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MIRELA is a high-level language and a rapid prototyping framework dedicated to systems where
virtual and digital objects coexist in the same environment and interact in real time. Its semantics
is given in the form of networks of timed automata, which can be checked using symbolic meth-
ods. This paper shows how to detect various kinds of indefinite waitings in the components of such
systems. The method is experimented using the PRISM model checker.
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1 Introduction

The aim of this paper is to provide a formal method support for the development of concurrent ap-
plications, which consist of components, which mutually interact in a way, that should meet certain
real–time constraints, like a reaction time within a given time period. MIRELA (for MIxed REality
LAnguage [9, 7, 10, 8]) was initially meant to be used for developing mixed reality (MR) [6] appli-
cations, which acquire data from sensors (like cameras, microphones, GPS, haptic arms. . . ), and then
distribute it through a shared memory, read by rendering devices, which present the results in a way a hu-
man can interpret (using senses like sight, hearing, touch; by highlighting images on a screen, projecting
virtual images, mixing virtual and real images, moving robot arms. . . ).

One of the ideas behind MIRELA is to translate a model into an equivalent form understandable by
a model checker, as opposed to performing state space exploration like e.g., JPF does [24]. It allows the
model to be represented not by a transition matrix, possibly very lengthy and still partial, but by a terse
specification in the checker’s native input language. The checker may then easily apply symbolic data
structures like MTBDDs [16], which may in turn allow for a substantial reduction of the space explosion
problem, inherent to an explicit transition matrix.

In order to cope with time constraints when developing MR applications, practitioners rely mostly
on fast response and high performance hardware, even if this contradicts other issues, like power saving
(hence autonomy) and cost (hence mass production), and does not ascertain that critical constraints will
always be respected. Modelling the application before testing it on the actual hardware and validating
it by applying formal method techniques to prove its robustness, was the main motivation for the de-
velopment of the MIRELA framework. It aims at supporting the development process of MR set-ups,
which are generally prone to various issues related to time and known to be difficult to control and to
adjust. Most mixed reality frameworks, like those cited in [5, 21, 14, 19, 15, 11] do not concentrate on
the validation of the developed applications. Some of them emphasise the use of formal descriptions
of components in order to enforce a modular decomposition [22, 17], and ease future extensions [18]
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or substitutions of one module by another [13, 12]. Such frameworks do not deal with software failure
issues related to time. On the contrary, the main focus of the MIRELA framework is the formal analysis
of software failure issues related to time, together with timing performance analyses and the development
of automatic tools.

The MIRELA framework [7] proposes a methodology that consists of three phases. In the first
phase, a formal specification of the system in the form of a network of timed automata [1] is built. It may
be obtained by a translation from a high level description made of connected components [9, 10], and
represents an ideal world. The second phase concerns the analysis of the system: it essentially consists
in analysing through model-checking a set of desired properties considered important, either the absence
of bad behaviours or the satisfaction of timing constraints. In the third phase, such a checked specifi-
cation is used to produce an implementation skeleton, in the form of a looping controller parametrised
with a sampling period and possibly executing several actions in the same period, aiming at preserving
those properties [7]. We revisit here essentially the second phase of the methodology of the MIRELA
framework. Since the high level specifications of MIRELA are close to a subclass of UPPAAL [23]
systems, it was originally considered to use the UPPAAL model-checker to analyse the properties of a
MIRELA system [8]. However, a serious problem was faced when trying to detect deadlocks limited
to some components, since the UPPAAL query language does not allow nested path quantifiers. A pro-
posed solution was then to use instead the PRISM tool [16] and analyse if and how it may be to detect
bad behaviours of a tentative MIRELA system.

