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APPELL-LERCH SERIES VIEWED AS MOCK THETA

FUNCTIONS

CHANGGUI ZHANG

Abstract. The goal of this paper is to prove that the quotient of a first

order Appell-Lerch series by a suitable theta-function can be written, near
every given root of unity, as the sum of two functions, one of which has a

finite limit and the other one has an asymptotic behavior like as one Jacobi’s

theta-function when q tends to this root. In order to simplify the exposition,
we propose the definition of what we mean almost theta-type function, false

theta-type function and mock theta-type function. The utilization of continued

fractions and linear fractional transformations plays a central role in this paper.
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Introduction

The Ramanujan’s mock-theta functions have a ultimate link with Appell-Lerch
series. For this nice subject, one can see the short paper [19] of K. Ono in the
Notices of the AMS or, more extensively, the classical references such as [30], [11],
[2], [12], [39], [32], etc .... The goal of our paper is to study the asymptotic behaviour
of these series near every root of unity, in the hope of contributing later to a best
possible knowledge of the world of the Ramanujan’s mock-theta functions.

0.1. Appell-Lerch series, q-difference equations and Gevrey asymptotics.
In [16], one can find the following definition of Appell-Lerch series Rk :

(0.1) Rk(z, w | τ) =

∞∑
n=−∞

qkn
2/2 e2knzπi

1− qn e2wπi
=

∞∑
n=−∞

e( 1
2n

2kτ + nkz)

1− e(nτ + w)
,

where k ∈ Z>0, z ∈ C, w ∈ C \
(
Z ⊕ τZ

)
, τ ∈ H and where e(.) is defined by the

relation e(a) = e2πia for all a ∈ C. By considering the relation

1− e(nτ + w) =
1− e(knτ + kw)

1 + e(nτ + w) + ...+ e
(
(k− 1)nτ + (k− 1)w

) ,
one finds from (0.1) that

(0.2) Rk(z, w | τ) =

k−1∑
`=0

e(`w)R1(kz + `τ, kw | kτ)

provided that w /∈ 1
k Z ⊕ τZ. This implies that the first order Appell-Lerch series

R1(z, w | τ) plays a basic role.
By direct computation, two functional equations can be easily found: on the one

hand,

Rk(z + τ, w + τ | τ) =

∞∑
n=−∞

e( 1
2 (n+ 1)2kτ + nkz − 1

2kτ)

1− e((n+ 1)τ + w)

= e(−k(z +
τ

2
))Rk(z, w | τ) ;(0.3)
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and on the other hand,

Rk(z, w | τ)− e(w)Rk(z +
τ

k
, w | τ) =

∞∑
n=−∞

e(
1

2
n2kτ + nkz)

= ϑ3(kz | kτ) ,(0.4)

where ϑ3(z | τ) denotes one of four classic theta-functions of Jacobi [20, p. 166,
(76.1)]. Putting k = 1 into the relation in (0.4) yields that

R1(z, w | τ)− e(w)R1(z + τ, w | τ) = ϑ3(z | τ) .(0.5)

In the above, one sees that each series R1(z, w | τ) can be considered as special
solution of some functional equations using difference operators of the form z 7→ z+
τ , as in the classical theory of elliptic functions. In fact, in [6] and [7], Appell studied
elementary decomposition of the elliptic functions of the third kind, introduced by
Hermite [15]. Later, Lerch [16] studied several series with the view of writing a
general elliptic function as linear combination of simple ones, where the factors may
be theta functions. These series appeared also in the analytic theory of numbers
and in particular in the theory of quadratic forms; see [17].

Remember that the traditional elliptic functions are all meromorphic functions
in C that have two periods. The corresponding multiplicative model is to say that
an elliptic function is simply a meromorphic function in C∗ that is left invariant by
the q-difference operator x 7→ qx. As in the theory of differential equations, a q-
difference equation may be singular and the structure of its analytic solutions may
be made depending on whether the singular point is Fuchsian or non-Fuchsian; see
[28], [26] and the references therein. It will be useful to observe that the relation of
R1(z, w | τ) in (0.5) can be transformed into a non-homogeneous and non-Fuchsian
linear q-difference equation of the first order.

This is why, in this paper, we shall take the point of view of singular-irregular
q-difference equations. Namely, apart from a factor of theta function, R1(z, w | τ)

is exactly the sum-function along a spiral for the q-Euler series Ê(x; q) ( [27], [34]):

(0.6) Ê(x; q) =
∑
n≥0

q−n(n−1)/2 (−x)n .

Moreover, to this same divergent series is associated one other family of sum-
functions by means of Gaussian kernel [33], which contains the well-known Mordell
integrals [18]; see also [1]. Comparing these different sum-functions will furnish
exponentially-small functions, that are in fact of modular-like type. In other
words, modular-like transforms, exponential-scales changes or Stokes phenomena
may come together. This implies the role that the singularities analysis of q-
difference equation may play inside the theory of theta-like functions.

Beside, Watson has written several papers about Ramanujan’s mock-theta func-
tions, and one of the most popular may be [30]. At p. 78 of this paper, he said: It
can be proved that these expansions possess the property that (for α complex) the
error due to stopping at any term never exceeds in absolute value the first term ne-
glected; in addition, for α positive, the error is of the same sign as that term*. The
footnote here is the following: This property... It is the fact that these expansions
are asymptotic (and not terminating series) which shows that mock theta-functions
are of a more complex character than ordinary theta-functions.

This quotation shows that G. N. Watson knew well the natural role played by
the asymptotic expansions for the mock-theta functions of Ramanujan. In the
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following, we will make use of the theory of Gevery asymptotic expansions, whose
origin can go back to G. N. Watson [29], with his famous Lemma. In fact, the theory
of Gevrey asymptotic expansion is an exponential-type asymptotic analysis, and
such an approach provides a framework around which the exponentially smallness
appears in a natural fashion; see [8] or [25].

0.2. Organization of the paper. The rest of this paper is divided into five sec-
tions, the last one being included in Appendix. In §1, we shall propose the defini-
tion of what we mean theta-type function, by establishing that the classical Jacobi
theta functions are really theta-type. This definition suggests how to distinguish
one mock theta-type function from one false theta-type. By using all that, we will
arrive at the statement of our main result of this paper, Theorem 1.3. This implies
the following one:

The quotient of R1(z, w | τ) by a suitable theta-function can be written, near
every given root of unity, as the sum of two functions, one of which has a finite limit
and the other one has an asymptotic behavior like as one Jacobi’s theta-function
when q tends to this root.

In the above, the decomposition will depend of the root of unity about what we
study the asymptotic behavior. It will be important to notice that the finite part can
not be uniformly bounded for all roots except a very few number of cases which
are related to the half-periods. This is an essential distinction existing between
one false theta function and one mock theta function, as observed by Ramanujan
himself.

In §2, we will start with the analytic continuation of a Mordell integral G(x; q),

that is a sum-function of the divergent series Ê(x; q) given in (0.6). The central re-
sult of this section is Theorem 2.1, which allows one to consider this Gq-summation
even for complex q of module |q| < 1. Found by means of Laplace transform, this
result implies the analytic obstruction with respect to the parameter x of this sum-
function on the one hand and a generalized reciprocity law for Gauss sums on the
other hand. See Theorems 2.2 and 2.5.

The sum-function L(x, µ; q) of Ê(x; q) will be studied in §3, and one will see that
this is related to R1(z, w | τ) via some theta-function factor. This sum-function
and G(x; q) yield a modular-like formula, and using this with continued fractions
and linear fractional transformations allows one to get the asymptotic behavior of
L(x, µ; q) at every root of unity of q. So, Subsection 3.3 and Theorem 3.6 play an
important role for this section. Notice that Theorems 3.7 and 3.11 give conditions
about the parameters x and µ or, equivalently, about z and w, for obtaining a
false-theta type function.

In order to keep the reading smooth and easy, we will complete the proof of
certain statements in §4. Finally, in §A, we will give some definitions and properties
that we need in this paper in matter of Gevrey asymptotic analysis and q-Borel-
Laplace summations.

1. Notations, definitions and main result

Let D be the open unit disc |q| < 1, and let D∗ = D \ {0}. As usual, we let H
denote the Poincaré’s half-plane =z > 0. By the map e : τ 7→ e(τ) = e2πiτ , the
analytic space H is identified to the universal covering of D∗. In the whole paper,
U denotes the set of all roots of unity, that will be identified with Q∩ [0, 1) via the
relation U = e

(
Q ∩ [0, 1)

)
. By convention, e(α) = 0 when α = i∞.
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In order to be able to use the linear fractional transformations for discussing
the asymptotic behavior at a given root of unity, we shall extend the usual radial
convergence into what we will mean almost radial convergence, and this will be
defined in §1.1. Thus, in §1.2, we will give the definition of an almost theta-type
function and that of false-theta or mock-theta in this class of functions. Some
general properties of these functions, like as the algebraic structure between them
and their dominant terms, will be described in §1.3.

As basic examples of theta-type functions, we will discuss Jacobi theta-functions
in §1.4, that will be used later for the mock-type properties stated for Appell-Lerch
series. Some functional relations will be mentioned in §1.5 for these series, before
giving the main result of this paper, Theorem 1.3, in §1.6.

1.1. Modular group, radial convergence and exponential smallness. For
any given a ∈ ∂D∗, by radially symmetric sector at a inside D∗ we mean any sector
Va(d, r) defined for d ∈ (0, π) and r ∈ (0, 1) in the following way: if a 6= 0,

(1.1) Va(d, r) =
{
q ∈ D∗ : | arg(1− q

a
)| < d

2
, |q − a| < r

}
;

otherwise, one writes

(1.2) V0(d, r) =
{
q ∈ D∗ : | arg q| < d

2
, |q| < r

}
.

With a view to extending the usual notion of radial convergence, we shall say that

q almost-radially tends towards a ∈ ∂D∗ and we will write q
a.r.−→ a, if q → a within

some radially symmetric sector at a inside D∗.
Let α ∈ ∂H∪{i∞}; by vertically symmetric sector at α in H we mean any sector

Vα(δ | ρ) defined for δ ∈ (0, π) and ρ > 0 as follows: if α 6= i∞,

(1.3) Vα(δ | ρ) =
{
τ ∈ H : | arg(

τ − α
i

)| < δ

2
, |τ − α| < ρ

}
;

otherwise, one sets

(1.4) Vi∞(δ | ρ) =
{
τ ∈ H : | arg

τ

i
| < δ

2
, |τ | > ρ

}
.

We shall say that τ almost-vertically tends towards α and we will write τ
a.v.−→ α, if

τ → α inside some vertically symmetric sector at α in H. See Remark A.1.
The modular group SL(2;Z) acts naturally on H by the linear fractional trans-

formation τ 7→Mτ for all M ∈ SL(2;Z). One can find that this action is compat-
ible with the above-introduced convergence notions in the following manner. Let
a ∈ ∂D∗, α ∈ ∂H∪{i∞}, and assume that a = e(α). Then the following conditions
are equivalent for q = e(τ):

(1) q
a.r.−→ a;

(2) τ
a.v.−→ α;

(3) Mτ
a.v.−→Mα for any M ∈ SL(2;Z).

Moreover, if Ara and Avα denote respectively the sheaves of germs of analytic
functions in radially symmetric sector Va(d, r) and in vertically symmetric sector
Vα(δ | ρ), with a = e(α), then one can notice the following one-to-one correspon-
dence:

(1.5) Ara 3 f 7→ f ◦ e ∈ Avα .
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A function ϕ ∈ Avα will be called exponentially small as τ
a.v.−→ α and written

ϕ ∈ Ev,0α , if there exist δ ∈ (0, π), ρ > 0 and κ > 0 such that ϕ(τ) = o(e−κ/|τ−α|)
on Vα(δ | ρ). Here and in the following, the local coordinate τ −α needs to be read
as 1/τ if α = i∞.

1.2. Definition of almost theta-type functions. Given a ∈ ∂D∪{0}, we let Gra
to be the space of all f ∈ Ara that has a Gevrey asymptotic expansion as q

a.r.−→ a,

this implies particularly that f(q) = O(1) as q
a.r.−→ a for every f ∈ Gra. With the

help of the application f 7→ f̌ given in (1.5), one can define the sub-space Gvα inside
Avα. See (A.3) and Remark A.2 for more details. If no confusion is possible, we will
drop the upper indices r and v and simply write Ga and Gα there.

In order to understand what might mean Ramanujan mock theta functions, we
will make use of the following

Definition 1.1. Let q = e(τ), τ ∈ H, a = e(α) ∈ U ∪ {0}, and let f ∈ Ara.

(1) One says that f(q) is of theta-type as q
a.r.−→ a and one writes f ∈ Ta, if

for all N ∈ Z≥0, there exist (υ, λ) ∈ Q × R, a finite set I = Ia,N ⊂ R and
a C∗-valued map γ = γa,N on I such that the following relation holds for

τ
a.v.−→ α:

(1.6) f(q) =
( i
τ̂

)υ
e(λτ̂)

(∑
k∈I

γ(k) qk1 + o(qN1 )
)
,

where τ̂ = τ − α and q1 = e(− 1
τ̂ ).

(2) One says that f is of almost theta-type as q
a.r.−→ a and one writes

f ∈ T̃a, if there exists ϑ ∈ Ta such that f − ϑ ∈ Ga

In (1.6) and in what follows, we make use of the following notational convention.

(1) For all k ∈ R, qk1 = e(−kτ̂ ) as q1 = e(− 1
τ̂ ).

(2) When a = 0 and α = i∞, τ̂ should be read as − 1
τ , and q = q1.

(3) The summation
∑
k∈I(...) should be read as null whenever I = ∅.

Definition 1.2. Let f be an analytic function defined in D∗ or in the universal
covering D̃∗.

(1) One says that f is a theta-type function and one writes f ∈ T, if f ∈ Tζ
for all ζ ∈ U ∪ {0}.

(2) One says that f is a false theta-type function and one writes f ∈ F, if
f /∈ T and there exists ϑ ∈ T such that f(q)−ϑ(q) ∈ Gζ for all ζ ∈ U∪{0}
and that, furthermore,

(1.7) sup
ζ∈U

∣∣∣ lim
q
a.v.−→ζ

(f(q)− ϑ(q))
∣∣∣ <∞ .

(3) One says that f is a mock theta-type function and one writes f ∈M,

if f ∈ T̃ζ for all ζ = U ∪ {0} and, moreover, f is not a false theta-type
function.

In his last letter to Hardy, Ramanujan emphasized the boundedness condition
(1.7) that appeared for Rogers false theta-functions; see [30]. However, as most
of mathematicians of his time, Ramanujan used the usual notion of asymptotic
expansion instead of the Gevrey one, what would be latter initiated in [29] by
Watson.
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Beside, in [13, p. 98-99], one can find the definition of a mock θ-function and
that of a strong mock θ-function; see also [3]. Our above definition in (3) may be
seen to be situated between these two definitions. In order to avoid the confusion,
we choose to call them theta-type instead of theta.

1.3. Some general properties of almost theta-type functions. With regard
to the uniqueness of the decomposition of a theta-type function at a given point,
one can notice the following

Remark 1.1. Given f be as in (1.6), if Ia,N 6= ∅ for some non-negative integer
N , then the pair (υ, λ) is uniquely determined, independently of N . Moreover,
Ia,N ⊂ Ia,M and γa,M

∣∣
Ia,N

= γa,N for all M > N .

Indeed, let Ia = ∪N≥0Ia,N , and write Ia = {k0, k1, k2, ...} as an strictly increasing
sequence. If c0 = γ(k0), taking the logarithm for both sides of (1.6) gives that

(1.8) log f(q) = −2πi
k0
τ̂

+ υ log
( i
τ̂

)
+ log c0 + λ τ̂ + o(e−κ/|τ̂ |) ,

where κ > 0. This implies the uniqueness of (υ, λ, c0). The next coefficients γ(kn)
for n > 0 can be determined successively by replacing in (1.8) the function f with
its kn-th remainder given as follows:

f(q)−
( i
τ̂

)υ
e(λτ̂)

( ∑
k∈Ia,k<kn

γ(k) qk1
)
. 2

For simplify, we shall call respectively dominant term of f at a and principal
part of f at a, the expressions ta(f) and Pa(f) given as follows:

(1.9) ta(f)(q) = c0
( i
τ̂

)υ
e(λτ̂) qk01

and

(1.10) Pa(f)(q) =
( i
τ̂

)υ
e(λτ̂)

( ∑
k∈Ia,0

γ(k) qk1
)
.

In (1.9) in the above, c0 = γ(k0) and k0 = inf{k ∈ Ia,N : N ∈ Z≥0}; by convention,
ta(f) = 0 if Ia,N = ∅ for all N ≥ 0.

In this way, if ta(f) 6= 0, (1.6) implies that

(1.11) f(q) = ta(f)(q)
(
1 + o(qκ1 )

)
for some κ > 0. Beside, for any I = Ia,N , N ∈ Z>0 ,

(1.12) f(q) = Pa(f)(q) +
( i
τ̂

)υ
e(λτ̂)

( ∑
k∈I,k>0

γ(k) qk1 + o(qN1 )
)
.

Consequently, f is exponentially small if, and only if, Pa(f) = 0.
As to the algebraic structures of T, one can notice the following

Proposition 1.1. (1) The sets Ta and T are stable for the product between
two functions.

(2) If T∗a = {f ∈ Ta : ta(f) 6= 0}, then T∗a constitutes a multiplicative group.
(3) T is stable by the ramification operator q 7→ qυ for all υ ∈ Q>0.
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Proof. (1) This follows directly from (1.6). Indeed, let I and J be two increasing
sequences in R without (finite) accumulation point. Their sum

I + J = {k + k′ : (k, k′) ∈ I × J}

represents also an increasing sequence that admits no finite limit in R. This together
with (1.6) imply that fg ∈ Ta if everyone of f and g is given in Ta.

(2) Let f ∈ T∗a. If one writes f = ta(f) (1 + ϕ) instead of (1.11), then one can
easily see that (1 + ϕ)−1 ∈ Ta, which implies that 1

f ∈ Ta. Thus, one gets that T∗a
is a multiplicative group, in view of the assertion given in (1) for Ta.

(3) It suffices to observe that each ramification operator gets roots of unity
moving ones from others. �

In what follows, we will see in what manner the decomposition of f ∈ T̃a into
fa + ϑa ∈ Ga + Ta may be unique or almost unique. We start with the following

Proposition 1.2. Let a = e(α) ∈ U ∪ {0}, τ̂ = τ − α, and let f ∈ Ta. One has
f ∈ Ga if, and only if, Pa(f) is of the form Pa(f)(q) = c τ̂n e(λτ̂), where c ∈ C,
n ∈ Z≥0 and λ ∈ R.

Proof. f ∈ Ga implies that, as τ̂
a.v.−→ 0, one can find complex numbers an such that

f(q) =

M∑
n=0

anτ̂
n +O(τ̂M+1)

for any non-negative integer M . Let n0 = inf{n : an 6= 0}.
(i) If n0 <∞, taking the logarithm of both sides of this last asymptotic relation

on f(q) yields that

log f(q) = n0 log τ̂ + log(an0) +O(τ̂) .

