follows: τ0 = τ , z0 = z;

(6.16) zj =
zj−1 − 1

τj−1
, τj = dj −

1

τj−1
.

Moreover, for any given ω ∈ C{τ − r}, we will write

(6.17) ω0(τ0) = ω(τ), ωj(τj) =
ωj−1(τj−1)− 1

τj−1
,

where τj is linked with τj−1 as in (6.16). If we let τ = τ0
a.v.−→ r in H, then τj

a.v.−→ rj
in H, particularly with τν

a.v.−→ 0; thus one can observe that ωj ∈ C{τj − rj} for all
positive integer j ≤ ν. Furthermore, it is easy to see that τj ∈ H, with

τj = Mj τj−1 , Mj =

(
dj −1
1 0

)
∈ SL(2;Z) .

Thus, one can find that

τν = M τ, M = Mν ...M1 ∈ SL(2;Z) .

Theorem 6.4. Let ν, r be as in (6.15), ω ∈ C{τ−r}, and let τj, ωj be as in (6.16),
(6.17), respectively. Let ζj = e(rj) and qj = e(τj) for j from 0 to ν. Consider

f(q) = (ω(τ)|τ)∞, fj(qj) = (ων(τj)|τj)∞
for τ and τj enough closed to r and rj in H respectively. The following conditions
are equivalent.

(1) f ∈ Cζ .
(2) fj ∈ Cζj for all j from 1 till ν.

(3) ω(τ) = 1
2 (`τ + n) for some (`, n) ∈ Z2.

Proof. The equivalence between (1) and (2) follows directly from Lemma 6.1.
(2) ⇒ (3): One considers j = ν in Condition (2), with rν = 0, ζν = 1. Thus,

applying Theorem 5.1 to fν implies that ων(τν) = 1
2 (nν +mντν) for some suitable

(nν ,mν) ∈ Z2. Moreover, by (6.17) it follows that

ωj(τj) =
1

2
(ajτj + bj) ⇐⇒ ωj−1(τj−1) =

1

2
(aj−1τj−1 + bj−1) ,

where aj−1 = ajdj + bj , bj−1 = −aj . As dj ∈ Z, one finds that

(aj , bj) ∈ Z2 ⇐⇒ (aj−1, bj−1) ∈ Z2 .

This gives the expression wanted in Condition (3) for ω(τ).
(3) ⇒ (2): This follows directly from Theorem 2.2 (1). �

6.3. Concluding proofs. On the one hand, it is clear that Theorem 6.4 contains
Theorem 6.1. On the other hand, one gets Theorem 1.2 by combing Theorem 2.2
(1), Theorem 5.1 and Theorem 6.1.

Proof of Theorem 1.1. Corollary 2.1 gives that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) for
Theorem 1.1. To obtain the last implication (5)⇒ (1), one supposes that (x; q2)∞ ∈
Eζ , so (x; q2)∞ ∈ Cζ . By applying Theorem 1.2 with q2 instead of q, one gets that
x = e(z) and z = n

2 + m
2 τ
′ for some (n,m) ∈ Z2, where τ ′ = 2τ . Considering

Theorem 2.2 (2) with τ ′ in the place of τ yields that z ∈ {τ ′, 12 + τ ′, 12τ
′, 12 + 1

2τ
′},

so x ∈ {q,−q, q2,−q2}. This ends the proof of Theorem 1.1. �
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