The paper is organised as follows. First, we shortly recall the specification language of MIRELA
and its semantics in terms of a network of TAST automata (a subclass of timed automata of UPPAAL).
Next, various kinds of bad behaviours are defined. Then, Section 3 explains how PRISM may be used
to model MIRELA systems, and the next one analyses how to verify the system against the indefinite
waitings phenomena. This leads to define a procedure to analyse a MIRELA system, which is illustrated
on a well chosen example. Finally we summarise the outcome of this contribution, and comment some
future works.

1.1 MIRELA syntax and intuitive semantics

A MIRELA specification [7] (see an example in Figure 1, top left), is defined as a list of component’s
declarations of the form:

SpecName: id = Comp→TList; . . . ; id = Comp→TList.

Each component’s declaration Comp→TList defines a component Comp and its target list of components
TList, which is an optional (comma separated) list of identifiers indicating to which (target) components
information is sent, and in which order. Each component also indicates from which (source) components
data are expected. A target t of a component c must have c as a source, but it is not required that a
source s of a component c has c as an explicit target: missing targets will be implicitly added at the end
of the target list, in the order of their occurrence in the specification list. We assume that all the sources
of a component are different, and that all the targets of a component are also different1. A component
Comp is either a sensor Sensor, a processing unit PUnit, a shared memory unit MUnit or a rendering

1The target list is allowed to be empty; this defines in general a degenerate specification, which may be interesting for
technical and practical reasons.
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loop RLoop, and is specified following the syntax:

Sensor ::= Periodic(min_start,max_start)[min,max] | Aperiodic(min_event)
PUnit ::= First(SList) | Both(id, id)[min,max] | Priority(id[min,max], id[min,max])
MUnit ::= Memory(SList)
RLoop ::= Rendering(min_rg,max_rg)(id[min,max]),

where SList is a non empty list of (comma separated) source identifiers of the form id[min,max], indicat-
ing that the processing time of data coming from source id takes between min and max time units.

There are two kinds of sensors:

• Periodic ones (e.g., cameras) that need some time for being started (at least min_start and at most
max_start time units), and then capture data periodically, taking between min and at most max
time units for that, and

• Aperiodic ones (e.g., haptic arms or graphical user interfaces) that collect data when an event oc-
curs, the parameter min_event indicating the minimal delay between taking two successive events
into account.

Processing units process data coming from possibly several different sources of data. They may be
combined (in a hierarchy but also in loops) to get more inputs and outputs. Hence the sources are either
sensors or processing units, and targets are either memories or processing units. There are the following
categories of processing units:

• First: may have one or more inputs (sources) and starts processing when data are received from
one of them; the order is irrelevant; if SList contains only one element, First is considered as a
unary processing unit;

• Both: has exactly two inputs and starts processing when both input data are received, the process-
ing time being between min and max;

• Priority: has two inputs (master and slave) and starts processing when the master input is ready,
possibly using the slave input if it is available before the master one; the duration of processing
is in the first time interval [min,max] if the master input is alone available, and in the second time
interval [min,max] if both the slave and the master inputs are captured; in figures, the slave input is
indicated by a dashed arrow.

A memory access is performed by a rendering loop, a sensor or a processing unit by locking the
memory before executing the corresponding task (reading or writing) followed by an unlocking of the
memory. A rendering component accesses the memory at a flexible period between min_rg and max_rg
time units, and the processing of data has a duration in the interval [min,max].

Example 1 Let us consider the example corresponding to the MIRELA system specified in Figure 1
(top left), with three periodic sensors feeding two First processing units, and a Both one fed by the last
sensor and the last First, and with a single rendering unit with its associated memory. The corresponding
flow of information is illustrated in Figure 1 (top right). 1

Example 2 This is a variant of Example 1 where R = Rendering(50,75)(M[25,50]) is replaced by R =
Rendering(75,100)(M[25,50]), i.e., the rendering time is longer. The flow of information in this model
is the same as in Example 1. 2