In view of (1.8), this may be possible if, and only if, υ = −n0 and k0 = 0. In
this way, one finds that Ia,0 = {0} and υ ∈ Z≤0. By (1.10), this gives that
Pa(f)(q) = c τ̂n e(λτ̂), with c ∈ C∗, n = −υ ∈ Zn≥0 and λ ∈ R.

(ii) If n0 = ∞, f(q) is Gevrey flat, so this is exponentially small for τ̂
a.v.−→ 0;

see [25, p. ??]. This is equivalent to say that Pa(f) = 0, by (1.12). �

In view of (1.12), Proposition 1.2 gives the following

Remark 1.2. For every f ∈ Ga ∩ Ta, one can find n ∈ Z≥0, c ∈ C, λ ∈ C and

κ > 0 such that f(q) = τ̂n e(λτ̂)
(
c+ o(e−κ/|τ̂ |)

)
for τ̂

a.v.−→ 0. 2

With regard to writing an almost theta-type function in terms of theta-type
functions, the following result will be useful.

Proposition 1.3. Let a = e(α) ∈ U ∪ {0}, τ̂ = τ − α, and let (ϑ1, ϑ2) ∈ Ta × Ta.
The following conditions are equivalent.

(1) ϑ1 − ϑ2 ∈ Ga.
(2) Pa(ϑ1)− Pa(ϑ2) ∈ Ga.
(3) There exist (n, d) ∈ Z2

≥0, (c1, c2) ∈ C2, (λ1, λ2) ∈ R2 and κ > 0 such that

ϑ1(q)− ϑ2(q) = τ̂n
(
c1e(λ1τ̂) + c2τ̂

de(λ2τ̂) + o(e−κ/|τ̂ |)
)

for τ̂
a.v.−→ 0.
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Proof. The conditions included in (1) and (2) are trivially equivalent. Furthermore,
the implication (3)⇒ (1) is clear. For seeing (2)⇒ (3), one observes that (2) implies
that Pa(ϑ1) = Pa(ϑ2), for ϑ1 − ϑ2 is bounded near q = a; see (1.11). Thus, one
deduces the condition in (3) by applying to both ϑ1 and ϑ2 the relation given in
(1.12), with the help of Proposition 1.2. �

The condition in Proposition 1.3 (3) requires that the exponent υ in (1.6) is a
non-positive integer for both ϑ1 and ϑ2. This implies immediately the following

Proposition 1.4. Let a = e(α) ∈ U ∪ {0}, f ∈ T̃a, (g1, ϑ1) ∈ Ga × Ta, (g2, ϑ2) ∈
Ga × Ta, and assume that f = g1 + ϑ1 = g2 + ϑ2. If Pa(ϑ1) 6= 0 and the exponent
υ in the expression of Pa(ϑ1) given by (1.10) is not a non-negative integer, then

g1 − g2 is exponentially small for q
a.r.−→ a. 2

1.4. First examples of almost theta-type functions. Given (C, λ) ∈ C × R,
it is obvious to see that the function q = e(τ) 7→ Ce(λτ) is a theta-type function.
Especially, one finds that any constant function is theta-type.

Proposition 1.5. Any theta-type function f that is assumed to be analytic at every
point τ = α ∈ Q in C is necessarily of the form Ce(λτ), where C ∈ C and λ ∈ R.

Proof. Choose some α ∈ Q and let a = e(α). Unless f ≡ 0, the analyticity of f at
τ = α implies the equality Ia,N = Ia,0 = {0} holds in (1.6) for all N > 0. See also
Remark 1.2. �

One of the most simple false theta-type functions may be f(q) = 1+q = 1+e(τ).

Indeed, as τ
a.v.−→ 0, τ̂ = τ and f ∈ G1, for f is analytic there. Thus, applying

Remark 1.2 yields that f /∈ T1, so f is not a theta-type function. This gives
directly that f ∈ F. In this same manner, one can observe the following

Proposition 1.6. Let I be a finite set of R possessing at least two elements, γ be
a C∗-valued map on I, and let f(q) =

∑
k∈I γ(k) e(kτ).

(1) f ∈ F if, and only if, the set I ∩ R<0 admits at most one element.
(2) f ∈M if, and only if, the set I ∩ R<0 admits at least two elements.

Proof. One sees that f ∈ T0 ∩ Gζ for all ζ ∈ U, for f is analytic at τ = r for all

r ∈ Q. First, assume that I ∩ R<0 = ∅. As f is exponentially small for τ
a.v.−→ i∞,

f ∈ G0, this implies that f ∈ F.
Next, assume that I contains one unique negative number, denoted by k0. By

letting g = f − γ(k0) e(k0τ) and ϑ = γ(k0) e(k0τ), one finds that f ∈ F, in view of
Proposition 1.5.

Finally, assume that I contains two negative numbers k0 and k1. By noticing

that e(k0τ) and e(k1τ) are unbounded for τ
a.v.−→ i∞, none of these terms may

belong to the Gevrey part of the decomposition of f for τ
a.v.−→ i∞. Beside, by

Proposition 1.5, γ(k0) e(k0τ) + γ(k1) e(k1τ) /∈ Tζ for all ζ ∈ U. This gives that
f ∈M. �

In line with Proposition 1.6 in the above, one may consider situations in which
the set I contains an infinitely many points. This will be the case for the classical
Jacobi’s theta-functions. We shall see that their specializations on R⊕τR are really
of theta-type in the sense of Definitions 1.1 and 1.2.
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For all z ∈ C, we define θ(z | τ) to be the following Jacobi theta-function:

(1.13) θ(z | τ) =
∑
n∈Z

e(
1

2
n(n− 1)τ + nz

)
.

By comparing this with the definition of ϑk(v | τ) in [20, p. 166, (76.1)] for k = 1,
2, 3, and 4, where q should be read as e( 1

2τ), it follows that

ϑ1(z | τ) = e
(
−z

2
+
τ

8
+

1

4

)
θ(z +

1

2
| τ) ,(1.14)

ϑ2(z | τ) = e
(
−z

2
+
τ

8

)
θ(z | τ) ,(1.15)

ϑ3(z | τ) = θ(z +
τ

2
| τ) ,(1.16)

ϑ4(z | τ) = θ(z +
τ

2
+

1

2
| τ) .(1.17)

See also the right-hand sides of the expression in (0.4) for ϑ3.
Let (p,m) ∈ Z × Z>0 be such that p ∧ m = 1, and assume that (α, β) ∈ Z2

satisfying βm−αp = 1. Let

(
a b
c d

)
=

(
α −β
m −p

)
in [20, p. 180, (80.8)], τ̂ = τ− p

m ,

and observe that mτ − p = mτ̂ . By making use of (1.14), one obtains that

(1.18) θ(z +
1

2
| τ) =

ε1√
m

√
i

τ̂
e
(1

8
(τ ′ − τ) +

1

2
(1− 1

mτ̂
)z − z2

2τ̂

)
θ(

z

mτ̂
+

1

2
| τ ′) ,

where ε1 = ε1(α,−β,m,−p) denotes an 8-th root of unity and

(1.19) τ ′ =
ατ − β
mτ − p

= − 1

m2τ̂
+
α

m
.

By noticing that τ ′ − τ = − 1
m2τ̂ − τ̂ and that

− 1

8m2τ̂
− z

2mτ̂
− z2

2τ̂
= − 1

2τ̂
(z +

1

2m
)2 ,

the relation in (1.18) can be written as follows:

(1.20) θ(z +
1

2
| τ) =

ε1√
m

√
i

τ̂
e
(
− 1

2τ̂
(z +

1

2m
)2 − τ̂

8

)
θ(

z

mτ̂
+

1

2
| τ ′) .

Given z ∈ Rτ = R⊕ τR, we will write

(1.21) ρ(z | τ) =

{
1 z1 /∈ Z
|1− e(z0)| z1 ∈ Z .

It is worth noticing that ρ(z | τ) = 0 if, and only if, z ∈ Z⊕ τZ.

Lemma 1.1. Let z = z0 + z1τ , (z0, z1) ∈ R2, and let f(q) = θ(z + 1
2 | τ). Then

f ∈ T0. Moreover, if

(1.22) κ = κ(z | τ,∞) =
1

2
min
`∈Z

∣∣z1 − 1

2
− `
∣∣2 ,

one can find c ∈ C such that |c| = ρ(z | τ) and t0(f)(q) = c q−
1
2 (z1−

1
2 )

2+κ.

This follows immediately from the fact that, by definition, θ(z + 1
2 | τ) is a sum

of exponential functions with respect to τ . For the proof, see §4.1.
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Theorem 1.1. Let f(q) = θ(z + 1
2 | τ) be as in Lemma 1.1. Then f ∈ T.

Furthermore, let r = p
m , m > 0,

(
α −β
m −p

)
∈ SL(2,Z), ζ = e(r), τ̂ = τ − r,

q1 = e
(
− 1
τ̂

)
, and let τ ′ as in (1.19). One assumes that τ

a.v.−→ r. If

(1.23) κ = κ(z | τ, r) =
1

2
min
`∈Z

∣∣mz0 + pz1 −
1

2
− `
∣∣2

and z′ = (αz0 + βz1)− (mz0 + pz1)τ ′, one can find c ∈ C such that |c| = ρ(z′ | τ ′)
and

(1.24) tζ(f)(q) =
c√
m

√
i

τ̂
e
(
−1

8
((2z1)2 + 1) τ̂

)
q
κ/m2

1 .

The strategy is to use the modular relation in (1.20) for leading any rational
point τ = r into τ ′ =∞, in such a way one can apply Lemma 1.1. For more details
on the proof, see §4.2.

Applying Proposition 1.1 (2) gives the following

Corollary 1.1. Given u1, ..., u` and v1, ..., vm two finite families of elements in
(R⊕ τR) \ (Z⊕ τZ), if

f(q) =
θ(u1 + 1

2 | τ) ... θ(u` + 1
2 | τ)

θ(v1 + 1
2 | τ) ... θ(vm + 1

2 | τ)
,

then f ∈ T. 2

Using the expressions of ϑ1, ..., ϑ4 given in (1.14) - (1.17) implies the following

Corollary 1.2. If z = z0+z1τ with (z0, z1) ∈ R2, then the Jacobi’s theta-functions
ϑ1, ϑ2, ϑ3 and ϑ4 are theta-type in the sense of Definition 1.2.

Proof. It suffices to combine Theorem 1.1 with the fact that e(aτ + b) ∈ T for any
given (a, b) ∈ R2; see Propositions 1.5 and 1.1 (1). �

1.5. Appell-Lerch series and functional equations. In the literature, every
Appell-Lerch series is associated with an order k as indicated in (0.1). In addition
to the decomposition formula of Rk in terms of R1 as given in (0.2), it is useful to
recall the following important

Theorem 1.2 (M. Lerch [16]). Let k ∈ N∗ and let Rk(z, w | τ) be as in (0.1). Then:

(1.25) Rk(z, w | τ) =

k−1∑
s=0

Cs(z, w | τ)R1(kw +
k + kτ

2
, kz + sτ − k + kτ

2
| kτ) ,

where

(1.26) Cs(z, w | τ) = e
(
kz + sw + (s− 5k

8
+

1

8
)τ
) θ(kz + (s+ k

2 )τ | kτ)

θ(kw − 1
2 | kτ)

.

Proof. This is due to M. Lerch [16, ??], who gave the following expression for
Cs(z, w):

Cs(z, w | τ) = e
(
kz + (s− k

2
)w + (s− k +

1

8
)τ +

1

4
)
ϑ3(kz + sτ | kτ)

ϑ1(kw | kτ)
.

In view of the relations in (1.14) and (1.16), this is equivalent to the above expression
stated in (1.26). �
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In the whole paper, we shall consider only the case of k = 1. Write ϑ3 in terms
of θ as in (1.16), and consider the functional equation

(1.27) θ(z | τ) = e(z) θ(z + τ | τ) .

One obtains from (0.4) that

(1.28)
R1(z, w | τ)

θ(z + τ
2 | τ)

− e(w − z − τ

2
)
R1(z + τ, w | τ)

θ(z + 3
2τ | τ)

= 1 ,

what suggests the following

Definition 1.3. For all (z, w) ∈ C2 such that neither w nor w−z belong to Z⊕τZ,
define

(1.29) L(z, w | τ) =
R1(w − z − τ

2 + 1
2 , w | τ)

θ(w − z + 1
2 | τ)

.

Given τ ∈ H, let πτ be the associated real parametrization of C, that is the map
defined from R2 onto C by πτ (z0, z1) = z = z0 + z1τ . In this way, it is possible
to see L(z, w | τ) as a function of τ possessing four real parameters z0, z1, w0 and
w1. We shall study the asymptotic behavior of this function in relation to these

parameters when τ
a.v.−→ r ∈ Q. If Rτ = πτ (R2), one sees that Rτ will be reduced

into the real axis when τ = r, so our study concerns the platitude of the parameters
space C2 towards R2.

Definition 1.4. Let πτ as in the above, Rτ = πτ (R2), Zτ = πτ (Z2), and let

(1.30) Ω = (−1

2
,

1

2
]× [−1

2
,

1

2
) , Ωτ = πτ (Ω) .

We define

(1.31) R2,∗
1⊕τ =

{
(z, w) ∈ Rτ × Rτ : w 6= 0, w 6= z mod Zτ

}
and

(1.32) Ω2,∗
1⊕τ = R2,∗

1⊕τ ∩
(
Ωτ × Ωτ

)
.

To any given (`,m) ∈ Z2 can be associated the translation (a, b) 7→ (a+ `, b+m)
on R2. This gives rise to the usual action of the (sub-)group Zτ on Rτ . By extending

this action on R2,∗
1⊕τ , one sees that the corresponding fundamental domain is merely

Ω2,∗
1⊕τ . With regard to the effect of this action on L(z, w | τ), we notice the following

Proposition 1.7. The following relations hold for (z, w) ∈ R2,∗
1⊕τ :

(1.33) L(z + `, w | τ) = L(z, w +m+ nτ | τ)

for all (`,m, n) ∈ Z3, and

(1.34) L(z, w | τ) + e(z)L(z − τ, w | τ) = 1 .

Proof. (1) From (0.3) (with k = 1) and (1.27), it follows that L(z, w + τ | τ) =
L(z, w | τ). Furthermore, one sees that both R1 and θ are left invariant when
their respective arguments z and w are increased by one. This implies that L(z +
1, w | τ) = L(z, w + 1 | τ) = L(z, w | τ). Thus, one gets (1.33).

(2) This is equivalent to (1.28). �
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Let n ∈ Z>0, and let

(1.35) Pn(z | τ) =

n−1∑
k=0

(−1)k e
(
k(z + nτ − k − 1

2
τ)
)
.

By iterating the functional equation in (1.34), one gets that

L(z + nτ,w | τ) = 1− e(z + nτ)L(z + (n− 1)τ | τ) = ... ,

what gives

(1.36) L(z + nτ,w | τ) = Pn(z | τ) + (−1)n e
(
n(z +

n+ 1

2
τ)
)
L(z, w | τ) .

Replacing z with z − nτ in both sides of (1.36) yields that

(1.37) L(z − nτ,w | τ) = P−n(z | τ) + (−1)n e
(
−n(z +

−n+ 1

2
τ)
)
L(z, w | τ) ,

where

P−n(z | τ) = (−1)n+1 e
(
n(−z +

n− 1

2
τ)
)
Pn(z − nτ | τ) .

By using the definition of Pn(z | τ) in (1.35), one can find that

(1.38) P−n(z | τ) = −
n∑
k=1

(−1)k e
(
−k(z − nτ − −k − 1

2
τ)
)
.

Proposition 1.8. Let n ∈ Z, ζ ∈ U, and let (z, w) ∈ R2,∗
1⊕τ . Then L(z+nτ,w | τ) ∈

T̃ζ if, and only if, L(z, w | τ) ∈ T̃ζ .

Proof. Assume that n ∈ Z>0, and consider L(z±nτ,w | τ) instead of L(z+nτ,w | τ).
By (1.35) and (1.38), both P±(z | τ) are analytic for τ ∈ C, so they belong to Gζ .
Moreover, by Proposition 1.5, one knows that

(−1)n e
(
±n(z +

±n+ 1

2
τ)
)
∈ Tζ ∩Gζ .

Since both Tζ and Gζ are stable for the product of functions (see Proposition 1.1
(1)), one obtains the desired equivalence with the help of the relations in (1.36) and
(1.37). �

1.6. Main result and basic steps of the proof. The goal of the rest of this
paper is to obtain the following

Theorem 1.3. Let (z, w) ∈ Ω2,∗
1⊕τ , and consider f(q) = L(z, w | τ) be given in

(1.29). Then f ∈M except in the following cases:

(1) z ∈ { 12 ,
1
2 −

τ
2 ,−

τ
2} and w ∈ { 12 ,

1
2 −

τ
2 ,−

τ
2}, in which case f is a constant

function.
(2) z ∈ { 12 ,

1
2 −

τ
2 ,−

τ
2} and w /∈ { 12 ,

1
2 −

τ
2 ,−

τ
2}, in which case f is a false

theta-type function that is not analytic at any τ = r ∈ Q.

As to the proof of Theorem 1.3, letting k = 1 in the middle expression of (0.1)

and expanding this with respect to q implies that R1(z, w | τ) ∈ T0 when q
a.r.−→

0 exponentially. By considering both Proposition 1.1 (2) and Lemma 1.1, the
expression in (1.29) yields that L(z, w | τ) ∈ T0. To treat any root of unity instead
of 0, the step to be followed is to find a modular-like formula like as (1.20) for
the θ-function. We shall see that such formula can be obtained by a viewpoint of
the analytic theory of q-difference equations. Indeed, to the functional equation in
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(1.34) corresponds a singular q-difference that admits two natural solutions coming
from a same formal power series. One of these solutions being L(z, w | τ), the other,
denoted in the below by G(z | τ), can be expressed by means of Mordell integral.
This is to say, a certain Stokes analysis will give some modular-like relation. After
all that, we shall consider the analytic continuation of G(z | τ) on one hand and the
linear fractional transformations on the other hand. In this way, we shall complete
the proof in §3.8.

Finally, in view of the functional relations in (1.33) and Proposition 1.8, Theorem
1.3 implies the following

Corollary 1.3. Let (z, w) ∈ R2,∗
1⊕τ , and consider f(q) = L(z, w | τ).

(1) If z /∈ { 12 ,
1
2 −

τ
2 ,−

τ
2} mod Z⊕ τZ, then f ∈M.

(2) Otherwise, f is either a finite combination of e(λτ) with λ ≥ 0 or a false
theta-type function that is not regular at any τ = r ∈ Q. 2

1.7. Symmetry on parameters and generate cases. Letting k = 1 and taking
−n instead of n in the summation formula of (0.1) yields that

(1.39) R1(z, w | τ) = −e(−w)R1(τ − z,−w | τ) .

Furthermore, letting k = 1 and s = 0 in (1.26) gives that

C0(z, w | τ) = e(z − τ

2
)
θ(z + τ

2 | τ)

θ(w − 1
2 | τ)

=
θ(z − τ

2 | τ)

θ(w − 1
2 | τ)

.

Thus, by (1.25), one finds that

(1.40) R1(z, w | τ) =
θ(z − τ

2 | τ)

θ(w − 1
2 | τ)

R1(w +
τ

2
+

1

2
, z − τ

2
− 1

2
| τ) .

Proposition 1.9. The following identities hold for (z, w) ∈ R2,∗
1⊕τ :

(1.41) L(z − τ, w | τ) = e(−z)L(−z − τ,−w | τ)

and

(1.42) L(z − τ, w | τ) = e(−z)L(−z − τ, w − z | τ) .

Proof. By using (1.29), one deduces respectively (1.41) from (1.39) and (1.42) from
(1.40). �

The identity in (1.41) will be useful for finding the special values under the
condition 2w ∈ Z⊕τZ; see §3.7. Beside, by (1.34), the relation in (1.42) is equivalent
to the following one:

(1.43) L(z − τ, w | τ) + L(−z, w − z | τ) = 1 .

This last identity permits to interchange the conditions w 6∈ Z ⊕ τZ and z − w /∈
Z⊕τZ, to what the parameters z and w are assumed to be subject in Theorem 1.3.

By using (0.1) with k = 1 and (1.29), one finds the following residues at w = 0
for R1 and L:

Res
(
R1(z, w | τ) : w = 0

)
=

i

2π
and

Res
(
L(z, w | τ) : w = 0

)
=

i

2π θ(−z + 1
2 | τ)

.

This together with (1.43) suggest us to introduce the following
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Definition 1.5. (1) For any z ∈ C, we define

(1.44) R1(z | τ) = R∗1(z, 0 | τ) = lim
w→0

(
R1(z, w | τ)− i

2πw

)
.

(2) If z /∈ Z⊕ τZ, we define

(1.45) L(z | τ) = L∗(z, 0 | τ) = lim
w→0

(
L(z, w | τ)− i

2πw θ(−z + 1
2 | τ)

)
and

(1.46) L∗(z | τ) = L∗(z, z | τ) = lim
w→0

(
L(z, z + w | τ) +

i

2πw θ(−z + 1
2 | τ)

)
.

Since 1
θ(−z+ 1

2 | τ)
satisfies the homogeneous equation associated with (1.34), namely

y(z) + e(z) y(z − τ) = 0, one finds that L(z, w | τ)− i
2πw θ(−z+ 1

2 | τ)
satisfies (1.34).

This implies that

(1.47) L(z | τ) + e(z)L(z − τ | τ) = 1 .

Similarly, one obtains that

(1.48) L∗(z | τ) + e(z)L∗(z − τ | τ) = 1 .

Proposition 1.10. The following relations holds for z /∈ Z⊕ τZ:

(1.49) L(z | τ) =
1

θ(−z + 1
2 | τ)

(
R1(−z − τ

2
+

1

2
| τ)− i

2π

θ′(−z + 1
2 | τ)

θ(−z + 1
2 | τ)

)
,

where θ′(−z+ 1
2 | τ) denotes the derivative of θ(z | τ) with respective to the variable

z at −z + 1
2 , and

(1.50) L(z | τ) = 1− L∗(−z − τ | τ) .

Proof. (1) By observing that, as w → 0,

R1(w − z − τ

2
+

1

2
, w | τ) = R1(−z − τ

2
+

1

2
, w | τ) +O(w) ,

one deduces from (1.44) that

R1(w − z − τ

2
+

1

2
, w | τ) = R1(−z − τ

2
+

1

2
| τ) +

i

2π w
+O(w) .

Thus, considering the second order Taylor series of θ(w− z+ 1
2 | τ) at w = 0 allows

one to write the relation in (1.29) into the following form:

L(z, w | τ) =
R1(−z − τ

2 + 1
2 , w | τ) + i

2π w

θ(−z + 1
2 | τ)

(
1−

θ′(−z + 1
2 | τ)

θ(−z + 1
2 | τ)

w
)

+O(w) .

This implies immediately (1.49).
(2) This follows immediately from (1.43). �

In view of (1.50), one will consider only the function L(z | τ). Theorem 1.3 can
be completed as follows.

Theorem 1.4. Given z ∈ Ωτ \ {0}, let f(q) = L(z | τ). Then f ∈M except when
z ∈ { 12 ,

1
2 −

τ
2 ,−

τ
2}. Moreover, the following identities hold:

(1.51) L(
1

2
| τ) = 1 , L(

1

2
− τ

2
| τ) = L(−τ

2
| τ) =

1

2
.
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By using the functional equation in (1.47), one obtains that

L(z | τ) =

n−1∑
k=0

(−1)ke
(
kz − 1

2
k(k − 1)τ

)
+ (−1)ne

(
nz − 1

2
n(n− 1)τ

)
L(z − nτ | τ)

for all positive integer n. Thus, one deduces from Theorem 1.4 the following state-
ment, which completes Corollary 1.3.

Corollary 1.4. Given z ∈ (R⊕ τR) \ (Z⊕ τZ), let f(q) = L(z | τ).

(1) If z /∈ { 12 ,
1
2 −

τ
2 ,−

τ
2} mod Z⊕ τZ, then f ∈M.

(2) Otherwise, there exists a finite numbers of pairs (cn, λn) ∈ R × R≥0, 0 ≤
n ≤ N , such that f =

∑N
k=0 cn e(λnτ). 2

The above Theorem 1.4 will be proved in §3.9.

2. Asymptotic behavior of Mordell integral

Let (z, w) ∈ R2,∗
1⊕τ , and consider L(z, w | τ) in (1.29). If one writes x = e(z),

u = e(w) and

(2.1) L(x, u; q) = L(z, w | τ) ,

where q = e(τ), then the equation in (1.34) becomes

(2.2) y(x) + x y(
x

q
) = 1 .

This q-difference equation admits x = 0 as singular irregular point, following [26]
and [33].

Let Ê(x; q) =
∑
n≥0 q

−n(n−1)/2 xn. This is a formal solution of (2.2), and is

divergent for all x 6= 0 in C because of |q| < 1. In §3, the function L(x, u; q) of (2.1)

will be seen as a q-Borel sum of Ê(x; q) defined by (A.10); see (3.1).
In this section, we will consider the q-Borel-sum of this series defined with the

help of (A.9). Indeed, applying this together with (A.6) to Ê(x; q) yields the

following q-sum over the whole Riemann surface C̃∗ of the logarithm:

(2.3) G(x; q) =

∫ ∞
0

ω(ξ/x; q)

1 + ξ

dξ

ξ
.

In the above, the integration path is any straight-line starting from 0 to infinity in
the principal cut-plane C \ (−∞, 0]. One can verify that G(x; q) is solution of the
q-difference equation included in (2.2), as said by Proposition A.3.

Putting ξ = eσ in the integral of (2.3) yields the following expression:

G(x; q) =
2 q−3/8√

2πx ln(1/q)

∫ ∞
−∞

e(σ−log(qx))
2/2 ln q

cosh(σ/2)
dσ ,

where the integration is taken along a horizontal line with a distance at most π from
the real axis. Thus, the integral appearing in (2.3) is of Mordell type; see [18], [1]
and [38].

Proposition 2.1. The function G(x; q) satisfies the following modular-type rela-
tion:

(2.4) G(
x

q
; q) = 2πi ω(eπix; q)G(e2πi

log(xe2πi)
ln q ; e

4π2

ln q ) .
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The proof will be given in §4.3, by considering the link between both q-Borel-sum
functions G(x; q) and L(x, u; q); see (3.2) and its equivalent form (4.8).

Remember that in (2.3), G(x; q) is defined for x ∈ C̃∗ and q ∈ (0, 1). In §2.1,
we shall consider the analytic continuation of G(x; q) with respect to q when the
“parameter” x represents a germ of analytic function of q; see Theorem 2.1. This
permits to find the analytic obstruction for the composed function to become ana-
lytic at q = 1 in C; see Theorem 2.2. One will see that the analyticity depends of
whether the parameter x belongs to the set of half-periods {±qn : 2n ∈ Z}.

In line with Theorem 2.1, we will define the function G(z | τ) and consider the

asymptotic behavior of this function for τ
a.v.−→ 0 when z ∈ Rτ = R ⊕ τR and

τ ∈ C \ [0,−i∞). See Definition 2.1 and Theorem 2.3 in §2.3. This last theorem
together with the modular-like relation (2.4) and its equivalent form (2.30) give the

asymptotic behavior of G(z | τ) for τ
a.v.−→ i∞; see Theorem 2.4 in §2.4.

The last three subsections of this section will concern the evaluation of G(z | τ)
when z represents one half-period or when τ is reduced to a rational number.
Especially, we will give a proof of a law of reciprocity on some generalized Gaussian
sums; see Theorem 2.5 in §2.6.

2.1. Analytic continuation of Mordell integral. The function G(x; q) defined
by (2.3) is not uniform for the argument x. Indeed, if the integration-path [0,∞)
is replaced with [0,∞e−2πi) in (2.3), the corresponding integral gives G(xe2πi; q).
Applying the Cauchy residue theorem to this integral over the contour composed
of two half straight-lines −[0,∞) (= [∞, 0]) and [0,∞e−2πi) yields that

(2.5) G(xe2πi; q) = G(x; q)− 2πiω(
e−πi

x
; q) .

Let ϕ denote a germ of analytic function at t = 0 ∈ C such that ϕ(0) 6= 0. We

shall choose an argument of ϕ(0), consider ϕ as an analytic function valued in C̃∗
and then get the composed function G(ϕ(ε); e−ε) for ε ∼ 0+ in R>0. In view of
(2.5), we shall assume that arg(ϕ(0)) ∈ (−π, π].

Theorem 2.1. For any R > 0, let ∇R = {ε ∈ C̃∗ : |ε| < R, | arg ε| < 3π/2}. Let ϕ
to be a germ of analytic function at t = 0 in C such that ϕ(0) 6= 0, and define

(2.6) ϕ(ε) = G(ϕ(ε); e−ε)

for all enough small ε > 0. Then ϕ can be continued to be an analytic function in
∇R for some suitable R > 0. Moreover, one has the following properties.

(1) If arg(ϕ(0)) ∈ (−π, π] and ϕ(0) 6= −1, then ϕ(ε) admits a Gevrey asymp-
totic expansion as ε→ 0 in ∇R and

ϕ(ε) =
1

1 + ϕ(0)
+O(ε) .

(2) If ϕ(0) = −1 = eiπ, ϕ(t) = −et(ψ(t)+ 1
2 ) and

(2.7) ϕ̃(ε) = ϕ(ε) + i

√
π

2ε
e−

ε
2 (ψ(ε))2 ,

then ϕ̃(ε) admits a Gevrey asymptotic expansion as ε→ 0 in ∇R and

ϕ̃(ε) = 1 + ϕ′(0) +O(ε) .
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Proof. With the help of (A.8), writing x = es and ξ = eσ+s−
ε
2 in (2.3) yields that

G(es; e−ε) =
1√
2πε

∫ ∞+ic

−∞+ic

e−
σ2

2ε

1 + eσ+s−
ε
2
dσ ,

where the real number c will be chosen in such manner that c + =(s) ∈ (−π, π).
Letting s = log(ϕ(ε)), the above integral shows that

(2.8) ϕ(ε) =
1√
2πε

∫ ∞+ic

−∞+ic

e−
σ2

2ε

1 + ϕ(ε) eσ−
ε
2
dσ .

If R > 0 is chosen enough small such that ϕ(t) is well defined in the disc |t| < R, one
can get an analytic function for ε ∈ ∇R by replacing the horizontal integration-path
with oblique lines L in (2.8) as shown in the the following figure.

-−1 0
∞

•

•

•

•

•

•

- - - - -
−∞+ ic ∞+ ica

a+ 4πi

a+ 6πi L

The values “•” of log(− 1
ϕ(ε) )−

ε
2

constitue the barrier for L
�*

�*
�*

�*
�*
�*
�*

�*
�*

Figure 1. The horizontal line (−∞+ ic,∞+ ic) can be replaced
by an oblique line L, which is not vertical !

Especially, when arg(ϕ(0)) ∈ (−π, π] and ϕ(0) 6= −1, applying Proposition A.1
shows that ϕ has a Gevrey asymptotic expansion. Indeed, let σ̃ = σ2/2, write the
integration path as union of two segments both starting from 0 to infinity on the
two sides of the plan, and define

(2.9) F (ε, σ̃) =
1

1 + ϕ(ε) eσ−
ε
2

+
1

1 + ϕ(ε) e−σ−
ε
2
.

It follows that

ϕ(ε) =
1√
2πε

∫ ∞
0

F (ε, σ̃)e−
σ̃
ε
dσ̃√
2σ̃

,(2.10)

where the integration-path, initially equal to [0,+∞) for arg(ϕ(0)) 6= π, needs to
be deformed with a half-circle when arg(ϕ(0)) becomes π; see Figure 2 in the below.

Therefore, applying Proposition A.1 to this last integral in (2.10) yields the
expansion of ϕ. Namely, since

F (0, σ̃) =
2

1 + ϕ(0)
(1 +O(σ̃)),

∫ ∞
0

e−
σ̃
ε
dσ̃√
σ̃

= Γ(
1

2
)
√
ε =
√
πε ,

one finds the limit of ϕ(ε) for ε→ 0.
Otherwise, suppose that ϕ(0) = −1 = eπi, so that one can write ϕ(ε) =

−eε(ψ(ε)+ 1
2 ), with ψ(ε) ∈ C{ε}. From (2.8), it follows that

(2.11) ϕ(ε) =
e−

1
2 ε(ψ(ε))

2

√
2πε

Ψ(ε), Ψ(ε) =

∫ ∞+ic

−∞+ic

e−
σ2

2ε +ψ(ε)σ

1− eσ
dσ ,



APPELL-LERCH SERIES VIEWED AS MOCK THETA FUNCTIONS 19

-I
0
-

∞

•

•

•

•

•

?
a

a+ 2πi

−a
- - -

-

a = ln(− 1
ϕ(0) ) < 0

-I
0
-

∞
•

•

•

•

?
a

a+ 2πi

−a
- - -

-

a = ln(− 1
ϕ(0) ) > 0

Figure 2. The segment [0,+∞) is deformed with a half-circle
when arg(ϕ(0)) = π and ϕ(0) 6= −1 !

where c ∈ (−2π, 0). By making use of Residues Theorem, one can find that

(2.12)
(∫ ∞+ic

−∞+ic

+

∫ −∞−ic
∞−ic

)e−σ22ε +ψ(ε)σ
1− eσ

dσ = −2πi .

Let

(2.13) H(ε, σ) =
1

2

( eψ(ε)σ
1− eσ

+
e−ψ(ε)σ

1− e−σ
)
, I(ε) =

∫ ∞+ic

−∞+ic

H(ε, σ) e−
σ2

2ε dσ .

By observing that

I(ε) =
1

2

(∫ ∞+ic

−∞+ic

−
∫ −∞−ic
∞−ic

)e−σ22ε +ψ(ε)σ
1− eσ

dσ ,

from (2.12) one gets the following expression for the function Ψ defined in (2.11):

Ψ(ε) = I(ε)− πi ;

consequently, one finds that

(2.14) ϕ(ε) =
e−

1
2 ε(ψ(ε))

2

√
2πε

(I(ε)− πi) , ϕ̃(ε) =
e−

1
2 ε(ψ(ε))

2

√
2πε

I(ε) .

Moreover, the function H(ε, σ) defined by (2.13) can be continued to be an even
analytic function for σ ∈ C \ (2πiZ∗), with H(ε, 0) = 1

2 − ψ(ε). Thus, one can
choose c = 0 in the integral in (2.13), in such manner that one obtains the Gevrey
asymptotic expansion of I(ε) as ε→ 0, with

I(ε) ∼ H(0, 0)

∫ ∞
−∞

e−
σ2

2ε dσ =
√

2πε
(1

2
− ψ(0)

)
=
√

2πε
(
1 + ϕ′(0)

)
.

This finishes the proof. �

2.2. Analytical obstruction and half-periods. The following theorem states
for what functions ϕ the corresponding composite function ϕ(ε) defined by (2.6)
represents an analytic function in a neighborhood of ε in C.

Theorem 2.2. In Theorem 2.1, the Gevrey function ϕ(ε) or ϕ̃(ε) can be continued
to be analytic at ε = 0 in C if, and only if, there exists some n ∈ Z such that

ϕ(t) = e(n+
1
2 )t or ϕ(t) = eiπ+

n
2 t,

respectively.
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Proof. Let

∇−R = {ε ∈ ∇R : arg ε ∈ (−3π

2
,−π

2
)}.

The function ϕ can be continued to be a germ of analytic function at ε = 0 if, and
only if, ϕ(εe2πi) = ϕ(ε) in ∇−R. Consider the integral representation of ϕ(ε) in (2.8)
and express the difference (ϕ(εe2πi)−ϕ(ε)) by a contour integral. By the Residues
Theorem, one finds that, for ε < 0 enough closed to zero,

ϕ(εe2πi)− ϕ(ε) = −2πi
∑
k≥0

(
e−

(a−2kπi)2

2ε − e−
(a+2(k+1)πi)2

2ε

)
,(2.15)

where a = log(− 1
ϕ(ε) )−

ε
2 , −π < =(a) < c (see Figure 1). Let α = <(a) and, for all

integer k, let αk = =(a)− 2kπ; it follows that

e−
(a−2kπi)2

2ε = e
α2
k−α

2

ε e−
ααk
ε i .

Thus, by considering the dominant terms in the right-hand side of (2.15) as ε→ 0+,
one finds that ϕ(εe2πi) = ϕ(ε) if and only if

α2
k = α2

1−k , e
ααk
ε i = e

αα1−k
ε i

for all k ∈ Z≥0. It follows that α0 = π and 2α ∈ Z, which gives that a = πi + n
2 ε

for some n ∈ Z.
Beside, when ϕ(0) = −1, we consider the integral representation of I(ε) given

by (2.13). By writing the function H(ε, σ) in the following form:

H(ε, σ) =
1− e(1−2ψ(ε))σ

2(1− eσ)
eψ(ε)σ ,

it follows that H(ε, σ) is analytic for all σ ∈ C if, and only if 2ψ(ε) ∈ Z; thus, in
view of (2.14), one finds the condition for ϕ̃(ε) to be analytic at ε = 0 in C. �

The choice arg(ϕ(0)) ∈ (−π, π] in Theorem 2.1 can be replaced with the opposite
choice arg(ϕ(0)) ∈ [−π, π). Indeed, the change ξ 7→ 1

ξ of the integration-variable in

(2.3) implies that

(2.16) G(
x

q
; q) =

1

x
G(

1

qx
; q) .

Remark 2.1. Let ϕ(t) be as given in Theorem 2.1 and let

ϕ1(t) =
e2t

ϕ(t)
, ϕ1(ε) = G(ϕ1(ε); e−ε) .

(1) If ϕ(0) 6= −1 and arg((ϕ(0)) ∈ (−π, π], then arg(ϕ1(0)) ∈ [−π, π) and
ϕ1(ε) admits a Gevrey asymptotic expansion as ε→ 0 in some sector ∇R.