Originally, the semantics of a MIRELA specification has been defined and implemented in UP-
PAAL [23] as a set of timed automata [1, 2, 3, 25] with urgent binary synchronisations, meaning that
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Ex1:
S1 = Periodic(50,75)[75,100];
S2 = Periodic(200,300)[350,400]→(F2,F1);
S3 = Periodic(200,300)[350,400]→(F2,B);
F1 = First(S1,S2[50,75]);
F2 = First(S2,S3[75,100]);

B = Both(S3,F2)[25,50];
M = Memory(F1[25,50],B[25,50]);
R = Rendering(50,75)(M[25,50]).
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Figure 1: Specification, abstract scheme and TAST representation for Example 1. For Example 2, the
TAST representation is as for Example 1 except for the invariant of location s3 in Rendering R (which
becomes x < 100) and the guard of its out-going arc (which becomes x≥ 75).

when a synchronisation is possible, time may not progress. More precisely, we used a subclass called
Timed Automata with Synchronised Tasks (TASTs) in order to cope with implementability issues (see
[7] for more details).

Syntactically, a TAST is an annotated directed (and connected) graph, with an initial node, provided
with a finite set of non-negative real variables called clocks (e.g., x), initially set to 0, increasing with time
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and reset (x := 0) when needed. Clocks are not allowed to be shared between automata. The nodes (called
locations) are annotated with invariants (predicates allowing to enter or stay in a location, typically
either empty (meaning true or x < ∞) or of the form x < e′, where e′ is a natural number. The locations
associated with an internal activity (called activity locations) are distinguished from the locations where
one waits for some event or contextual condition (called wait locations). In figures, locations will be
represented by round nodes, the initial one having a double boundary, and activity locations are indicated
by a coloured background. The arcs are annotated with guards (predicates allowing to perform a move)
or communication actions, and possibly with some clock resets. For an activity location, all output arcs
have a guard of the form x≥ e, all input arcs reset x and the invariant is either empty or of the form x < e′,
with 0 < e < e′. For a waiting location, all the output arcs have a communication action of the form k!
(output) or k? (input), allowing to glue together the various automata composing a system, since they
must occur by input-output pairs. Recall that synchronisations are assumed to be urgent, which means
that they take place without time progression. In order to structurally avoid Zeno evolutions (i.e., infinite
histories taking no time or a finite time), we assume that each loop in the graph of the automaton presents
(at least) a constraint x≥e in a guard (e is strictly positive) and a reset of x for some clock x, or contains
only input channels (k?).

A TAST representation of Example 1 is depicted in Figure 1 (bottom). The translation from a
MIRELA specification to a TAST model (and hence a gateway to the usage of UPPAAL or PRISM
for model-checking the system) has been automated by developing a compiler using a parametric ap-
proach [4].

2 Bad behaviours

In [8], we analysed the various kinds of bad behaviours that can occur in a timed system in general (and
in a MIRELA one in particular). For instance, one may distinguish:
• a complete blocking occurs if a state is reached where nothing can happen: no location change is

nor will be allowed (because no arc with a true guard is available or the only ones available lead to
locations with a non-valid invariant) and the time is blocked (because the invariant of the present
location is made false by time passing);

• a global deadlock occurs when only time passing is ever allowed: no location change is nor will
be possible;

• a strong (resp. weak) Zeno situation occurs when infinitely many location changes may be done
without time passing (resp. in a finite time delay);

• a local deadlock occurs if no location change is available for some component while other compo-
nents may evolve normally;

• a starvation occurs at some point if a component may evolve but the time before may be infinite,
because other components may delay it indefinitely;

• an unbounded waiting occurs if a component may eventually evolve but the time before is un-
bounded, because some activity is unbounded.

We shall denote by indefinite waiting those last three situations. Note that those situations are not
always to be considered as bad: it depends on their semantical interpretation. For instance if a part of a
system corresponds to the handling of an error, it may be valid that the system stops after the handling,
and it is hoped that it is possible to never reach this situation.