(2) If ϕ(0) = −1 = eπi, ϕ(t) = −e(ψ(t)− 1
2 )t and

ϕ̃1(ε) = G(ϕ1(ε); e−ε)− i
√
π

2ε
e−

ε
2 (ψ(ε)−1)(ψ(ε)+3) ,

then ϕ1(0) = e−πi and ϕ̃1(ε) admits a Gevrey asymptotic expansion as
ε→ 0 in some sector ∇R.
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Furthermore, if ϕ̂(ε) and ϕ̂1(ε) are the asymptotic expansion of ϕ and ϕ1 or ϕ̃
and ϕ̃1 respectively, the following identity holds in the algebra C[[ε]] of formal power
series of the variable ε:

(2.17) ϕ̂1(ε) = e−ε ϕ(ε) ϕ̂(ε) .

Proof. The relation in (2.17) follows immediately from (2.16). We omit the details.
�

Thus, for any given germ of analytic function ϕ(t) at t = 0 in C such that
ϕ(0) 6= −1, the asymptotic expansion of G(ϕ(ε); e−ε) can be found by considering
either arg

(
ϕ(0)

)
∈ (−π, π] or arg

(
ϕ(0)

)
∈ [−π, π). However, by (2.5), one can

notice that, when ϕ(0) ∈ (−∞, 0), the choice of arg((ϕ(0)) = π or −π yields
one plat function with respect to ε; in other words, the difference between the
corresponding functions becomes infinitely small as ε = − log q → 0.

2.3. Asymptotic behavior of Mordell integral at unity. Theorem 2.1 implies
that, if ϕ(t) is defined and analytic in the whole complex plane, then the correspond-
ing function G(ϕ(ε); e−ε) can be continued to be an analytic function in ∇R, with
R =∞. Thus, for any given (z0, z1) ∈ C2, letting ε = −2πiτ and ϕ(ε) = e(z0+z1τ)
yields that the function τ 7→ G(e(z0 + z1τ); e(τ)) can be continued to be analytic

for all τ ∈ Ĥ, where

Ĥ = {τ ∈ C̃∗ : −π < arg τ < 2π}.
Here, the Poincaré’s half-plane H is identified to be a subset of H̃.

In the rest of this paper, we will make use of the following notation:

(2.18) H̃ = {τ ∈ C∗ : −π
2
< arg τ <

π

3
}
(
= C \ [0,−i∞)

)
.

It is worth noticing that H̃ contains the real axis excepted the point at origin.

Definition 2.1. If z = z0 + z1τ , with (z0, z1) ∈ C2 and τ ∈ H or, more generally,

τ ∈ H̃, we define

(2.19) G(z | τ) = G(e(z); e(τ)), ω(z | τ) = ω(e(z); e(τ)).

Especially, by the definition of ω(u; q) in (A.8), one can obtain that

(2.20) ω(z | τ) =
1

2π

√
i

τ
e
( 1

2τ
(z − τ

2
)2
)
.

It follows that

ω(z + 1 | τ) = −e
(z + 1

2

τ

)
ω(z | τ)

and

(2.21) ω(z + τ) = e(z)ω(z | τ) = ω(−z | τ) .

The relation in (2.5) can be read as follows:

(2.22) G(z + 1 | τ) = G(z | τ)− 2πi ω(−z +
1

2
| τ) .

This suggests us to consider only the case of <(z0) ∈ (− 1
2 ,

1
2 ].

Theorem 2.3. Given z = z0 + z1τ with (z0, z1) ∈ C2, let G(z | τ) as in (2.19), and

let H̃ as in (2.18). Then τ 7→ G(z | τ) represents an analytic function for τ ∈ H̃
possessing the following asymptotic behavior as τ → 0 there.
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(1) If <(z0) ∈ (− 1
2 ,

1
2 ] and z0 6= 1

2 , then G(z | τ) admits a Gevrey asymptotic

expansion as τ → 0 in H̃, with

(2.23) lim
τ
a.v.−→0

G(z | τ) =
1

1 + e(z0)
.

(2) If z0 = 1
2 , then the function G(z | τ) can be put into the following form:

(2.24) G(z | τ) = − i
2

√
i

τ
e
(τ

2
(z1 +

1

2
)2
)

+ g(z1 | τ) ,

where g(z1 | τ) admits a Gevrey asymptotic expansion as τ → 0 in H̃, with

lim
τ
a.v.−→0

g(z1 | τ) = 1 + z1 .

Proof. It suffices to apply Theorem 2.1, by observing that

ε = −2πiτ, ϕ(t) = e(z0) e−z1t, ϕ(0) = e(z0), ψ(t) = −1

2
− z1.

�

2.4. Asymptotic behavior of Mordell integral at origin. To every q = e(τ)
with τ ∈ H will be associated the pair (τ1, q1) as follows:

(2.25) q1 = e(τ1), τ1 = −1

τ
.

It is obvious to see that τ
a.v.−→ i∞ in H if, and only if, τ1

a.v.−→ 0 there; in this case,
q goes to 0 exponentially rapidly.

From the functional equation of G(x; q) in (2.2), one finds that

(2.26) G(z | τ) = 1 + e(z +
1

2
)G(z − τ | τ) ;

thus, one can consider only the case of <(z1) ∈ (− 1
2 ,

1
2 ].

Theorem 2.4. Let z = z0 +z1τ , with z0, z1 ∈ C. One has the following properties.

(1) If <(z1) ∈ (− 1
2 ,

1
2 ] and z1 6= 1

2 , then G(z | τ) can be put into the following
form:

(2.27) G(z | τ) = 1− i
√
i

τ
e
( (z − 1

2 + τ
2 )2

2τ

)
ϕ(τ) ,

where ϕ(τ) admits a Gevrey asymptotic expansion as τ
a.v.−→ i∞ in H with

(2.28) lim
τ
a.v.−→i∞

ϕ(τ) =
e(z1)

1 + e(z1)
.

(2) If z1 = 1
2 , then G(z | τ) can be put into the following form:

(2.29) G(z | τ) = 1− 1

2
e(z0 +

τ

2
)− i

√
i

τ
e
( (z0 − 1

2 + τ)2

2τ

) (
1− g(−z0 | −

1

τ
)
)
,

where g is the function defined in Theorem 2.3 (2) by (2.24).

Proof. We shall apply Theorem 2.3 together with the modular-like relation given
in (2.4). By making use of the notation in (2.25), one can write (2.4) into the
following equivalent form:

(2.30) G(z − τ | τ) = 2πi ω(z +
1

2
| τ)G(−(z + 1)τ1 | τ1) .
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As z = z0 + z1τ , from (2.21) it follows that

(2.31) G(z | τ) = 2πi ω(−z − 1

2
| τ)G(z1 + 1− (z0 + 1)τ1 | τ1) .

By using both (2.26) and (2.22) with q1 instead of q, one finds successively that

G(z1 + 1− (z0 + 1)τ1 | τ1) = e(−z1 + z0τ1)
(
1−G(z1 + 1− z0τ1 | τ1)

)
= e(−z1 + z0τ1)

(
1−G(z1 − z0τ1 | τ1)

+2πiω(−1

2
− z1 + z0τ1 | τ1)

)
.

A direct computation shows that

ω(−z − 1

2
| τ) e(−z1 + z0τ1) = −ω(−z +

1

2
| τ)

and that

ω(−z +
1

2
| τ)ω(−1

2
− z1 + z0τ1 | τ1) =

1

4π2
.

Thus, the relation in (2.31) can be expressed as follows:

G(z | τ) = 1− 2πi ω(−z +
1

2
| τ)
(
1−G(z1 − z0τ1 | τ1)

)
= 1− i

√
i

τ
e
( (z − 1

2 + τ
2 )2

2τ

) (
1−G(z1 − z0τ1 | τ1)

)
.(2.32)

When <(z1) ∈ (− 1
2 ,

1
2 ] and z1 6= 1

2 , one writes ϕ(τ) = 1 − G(z1 − z0τ1 | τ1) to
obtain (2.27) from (2.32). The relation in (2.28) follows from (2.23) of Theorem 2.3

(2), in view of the fact that τ
a.v.−→ i∞ iff τ1

a.v.−→ 0.
When z1 = 1

2 , (2.24) with τ1 = − 1
τ implies that

G(
1

2
− z0τ1 | τ1) = − i

2

√
τ

i
e
(
−

(z0 − 1
2 )2

2τ

)
+ g(−z0 | −

1

τ
)

which allows one to deduce (2.29) from (2.32). �

2.5. Values of Mordell integral at half-periods. We shall consider some spe-
cial values of the function g(z1 | τ) introduced in the above by (2.24). Letting
z = 1

2 + z1τ in (2.26) gives

−e(z1τ)G(z − τ) +G(z | τ) = 1,

that together with (2.24) imply that

(2.33) g(z1 | τ) = 1 + e(z1τ) g(z1 − 1 | τ) .

When z1 = 0 or 1
2 , one will find that

(2.34) g(0 | τ) = 1, g(
1

2
| τ) = 1 +

1

2
e(
τ

2
) ,

by considering the following

Remark 2.2. The following relations hold for all τ ∈ H:

(2.35) G(−τ
2
| τ) =

1

2
,

(2.36) G(±1

2
| τ) = 1∓ i

2

√
i

τ
e(
τ

8
) ,
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and

(2.37) G(±1

2
+
τ

2
| τ) = 1 +

1

2
e(
τ

2
)∓ i

2

√
i

τ
e(
τ

2
) .

Proof. Since G(− τ2 | τ) = G( 1√
q ; q), putting ϕ = ε

2 into (2.9) yields thatF (ε, σ̃) = 1,

so (2.12) gives (2.35). Another way to obtain that is to use (2.16) and the functional
equation (2.26).

Putting z = e(− 1
2 ) in (2.22) yields that

G(
1

2
| τ) = G(−1

2
| τ)− 2πi ω(0 | τ) .

By gathering (2.26) together with (2.16), one finds that

(2.38) G(e−πix; q) = 1 + x− xG(
eπi

x
; q) .

Applying this to x = 1 = e(0) gives that

G(
1

2
| τ) +G(−1

2
| τ) = 2 ,

which implies the values given in (2.36) for G(± 1
2 | τ).

Putting x = e( τ2 ) =
√
q in the relation (2.38) yields that

G(−1

2
+
τ

2
| τ) = 1 + e(

τ

2
)−√q G(

eπi
√
q

; q) = 2 + e(
τ

2
)−G(

1

2
+
τ

2
| τ) ,

where the last implication is obtained with the help of the functional equation
(2.26). Thus, by combining this with (2.22) for z = τ

2 , one obtains that

G(±1

2
+
τ

2
| τ) = 1 +

1

2
e(
τ

2
)∓ πi ω(−τ

2
| τ) ,

which are equivalent to (2.37). �

By (2.24) and (2.33), one finds that, for any integer n, every function g(n2 | τ)
can be expressed as polynomials of e(± τ2 ). Furthermore, by taking into account the
functional equations in (2.26) and (2.22), the above formulas in (2.35), (2.36) and
(2.37) allow one to obtain explicit expressions for the functions G(k+ (n+ 1

2 )τ | τ)

and G(k + 1
2 + n

2 τ | τ) when k, n ∈ Z. This shows that, as stated in Theorem
2.2, the corresponding functions ϕ(ε) and ϕ̃(ε) are all analytic at ε = 0 in C, with
ε = −2πiτ .

2.6. Reciprocity law for generalized Gauss sums. In order to evaluateG(z | τ)
for τ ∈ Q \ {0}, we let ζ = e(r), r = p

m ∈ (0, 1), (p,m) ∈ Z≥1 × Z≥1, p ∧m = 1. If
x = e(z), we define

(2.39) h(x; ζ) = h(z | r) =

m−1∑
n=0

xn ζn(n−1)/2

and

(2.40) d(x; ζ) = d(z | r) =

p−1∑
n=0

e
(m

2p
(n+

1

2
+

p

2m
+ z)2

)
.

By expanding

(n+
1

2
+

p

2m
+ z)2 = (

1

2
+

p

2m
+ z)2 + (2 +

p

m
+ 2z)n+ n(n− 1) ,
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it follows that

(2.41) d(x; ζ) = e
mπi
p ( 1

2+
p

2m+z)2 h(x1; ζ1) ,

where ζ1 = e(mp ) and x1 = −ζ1 e(mzp ).

The goal of this section is to express the value of G(z | r) in terms of h(z | r).

Lemma 2.1. Let r = p
m and d(z | r) as in the above. For any given z ∈ C,

(2.42) G(z + p | r) = G(z | r) + e(−1

8
)

√
m

p
d(z | r) .

Proof. Let q = ζ = e(r). By (2.22), it follows that, for all integer n,

G(z + n+ 1 | r) = G(z + n | r)− i
√
i

r
e
( 1

2r
(
1

2
+ z + n+

r

2
)2
)
,

what together with (2.40) imply (2.42), by noticing that −i
√
i = e(− 1

8 ). �

Theorem 2.5. The following identities hold for G(z | r), where r = p
m ∈ (0, 1),

p ∧m = 1.

(1) If mz + 1
2 /∈ Z, then:

(2.43) G(z | r) =
h(z + 1

2 | − r)− e(−
1
8 )
√

m
p d(z | r)

1 + e(mz)
.

(2) If mz = `+ 1
2 and ` ∈ Z, then:

(2.44) h(z +
1

2
| − r) = e(−1

8
)

√
m

p
d(z | r)

and

(2.45) G(z | r) =

∂
∂zh(z + 1

2 | − r)− e(−
1
8 )
√

m
p

∂
∂zd(z | r)

−2πim
.

Proof. Putting τ = r into the functional equation in (2.26) yields that

G(z +mr | r) = 1− e
(
z +mr

)
G(z + (m− 1)r | r)

= 1− e
(
z +mr

) (
1− e(z + (m− 1))G(z + (m− 2)r | r)

)
= ...

=

m−1∑
n=0

(−1)n e
(
nz − 1

2
n(n− 1)r

)
− e(mz)G(z | r) .

Thus, by using the function h(x; ζ) defined in (2.39), one gets that

(2.46) G(z + p | r) = −e(mz)G(z | r) + h(z +
1

2
| − r) .

(1) When e(mz) 6= −1, gathering (2.46) with (2.42) yields (2.43) .
(2) When e(mz) = −1, it follows that the relations in (2.46) and (2.42) must

be the same, so one finds the equality in (2.44). Furthermore, by taking the limit
z → z′ = 1

2m + `
m in (2.43) gives immediately (2.45). �

Remark 2.3. The identity in (2.44) is the so-called reciprocity theorem for gen-
eralized Gauss sums; see [9, p. 13, Theorem 1.2.2].
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2.7. Values of Mordell integral at real half-periods. In order to simplify, we
will write

(2.47) h1(z | ζ) =
1

2πi

∂

∂z
h(z | r), d1(z | ζ) =

1

2πi

∂

∂z
d(z | r) .

Thus, (2.45) can be read as follows:

(2.48) G(z | r) = − 1

m

(
h1(z +

1

2
| − r)− e(−1

8
)

√
m

p
d1(z | r)

)
.

Remark 2.4. (1) If p is even, then:

(2.49) h(−r
2

+
1

2
| − r)− e(−1

8
)

√
m

p
d(−r

2
| r) = 1 .

(2) If p is odd, then:

(2.50) h(−r
2

+
1

2
| − r) = e(−1

8
)

√
m

p
d(−r

2
| r)

and

(2.51) h1(−r
2

+
1

2
| − r)− e(−1

8
)

√
m

p
d1(−r

2
| r) = −m

2
.

(3) If m is even, then:

(2.52) h(0 | − r)− e(−1

8
)

√
m

p
d(±1

2
| r) = 2∓ e

(1

8
(3 +

p

m
)
)√m

p

and

(2.53) h(
r

2
| − r)− e(−1

8
)

√
m

p
d(±1

2
+
r

2
| r) = 2 + e(

p

2m
)
(
1∓ e(3

8
)
)√m

p
.

(4) If m is odd, then:

(2.54) h(0 | − r) = e(−1

8
)

√
m

p
d(±1

2
| r) ,

(2.55) h(
r

2
| − r) = e(−1

8
)

√
m

p
d(±1

2
+
r

2
| r) ,

(2.56) h1(0 | − r)− e(−1

8
)

√
m

p
d1(±1

2
| r) = −m

2

(
2∓ e

(1

8
(3 +

p

m
)
)√m

p

)
,

and

(2.57) h1(
r

2
| −r)−e(−1

8
)

√
m

p
d1(±1

2
+
r

2
| r) = −m

2

(
2+e(

p

2m
)
(
1∓e(3

8
)

√
m

p

))
.

Proof. This follows from Remark 2.2, with the help of Theorem 2.5 and (2.48).
Moreover, one sees that some of these formulas can be found by elementary method
as in [9, p. 44, 9 and 10 ]. �

Remark 2.5. When z = 0, there is no close-form for G(0 | r) but one can make
use of the following relation:

(2.58) G(0 | r) =
1

2

(
h(

1

2
| − r)− e(−1

8
)

√
m

p
d(0 | r)

)
.
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3. Asymptotic bahavior of Appell-Lerch series

As in [34] and [27], we will call a q-spiral any set of the form {aqn : n ∈ Z},
where a ∈ C∗. This set will be denoted as aqZ or [a; q]. By following (A.6) and

(A.10), to every given u ∈ C∗ \ [1; q] can be associated the q-Borel sum of Ê(x; q)

along the q-spiral [−u; q]. Let S [−u;q]Ê denote this sum-function, this is to say:

S [−u;q]Ê(x; q) =
∑

ξ∈[−u;q]

1

1 + ξ

1

θ( ξx ; q)
,

where θ(t; q) =
∑
n∈Z q

n(n−1)/2tn. By the functional relation

θ(qnt; q) = t−nq−n(n−1)/2θ(t; q) (n ∈ Z),

it follows that

S [−u;q]Ê(x; q) =
∑
n∈Z

1

1− uqn
1

θ(−ux ; q)
(−u
x

)n qn(n−1)/2 .

Comparing this with the definition of L(x, u; q) in (2.1) and the expression of
L(z, w | τ) in (1.29) gives that

(3.1) L(x, u; q) = S [−u;q]Ê(x; q) .

In other words, L(x, u; q) is the q-Borel sum of Ê(x; q) along the spiral [−u; q].
In §3.1 in the below, we will recall a modular-like relation for L(z, w | τ) that can

be found by a viewpoint of Stokes analysis on sum-functions of divergent power
series. By means of this formula, we will deduce, in §3.2, that L(z, w | τ) is of almost

theta-type for q
a.r.−→ 1; see Theorem 3.5. In order to extend this approach to any

root of unity, we will introduce, like in the classical theory of elliptic functions, a
family of linear fractional transformations associated to any given root of unity in
§3.3.

From §3.4, we shall consider the asymptotic behavior of L(z, w | τ) when q tends
to any non-trivial root of unity. By Theorem 3.6, we shall show that this function
can be decomposed by a natural manner into a Gevrey function plus a theta-type
function. This key result will be proved at the end of §3.5. In §3.6, we shall see
that, even the Gevrey part of L(z, w | τ) at each root ζ = e( pm ) has a finite limit,
this limit becomes increasing as m → ∞ except for very few special values of z.
These values are non-zero half-periods, for what the associated function L(z, w | τ)
is constant or false-theta; see Theorem 3.9 in §3.7. Finally, in §3.8, we will complete
the proof of Theorem 1.3.

3.1. Modularity viewed from Stokes phenomenon. The above sum-function
L(x, u; q) is the unique solution of the q-difference equation in (2.2) that is analytic
for x ∈ C∗ \ [u; q] and admits a simple pole at each point of the spiral [u; q]. Beside,
the Mordell integral G(x; q) of (2.3) is also a solution of (2.2) and a sum-function

of the q-Euler series Ê(x; q). Thus L(x, u; q) − G(x; q) satisfies the homogeneous
equation y(x) + xy(xq ) = 0 and is infinitely flat when x → 0. This is a Stokes

phenomenon as currently observed in the analytic theory of ODE. In this way, one
can find the following

Theorem 3.1. ( [38, Theorem 1.2]) Let C̃∗ be the Riemann surface of logarithm,

and let π : C̃∗ 7→ C∗ be the associated natural map. The following relation holds
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for all u ∈ C∗ \ qZ and x ∈ C̃∗ with π(x) ∈ C∗ \ (uqZ):

(3.2) L(x, u; q) = G(xe−2πi; q)− 2πi ω(
eπi

x
; q)L(e2πi

log x
log q , e2πi

log u
log q ; e

4π2

log q ).

Proof. Putting α = −π in [38, Theorem 1.2], one can find that fα(e−πi
√
q x,
√
q ) =

G(x; q) , which implies (3.2), for gλ(−√q x,√q ) = L(x, λ; q). �

The above relation in (3.2) will play an important role for what follows. Indeed,
this is a modular-like relation, for L(x, u; q) is expressed by means of the modular

variable (x1, u1, q1) =
(
e( log x

log q ), e( log u
log q ), e(− 2πi

log q )
)
.

Theorem 3.2. For all (z, w) ∈ R2,∗
1⊕τ ,

(3.3) L(z, w | τ) = G(z | τ) + C(z | τ)
(
L(
z

τ
,
w

τ
| − 1

τ
)− 1

)
,

where

(3.4) C(z | τ) = −2πi ω(
eπi

e(z)
; q) = −2πi ω(−z +

1

2
| τ) .

Proof. Using (2.1), (2.19) and (3.4) allows one to write the relation in (3.2) into
the following form:

(3.5) L(z, w | τ) = G(z − 1 | τ) + C(z | τ)L(
z

τ
,
w

τ
| − 1

τ
) .

Thus, one reduces (3.3) from the functional equation in (2.22) for G(z | τ). �

By considering the definition of w(z | τ) in (2.20) and the classical modular for-
mula for θ(x; q) [4, p. 626, (D.4.2)], the factor C(z | τ) defined in the above by (3.4)
has the following alternative expressions:

(3.6) C(z | τ) = −i
√
i

τ
e
( (z + τ

2 −
1
2 )2

2τ

)
=

1

τ

θ(− z
τ + 1

2 | −
1
τ )

θ(−z + 1
2 | τ)

.

Remind that the second expression requests that z /∈ Z⊕ τZ.
Beside, from the definition of L(z, w | τ) in (1.29), it follows that

(3.7) R1(z, w | τ) = θ(z +
τ

2
| τ)L(−z + w − τ

2
+

1

2
, w | τ) .

Theorem 3.3. The following relation holds for all z ∈ C and w ∈ C \ (Z⊕ τZ):

(3.8) R1(z, w | τ) = θ(z+
τ

2
| τ)G(−z+w− τ

2
− 1

2
| τ)+C(z, w | τ)R1(

z

τ
,
w

τ
| − 1

τ
) ,

where

(3.9) C(z, w | τ) =
1

τ

C(−z + w − τ
2 + 1

2 | τ)

C(−z − τ
2 + 1

2 | τ)
.

Proof. This follows directly from the relation in (3.5). �
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3.2. Almost theta-type properties at origin and unity. By Lemma 1.1, one
knows that θ(z | τ) ∈ T0 for all z ∈ Rτ = R ⊕ τR. In a similar way, one can prove
the following

Lemma 3.1. Given (u, v) ∈ Rτ × Rτ , one has R1(u, v | τ) ∈ T0 provided that
v /∈ Z⊕ τZ.

This follows directly from the definition of R1 in (0.1) with k = 1. For the proof,
see §4.4. By considering Proposition 1.1 (2) and both Lemmas 1.1 and 3.1, one gets
immediately the following

Proposition 3.1. Given (z, w) ∈ R2,∗
1⊕τ , it follows that L(z, w | τ) ∈ T0. 2

This can be easily generalized as follows.

Remark 3.1. Let I be a finite set of real numbers and γ be a C∗-valued function
on I. If

f(q) = L(z, w | τ) +
∑
k∈I

γ(k) e(kτ) ,

then f ∈ T0 provided that (z, w) ∈ R2,∗
1⊕τ . 2

We shall give the dominant term of L(z, w | τ) for τ
a.v.−→ i∞. As often as possible,

we will denote by ∅ for any function that is exponentially small.

Proposition 3.2. Let u = u0 + u1τ , v = v0 + v1τ , with uj, vj ∈ R, (v0, v1) /∈ Z2,

and let f(q) = R1(u, v | τ). One assumes that u1 ∈ (− 1
2 ,

3
2 ) and τ

a.v.−→ i∞ in H
(1) If v1 ∈ (−1, 0) and u+ v 6= − τ2 mod Z, then:

(3.10) f(q) =
(
e(u+

τ

2
)− e(−v)

)
(1 + ∅) .

(2) If v1 ∈ (−1, 0) and u+ v = − τ2 mod Z, then:

(3.11) f(q) =

{ (
e(τ)− e(−2v)

)
(1 + ∅) 2v + τ /∈ Z

0 2v + τ ∈ Z .

(3) If v1 = 0, then f(q) = 1
1−e(v0) (1 + ∅).

The proof can be done by direct calculations; see §4.5. Proposition 3.2 and
Lemma 1.1 give the following

Theorem 3.4. Let (z, w) ∈ R2,∗
1⊕τ , z = z0 + z1τ , w = w0 + w1τ , and let f(q) =

1−L(z, w | τ). One assumes that τ
a.v.−→ i∞. If either w1 < z1 ≤ 1

2 and w1 ∈ (− 1
2 , 0]

or z1 ∈ [− 1
2 ,

1
2 ] and w1 ∈ (0, 12 ), then P0(f) = 0.

The proof will be given in §4.6. Indeed, one can find c ∈ C∗ and κ > 0, depending
of (z0, z1, w0, w1), such that t0(f)(q) = c e

(
κτ
)

in each of the cases involved in
Theorem 3.4.

Remark 3.2. Given (z, w) ∈ Ω2,∗
1⊕τ , let f(q) = L(z, w | τ). If either w1 > 0 or

w1 ≤ 0 but z1 > w1, then t0(f)(q) = 1.

This follows from Theorem 3.4, for L(z, w | τ) = 1− f1(q) and P0(f1) = 0. 2

Theorem 3.5. Given (z, w) ∈ Ω2,∗
1⊕τ , the function L(z, w | τ) belongs to T̃1.
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Proof. Let f(q) = L(z, w | τ). When q
a.r.−→ 1, it follows that τ̂ = τ

a.v.−→ 0, − 1
τ

a.v.−→
i∞ and that q1 = e(− 1

τ )
a.r.−→ 0 exponentially. By Remark 3.1, it follows that

L( zτ ,
w
τ | −

1
τ ) − 1 ∈ T1. Thus, by considering the fact that C(z | τ) ∈ T, applying

Proposition 1.1 (2) to the last term of the relation in (3.3) implies that f(q) −
G(z | τ) ∈ T1.

On the one hand, Theorem 2.3 (1) gives that G(z | τ) ∈ G1 provided that z =

z0 + z1τ , z0 ∈ (− 1
2 ,

1
2 ). Under this last condition, one obtains that f ∈ T̃1, in view

of Definition 1.1 (1).
On the other hand, assume z = 1

2 + z1τ , apply (2.24) of Theorem 2.3, and make
use of the first expression of C(z | τ) in (3.6). It follows that

(3.12) G(
1

2
+ z1τ | τ)− C(

1

2
+ z1τ | τ) = g(z1 | τ) ,

where g admits a Gevrey expansion for τ
a.v.−→ 0 in H as stated by Theorem 2.3 (2).

Thus, (3.3) becomes

f(q) = g(z1 | τ) + C(z | τ)L(
z

τ
,
w

τ
| − 1

τ
) ,

what gives that f ∈ T̃1. �

3.3. Continued fractions and modular transforms. In the above, the asymp-

totic behavior of L(z, w | τ) stated by Theorem 3.5 for q
a.r.−→ 1 or τ

a.v.−→ 0 was found
by means of the modular-like relation in (3.3). It is worth noticing that L(z, w | τ)
is left invariant if one increases or decreases by an integer anyone of the entries z,
w and τ . This idea applied to both sides of (3.3) leads one to make use of the
continued fractions to reach any root of unity for q, as in the classical theory of
theta-functions.

As usual, let [a] and {a} denote the integral and fractional parts of any real a:

(3.13) [a] ∈ Z ∩ (a− 1, a] ; {a} = a− [a] ∈ [0, 1) .

Given r ∈ (0, 1) ∩Q, we define r0 = r and, for n ≥ 0,

(3.14) rn+1 =
{−1

rn

}
, mn = −

[−1

rn

]
.

Let ν to denote the positive integer such that rν−1 6= 0 and rν = 0, this is to say,
rν−1 becomes the inverse of certain positive integer, 1

mν−1
. By convention, we will

write mν = 0. By using the standard notation [., ., ...] [5, ??], r can be represented
by the following continued fraction:

(3.15) r =
[
0,m0,−m1, ..., (−1)νmν

]
.

First, to the sequence (rn,mn) of (3.14) will be associated a family of linear
fractional transformations (τ 7→ τn) as follows:

(3.16) τ0 = τ, τn+1 =
−1

τn
+mn (n ∈ Z ∩ [0, ν]) .

Letting M−1 =

(
1 0
0 1

)
and Mn =

(
mn −1
1 0

)
for n ≥ 0, one finds that τn+1 =

Mn(τn), this means that τn+1 is the Möbius transformation of τn associated with
Mn ∈ SL(2,Z) on H. In this way, one gets that, for all integer n in [0, ν + 1]:

(3.17) τn = M̄n(τ0) = M̄n(τ), M̄n = Mn−1...M−1 .
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Lemma 3.2. Let r = p
m ∈ (0, 1) ∩ Q, (p,m) ∈ Z2

>0, p ∧m = 1, and let τn as in
(3.16) or in (3.17). Then:

(3.18) τ
a.v.−→ r ⇐⇒ τn

a.v.−→ rn ⇐⇒ τν
a.v.−→ 0

where 0 < n < ν, and

(3.19) τ0 τ1 ... τν = m(τ − r) .
Moreover, there exists α ∈ Z such that m ∧ α = 1 and

(3.20) τν+1 = − 1

m2(τ − r)
+
α

m
.

Proof. Comparing (3.14) with (3.16) yields directly the relations of equivalence
included in (3.18).

Let A(τ) = τ0 τ1 ... τν . By the definition of τn given in (3.17), let

(3.21) τn =
αnτ + βn
γnτ + δn

, M̄n =

(
αn βn
γn δn

)
∈ SL(2,Z) .

The relation M̄n+1 = Mn M̄n implies that

(αn+1, βn+1) = mn(αn, βn)− (γn, δn) , (γn+1, δn+1) = (αn, βn) .

Thus, one finds that A(τ) = αντ+βν . By (??), it follows that αν = m and βν = −p,
which gives the equality in (3.19).

Furthermore, the foregoing consideration on (αν , βν) gives that M̄ν+1 is of the
following form:

(3.22) M̄ν+1 =

(
α −β
m −p

)
∈ SL(2,Z) .

In this way, (3.21) with n = ν + 1 implies the expression of τν+1 in (3.20). �

Secondly, given z = z0 + z1τ ∈ Ωτ , we define the sequence (ẑn) for 0 ≤ n ≤ ν+ 1
as follows: ẑn = zn,0 + zn,1τn ∈ Ωτn with

(3.23)

(
zn+1,0

−zn+1,1

)
= Mn

(
zn,0
−zn,1

)
+

(
δ
0

)
,

where δ ∈ Z. In the above, ẑ0 = z, so z0,k = zk for k = 0 or 1. It can be easily seen
that

(3.24) ẑn+1 =
ẑn
τn

(mod Z) ,

(
zn,0
−zn,1

)
= M̄n

(
z0
−z1

)
+

(
δn,0
δn,1

)
,

where δn,0, δn,1 ∈ Z.

Lemma 3.3. The sequence (ẑn) defined in (3.23) has the following properties.

(1) ẑn = 0 if, and only if, ẑn+1 = 0.
(2) ẑn ∈ { 12 ,−

1
2τn,

1
2 −

1
2τn} if, and only if, ẑn+1 ∈ { 12 ,−

1
2τn+1,

1
2 −

1
2τn+1}.

(3) κ(z | τ, r) = κ(ẑn | τn, rn) = κ(ẑν+1 | τν+1,∞), where κ(z | τ,∞) and κ(z | τ, r)
are defined in (1.22) and in (1.23).

Proof. The relations of equivalence stated in (1) and (2) follow directly from the
second relation in (3.24).

(3) For n ≤ ν, let rn = pn
dn

, (pn, dn) ∈ Z≥0 × Z>0, pn ∧ dn = 1. By (3.14), it

follows that −dnpn = pn+1

dn+1
−mn, thus

(3.25) dn+1 = pn , pn+1 = mnpn − dn .
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By the second relation in (3.24), zn+1,0 = mnzn,0 + zn,1 + δ and zn+1,1 = −zn,0,
where δ ∈ Z. Thus, dn+1zn+1,0 + pn+1zn+1,1 = dnzn,0 + pnzn,1 + δpn, what implies
κ(ẑn+1 | τn+1, rn+1) = κ(ẑn | τn, rn) for n < ν, by (1.23). By combining this together
with (1.22), one obtains the same equality for n = ν, with dν+1 = pν = 0 and
pν+1 = −dn = −1. �

Letting n = ν + 1 in (3.24) gives the following

Remark 3.3. Let α, β be as in (3.22). Then:

(3.26) ẑν+1 = (αz0 + βz1)− (mz0 + pz1)τν+1 mod (Z⊕ τν+1Z) .

In what follows, we consider two examples for illustrating the general results
established in the above.

Remark 3.4. For r = 1
m , where m ∈ Z≥2, it follows that m0 = m, ν = 1,

τ1 = −1

τ
+m, τ2 = − 1

m2τ̂
− 1

m
,

where τ̂ = τ − r. Thus, the definition of (ẑn) in (3.23) becomes: ẑ0 = z = z0 + z1τ ,
ẑ1 = z1,0 + z1,1τ1 = (mz0 + z1 + δ)− z0τ1 and

(3.27) ẑ2 = z2,0 + z2,1τ2 = −z0 + δ′ − (mz0 + z1 + δ)τ2 ,

where δ and δ′ denote some suitable integers.

Remark 3.5. Let p ∈ Z≥2, k ∈ Z≥2 and m = kp−1. For r = p
m , m0 = k, r1 = 1

p ,
m1 = p, ν = 2,

τ1 = −1

τ
+ k , τ2 = − 1

k2(τ − 1
k )

+ p− 1

k
, τ3 = − 1

m2τ̂
− k

m
.

By (3.23), ẑ0 = z = z0 + z1τ , ẑ1 = (kz0 + z1 + δ) − z0τ1, ẑ2 = mz0 + pz1 + δ′ −
(kz0 + z1 + δ)τ2 and

(3.28) ẑ3 = z3,0 + z3,1τ3 = −kz0 − z1 + δ′′ − (mz0 + pz1 + δ′)τ3 .

In the above, δ, δ′ and δ′′ belong to Z.

3.4. Modular-like formula at an arbitrary root of unity. Let r ∈ Q ∩ (0, 1),
and keep the corresponding construction of (rn,mn) and τn in (3.14) and in (3.16),
respectively. Let z and w be given in Ωτ , consider the sequence (ẑn) of (3.23), and
define (ŵn) in the same fashion as what was done for (ẑn). By Lemma 3.3 (1), one
can easily see that w 6∈ {0, z} if, and only if, ŵn /∈ {0, ẑn}, where n = 1, ..., ν + 1.
This gives that

(3.29) (z, w) ∈ Ω2,∗
1⊕τ ⇐⇒ (ẑn, ŵn) ∈ Ω2,∗

1⊕τn (1 ≤ n ≤ ν + 1).

This relation in (3.29) in the above implies that once L(z, w | τ) is well-defined,
the functions L(ẑn, ŵn | τn) continue to be well-defined till n = ν + 1. By using
the first relation in (3.24) and iterating the modular-like formula in (3.3), one finds
that

(3.30) L(z, w | τ) = gn(z | τ) + Cn(z | τ)L(ẑn+1, ŵn+1 | τn+1) ,

where gn and Cn are determined recursively as follows. We let g−1(z | τ) = 0 and
C−1(z | τ) = 1; for n ∈ [0, ν] ∩ Z,

(3.31) Cn(z | τ) = Cn−1(z | τ)C(ẑn | τn)
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and

(3.32) gn(z | τ) = gn−1(z | τ) + Cn−1(z | τ)
(
G(ẑn | τn)− 1

)
.

Remark 3.6. For n ∈ [0, ν) ∩ Z, both Cn(z | τ) and gn(z | τ) are analytic at τ = r
in the cut-plane C \ [0,−i∞). Moreover, it follows that

(3.33)
∣∣∣Cν−1(z | τ)|τ=r

∣∣∣ =
√
m.

Indeed, from (3.31), one gets that

(3.34) Cn(z | τ) =

n∏
k=0

C(ẑk | τk) .

Combining this together with the first expression of C(z | τ) in (3.6) yields that

Cn(z | τ) = (−i)n+1
n∏
k=0

√
i

τk
e
( (2ẑk + τk − 1)2

8τk

)
.(3.35)

By (3.18), it follows that, as τ
a.v.−→ r, τk

a.v.−→ rk ∈ (0, 1) for k ≤ n < ν. Thus, each
new variable τk describes a neighborhood of rk in C \ [0,−i∞) when τ remains in
an enough small open-disc centered at r in this cut-plane. In this way, one finds
that τ 7→ Cn(z | τ) is analytic at τ = r. This implies also the analyticity of gn, for
each G(ẑk | τk) is analytic for τk ∼ rk 6= 0 as stated by Theorem 2.3.

By combining (3.19) with (3.20), it follows that

τ0...τν−1 =
m τ̂

τν
= −m τ̂ τν+1 =

1

m
− α τ̂ .

Thus, letting τ
a.v.−→ r yields that r0...rν−1 = 1

m . One deduces immediately (3.33)
from (3.35). 2

Letting n = ν into (3.30) yields that

(3.36) L(z, w | τ) = gν(z | τ) + Cν(z | τ)L(ẑν+1, ŵν+1 | τν+1) .

This relation extends the modular-like formula of (3.3) to the case of r ∈ (0, 1)∩Q.
In order to identify this parameter r, we let

(3.37) C(z | τ, r) = Cν(z | τ) =

ν∏
k=0

C(ẑk | τk) ,

(3.38) g(z | τ, r) = gν(z | τ)− ς C(z | τ, r)
and

(3.39) ϑ(z, w | τ, r) = C(z | τ, r)
(
L(ẑν+1, ŵν+1 | τν+1) + ς

)
.