Moreover, we have shown [8] that, for a MIRELA system,
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• no (strong or weak) Zeno situation may happen;

• a component may only deadlock in a waiting location;

• a memory unit may only deadlock if all its users deadlock elsewhere;

• a rendering loop may not deadlock, so that a system with a rendering loop may not present a global
deadlock.

As a consequence, a global deadlock may not occur in a complete system, i.e., having at least one
memory unit and an associated rendering loop; but it can occur in a degenerate (or simplified) system
without (memory and) rendering loop. On the contrary, local deadlocks may occur even in complete
systems and may propagate to other components. A component may starve for example if it tries to
send information to a memory or to a First component which is continually used by other units, and no
fairness strategy is applied. From these properties it is sometimes possible to reduce the detection of
local deadlocks of a MIRELA system to a global deadlock analysis (easy and efficient with UPPAAL)
of a reduced systems, obtained by dropping the memory units and the rendering loops, and the timing
constraints as well [8]. However, this does not work in all circumstances and we shall now examine how
PRISM may be used for that purpose.

3 PRISM representation of MIRELA

PRISM [16] is a probabilistic model checker intended to analyse a wide variety of systems, including
non-deterministic ones. Hence, TASTs and more generally timed automata are particular cases of models
PRISM is able to handle. Furthermore, and this is the most interesting feature of PRISM in what we
are concerned here, it can use complex (nested) CTL formulas that UPPAAL cannot. However PRISM
accepts models that are slightly different from the ones used in UPPAAL. In particular:

• Communication semantics: in UPPAAL, communications are performed through binary (in-
put/output) synchronisations on some channel k. A synchronisation transition triggers simulta-
neously exactly one pair of edges k? and k!, that are available at the same time in two different
components. PRISM implements n-ary synchronisations, where an edge labelled [k] may only
occur in simultaneity with edges labelled [k] in all components where they are present;

• Urgent channels: UPPAAL offers a modelling facility by allowing to declare some channels as
urgent. Delays must not occur if a synchronisation transition on an urgent channel is enabled.
PRISM does not have such a facility and thus it should be "emulated" using a specific construct
compliant with PRISM syntax;

• Discrete clocks: the PRISM’s tool allowing to check CTL formulas is the digital clocks engine,
which uses discrete clocks only (and consequently excludes strict inequalities in the logical for-
mulas). This modifies the semantics of the systems, but it may be considered that continuous time,
as used by UPPAAL, is a mathematical artefact and that the true evolutions of digital systems are
governed by discrete time devices.

Implementing binary communications in PRISM is easy by demultiplying and renaming channels in
such a way that a different synchronous channel [k] is attributed to each pair k? and k! of communication
labels. In MIRELA specifications, the only labels we have to worry about are the lock? and unlock?
labels in each Memory M and the lock! and unlock! labels in the components that communicate with M.

The implementation of urgency is much more intricate, especially if the objective is to be transparent
for the execution and also as much as possible for model-checking performance. The solution we adopt
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Figure 2: Urgent communications in PRISM. Thick locations and arcs are the added ones.

here consists in the following construction, illustrated in Figure 2. Let A = A1, . . . ,An be a network of
TAST components Ai. We assume that A is already renamed in order to implement binary communi-
cations. For each A ∈A we declare an additional clock xA and for each location loc in A with outgoing
communication edges to locations loc1, . . . , locm, labelled respectively [k1], . . . , [km]:

• we add the invariant xA ≤ 0 to loc and the reset xA := 0 to all input arcs to loc;

• we introduce a new location loc′ and an edge from loc to loc′ with a guard ¬(gk1
loc ∨ . . .∨ gkm

loc),
where gki

loc ≡ A j.lki ∨A j.l′ki
with A j.lki being the (unique) location with outgoing communication

edge labelled [ki] in some other automaton A j, and A j.l′ki
is the corresponding added location;

• for all i = 1, . . . ,m, we add an edge from loc′ to loci, labelled [ki].