Here, we set ς = 0 or 1 when zν,0 6= 1
2 or zν,0 = 1

2 . By (3.24) and (3.26), it follows

that zν,0 = −zν+1,1 = mz0 + pz1 mod Z. Thus, ς = 0 or 1 when mz0 + pz1 + 1
2 6= 0

or = 0 mod Z.
Consequently, (3.36) can be read as follows:

(3.40) L(z, w | τ) = g(z | τ, r) + ϑ(z, w | τ, r) .

Theorem 3.6. Given (z, w) ∈ Ω2,∗
1⊕τ and r ∈ Q ∩ (0, 1), one has g(z | τ, r) ∈ Gζ ,

ϑ(z, w | τ, r) ∈ Tζ and L(z, w | τ) ∈ T̃ζ for ζ = e(r).

The proof will be given in §3.5 in the below.
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3.5. Almost theta property at an arbitrary root of unity. We begin with
the following

Lemma 3.4. Let z ∈ Ωτ and let C(z | τ, r) be in (3.37).

(1) If z 6= 0, then:

(3.41) C(z | τ, r) =
θ(−ẑν+1 + 1

2 | τν+1)

m(τ − r) θ(−z + 1
2 | τ)

.

(2) If z = 0, then there exists an 8-th root of unity, ζ8, such that

(3.42) C(0 | τ, r) =
ζ8√
m

√
i

τ − r
e
(1

8
(τ − τν+1)

)
.

Proof. (1) By Lemma 3.3 (1), none of ẑn is null, so one can make use of the second
expression of C(z | τ) in (3.6). Thus, by considering the definition of τk in (3.16)
and the first relation in (3.24), (3.34) with n = ν becomes:

C(z | τ, r) =
1

τ0τ1...τν

ν∏
k=0

θ(− ẑkτk + 1
2 | −

1
τk

)

θ(−ẑk + 1
2 | τk)

=
1

τ0τ1...τν

ν∏
k=0

θ(−ẑk+1 + 1
2 | τk+1)

θ(−ẑk + 1
2 | τk)

.

Consequently, from (3.19) one deduces the expression of C(z | τ, r) in (3.41).
(2) When z = 0, it follows from Lemma 3.3 (1) that ẑk = 0 for k till ν + 1.

Putting ẑk = 0 and n = ν in (3.35) yields that

C(z | τ, r) = (−1)ν+1

√
iν+1

τ0τ1...τν
e
(1

8
Aν(τ)

)
,

where

Aν(τ) =

ν∑
k=0

(τk +
1

τk
) =

ν+1∑
k=0

(τk − τk+1 +mk) = τ − τν+1 +

ν∑
k=0

mk ;

see (3.14) and (3.16) for the integers mk. Finally, setting

(3.43) ζ8 = −e
(1

8
(5ν +

ν∑
k=0

mk)
)

gives (3.42), with the help of (3.19). This achieves the proof. �

Comparing (1.19) with (3.20) yields that τ ′ = τν+1, i.e.:

(3.44) τν+1 = τ ′ = − 1

m2τ̂
+
α

m
, α ∧m = 1.

In this way, Lemma 3.4 implies the following

Proposition 3.3. Given z ∈ Ωτ , one has C(z | τ, r) ∈ Tζ .

Proof. Let f(q) = C(z | τ, r) ∈ Tζ . First, assume z 6= 0 and let

(3.45) f1 = θ(−ẑν+1 +
1

2
| τν+1), f2(q) = m(τ − r) θ(−z +

1

2
| τ).

The relation in (3.41) gives that f(q) = f1(q)
f2(q)

. By Theorem 1.1, one knows that

both f1, f2 ∈ Tζ and that tζ(f2) 6= 0, so Proposition 1.1 (2) implies that f ∈ Tζ .
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Next, assume that z = 0. By (3.44) and the fact that τ = τ̂ + r, (3.42) becomes:

(3.46) C(0 | τ, r) =
c′√
m

√
i

τ̂
e
(1

8
(τ̂ +

1

m2τ̂
)
)
,

where c′ ∈ U. This implies C(0 | τ, r) ∈ Tζ . �

Proof of Theorem 3.6. Let f(q) = L(z, w | τ). We shall make use of the decom-
position of f(q) given in (3.40) and show that g(z | τ, r) ∈ Gζ and ϑ(z, w | τ, r) ∈ Tζ .

By letting n = ν into (3.32), it follows that

(3.47) gν(z | τ) = gν−1(z | τ) + Cν−1(z | τ)
(
G(ẑν | τν)− 1

)
.

By Remark 3.6, both gν−1(z | τ) and Cν−1(z | τ) are analytic at τ = r. As τ̂
a.v.−→

0, one knows that τν
a.v.−→ 0; see Lemma 3.2. Following Theorem 2.3, we shall

distinguish two cases: ẑν = zν,0 + zν,1τν with zν,0 ∈ (− 1
2 ,

1
2 ) or zν,0 = 1

2 .

First, assume zν,0 ∈ (− 1
2 ,

1
2 ); it follows that g(z | τ, r) = gν(z | τ) and ς = 0 in

(3.38). On the one hand, by Theorem 2.3 (1), G(ẑν | τν) has a Gevrey asymptotic

expansion for τν
a.v.−→ 0 or, equivalently, for τ̂

a.v.−→ 0. As τ 7→ τν = αντ+βν
γντ+ςν

is

a Möbius transformation, this asymptotic expansion can be expressed in terms
of the variable τ̂ near 0, thus G(ẑν | τν) ∈ Gζ . By considering Proposition A.2,
one finds that g(z | τ, r) ∈ Gζ . On the other hand, by writing τν+1 as in (3.44),
one deduces from Proposition 3.1 that L(ẑν+1, ŵν+1 | τν+1) ∈ Tζ . Therefore, by
combining Proposition 1.1 (1) with Proposition 3.3, letting ς = 0 in (3.39) implies
that ϑ(z, w | τ, r) ∈ Tζ .

Next, assume zν,0 = 1
2 ; it follows that ς = 1 in both (3.38) and (3.39). Similarly

to the relation in (3.12) in the second part of the proof of Theorem 3.5, one finds
that

G(ẑν | τν) = C(
1

2
+ zν,1τν | τν) + g(zν,1 | τν) .

Thus, comparing (3.36) with (3.40) gives

(3.48) g(z | τ, r) = gν−1(z | τ) + Cν−1(z | τ)
(
g(zν,1 | τν)− 1

)
.

Applying Theorem 2.3 (2) implies that g(zν,1 | τν) ∈ Gζ . In this way, one can see
that g(z | τ, r) ∈ Gζ . Moreover, by Remark 3.1, L(ẑν+1, ŵν+1 | τν+1) + 1 ∈ Tζ , this
implies that ϑ(z, w | τ, r) ∈ Tζ in (3.39). Thus, one obtains Theorem 3.6. �

Remark 3.7. Let r = p
m , ζ = e(r), τ̂ = τ−r, q1 = e(− 1

τ̂ ), and let f(q) = C(z | τ, r)
be as in (3.37). If

(3.49) κ =
1

2
(mz0 + pz1 − δ −

1

2
)2

with δ ∈ Z ∩ (mz0 + pz1 − 1
2 ,mz0 + pz1 + 1

2 ], then there exists c ∈ C∗ such that

(3.50) tζ(f)(q) =
c√
m

√
i

τ̂
e
(1

8
((2z1)2 + 1) τ̂

)
q
−κ/m2

1 .

Moreover, |c| = ρ(ẑν+1 | τν+1)
ρ(z | τ) or |c| = 1 if z 6= 0 or z = 0, respectively.

For the definition of ρ(z | τ), see (1.21). It is easy to observe that (3.46) gives,
in fact, (3.50) for z = 0. Thus, assume z 6= 0 and let f1 and f2 be as in (3.45).
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By (3.44), one knows that q1 = e(m2τν+1). In view of the relation tζ(f) =
tζ(f1)
tζ(f2)

,

applying (1.22) to f1 and (1.23) to f2 yields (3.50) with

κ =
1

2
(zν+1,1 +

1

2
)2 − κ(ẑν+1 | τν+1,∞) + κ(z | τ, r) .

By Lemma 3.3 (3), κ(ẑν+1 | τν+1,∞) = κ(z | τ, r). So, the expression of ẑν+1 in
(3.26) gives immediately the relation stated for κ in (3.49). 2

Remark 3.8. Let r, ζ, τ̂ , q1 be as in Remark 3.7, and let f(q) = ϑ(z, w | τ, r) be
as in (3.39). One can find c ∈ C∗ and κ > 0 such that

(3.51) tζ(f)(q) = c

√
i

τ̂
e
(1

8
((2z1)2 + 1)τ̂

)
q−κ1

provided that either (i) wν+1,1 > 0 or (ii) wν+1,1 ≤ 0 but zν+1,1 > wν+1,1.

Indeed, let f1(q) = C(z | τ, r) and f2(q) = L(ẑν+1, ŵν+1 | τ) + ς. The relation in
(3.39) says that f = f1f2. By Remark 3.2, t0(f2)(q) = 1 + ς 6= 0 in each of both
cases (i) and (ii) in the above. Using (3.50) gives t0(f1), which together with the
relation tζ(f) = tζ(f1) tζ(f2) yield the expression stated in (3.51). 2

3.6. One necessary and sufficient condition for the boundedness of limits.
By Theorem 3.6, one knows that g(z | τ, r) ∈ Gζ , where ζ = e(r). So, for all z ∈ Ωτ
and r ∈ Q ∩ (0, 1), we define

(3.52) γ(z, r) = lim
τ
a.v.−→r

g(z | τ, r) .

Let r = p
m , m ∈ Z>0 and p ∧m = 1. By Theorem 2.3 and Remark 3.6, it follows

from (3.47) and (3.48) that either

(3.53) γ(z,
p

m
) = gν−1(z0 +

p

m
z1 |

p

m
)− e(zν,0)

1 + e(zν,0)
Cν−1(z0 +

p

m
z1 |

p

m
) ,

where zν,0 6= 1
2 , or

(3.54) γ(z,
p

m
) = gν−1(z0 +

p

m
z1 |

p

m
) + zν,1 Cν−1(z0 +

p

m
z1 |

p

m
)

when zν,0 = 1
2 . In the above, |Cν−1(z0 + p

mz1 |
p
m )| =

√
m, by (3.33). This implies

that, in general, γ(z, pm ) is unbounded as m → ∞. See Theorems 3.7 and 3.11 in
the below.

In order to simplify the exposition, we shall consider the case of r = 1
m , m ∈ Z≥2,

for which case both τn and ẑn have been given in Remark 3.4; see (3.27).

Theorem 3.7. Let M ⊂ Z≥2 be such that #M =∞. The following conditions are
equivalent.

(1) supm∈M |γ(z, 1
m )| <∞.

(2) z ∈ { 12 ,
1
2 −

1
2τ,−

1
2τ}.

The proof will be given at the end of this section. For doing that, it will be
convenient to introduce the following notation:

(3.55) E(z) = E(z | τ) = {m ∈ Z≥2 : mz0 + z1 =
1

2
mod Z}

and

(3.56) N(z) = N(z | τ) = Z≥2 \E(z | τ) .
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Remark 3.9. (1) #E(z) = ∞ if, and only if, #E(z) ≥ 2. If this is the case,
then z ∈ Q⊕ τQ.

(2) When z0 = 0, either E(z) = ∅ or N(z) = ∅. This last equality holds if, and
only if, z = − 1

2τ .

(3) When z 6= − 1
2τ , #N(z) =∞.

(4) When z0 = 1
2 , #E(z) =∞ if, and only if, z1 ∈ {0,− 1

2}.

Indeed, if both m and m + d belong to E(z), where d > 0, then dz0 ∈ Z, thus
one gets that z0 ∈ Q and z1 ∈ Q. Furthermore, one sees that m + nd ∈ E(z) for
all n ∈ Z≥1, what implies the assertion stated in (1). The other assertions can be
directly seen from (3.55) and (3.56). 2

In what follows, we shall assume that z ∈ Ωτ \{− 1
2τ}. By Remark 3.9 (3), N(z)

contains an infinitely many integers.

Proposition 3.4. Let z = z0 + z1τ ∈ Ωτ \ {−1
2τ}. We assume that m → +∞ in

N(z).

(1) If z0 6= 1
2 , then:

(3.57) γ(z,
1

m
) =

U(z,m)

1 + e(z1 +mz0)

√
m− e(z0)

1 + e(z0)
+O(

1

m
) ,

where |U(z,m)| = 1.
(2) If z0 = 1

2 , then:

(3.58) γ(z,
1

m
) = A(z,m) e

( 1

2m
(z1 +

1

2
)2 +

7

8

)√
m+ z1 +O(

1

m
) ,

where

A(z,m) =
1

1 + (−1)me(z1)
− 1

2
.

Proof. By the definition of N(z) in (3.56), it follows that z1,0 6= 1
2 . Thus, letting

p = 1 and ν = 1 in (3.53) gives that

(3.59) γ(z,
1

m
) = G(z0 +

z1
m
| 1

m
)− 1− e(mz0 + z1)

1 + e(mz0 + z1)
C(z0 +

z1
m
| 1

m
) .

(1) First, assume that z0 6= 1
2 . By Theorem 2.3 (1), it follows that, as m→ +∞,

(3.60) G(z0 +
z1
m
| 1

m
) =

1

1 + e(z0)
+O(

1

m
) .

This together with (3.59) and (3.33) (with ν = 1) imply (3.57).
(2) Now, assume that z0 = 1

2 . Letting τ = 1
m in (2.24) gives that

G(
1

2
+
z1
m
| 1

m
) = − i

2

√
i

1/m
e
( 1

2m
(z1 +

1

2
)2
)

+ g(z1 |
1

m
)

= −1

2
C(z0 +

z1
m
| 1

m
) + g(z1 |

1

m
) .(3.61)

By Theorem 2.3 (2), one knows that g(z1 | 1
m ) = 1+z1+O( 1

m ) for m→ +∞. Thus,
putting together (3.59) and (3.61) yields (3.58). �

Proposition 3.5. Let z = z0 + z1τ ∈ Ωτ . One supposes that #E(z) =∞ and one
assumes that m→ +∞ in E(z).
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(1) If z0 6= 1
2 , then:

(3.62) γ(z,
1

m
) = V (z,m)

√
m− e(z0)

1 + e(z0)
+O(

1

m
) ,

where |V (z,m)| = |z0|.
(2) If z0 = 1

2 , then γ(z, 1
m ) = z1 +O( 1

m ).

Proof. By (3.55), it follows that z1,0 = 1
2 . Thus, due to (3.54), (3.59) needs to be

modified as follows:

(3.63) γ(z | 1

m
) = G(z0 +

z1
m
| 1

m
)− 1− z0 C(z0 +

z1
m
| 1

m
) ,

where −z0 = z1,1, by Remark 3.4. This allows one to complete the proof by using
(3.60), (3.61) and (3.33) (with ν = 1). We omit the details. �

Proof of Theorem 3.7. Let M0 = M∩N(z) and M1 = M∩E(z). By hypothesis,
#M = ∞, so one can find at least one of M0 and M1 that contains an infinitely
many integers.

Assume first that z0 6= 1
2 . By considering both (3.57) and (3.62), one obtains

that supm∈M |γ(z, 1
m )| < ∞ implies that #M0 < ∞, #M1 = ∞ and that z0 = 0.

Furthermore, in view of Remark 3.9 (2), this is possible only if z = − 1
2τ .

Now, consider the case of z0 = 1
2 . On the one hand, if #M0 =∞, (3.58) implies

that supm∈M0
|γ(z, 1

m )| < ∞ if, and only if, A(z,m) = 0 for m ∈ M0. Thus, one

finds that (−1)m = e(z1), so z1 ∈ {0,− 1
2}. On the other hand, in view of Remark

3.9 (4), the case (2) of Proposition 3.5 in the above occurs only for z = 1
2 and

z = 1
2 −

1
2τ . This achieves the proof. �

3.7. False theta-type functions and half-periods. One knows that Zτ = Z⊕
τZ is the period set for the elliptic functions associated with double periods 1 and
τ . Assume w ∈ Ωτ such that 2w ∈ Zτ and w 6= 0. This means exactly that w ∈ ∆τ

if one lets

(3.64) ∆τ =
{1

2
,−τ

2
,

1

2
− τ

2

}
.

Since L(z,−w | τ) = L(z, w | τ), putting z = 1
2 in the “reflection” relation (1.41)

yields that L( 1
2 − τ, w | τ) = 0. Thus, L( 1

2 , w | τ) = 1, by (2.26). At the same time,
it follows from (1.41) and (2.26) that

L(−z − τ, w | τ) = e(z)L(z − τ, w | τ) = 1− L(z, w | τ)

One obtains that L(z, w | τ) = 1
2 when 2z = −τ mod Z. This gives the following

Remark 3.10. The following statements hold.

(1) If z = 1
2 and w ∈ {− τ2 ,

1
2 −

τ
2}, then L( 1

2 , w | τ) = 1.

(2) If z ∈ {− τ2 ,
1
2 −

τ
2} and w ∈ ∆τ \ {z}, then L(z, w | τ) = 1

2 . 2

The set ∆τ defined in (3.64) contains the non-zero half-periods of the funda-
mental domain Ωτ . One can also notice that Remark 3.10 is similar to Remark
2.2 for G(z | τ). The following result is certainly known in the classical theory of
elliptic functions or q-series, although one can rediscover it from [10, Theorem 3.13
& Remark 3.14].
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Theorem 3.8. Let w, w′ ∈ C \ Z ⊕ τZ. Then the following identity holds for all
z ∈ C such that neither z − w nor z − w′ belong to Z⊕ τZ:

(3.65) L(z, w | τ)− L(z, w′ | τ) = −
(τ | τ)3∞ θ(w − w′ + 1

2 , w + w′ − z + 1
2 | τ)

θ(w + 1
2 , w − z + 1

2 ,−w′ +
1
2 , w

′ − z + 1
2 | τ)

.

2

In the right-hand side of (3.65), the factor (τ | τ)∞ is defined as follows: for
x = e(z) and z ∈ C,

(3.66) (z | τ)∞ = (x; q)∞ =
∏
n≥0

(1− xqn) .

By putting together this last theorem with Remark 3.10, one arrives at the following

Theorem 3.9. The following assertions hold.

(1) If w ∈ C \ ( 1
2Z)⊕ τZ, then:

L(
1

2
, w | τ) = 1−

(τ | τ)3∞ θ(w + τ
2 + 1

2 , w −
τ
2 | τ)

θ(w,w + 1
2 ,

τ
2 + 1

2 ,−
τ
2 | τ)

.

(2) If w ∈ C \ Z⊕ τ
2Z, then:

L(−τ
2
, w | τ) =

1

2
−

(τ | τ)3∞ θ(w,w + τ
2 | τ)

θ(w + 1
2 , w + τ

2 + 1
2 ,

τ
2 , 0 | τ)

.

(3) If w ∈ C \ Z⊕ τZ such that w − 1
2 −

1
τ /∈ Z⊕ τZ, then:

L(
1

2
− τ

2
, w | τ) =

1

2
−

(τ | τ)3∞ θ(w,w + τ
2 + 1

2 | τ)

θ(w + 1
2 , w + τ

2 ,
τ
2 + 1

2 , 0 | τ)
.

Proof. This follows from Theorem 3.8 combined with Remark 3.10, by letting re-
spectively (z, w′) = ( 1

2 ,−
τ
2 ), (− τ2 ,

1
2 ) and (1

2 −
τ
2 ,

1
2 ) in (3.65). �

The triple product identity [4, p. 497, Theorem 10.4.1] says that

(3.67) θ(z +
1

2
| τ) = (τ | τ)∞ (z | τ)∞ (τ − z | τ)∞ .

Replacing (z, τ) with (τ, 3τ) in this formula yields that

θ(τ +
1

2
| 3τ) = (3τ | 3τ)∞ (τ | 3τ)∞ (2τ | 3τ)∞ = (τ | τ)∞ .

Thus, applying both Theorem 1.1 and Proposition 1.1 (3) gives the following

Remark 3.11. (τ | τ)∞ ∈ T. 2

Another way to get this is to use the classic Dedekind η-modular formula; see [20,
p. 145, (67.4)]. By combing this last Remark 3.11 with Theorem 3.9, Proposition
1.1 (2) and Corollary 1.1, one obtains the following

Corollary 3.1. Let (z, w) ∈ Ω2,∗
1⊕τ , and let f(q) = L(z, w | τ).

(1) If both z and w belong to ∆τ , then f is constant.
(2) If z ∈ ∆τ and w /∈ ∆τ , then f is a false theta-type function, i.e.: f ∈ F. 2
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3.8. Mock theta-type properties and the proof of Theorem 1.3. Let (z, w) ∈
Ω2,∗

1⊕τ , and consider f(q) = L(z, w | τ). We start with the following

Theorem 3.10. Let ϑ ∈ T, and define g(q) = f(q) − ϑ(q). One assumes that
g ∈ Gζ for all ζ ∈ U. If z /∈ ∆τ , then one can find U ⊂ U such that

(3.68) sup
{

lim
q
a.r.−→ζ

∣∣g(q)
∣∣ : ζ ∈ U

}
=∞ .

In order to find such set U of roots of unity satisfying (3.68), we shall make use
of the following

Proposition 3.6. Let r ∈ (0, 1) ∩Q, ζ = e(r), and let γ(z, r) be as in (3.52). Let
(g, ϑ) be as in Theorem 3.10. If wν+1,1 > 0 or if wν+1,1 ≤ 0 but zν+1,1 > wν+1,1,
then:

(3.69) lim
q
a.r.−→ζ

g(q) = γ(z, r) .

Proof. Let g̃(q) = g(z | τ, r) and ϑ̃(q) = ϑ(z, w | τ, r). The identity in (3.40) says that

f = g̃+ ϑ̃. By Theorem 3.6, one knows that g̃ ∈ Gζ and ϑ̃ ∈ Tζ . Moreover, Remark

3.8 implies that Pζ(ϑ̃) 6= 0 when wν+1,1 > 0 or when wν+1,1 ≤ 0 but zν+1,1 >
wν+1,1. Thus, applying Proposition 1.4 gives that g is, in fact, exponentially close
to g̃ as q tends to ζ radially. This implies (3.69). �

In what follows, we shall consider two species of roots of unity:

(i) ζ = e( 1
m ) with m ∈ Z≥2.

(ii) ζ = e( pm ) with m = kp− 1, (k, p) ∈ Z≥2.

Notice that the behavior of γ(z, r) in the first case (i) has been mentioned by
Theorem 3.7. Before giving the proof of Theorem 3.10, we discuss the second case
(ii) to get a statement similar to Theorem 3.7.

Given z = z0 + z1τ ∈ Ωτ \∆τ , choose k ∈ Z≥2 such that kz0 + z1 6= 1
2 mod Z,

and consider r = p
m with m = kp− 1, p ∈ Z≥2. Similarly to the notation E(z) and

N(z) introduced in (3.55) and (3.56), we define:

(3.70) E′(z) = E′(z | τ, k) = {p ∈ Z≥2 : (kp− 1)z0 + pz1 =
1

2
mod Z}

and

(3.71) N′(z) = N′(z | τ, k) = Z≥2 \E′(z | τ, k) .

By Remark 3.5, one obtains that z1,0 = kz0 + z1 + δ ∈ (− 1
2 ,

1
2 ), where δ ∈ Z.

Proposition 3.7. Let z, r, p, m and k be as in the above.

(1) If p ∈ N′(z), then there exist U1 and U2 ∈ C such that |U1| = |U2| = 1 and

(3.72) γ(z, r) = G(z0 +z1r | r)−1+
U1√
r

(
G(z1,0−

z0
p
| 1
p

)−1
)

+
U2
√
m

1 + e(mz0 + pz1)
.

(2) If p ∈ E′(z), then there exist U1 and U2 ∈ C such that |U1| = |U2| = 1 and

(3.73) γ(z, r) = G(z0 + z1r | r)− 1 +
U1√
r

(
G(z1,0 −

z0
p
| 1
p

)− 1
)

+ z1,0 U2

√
m.
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Proof. This can be proved by using the same method as for Propositions 3.4 and
3.5. Indeed, by Remark 3.5, one sees that ν = 2 in both (3.53) and (3.54). Thus,
one obtains finally both (3.72) and (3.73) by using the definition of g1 in (3.32) and
the module of C1 stated in (3.33). �

Theorem 3.11. For any M′ ⊂ Z≥2 such that #M′ =∞, one has

(3.74) sup
p∈M′

∣∣γ(z,
p

kp− 1
)
∣∣ =∞ .

Proof. This follows from Proposition 3.7. Indeed, when p → ∞, r → 1
k . Theorem

2.3 (1) gives that G(z1,0 − z0
p |

1
p )→ 1

1+e(z1,0)
. Thus, from (3.72) it follows that

γ(z, r) = G(z0 +
z1
k
| 1
k

)− 1− U ′1
√
k

1 + e(kz0 + z1)
+

U2
√
m

1 + e(mz0 + pz1)
+O(

1

p
) ,

where U ′1 = U1 e(kz0 + z1). A similar formula can be found by using (3.73). By
hypothesis, z /∈ ∆τ , this implies that if p ∈ E′(z), then z1,0 6= 0. So, one gets
(3.74), for

√
m→∞ as p→∞. �

Proof of Theorem 3.10. For any a ∈ R, we will denote by (a) the number in

(− 1
2 ,

1
2 ] that equals to a modulo Z. It is useful to notice that, as z ∈ Ωτ , (z1) = z1

unless z1 = − 1
2 .

First, consider the case of r = 1
m with m ∈ Z≥2, and let M = M− ∪M+ with

M− =
{
m ∈ Z≥2 : (mw0 + w1) ∈ (−1

2
, 0)
}

and

M+ =
{
m ∈ Z≥2 : (mz0 + z1) < (mw0 + w1) ∈ [0,

1

2
]
}
.

One finds that #M− = ∞ except when w0 = 0 and (w1) ∈ [0, 12 ] or when w0 = 1
2

and w1 ∈ {− 1
2 , 0}. For this last case with w0 = 1

2 , one sees that #M+ =∞, due to

fact that z 6= − 1
2τ . It follows that #M =∞ except when the following conditions

hold:

(3.75) z0 = w0 = 0 , z1 > (w1) ∈ [0,
1

2
] .

Furthermore, Proposition 3.6 and Remark 3.4 imply that

lim
q
a.r.−→e( 1

m )

g(q) = γ(z,
1

m
)

for all m ∈ M. Thus, Theorem 3.7 gives (3.68) for U = {e( 1
m ) : m ∈ M} except

when (3.75) is satisfied.

Assume then (z, w) ∈ Ω2,∗
1⊕τ be such as in (3.75). Since z /∈ ∆τ and w 6= 0, it

follows that z1 6= − 1
2 and w1 6= 0. Let k ∈ Z≥2, and define M′ = M′

− ∪M′
+ with

M′
− =

{
p ∈ Z≥2 : (pw1) ∈ (−1

2
, 0)
}

and

M′
+ =

{
p ∈ Z≥2 : (pz1) < (pw1) ∈ [0,

1

2
]
}
.

Applying Proposition 3.6 and Remark 3.5 yields that, letting m = kp− 1,

lim
q
a.r.−→e( pm )

g(q) = γ(z,
p

m
)
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for all p ∈M′. One observes that #M′
− =∞ except when w1 = − 1

2 , and this last
case remains impossible because of (3.75). Thus, #M′ =∞. Consequently, if one
lets

U =
{
e(

p

kp− 1
) : p ∈M′

}
,

one gets (3.68) with the help of Theorem 3.11. This achieves the proof of Theorem
3.10. �

Proof of Theorem 1.3. By combing Theorem 3.6 with Corollary 3.1, it remains
only to prove that f /∈ F when z /∈ ∆τ . Thus, in view of (1.7), one deduces Theorem
1.3 from Theorem 3.10. This achieves the proof of Theorem 1.3. �

3.9. Proof of Theorem 1.4. Let z = z0 + z1τ , z0 ∈ (− 1
2 ,

1
2 ], z1 ∈ [− 1

2 ,
1
2 ), and let

f(q) = L(z | τ) be given by (1.45). Firstly, by (1.44), one finds that, for all u ∈ C:

(3.76) R1(u | τ) =
∑
n∈Z∗

e( 1
2n

2τ + nu)

1− e(nτ)
+

1

2
.

By taking the logarithmic derivative with respect to z both sides of the Jacobi’s
triple product (3.67), one gets that, for u 6= 1

2 mod Z⊕ τZ:

(3.77)
θ′(u | τ)

θ(u | τ)
= 2πi

∑
n≥0

( e(u+ nτ)

1 + e(u+ nτ)
−

e
(
−u+ (n+ 1)τ

)
1 + e

(
−u+ (n+ 1)τ

)) .
Therefore, it follows that

(3.78) R1(−z − τ

2
+

1

2
)− i

2π

θ′(−z + 1
2 | τ)

θ(−z + 1
2 | τ)

∈ T0 .

Beside, one knows from Lemma 1.1 that θ(−z + 1
2 | τ) ∈ T0, Thus, by considering

Proposition 1.1 (2), the expression of f(q) in (1.49) together with (3.78) imply that
f ∈ T0.

Secondly, one notices that the modular-like relation in (3.3) is reduced into the
following form:

(3.79) L(z | τ) = G(z | τ) + C(z | τ)
(
L(
z

τ
| − 1

τ
)− 1

)
,

where G(z | τ) and C(z | τ) are the same as in Theorem 3.2. Indeed, if one writes

f(z, w | τ) = L(z, w | τ)− i

2πw θ(−z + 1
2 | τ)

,

then the formula in (3.3) together with the second expression of C(z | τ) in (3.6)
give that

f(z, w | τ) = G(z | τ) + C(z | τ)
(
f(
z

τ
,
w

τ
| − 1

τ
)− 1

)
.

Thus, taking the limit w → 0 in this last relation yields immediately (3.79). More-

over, by using both (3.79) and Theorem 2.3, one finds that f ∈ T̃1.
Thirdly, given r ∈ (0, 1) ∩ Q, one makes use of the sequence (rj , τj , ẑj)0≤j≤ν+1

defined in §3.3, where r0 = r, rν = 0 and rν+1 = ∞. In addition to the functions
C(z | τ, r) and g(z | τ, r) introduced in (3.37) and (3.38), one sets

(3.80) ϑ(z | τ, r) = C(z | τ, r)
(
L(ẑν+1 | τν+1) + ς

)
,
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where ς takes either 0 or 1 in the same manner as in (3.39). Therefore, iterating
several times the above relation in (3.79) yields the following identity, which is
similar to (3.40):

(3.81) L(z | τ) = g(z | τ, r) + ϑ(z | τ, r) .

By the same manner as what done for the proof of Theorem 3.6, this last relation
in (3.81) shows that f ∈ T̃ζ , where ζ = e(r).

Fourthly, let ∆τ = { 12 ,
1
2 (1− τ),− 1

2τ} as in (3.64). By using both Theorems 3.7
and 3.10, one finds that if f ∈M, then z /∈ ∆τ .

Finally, it remains only to consider the value of L(z | τ) when z belongs to the
set ∆τ . Since

θ(−z + τ +
1

2
| τ) = θ(z +

1

2
| τ) = −e(z) θ(z + τ +

1

2
| τ),

it follows from (1.41) that

L(z − τ, w | τ)− i

2πw θ(−z + τ + 1
2 | τ)

= e(−z)
(
L(−z − τ,−w | τ) +

i

2πw θ(z + τ + 1
2 | τ)

)
.

By letting w → 0 in this last equality, one obtains that

(3.82) L(z − τ | τ) = e(−z)L(−z − τ | τ) .

It is easy to see that L(z + 1
2 | τ) = L(z − 1

2 | τ). By gathering (1.47) and (3.82), it
follows that

(3.83) L(z | τ) + L(−z − τ | τ) = 1 ,

which gives the value of L( 1
2 −

τ
2 | τ) and L(− τ2 | τ). Furthermore, from (1.47)

one finds that L(−z − τ | τ) = e(z)
(
1 − L(−z | τ)

)
, so (3.83) becomes L(z | τ) −

e(z)L(−z | τ) = 1 − e(z), which gives the value of L( 1
2 | τ), as stated in (1.51). In

this manner, one completes the proof of Theorem 1.4. 2

4. Complementary proofs

In this section, we will consider the statements mentioned in the previous sections
for which we have not made the proof. One common point for these statements
is that they are somewhat easy to be understood but their proof may be techni-
cally hard and/or long. Especially, this is the case for Proposition 3.2 in §4.5 and
Theorem 3.4 in §4.6.

4.1. Proof of Lemma 1.1. One assumes that q
a.r.−→ 0, so τ

a.v.−→ i∞. By the
second item of the notational convention stated after Definition 1.1, τ̂ = τ and
q = q1.

Let

(4.1) ρ(n) = ρz1(n) =
1

2
n(n− 1) + nz1

for all n ∈ Z, and let J = ρ(Z). Define the C-valued map γ̃ on J as follows:

(4.2) γ̃(k) =
∑

ρ(n)=k

(−1)n e
(
nz0
)

(k ∈ J) .
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Write J∗ = {k ∈ J : γ̃(k) 6= 0}, and set IN = J∗ ∩ (−∞, N ] for all non-negative
integer N . Thus, letting I = IN , γ = γ̃

∣∣
I

and υ = λ = 0 gives the relation in (1.6)

for f = θ(z + 1
2 | τ), and this implies that f ∈ T0.

Let [z1] and {z1} be respectively the integral part and fractional part of z1; see
(3.13). Putting n = −[z1] into the functional relation

θ(z +
1

2
+ nτ | τ) = e

(
−n(z +

1

2
)− 1

2
n(n− 1)τ

)
θ(z +

1

2
| τ)

yields that

f(q) = e
(
n(z +

1

2
) +

1

2
n(n− 1)τ

)
θ(z′ +

1

2
| τ)

= e
(
k(z1) τ − [z1](z0 +

1

2
)
)
θ(z′ +

1

2
| τ) .(4.3)

In the above, z′ = z0 + {z1}τ and

(4.4) k(z1) = −1

2
[z1]

(
z1 − 1 + {z1}

)
.

As {z1} ∈ [0, 1), it is easy to see that the dominant term of θ(z′+ 1
2 | τ) for τ

a.v.−→ i∞
equals to 1 or 1 − e(z0) if {z1} 6= 0 or {z1} = 0. Replacing [z1] with z1 − {z1} in
(4.4) gives k(z1) = − 1

2 (z1 − 1
2 )2 + κ, where κ = 1

2 ({z1}− 1
2 )2. This implies Lemma

1.1, with (1.22) and (1.21).

4.2. Proof of Theorem 1.1. Let f(q) = θ(z + 1
2 | τ). Thanks to Lemma 1.1, it

suffices to prove that f ∈ Tζ for all ζ = e(r), where r ∈ Q ∩ [0, 1). Without loss of
generality, one can suppose that r = p

m , with p ∈ Z, m ∈ Z>0 and p ∧m = 1.
Consider (1.20), set

f1(q) =
ε1√
m

√
i

τ̂
e
(
− 1

2τ̂
(z +

1

2m
)2 − τ̂

8

)
, f2(q) = θ(

z

mτ̂
+

1

2
| τ ′) ,

and write f = f1f2. As τ
a.v.−→ r, it follows that τ̂

a.v.−→ 0 and τ ′
a.r.−→ i∞; see (1.19).

On the one hand, by using τ = τ̂ + p
m , one writes z = (z0 + p

mz1) + z1τ̂ , which
gives that

(z +
1

2m
)2 = (z0 +

p

m
z1 +

1

2m
)2 + 2z1(z0 +

p

m
z1 +

1

2m
) τ̂ + z21 τ̂

2 .

Thus, if one lets

(4.5) λ = −z
2
1

2
− 1

8
, k =

1

2
(z0 +

p

m
z1 +

1

2m
)2

and

c1 =
ε1√
m
e
(
−z1(z0 +

p

m
z1 +

1

2m
)
)
,

then one gets that (q1 = e(− 1
τ̂ ))

(4.6) f1(q) = c1

√
i

τ̂
e
(
λτ̂
)
qk1 ,

which implies that f1 ∈ Tζ , by (1.6).
On the other hand, by (1.19), one finds that

z

mτ̂
=
z1
m

+
z0 + p

mz1

mτ̂
=
z1
m

+ (mz0 + pz1)(
α

m
− τ ′) .
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In this way, one gets that

(4.7) f2(q) = θ(z′0 + z′1τ
′ +

1

2
| τ ′) , z′0 =

z1 − αz′1
m

, z′1 = −mz0 − pz1 .

By applying Lemma 1.1 to this theta-factor f2 relative to τ ′ in (4.7), one obtains

this is theta-type as τ ′
a.r.−→ i∞, so f2 ∈ Tζ . Therefore, Proposition 1.1 (1) implies

that f ∈ Tζ , for f = f1f2.
In order to get tζ(f), we let q′ = e(τ ′). From the relation in (1.19), one deduces

that q′ = m2√q1 e( αm ). Since αp + 1 = βm, it follows that z′0 = αz0 + βz1 in
(4.7). Replacing then (τ, q, z) with (τ ′, q′, z′) in Lemma 1.1 gives tζ(f2) in terms of
z′ = z′0 + z′1τ

′. Furthermore, comparing the expression of k given in (4.5) with that
of z′1 in (4.7), one finds that k = 1

m2 (z′1 − 1
2 )2 , which gives the relations in (1.24)

and (1.23). This completes the proof.

4.3. Proof of Proposition 2.1. We shall consider only the equivalent form (2.30)
of (2.4). By (2.22), one can write (3.5) into the following form:

(4.8) L(z, w | τ) = G(z | τ) + 2πi ω(−z +
1

2
| τ)L∗(z, w | τ) ,

where

(4.9) L∗(z, w | τ) = e(
z

τ
)L(

z + 1

τ
,
w

τ
| − 1

τ
) .