Proposition 1 The PRISM system so constructed presents the same behaviour as the original TAST
one.

Proof: (sketch) The general idea behind the construction above is the following: When the control
arrives at location loc in some automaton A, since invariant xA ≤ 0 on loc requires no time progression,
two cases are possible:

• either at least one synchronisation on some [ki] is immediately possible and one of them must be
performed,

• or no synchronisation is possible yet and the control passes to loc′ where it may wait as long as
one of the synchronisations, let us say [ki], becomes available.

The latter occurs when the control arrives at a location l having an outgoing arc labelled [ki], in some
automaton A j. The synchronisation on [ki] must be performed without time progression due to invariant
xA j ≤ 0 on l. 1
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4 Detection of indefinite waitings in MIRELA specifications

In order to detect an indefinite waiting at a location loc in a component of the TAST representation
tasts(S ) of a MIRELA specification S , we may check the CTL formula

φloc = EF EG loc,

which checks if there exist a path leading to a situation (EF) such that from there it may happen that
the component stays (EG) in location loc. Since there is no Zeno situation, this may only correspond to
an indefinite waiting. If φloc is false, then there is neither a starvation nor an unbounded waiting nor a
deadlock in loc. If loc is the activity location of an aperiodic sensor, we know that there is an unbounded
waiting, and it is not necessary to perform the model checking for that. The other interesting cases
correspond to waiting locations w, from which communications k! or k? only are offered.

If we want to delineate more precisely what happens, we may use a query

ψw = EF AG w,

which checks if there is a situation where the considered component reached w but there is no way to
get out of it: this thus corresponds to a local deadlock. From previous observations, it is not useful to
apply it to a Memory component if it has corresponding Rendering loop(s), nor to locations waiting for
an unlock, even if there is no Rendering.

If φw is true and ψw is false, we know that w corresponds to a starvation or an unbounded waiting.
But if both are true, it may still happen that, while w corresponds to a local deadlock for some reach-
able environment, it is also possible that for another environment, it corresponds to a starvation or an
unbounded waiting. This uncertainty may be solved by checking the formula

ρw = EF EG (w∧ (EF ¬w)),

which checks if we can reach a situation where the considered component is in location w, it is possible
to indefinitely stay in w (while other components may progress) but it is also possible to escape from w.
This corresponds to a starvation situation or an unbounded waiting.

As we mentioned in the introduction, UPPAAL does not support nested CTL queries like φw, ψw

and ρw. On the contrary, we may check them with PRISM, on the PRISM representation prism(S ) of
S . Indeed, prism(S ) only differs from tasts(S ) in that each wait location w in tasts(S ) is split in two
locations w and w′ in prism(S ), such that it is not possible to stay in w; if the synchronisation is not
performed at w with no time progression, prism(S ) goes to w′, where one shall wait as in w in tasts(S ).
The problem thus comes down to check φw′ , ψw′ and ρw′ on prism(S ).

In order to distinguish starvation from unbounded waitings (i.e., if some wait location incurs star-
vation only, unbounded waiting only, or both in different environments), let us assume the considered
specification S presents n aperiodic sensors (with n > 0, otherwise there are trivially no unbounded
waitings), and let us denote by a1,a2, . . . ,an their respective initial locations in tasts(S ). To check a
starvation in location w, we may use on tasts(S ) the following query formula:

σw = EF EG (w∧ (EF ¬w)∧ (F ¬a1)∧·· ·∧ (F ¬an))

which means it is possible to stay indefinitely in w, but also to escape from it, without needing that an
aperiodic sensor (or many of them) indefinitely stays in its activity location. Hence, if true, this means
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there is a pure starvation in w. To check an unbounded waiting in the same location, one may use on
tasts(S ) the query:

ζw = EF ((EG w)∧A((G w)⇒ (FG a1)∨·· ·∨ (FG an)))

which means it is is possible to stay indefinitely in w, but not without being stuck in some ai at some
point. If this is true, this thus means we have an unbounded wait in w. Unfortunately, those last two
formulas belong to CTL* and presently, when considering non-deterministic properties, PRISM only
supports a fragment of CTL, so that operators G and F must be used in alternation with operators A and
E. Hence, σw, which contains GF, and ζw, which contains FG, are queries that PRISM does not support
(yet).

Let us note that, if we were to introduce probabilities in the model, it is very likely that starvations will
disappear almost surely (i.e., with probability 1). Indeed, they correspond to the indefinite reproduction
of a same kind of finite evolution, and the probability of it is zero, unless that kind of finite evolution has
probability 1. Similarly, the probability of unbounded waitings should be zero, like the probability of
staying indefinitely in some activity location of an aperiodic sensor (otherwise one could not qualify the
waiting as unbounded instead of infinite).

4.1 Procedure and experimental results

From a graph analysis of the specification one may observe that a location in some component may
be concerned by starvation, local deadlock or unbounded waiting if it is either a wait location or the
initial activity location of an aperiodic sensor. Also, among all the wait locations, we can distinguish the
following families:

• the set N of wait locations that are origins of unlock? or unlock! transitions: these are concerned
by neither local deadlocks nor unbounded waitings nor starvation;

• the set O of wait locations that are origins of lock! transitions: these cannot be concerned by local
deadlocks nor by unbounded waitings, but may potentially be concerned by starvation;

• the set W of all remaining wait locations.

Proposition 2 Let S be a MIRELA specification.

1. If S comprises an aperiodic sensor, it contains by construction at least a location concerned by
an unbounded waiting (which may propagate to other components). On the contrary, if S has no
aperiodic sensor, no unbounded waiting may occur.

2. If S contains an unbounded waiting in some wait location w in tasts(S ), S has aperiodic sensors
and w ∈W .

3. If S contains a starvation in some wait location w in tasts(S ), w ∈ O ∪W .

4. If S contains a local deadlock in some wait location w in tasts(S ), w ∈W .

5. A wait location w in tasts(S ) incurs a local deadlock, a starvation or an unbounded waiting iff
the same occurs in the corresponding location w′ in prism(S ).
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Proof:

1. By definition, an aperiodic sensor contains a location, in which it may be stuck from the very
beginning. It is also the only way to introduce a location where an unbounded waiting is allowed.

2. See the previous point.

3. No location w that is the origin of an unlock! or unlock? may be concerned by a starvation because
this would mean that the memory, once engaged with a rendering or a processing unit, could be
indefinitely waiting. As renderings and processing units may never be indefinitely waiting between
having performed a lock! on the memory and the corresponding unlock!, w 6∈N . However, one
may be indefinitely waiting while trying to perform a lock! on a memory or a communication
action with a component, but only because the memory (in case of a lock!) or the component is
continually working for someone else.

4. See the previous points.

5. The only difference in the TAST semantics and the PRISM one is that each wait location w is split
into two locations w and w′, and it is not possible to stay in w: if the rendez-vous is not performed
at w without any delay, PRISM goes to w′, where one shall wait as in w in the TAST model.

2
Thus, in order to detect local deadlocks and starvation (or unbounded waitings) in components in

MIRELA specifications we propose the procedure described in Algorithm 1, using the PRISM model
checker on the PRISM representations prism(S ) of MIRELA specifications S .

4.2 Experimental results

We applied this procedure to Examples 1 and 2. In order to automatically translate these examples to
the PRISM language, we extended our compiler [20] with the emulation of urgent synchronisations,
discussed in Sec. 3, and with a library with definitions of MIRELA components. The results of model
checking of formulas and the status of each wait location s′i are shown in Table 1, where for each com-
ponent, s′i is the location added for si in Figure 1 in order to emulate urgent communications (see Figure
2). For Example 2, as the model-checking times are similar, we show only locations for which we obtain
a different status w.r.t. Example 1.