Replacing (z, w, τ) with ( z+1
τ , wτ ,−

1
τ ) in (4.8) yields that the function L∗ of (4.9)

becomes:

L∗(z, w | τ) = e
( z
τ

) (
G(
(z + 1

τ
| − 1

τ

)
+ 2πi ω

(
−z + 1

τ
+

1

2
| − 1

τ

)
L∗∗
)
.

Here, in view of (4.9), (1.41) and (2.26), one can express L∗∗ as follows:

L∗∗ = e(−z)L(−z − τ,−w | τ)

= L(z − τ, w | τ)

= e(−z)
(
1− L(z, w | τ)

)
.

By observing that

ω(−z +
1

2
| τ)ω(−z + 1

τ
+

1

2
| − 1

τ
) =

e(z − z
τ )

4π2
,

one deduces from (4.8) that

L(z, w | τ) = G(z | τ) + 2πi ω(−z +
1

2
| τ) e(

z

τ
)G(

z + 1

τ
| − 1

τ
)−

(
1− L(z, w | τ)

)
.

This is to say:

1−G(z | τ) = 2πi ω(−z +
1

2
| τ) e(

z

τ
)G(

z + 1

τ
| − 1

τ
) .

By (2.26), one knows that 1 − G(z | τ) = e(z)G(z − τ | τ). Thus, one finds the
expected relation in (2.30) by using the following identity:

ω(−z +
1

2
| τ) e(

z

τ
) = ω(z +

1

2
| τ) e(z) .
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4.4. Proof of Lemma 3.1. Consider the expression of R1(z, w | τ) obtained by
letting k = 1 in (0.1), replace z with u = u0 + u1τ and w with v = v0 + v1τ , and
define

(4.10) An =
e( 1

2n
2τ + nu)

1− e(nτ + v)
=
e( 1

2n
2τ + nu1τ + nu0)

1− e(nτ + v1τ + v0)

for n ∈ Z. As τ
a.v.−→ i∞, it follows that

(4.11) An =
∑
`≥0

e(
1

2
n2τ + (nu1 + n`+ `v1)τ + nu0 + `v0)

for n > −v1, and

(4.12) An = −
∑
`≥1

e(
1

2
n2τ + (nu1 − n`− `v1)τ + nu0 − `v0)

for n < −v1. Thus, when v1 /∈ Z, by letting I = I+ ∪ I− with

I+ = ∪`≥0
{1

2
n2 + nu1 + (n+ v1)` : n > −v1,

}
and

I− = ∪`≥1
{1

2
n2 + nu1 − (n+ v1)` : n < −v1

}
,

one finds that I ∩ (−∞, N ] is finite for any given N ∈ Z≥0. This implies that
R1(u, v | τ) ∈ T0. When v1 ∈ Z but v0 /∈ Z, one adds A−v1 to the above exponential
expansions of An’s and this completes the proof.

4.5. Proof of Proposition 3.2. Let An be as in (4.10). Since e(ατ) = ∅ for
α > 0, from (4.11) and (4.12) one gets that

(4.13) n+ v1 > 0 ⇒ An = e
(
n(
n

2
+ u1)τ + nu0

)
(1 + ∅)

and

(4.14) n+ v1 < 0 ⇒ An = −e
(
(
n(n− 2)

2
+ nu1 − v1)τ + nu0 − v0

)
(1 + ∅) .

(1) Assume that v1 ∈ (−1, 0). The relation in (4.13) implies that for n ≥ 1,

(4.15)
An+1

An
= e
(
(n− 1)τ + (

3

2
+ u1)τ + u0

)
(1 + ∅) .

Similarly, from (4.14) one gets that

(4.16)
An−1
An

= e
(
−nτ + (

3

2
− u1)τ − u0

)
(1 + ∅)

for n ≤ 0. As u1 ∈ (− 1
2 ,

3
2 ), it follows that An+1 = An∅ and A−n = A−n+1 ∅ for

all n ≥ 1. Thus, one reduces that

(4.17) f(q) = A0

(
1 + ∅

)
+A1

(
1 + ∅

)
.

By letting n = 1 and n = 0 in (4.13) and (4.14) respectively, one gets that

(4.18) A1 = e
(τ

2
+ u
) (

1 + ∅
)
, A0 = −e

(
−v
) (

1 + ∅
)
.

By hypothesis, u+v 6= − τ2 mod Z, this implies e
(
τ
2 +u

)
−e
(
−v
)
6= 0. Moreover,

letting ρ = min(−v1, u1 + 1
2 ), one finds that

e
(τ

2
+ u
)
− e
(
−v
)

= c e(ρτ) (1 + ∅) .



APPELL-LERCH SERIES VIEWED AS MOCK THETA FUNCTIONS 47

In the above, c = 1 or e(u0) − e(−v0) or −1 when u1 + 1
2 + v1 < 0 or = 0 or > 0,

respectively. In this way, using both relations in (4.17) and (4.18) yields the wanted
asymptotic relation in (3.10) for f(q).

(2) When v1 ∈ (−1, 0) and u + v = − τ2 mod Z, it follows that u1 = − 1
2 − v1,

thus u1 ∈ (− 1
2 ,

1
2 ). Let ρ = min( 3

2 − u1,
3
2 + u1); one has ρ > 1. Therefore, (4.15)

and (4.16) imply that

(4.19) An+1 = A1 e(cτ)∅, A−n = A0 e(cτ)∅

for n ≥ 1 and c ∈ (1, ρ). Keep the relation in (4.17), replace (4.18) with A0 = 1
1−e(v)

and A1 = e(−v)
1−e(τ+v) , and observe that

A0 +A1 =
e(−v)− e(τ + v)(

1− e(v)
)(

1− e(τ + v)
) =

(
e(τ)− e(−2v)

)
(1 + ∅)

provided that 2v 6= −τ mod Z. The first relation in (3.11) is thus reduced from
(4.19), for min(1,−2v1) < c.

If 2v = −τ mod Z, a direct computation shows that An+1 + A−n = 0 for all
n ∈ Z≥0, what gives f(q) = 0.

(3) When v1 = 0, one obtains that An = ∅ excepted n = 0. This completes the
proof of Proposition 3.2.

4.6. Proof of Theorem 3.4. By using the functional equation in (2.26), the re-
lation in (1.41) can be written into the following form:

L(−z − τ, w | τ) = 1− L(z,−w | τ)

or, equivalently:

(4.20) f(q) = e(z) f−(q) , f−(q) = 1− L(−z,−w | τ) .

Assume that w1 ∈ [− 1
2 ,

1
2 ] and z1 ∈ [− 1

2 ,
1
2 ]. Let u = −z + w + τ

2 , write

u = u0 + u1τ , and observe that u1 ∈ [− 1
2 ,

3
2 ]. By applying (2.26) with (1.29), it

follows that

L(z, w | τ) = 1− e(z)L(z − τ, w | τ) = 1− e(z)
R1(u+ 1

2 , w | τ)

θ(u+ τ
2 + 1

2 | τ)
,

This gives the following expression of f(q):

(4.21) f(q) = e(z)
R1(u+ 1

2 , w | τ)

θ(u+ τ
2 + 1

2 | τ)
.

In view of (4.3) and Lemma 1.1, one can notice that

(4.22) θ(u+
τ

2
+

1

2
| τ) = 1 + ∅ , 1− e(u0) + ∅ , −e

(τ
2
− u
)

(1 + ∅)

when u1 ∈ [− 1
2 ,

1
2 ) or = 1

2 or ∈ ( 1
2 ,

3
2 ), respectively.

Case of w1 ∈ (− 1
2 , 0). This gives that z1 − w1 ∈ (− 1

2 , 1) and u1 ∈ (− 1
2 , 1).

Apply Proposition 3.2 (1) to R1(u+ 1
2 , w | τ), and remind that u+ 1

2 +w = − τ2 ⇔
z = 2w + τ + 1

2 . It follows that, if z 6= 2w + τ + 1
2 mod Z, then:

e(z)R1(u+
1

2
, w | τ) = e(z)

(
e(−z + w + τ +

1

2
)− e(−w)

)
(1 + ∅)

= −
(
e(w + τ) + e(z − w)

)
(1 + ∅) .(4.23)
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(1a) If z1 < w1, then u1 ∈ ( 1
2 , 1) and combing (4.21) together with (4.22) and

(4.23) yields that

t0(f)(q) = 1 .(4.24)

(1b) If z1 = w1 but z0 6= w0, then u1 = 1
2 and, by the same manner, one deduces

that

(4.25) t0(f)(q) =
e(z0 − w0)

e(w0 − z0)− 1
.

(1c) If z1 > w1, then u1 ∈ (− 1
2 ,

1
2 ) and applying (4.23) together with (4.22)

implies that

(4.26) t0(f)(q) = −e(z − w), −
(
1 + e(2w0 − z0)

)
e(z − w), −e(w + τ)

when z1 < 2w1 + 1, z1 = 2w1 + 1 or z1 > 2w1 + 1, respectively.

If z = 2w + τ + 1
2 6=

1
2 mod Z, then z1 = 2w1 + 1. Since 2w1 > −1, Proposition

3.2 (2) implies that

e(z)R1(u+
1

2
, w | τ) = −e(z − 2w) (1 + ∅) = e(τ) (1 + ∅) .

By observing that u1 ∈ (0, 12 ), from (4.22) one deduces that

(4.27) t0(f)(q) = e(τ) .

If z = 2w + τ + 1
2 = 1

2 mod Z, one finds that f(z, w | τ) = 0.

Case of w1 = 0. It follows that w0 /∈ Z and u1 = −z1 + 1
2 ∈ [0, 1]. Applying

Proposition 3.2 (3) and relation (4.22) yields that

(4.28) t0(f)(q) =



e(z)

1− e(w0)
z1 ∈ (0, 12 ]

e(z0)(
1− e(w0)

)(
1− e(−z0 + w0)

) z1 = 0

− e(w0)

1− e(w0)
z1 ∈ [− 1

2 , 0)

.

Case of w1 ∈ (0, 12 ). By (4.20), it follows that t0(f) = e(z) t0(f−). Replacing
(z, w) with (−z,−w) in (4.24) (4.25) and (4.26) gives the following results.

(2a) If z1 > w1, then:

(4.29) t0(f)(q) = e(z) .

(2b) If z1 = w1 but z0 6= w0, then:

(4.30) t0(f)(q) =
e(w)

e(z0 − w0)− 1
.

(2c) If z1 < w1, then:

(4.31) t0(f)(q) = −e(w), −
(
1 + e(z0 − 2w0)

)
e(w), −e(z − w + τ)

when z1 > 2w1 − 1, z1 = 2w1 − 1 or z1 < 2w1 − 1, respectively.

Finally, one gets the statement of Theorem 3.4 by putting together (4.26), (4.27),
(4.28), (4.29), (4.30) and (4.31).
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Appendix A. Gevrey asymptotic expansion and q-analogs of
Borel-Laplace summation

To help with reading the Gevrey and q-Gevrey analysis part of this paper, we
will recall, in §A.1, the definition of a Gevrey type asymptotic expansion and some
results in relation with Laplace transform and exponential decay. This is very closed
to the classic Borel-Laplace summation. So, in §A.2, we will discuss two q-analogs
of this summation, which are used in §2 and §3 of this paper.

A.1. Some elements of Gevrey asymptotic analysis. Let x0 ∈ C, I = (α, β) ⊂
R, α < β, R ∈ (0,∞], and let C̃∗x0

be the universal covering of the punctuated plane
C \ {x0}. One denotes by V (x0; I,R) the open sector of vertex x0 given by

(A.1) V (x0; I,R) = {x ∈ C̃∗x0
: arg(x− x0) ∈ I, |x− x0| < R} .

Remark A.1. Let Va(d, r), V0(d, r), Vα(δ | ρ) and Vi∞(δ | ρ) be as in (1.1) – (1.4),
and let ã = arg(−a), with 0̃ = 0. It follows that, for any a ∈ ∂D∗ and α ∈ ∂H:

Va(d, r) = V
(
a; (ã− d

2
, ã+

d

2
), r
)
, Vα(δ | ρ) = V

(
α; (

π − d
2

,
π + d

2
), ρ
)
.

Furthermore, Vi∞(δ | ρ) = V0(δ |∞) \ V0(δ | ρ). 2

In what follows, Gevrey asymptotic expansion should be read as Gevrey asymp-
totic expansion of the first order in [25, p. 57, Definition 1.2].

Definition A.1. Let V = V (x0; I,R). A given analytic function f in V is said
to have a Gevrey asymptotic expansion as x → x0 in V and will be denoted by
f ∈ G(V ), if there exists a complex coefficients power series

∑
n≥0 an(x−x0)n with

the following property: for any J b I and ρ ∈ (0, R), one can find C > 0 and A > 0
such that ∣∣f(x)−

N−1∑
n=0

an(x− x0)n
∣∣ ≤ C AN N ! |x− x0|N

for all (x,N) ∈ V (x0; J, ρ)× N.

Let C[[x−x0]] be the space of power series of variable (x−x0) and let T denote
the C-linear map that associates to every f ∈ G(V ) its asymptotic expansion in
C[[x − x0]]. By [25, p. 60, Proposition 1.2], it follows that kerT = E0(V ), where
E0(V ) denotes the space of exponentially small functions in V . This implies that,
if T (f1) = T (f2), then f1 is exponentially close to f2 as x→ x0 in V .

Proposition A.1. Let d ∈ R, δ > 0, and let U = V
(
0; (d− δ, d+ δ),∞

)
. Let ϕ =

ξ−υ
∑
n≥0 αnξ

n represent an analytic function in U such that |ϕ(ξ)| ≤ C |ξ|−υ eB|ξ|
for all ξ ∈ U , where υ ∈ [0, 1), C > 0 and B > 0. Consider its Laplace transform:

(A.2) f(x) =

∫ ∞eid
0

ϕ(t) e−ξ/x dξ .

Then f defines an analytic function in V such that xυ f(x) admits the power series∑
n≥0 αn Γ(n+ 1− υ)xn+1 as Gevrey asymptotic expansion for x→ 0 in V , where

V = V
(
0; I,

1

B
) , I = (d− δ − π

2
, d+ δ +

π

2
) .

Proof. This follows from a direct computation using Γ(a+1) =
∫∞
0
e−t ta dt, where

<(a) > 0. See [25, Proposition 1.5] for a similar statement. �
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Given (x0, d) ∈ C × R, let Gx0,d denote the sheaf of functions having a Gevrey
asymptotic expansion as x→ x0 in some sector of vertex x0 containing the segment
(x0, x0 +Reid) for enough small R > 0, i.e.

(A.3) Gx0,d =
⋃

I3d,R>0

G
(
V (x0; I,R)

)
.

Proposition A.2. Every Gx0,d constitutes a sheaf of rings containing as sub-ring
the space of germs of analytic functions at x = x0 in C.

Proof. By [25, p. 58, Proposition 1.1 (ii)], each G(V ) is, in fact, an algebra con-
taining all functions analytic at x = x0. �

Remark A.2. The sheaves Gra and Gvα considered in the beginning of §1.1 can be
expressed as follows:

Gra = Ga,ã , Gvα = Gα,π2 ,

where ã is the same as the one in Remark A.1. 2

A.2. q-Borel-Laplace summation methods. The Borel-Laplace summation ma-
tches each suitable power series with its Borel-sum. This process consists of two
consecutive transforms: the Borel transform, applied to the given power series, and
the Laplace transform, that gives the Borel-sum by means of an integral like as
in (A.2). For example, one sees that the power series Ê(x) =

∑
n≥0(−1)nn!xn+1,

known as Euler series, is divergent for all x 6= 0. By definition, its Borel-sum is
obtained as follows:

(A.4)
∑
n≥0

(−1)nn!xn+1 ⇒
∑
n≥0

(−1)nξn =
1

1 + ξ
⇒

∫ ∞
0

1

1 + ξ
e−ξ/x dξ .

In (A.4) in the above, the last integral is the Borel-sum of Ê(x), and it admits
this series as the asymptotic expansion for x→ 0. Moreover, one can find that both
Ê(x) and its Borel-sum satisfy the differential equation x2y′ + y = x. In this way,
the Borel-Laplace summation, when it may be applied, gives an analytic solution
in some sector whose asymptotic expansion is the given power series.

The usual q-analog n!q of n! is defined by the relation n!q = (q;q)n
(1−q)n . While

replacing q with q−1, one obtains the following q-analog of n! : n!q q
−n(n−1)/2.

This gives the divergent series
∑
n≥0(−1)nq−n(n−1)/2 n!q x

n+1, which satisfies the
following q-difference equation:

x
y(x)− y(xq )

1− 1
q

+ y(x) = x

or, equivalently,

(A.5) (
1

q
− 1− x)y(x) + xy(

x

q
) = (

1

q
− 1)x .

The point x = 0 is a non-Fuchsian singular point for (A.5). From the analytic
classification viewpoint of q-difference equations (see [26]), this equation plays the

same role as (2.2). It can be easily seen that the q-Euler series Ê(x; q) given in
(0.6) is a formal solution of (2.2). In this way, the summation process in (A.4) is
replaced with the following q-analog:

(A.6)
∑
n≥0

(−1)nq−n(n−1)/2 xn ⇒
∑
n≥0

(−1)nξn =
1

1 + ξ
⇒ Lq(

1

1 + ξ
)(x) ,
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where Lq denotes a q-Laplace transform such that

(A.7) Lq(ξ
n)(x) = q−n(n−1)/2 xn .

The condition in (A.7) can be really interpreted as the solution to the moment
problem associated with the sequence (q−n(n−1)/2)n. This problem being undeter-
mined, one can have several q-analogs in (A.6). In [33] and [34], two q-Laplace
transforms have been considered as follows.

First, assume q ∈ (0, 1), let

(A.8) ω(t; q) =
1√

2π ln(1/q)
e

log2(t/
√
q)

2 ln q (t ∈ C̃∗) ,

and define

(A.9) Lq(ϕ)(x) =

∫ ∞
0

ϕ(ξ)ω(
ξ

x
; q)

dξ

ξ
.

Secondly, for q ∈ C with 0 < |q| < 1, let θ(t; q) =
∑
n∈Z q

n(n−1)/2xn and define

(A.10) Lq(ϕ)(x) =
∑
ξ∈uqZ

ϕ(ξ)

θ( ξx ; q)
,

where u denotes a non-zero complex number which indicated the discrete integration-
path.

Each of both q-summations constructed in the above, when it may be applied to
a given power series, gives rise to a q-Borel sum for this series.

Proposition A.3. Every q-Borel sum of a power series satisfying a linear q-
difference equation is an analytic solution of the same functional equation in some
suitable domain. Moreover, this sum-function admits the power series as asymptotic
expansion as x→ 0.

Proof. See [33] and [34]. �
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order mock theta functions, Ramanujan Journal 7 (2003), 193-222.

[13] B. Gordon and R. J. McIntosh, A survey of classical mock theta functions, in Partitions,
q-series, and modular forms, 95-144, Dev. Math., 23, Springer, New York, 2012.

[14] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London

Math. Soc (2) 17 (1918), 75-115; reprinted in Collected Papers of Srinivasa Ramanujan,
Chelsea (1962), 276-309.
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scientifique, 59655 Villeneuve d’Ascq cedex, France

E-mail address: zhang@math.univ-lille1.fr