We may observe that Example 1 presents several locations concerned with both local deadlock and
starvation (in different contexts), for which starvation disappears in Example 2 due to the modified timing
constraint on the rendering.

5 Conclusions and perspectives

We provided a method allowing to automatically detect indefinite waitings in MIRELA specifications,
and to characterise them as local deadlocks, unbounded waitings or starvation problems, or combinations
of them. We succeeded thanks to a suitable translation of MIRELA specifications to PRISM, which
enabled to model check complex (nested) CTL formulas. An auxiliary but quite general theoretical con-
tribution of the paper is an efficient (and almost transparent) way of expressing urgent communications
in PRISM, which was crucial for our first objective.

The translation from MIRELA to TASTs, UPPAAL and PRISM has been automated. The MIRELA
compiler can now produce models tuned to specific capabilities of the target model checker. Yet, while
we also support PRISM now, we do not take advantage of its major feature of checking models which
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Algorithm 1: Determining the status of a wait location
Data: W , O – sets of wait locations of a MIRELA specification
Result: Compute, for each wait location, if it is a starvation, an unbounded waiting, a (local)

deadlock or a combination of them.

1 foreach w ∈W ∪O do
2 Check φw← EF EG w;
3 if φw = false then
4 w is neither a starvation, unbounded waiting nor deadlock;
5 else
6 if w ∈ O then
7 w is a starvation location
8 else
9 Check ψw← EF AG w;

10 if ψw = false then
11 w is a starvation and/or an unbounded waiting
12 else
13 Check ρw← EF EG (w∧ (EF ¬w));
14 if ρw = false then
15 w is a deadlock location
16 else
17 w is a local deadlock, a starvation and/or an unbounded waiting location
18 end
19 end
20 end
21 end
22 end

are stochastic. Obviously, probability may allow for much more realistic models and queries within the
scope of MIRELA. We plan thus to introduce unreliable and stochastic components, to be checked using
formalisms like PCTL, i.e., probabilistic CTL.

The computation times of the example models turned out to be quite reasonable, with the time con-
stants carefully chosen in order to have a large gcd, but we should now consider more complex systems,
both in terms of structure, in terms of interval bound characteristics, and in terms of a mixture of stochas-
tic and non-deterministic components. It could also be considered to introduce several traits of actual
programming languages, like variables or conditional jumps. In order to stay within the capabilities of
model checkers, though, we might e.g., divide a real computer application into functional blocks, each
having, beside an actual implementation, a simplified specification for MIRELA, which could be used to
e.g., checking properties similar to these discussed here, and consequently discover and analyse possible
undesired behaviours of the original application.

Acknowledgment This work has been partly supported by French ANR project SYNBIOTIC and Polish-
French project POLONIUM.
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φw ψw ρw

example comp. w static set result t [s] result t [s] result t [s] status of w

Ex. 1

S1 s′2 W false 167

S2
s′2 W true 228 true 184 true 213 D and S

s′3 W true 228 false 156 true 137 S

S3
s′2 W true 226 true 231 true 176 D and S

s′3 W false 139

F1
s′0 W false 123

s′2 O false 127

F2
s′0 W false 148

s′2 W true 214 true 167 true 208 D and S

B

s′0 W false 126

s′1 W true 298 true 198 false 157 D

s′2 W false 137

s′4 O true 202 false 149 true 210 S

R s′0 O false 146

Ex. 2

S2 s′2 W true 181 true 172 false 110 D

S3 s′2 W true 208 true 181 false 108 D

F2 s′2 W true 163 true 158 false 104 D

B s′4 O false 94

Table 1: Status (D=deadlock, S=starvation) of wait locations in Examples 1 and 2 obtained with Algo-
rithm 1. For Example 2, only properties differing from Example 1 are shown, the mismatching ones are
in bold. Model checking times t arisen for a system with AMD Opteron 6234 2.4Ghz and 64GB RAM.
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